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ABSTRACT
LAZARO, Sirlene Fernandes, D.Sc., Universidade Federal de Vigosa, February, 2017
Bayesian models for growth curves, censored data and visual scores in animal
breeding. Advisor: Paulo Savio Lopes. Co-advisors: Fabyano Fonseca e Silva and
Henrique Torres Ventura.
In the first chapter, we proposed a genome association study for pig growth curves based
on Bayesian hierarchical framework. A panel of 237 SNPs markers with the pedigree
were used jointly to identify possible chromosomal regions that affect growth curve
parameters (weight-age data) of 345 animals (F2 population from the vRiau
commercial. Under the proposed hierarchical approach, individual growth trajectories
were modeled by the nonlinear Gompertz function, so that the parameter estimates were
considered to be affected by systematic, additive polygenic and SNP markers effects. The
model assuming jointly pedigree and SNP markers presented the best fit based on
Deviance Information Criterion. Heritability estimates ranged from 0.53 to 0.56 and from
0.55 to 0.57, respectively, for the parameters mature weight (a) and maturing rate (k).
Additionally, we found high and positive genetic correlation (0.78) between “a” and "Kk".
The percentages of the genetic variances explained by each SNP allowed identifying the
most relevant chromosome regions for each phenotype (growth curve parameters). We
identified three relevant SNPs (55840514 bp at SSC17, 55814469 bp at SSC17 and
76475804 bp at SSC X) affecting "a" and "k" simultaneously, and three SNPs affecting
only "a" (292758 bp at SSC1, 67319 bp at SSC8 and 50290193 bp at SSC17), that are
located in regions not previously described as QTL for growth traits in pigs. The modeling
used was effective, and resulted in the identification of SNPs located in specific
chromosomal regions that have the potential to be explored in breeding programs by
marker-assisted selection. In the second chapter, we compared different methods for

handling censored data of age at first calving (AFC) in Brahman cattle by Bayesian

vii



models. Data were provided by Brazilian Association of Zebu Cattle Breeders (ABCZ).
Censored records were defined as AFC records outside the interval from 731 to 1824
days. Data containing 53,703 AFC records were analyzed using four different methods:
conventional linear method (LM), simulation method (SM), penalty method (PM) and a
bitrait threshold-linear model considering (TLcens). The additive genetic variance
components estimated from LM and PM were similar. Heritability estimates for AFC
ranged from 0.09 (TLcens) to 0.20 (LM). In general, genetic breeding values correlations
from different methods and the percentage of selected animals in common indicated
moderate reranking, ranging from 0.82 (LM x SM) to 0.97 (LM x PM) and 32.70 (SM x
TLcens) to 89.12 (LM x PM), respectively. Comparisons based on cross-validation
analyses, indicated LM as a suitable alternative for predicting breeding values for AFC
in this Brahman population. In the third chapter, we estimated genetic parameters for
visual scores of body structure (S), precocity (P), muscularity (M) and reproductive (age
at first calving - AFC) traits in Brahman cattle by using Bayesian bitrait and full multitrait
models. The heritability estimates obtained using bitrait model were 0.59 (S), 0.44 (P),
0.38 (M), and 0.20 (AFC) and those obtained by full multitrait model were 0.60 (S), 0.44
(P), 0.40 (M) and 0.20 (AFC). Genetic correlations were 0.57 between body structure and
precocity, 0.56 between body structure and muscularity and 0.82 between precocity and
muscularity (by full multitrait model). Genetic correlations between visual scores and
AFC were negatives and moderate magnitude (-0.29, -0.24 andie(B3P and M by

bitrait model) and (-0.29, -0.22 and -020S, P and M by full multitrait model). These
results suggest that visual scores can be used as selection criteria in Brahman cattle
breeding programs and that these traits present favorable genetic correlation with age at

first calving.
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RESUMO
LAZARO, Sirlene Fernandes, D.Sc., Universidade Federal de Vigosa, fevereiro de 2017.
Modelos Bayesianos para curvas de crescimento, dados censurados e escoresisisu
no melhoramento animal. Orientador: Paulo Sévio Lopes. Coorientadores: Fabyano
Fonseca e Silva e Henrique Torres Ventura.
No primeiro capitulo, foi proposto um estudo de associacdo gendGmica para curvas de
crescimento de suinos utilizando modelos hierarquicos Bayesianos. Utilizou-se um painel
de 237 marcadores SNPs conjuntamente com informacdes de pedigree objetivando
identificar possiveis regifes cromossémicas que afetam os pardmetros da curva de
crescimento (dados de peso-idade) de 345 animais (populacdo F2 proveniente do
cruzamento Piaws comercial). Assumiu-se uma trajetdria de crescimento individual
descrita pela funcdo nao linear de Gompertz, de forma que as estimativas de cada
parametro desta funcao sédo influenciadas pelos efeitos sisteméaticos, poligénicos aditivos
e de marcadores SNPs. O modelo combinando informagfes de pedigree e marcadores
apresentou o melhor ajuste com base no critério de informacédo da deviance (DIC). As
estimativas de herdabilidade variaram de 0,53 a 0,56, e de 0,55 a 0,57 para os garametro
peso a maturidade (a) e taxa de maturidade (k), respectivamente. A correlacdo genética
entre os parametros “a” e “k” foi alta e positiva (0,78). As porcentagens das variancias
genéticas explicadas por cada SNP permitiram identificar as regides cromossémicas mais
relevantes para cada fenétipo (pardmetros da curva de crescimento). Foram identificados
trés SNPs relevantes (55840514 bp no SSC17, 55814469 bp no SSC17 e 76475804 bp no
SSC X)que influenciaram, simultaneamente, os parametros “a” ¢ “k”. Também foram
reportados trés SNPs afetando apenas “a” (292758 bp no SSC1, 67319 bp no SSC8 e
50290193 bp no SSC17) localizados em regibes cromossémicas que ainda ndo foram
previamente descritos como QTL para caracteristicas de crescimento em suinos. A

modelagem utilizada foi efetiva, e resultou na identificagcdo de marcadores SNPs



localizados em regifes cromossdmicas especificas que apresentam potencial para serem
exploradas em programas de melhoramento via sele¢éo assistida por marcadores. No
segundo capitulo, comparou-se as metodologias baseadas na utilizacdo de dados
censurados de idade ao primeiro parto (IPP) em bovinos Brahman por meio da abordagem
Bayesiana. Os dados foram cedidos pela Associacéo Brasileira dos Criadores de Zebu
(ABCZ). Registros censurados foram definidos como valores de IPP que extrapolaram o
intervalo entre 731 e 1824 dias. Os registros de IPP (no total de 53.703 informacdes)
foram analisados por meio de quatro diferentes metodologias: método linear
convencional (LM); de simulacao (SM); de penalidade (PM) e modelos bicaracteristico
limiar-linear (TLcens). Os componentes de variancia genética aditiva estimados para os
métodos LM e PM foram similares. As estimativas de herdabilidade para IPP variaram
de 0,09 (TLcens) a 0,20 (LM). De forma geral, as correlagdes entre os valores genéticos
obtidos por meio das diferentes metodologias e a porcentagem de animais selecionados
em comum variaram d&82 (LM x SM) a 0,97 (LM x PM), e de 32,70% (SM x TLcens)

a 89,12% (LM x PM), respectivamente, indicando reordenamento moderado entre os
animais. As comparac0es realizadas via validagéo cruzadarandicanétodd_M como

a melhor opc¢éo para predicao dos valores genéticos dos animais para a caracteristica IPP
na populacdo estudada. No terceiro capitulo, foram estimados os pardmetros genéticos
para caracteristicas de escores visuais de estrutura (S), precocidade (P), musculosidade
(M) e reprodutiva (idade ao primeiro parto - IPP) em bovinos da raga Brahman utilizando
modelos Bayesianos multicaracteristico completo e bicaracteristicos. As estimativas de
herdabilidade utilizando o modelo bicaracteristico foram 0,59 (S), 0,44 (P), 0,38 (M)
0,20 (IPP)e utilizando o modelo multicaracteristico completo foram 0,60 (S), 0,44 (P),
0,40 (M) e 0,20 (IPP). As correlacdes genéticas foram 0,57 entre estrutura e pdegocida

0,56 entre estrutura e musculosidade e 0,82 entre precocidade e musculosidade no modelo



multicarcteristica completo. As correlagdes genéticas entre os escores visuais e IPP foram
de moderada magnitude e negativas (-0,224e -0,31 para S, P e M utilizando o
modelo de bicaracteristico) e (-0,29, -0,22 e -0,29 para S, P e M utilizando o modelo
multicaracteristico completoOs resultados indicam que 0s escores visuais podem ser
utilizados como critérios de sele¢cdo em programas de melhoramento de bovinos Brahman
e que essas caracteristicas apresentam correlacdo genética favoravel com a idade no

primeiro parto.
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GENERAL INTRODUCTION

Growth curves have long been used to describe the growth process of animals and
several mathematical models have been developed to predict the growth rate of animals
through various life cycle stages (Koivula et al., 2008). In general, growth curves have
been studied through several nonlinear functions such as Logistic, von Bertalanffy and
Gompertz (Koivula et al., 2008; Cai et al., 2012; Silva et al., 2013). These functions
present a reduced number of parameters with biological interpretation (for instance,
mature weight and maturing rate). In pigs, most of the genome association studies of
growth assumehe body weight at specific ages as phenotypes. However, it may be
extended for a more general context by considering the whole weight-age data under a
growth curve approach. In addition, the use of genome-wide association studies (GWAS)
can be useful to search for chromosomal regions that can help to explain the genetic
architecture of complex trait.

In general, genetic analysis for growth curves have been based on a two-step
procedure. In the first step, a growth curve is fitted separately to the data of each
individual animal, afterwards, a mixed model analysis is applied to obtain (co)variance
components. In this second step the estimates of production function parameters from the
previous step are taken as records (Varona et al., 1999). However, Varona et al. (1997,
1998) described a Bayesian procedure which allows the particular parameters of any
production function to be estimated jointly and the (co)variance components between
them. Under this approach, adjustment errors are discarded and all the available
information is then used for the genetic prediction of individual growth curves (Varona
et al., 1997; Blasco et al., 2003; Forni et al., 2009).

In beef cattle, the reproductive traits are important for the production system

because herds which has high fertility will have greater availability of animals, whether



for sale or for selection, allowing more selective intensity and, consequently, higher
genetic progress and increased profitability. In this context, the need arises of pregnant
female earlier and which have lower calving interval (Boligon and Albuquerque, 2010).
Heritability estimates of reproductive traits in beef cattle described in the literature are
considered of low magnitude (Forni and Albuquerque, 2006; Boligon et al., 2007; Baldi
et al., 2008). However, moderate heritability estimates have been found for age at first
calving (Mercadante et al., 2000; Azevédo et al., 2006; Faria et al., 2007).

For Brahman cattle, reports on heritability estimates for different traits are scarce,
particularly in Brazil (Faria et al.,, 2011). FurthermoBas indicus cattle, such as
Brahman cattle, are reportedly older at puberty when compared withBo®&urus
breeds (Lunstra and Cundiff, 2003; Lopez et al., 2006). These cattle have been widely
used in Australia and also have been used in Brazil, due to traits such as resistance
fertility and calving facility, weight gain, weaning, longevity, finishing and crosses for
meat, and they have been one of the Zebu breed more evenly distributed throughout the
world being qualified as one of the best selection options for beef cattle (Lunstra and
Cundiff, 2003; Lopez et al., 2006; Johnston et al., 2009; Faria et al., 2011; Bertipaglia et
al., 2012; Fortes et al., 2012). The knowledge of genetic parameters and correlated
responses of beef traits is important for designing specific breeding programs and conduct
mating plans. It is crucial to choose selection criteria genetically and favorably related
with the selection objectives of the herds and identify genetically superior animals.

When considering the traits measured in females, the age at first calving (AFC) is
the most used to evaluate fertility, since it is observed relatively early, it can be easily
obtained and it is expressed in the majority of the breeding females (Boligon and
Albuquerque, 2010). However, selecting females directly for the lowest AFC is not

simple, since reproductive traits generally have low heritability, between 0.14 and 0.19



(Pereira et al., 2002; Boligon et al., 2007). In addition, some farmers delay the entry of
females into reproduction by determining age or weight for the beginning reproductive
life, which makes it difficult to identify sexually precocious females. In this sense, it is
necessary to verify if the traits indicating fertility and sexual precocity areiatsbwith
the visual scores (body estructure, precocity and muscularity) that are currently
considered in the selection programs (Boligon and Alguquerque, 2010). Since, the
advantage of including visual scores in breeding programs is that a large number of
animals can be evaluated without being subjected to the stress of measurements, a fact
that makes the process faster and more economically feasible (Jorge Junior et al., 2001,
2004). However, studies that correlate visual scores with reproductive performance in
zebu animals are few in the literature (Faria et al., 2009; Bertipaglia et al., 2012).
Furthermore, female fertility had been neglected in breeding programs for decades
(Garrick and Ruvinsky, 1999). In Zebu breeds, the inclusion of reproductive traits on
selection criteria is fundamental due to predominant poor fertility, characterized by a long
postpartum anestrous period (Nava-Trujillo et al., 2010). The attempt is to select for
sexual precocity in one of the most important fertility trait, the age at first calving (AFC).
Lower AFC values are associated with heifer precocity, high lifetime productivity, high
number of calves in a same time period and allows higher genetic progress rate. Despite
easiness of routine recording, AFC data is not always appropriate to be used in genetic
evaluation because of recording mistakes and non-occurrence or delay in communication
of the calving at the moment of genetic evaluation and animals without AFC phenotype
are ignored in routine genetic evaluation. However, their records can be reconsidered as
censored observations (Tarrés et al., 2006). The analysis of censored traits requires non-

usual methodologies to be implemented in current genetic evaluation programs.



Some methods have been proposed to deal with censored traits in genetic
evaluations. One is based on simulation of censored records from positive truncated
normal distributions taking into account the estimated effects of the model (Donoghue et
al., 2004; Korsgaard et al., 2003). Another one is the penalty methodology proposed by
Johnston and Bunter (1996), which consistsnpute information by adding a constant
(number of days) to real data. For AFC, 21 days are often included based on the
assumption that the heifer should be fertile in the subsequent estrous cycle. The linear-
threshold bivariate analysis considers the censoring status (threshold binary trait) as an
additional trait to improve the accuracy of genetic parameter estimates.

We proposed a genome association study for pig growth curves based on Bayesian
hierarchical framework considering different sets of SNP markers and pedigree and to
identify possible chromosome regions affecting the growth curve parameters. And we
aimed to apply and compare different methodologies that deal with censored AFC records
and to estimate genetic parameters between AFC and visual scores by linear bitrait and
full multitrait models that were previously determined in the previoep sinder a
Bayesian framework in Brazilian Brahman cattle by accessing predictive performance via
cross-validation.

In the first chapter, we proposed a genome association study for pig growth curves
based on Bayesian hierarchical framework considering different sets of SNP markers and
pedigree and we aimed also to identify possible chromosome regions affecting the growth
curve parameters. In the second chapter, we aimed to compare the mentioned methods
under a Bayesian framework for genetic evaluation of AFC in Brazilian Brahman cattle.
And in the last chapter, we aimed to estimate genetic parameters between age at first
calving and visual scores (body structure, precocity and muscularity) by using linear

bitrait and full multitrait Bayesian models in Brazilian Brahman cattle.
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Chapter 1



Bayesian analysis of pig growth curves combining pedigree and genomic
information

ABSTRACT: We proposed a genome association study for pig growth curves based on
Bayesian hierarchical framework considering different sets of SNP markers and pedigree.
Additionally, we aimed also to identify possible chromosome regions affecting the
growth curve parameters using empirical weight-age data from an outbred F2 (Brazilian
Piau vs commercial) pig population. Under the proposed hierarchical approach,
individual growth trajectories were modeled by the nonlinear Gompertz function, so that
the parameter estimates were considered to be affected by additive polygenic, systematic
and SNP markers effects. The model assuming jointly pedigree and SNP markers
presented the best fit based on Deviance Information Criterion. Heritability estimates
ranged from 0.53 to 0.56 and from 0.55 to 0.57, respectively for the parameters mature
weight (a) and maturing rate (k). Additionally, we found high and positive genetic
correlation (0.78) between “a” and "k". The percentages of the genetic variances
explained by each SNP allowed identifying the most relevant chromosome regions for
each phenotype (growth curve parameters). The majority of these regions were closed to
QTL regions previously reported for growth traits. However, we identified three relevant
SNPs (55840514 bp at SSC17, 55814469 at SSC17 and 76475804 at SSC X) affecting
"a" and "k" simultaneously, and three SNPs affecting only "a" (292758 bp at SSC1, 67319
bp at SSC8 and 50290193 bp at SSC17), that are located in regions not previously

described as QTL for growth traits in pigs.

Keywords: Hierarchical nonlinear model, Gompertz, SNP markers.



INTRODUCTION

Most of the genome association studies of pig growth assume the body weight at
specific ages as phenotypes. However, it may be extended for a more general context by
considering the whole weight-age data under a growth curve approach. In general, pig
growth curves have been studied through several nonlinear functions such as Logistic,
von Bertalanffy and Gompertz (Koivula et al., 2008; Cai et al., 2012; Silva et al.,.2013)
These functions present a reduced number of parameters with biological interpretation
(for instance, mature weight and maturing rate). Thus, breeding goals can be defined
aiming to change the shape of the growth curves by treating these parameter estimates as
phenotypic observations in statistical genetic models.

Traditionally, genetic analysis of growth curves considering only pedigree
information has been performed in two distinct steps. First, the growth curve parameters
are estimated for each animal; and, second, (co)variance components, genetic and
environmental effects are estimated on them. This approach ignores the adjustment errors
and does not allow estimating growth curve parameters for individuals with a scarce
amount of records (Varona et al., 1999). In this context, hierarchical Bayesian models for
growth curves were proposed by calculating joint posterior distributions for the curve
parameters, (co)variance components, and systematic and genetic effects. Under this
approach, adjustment errors are discarded and all the available information is then used
for the genetic prediction of individual growth curves (Varona et al., 1997; Blasco et al.,
2003; Forni et al., 2009).

Ibanez-Escriche and Blasco (2011) generalized the hierarchical Bayesian models
for growth curves undea genome wide selection approach considering a simulated
population. These procedures provide information on location of specific genome regions

affecting growth curve components, that may lead to new insights about marker assisted
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selection in pig breeding approaching desirable genetic changes on growth curves.
However, generalization for genome association studies have been under exploited in
literature, especially for real data.

In this context, we proposed a genome association study for pig growth curves
based on Bayesian hierarchical framework considering different sets of SNP markers and
pedigree. Additionally, we aimed also to identify possible chromosome regions affecting

the growth curve parameters.

MATERIALS AND METHODS

Experimental population and phenotypic data

The phenotypic data was obtained from the Pig Breeding Farm of the Department
of Animal Science, Universidade Federal de Vigosa (UFV), MG, Brazil. A three-
generation resource population was created and managed as described by Hidalgo et al.
(2013) and Verardo et al. (2015). Briefly, two naturalized Piau breed grandsires were
mated with 18 granddams from a commercial line composed of Large White, Landrace
and Pietrain breeds, to produce the F1 generation from which 11 F1 sires and 54 F1 dams
were selected. These F1 individuals were mated to produce the F2 population, of which
345 animals were weighed at birth and at 21, 42, 63, 77, 105 and 150 days of age.
DNA extraction, genotyping and SNP quality control

DNA was extracted at the Animal Biotechnology Lab from Animal Science
Department of Universidade Federal de Vigosa. Genomic DNA was extracted from white
cells of parental, F1 and F2 animals, more details can be found in Band et al. (2005). The
low-density customized SNPChip with 384 markers was based on the lllumina Porcine

SNP60 BeadChip (San Diego, CA, USA, Ramos et al., 2009).
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These SNPs were selected according to QTL positions previously identified on
this population using meta-analyses (Silva et al., 2011) and fine mapping (Hidalgo et al.,
2013, Verardo et al., 2015). Thus, although a small number of markers have been used,
the customized SNPchip based on previous identified QTL positions ensures an
appropriate coverage of the relevant genome regions in this population. From the total of
384 markers, 66 SNPs were discarded for no amplification, and from the remaining 318
SNPs, 81 were discarded due to a minor allele frequency (MAF) < 0.05. Thus, 237 SNPs
markers were used and distributed as follows: SSC1 (56), SSC4 (54), SSC7 (59), SSC8
(30), SSC17 (25) and SSCX (13), being the average distance within each chromosome,
respectively, 5.17, 2.37, 2.25, 3.93, 2.68 and 11.00 Mb.

The model

A hierarchical Bayesian model was applied to analyze individual pig growth
curves based on nonlinear Gompertz function, whose parameters were modeled by a
multitrait linear model including additive polygenic, SNP marker and systematic effects.

In the first stage, it was considered the following Gompertz growth model:

Yi = aiexp(-h exp(ki § )) s, 1)
where Y is the observed body weight of individual i at age jepresents the mature
weight, b is a time scale parameter (it does not have biological interpretatios)hle
maturing rate,jtis the day in which the body weight were measuredgiisthe residual
term, considered to be independent and normally distributed among individuals. The

following distribution was assumed for the weight-age data in this first stage:

f(¥; &, b, ki,o5) ~ N(a exp(-b expki § ))os
The standard deviatiow{) for the residual term in (2) was considered as a

linear function of two parameters @nd k) aiming to model its trajectory over time

(i.e., to consider residual heterogeneity of variance):
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G = la + I'plj. 2

In the second stage, additive polygenic, systematic and SNP marker effects were
estimated under a multitrait linear model considering the parameter estimates from the
first stage as phenotypic observations. Three alternative models, characterized by the
inclusion of different genetics effects in addition to the systematic effects, were proposed.
The first one assumed the additive polygenic effects (Pedigidé)(3); the second one
the SNP genotypes effects (Markers)M2 (4); and the third one considered both
previously mentioned effects (Pedigree and markeM3 (5). These models are given

respectively by:

0=Xp+Zu +e, 3)
0 =Xp +Mc +e, (4)
0 =Xp+Mc+Zu +e, (5)

where®0 is a vector containing the estimates of the parameter “a”, “b”, and “k” for all
individuals9' = [a,b,K]' = [ay ap - & by b - ks ko -k, I'B is the vector of
systematic effects (intercept and 19 contemporary groups given by the combination of
sex, batch and halothane gene genotype (Band et al., 2B05)N(0, x; ® I), being

x; a known diagonal matrix with values 1e+10 (large variances) to represent vague prior
knowledge; u = (Uag, Uaz ..., Uan, Upy Upz ...,Upn Uy Uka ..., U IS the vector of
additive polygenic effects, assumedag:x,,A ~ NO,x,® A),nis the total number

of individuals and in this study was too the number of records within individualthe
additive relationship matrix among the animals apg is the additive genetic
(co)variance matrix;C = (Ch3 Car-+» Camr Cp1r Cp2s +++1C bm1C k1 1C k2 1 -++C e 1S the

vector of random SNP effects with known incidence mattixvith (345x3) rows and
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(237x3) columns of SNP genotypes (coded as AA, AB, or BB), assumed as
c|lx. ~ N@O,x.® I), wherel and x . are, respectively, an identity and SNP markers

(co)variance matrices. Th& and Z are the incidence matrices corresponding to

systematic and additive polygenic effects, respectively; and

€ = (ea €a -+ Cam €b2 Ep2 -+ B &1 G2 -+ & IS the residuals vector, assumed as

e|lx. ~ N(O,x.® 1), wherel and ¥, are, respectively, an identity and residual

(co)variance matrices.

Based on the results of M2 (Eq. [4]), we defined two new models (M4 and M5)
that included an additive polygenic effect and reduced sets of SNP markers. In M4 (Eq.
[6]), we selected the markers that explain at least 0.5% on the SNP variance for the three
parameters simultaneously. Further, in M5 (Eq. [7]), only markers explaining 0.5% of the
variance for at least one of the considered parameters were selected. The incidence matrix
for these two different set of SNPs were given by M4 and M5 respectively.

0=Xp+Zu+Myc +e, (6)
0 = Xp +Zu +Msc +e, (7)
The inference

The joint posterior distribution for individual growth curve parameters, their

variance components, and systematics, additive polygenic and SNP effects was accessed

under a hierarchical framework following the Bayes theorem:

f(0, o5, B, u, ¢, Xc, Xg, Xe |y ) < f(y |0,04)
f(0 | B,u,c,Xc,Xg, Xe) f(oy) f(B) f(u | Zg)
f(Zg)f(c| o) f(E9 f(Z9

Assuming independence among individuals, the conditional distribution of,data

given the growth curve parameters, was a product of normal distributions:
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N n 1
f(y10,04) = IT1I
=1 =1 ;}275(5;-

(-Kit;i )
ly; - @ exé_ byJexp )]2 (8)

2
&

26

where N is the total number of individuals; n the number of records within indivigual; a
bi and k are the parameters of the Gompertz growth function for the animal i; toed t
age (days) at time j.

The prior distribution for the growth curve parameters given the additive
polygenic, systematic and SNP effects, as well as the (co)variance components, was
asumed as a multivariate Gaussian distribution given by:

/2

N
f(e | B,u,Zg,c,Zc,Ze) :lze |

exp[ % © -XB - Zu - Mc)(£,®1) (8- XB - Zu - Mc)} ©

where 0 is the vector containing the parameters “a”, “b” and “k”; Xg is the additive
polygenic genetic (co)variance matrix;. is the SNP markers (co)variance mati;

the residual (co)variance matrix between the parameters “a”, “b”, and “k”; and | is an
identity matrix.
Following the proposed hierarchical approach, Gaussian prior distributions were

assumed for the systematics, additive polygenic and SNP effects:
-1/2 1 -1
f(Bls, V)| V]| exg-56-s)V § s)f,
-Np /2 1 -1
flu| Zg, A) | Eg | ex —7u‘(Zg®A) u |, anc

-m/2 1 -1
f(c|X) oo X expl -5 C'(Ec® 1) ¢ |,

wheres andV are subjective means and (co)variances for the prior beliefs about the

systematic effects, Nis the number of animals in the genealdgis an identity matrix
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of order m, andA is the numerator relationship matrix. Bounded uniform distributions
were assumed fer;; and (co)variance matriceSg Xc andXe) (Varona et al., 1998; Forni
et al., 2007).

The sampling methods require random independent draws from the conditional
posterior distribution for each parameter. ThuBifs the K' growth curve parameterrfo
the ith animalp. ik are the other parameters for tHeanimal and all parameters for all

other animals. Thus we have:

f(eik | e-ik,B,“,C,EC,Zg,Ze,GSj ,y)oC
f(elk | e-iky st’y)f(elk | e_lk ’B ’u ’c !EC ’Zg 129)

The fully conditional distributions for all parameters of the hierarchical multistage
models were derived according to Varona et al. (1999). In the present study, these
distributions for growth curve parameters are the products of the conditional distribution
of data (Eq.[8]) and the prior distributions of the growth curve parameters (Eq. [9]).

The fully conditional distribution of parameter “a” can be written as:

f(a| b, ki,B,u,Xg,¢,Xc,Xe,04,y )cc
f(a,| b,ki,Gq‘,yi) f(a | b,ki ,B u ,Eg € X ,Ee)

where,
[ n - P ]
by yij(exp(- b Jexd klt”))
- o
f(a| b, ki,o4,Y;) ~ N ’nl — j
3 [(exf DS )7 T expfh e )
_j:]- =1 1

The fully conditional distribution of parameter “b” can be written as:

f(bl | a1kiaBau1Eg1caZC1EE1Gd 1y )CK
f(bl | a1k|aG£j1y|) f(b | a’1k| aB ,u 129 ¢ aZC 128)

where,
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Ly, (aexpf B 92

208]

n
f(bi | a,ki,oq4,m,Y;)« I1 exp
=1

The fully conditional distribution of parameter “k” can be written as:

f(ki| &, b,p,u,Xg,c,Xc,Xe 04,y )k
f(ki | &, b,04,Y) fki | &, b,pu Xg e Xc Xe)

where,

_h -kiti ) oo

N Ly -(ayexpl B exd )

f(ki | @, b, 0q,Y,) o T expl 0
=1

268]

The parameter “a” could be sampled from a normal distribution by using Gibbs
sampling algorithm, but the conditionadsterior distribution for the parameters “b” and
“k” did not have a closed form. In these cases, the Metropolis-Hastings algorithm with
normal proposal distribution centered on the values jofrfd k sampled in the
immediately previous iteration was used (Forni et al., 2007). The mixed model equations
were constructed assuming as observed traits the growth curve parafedbtaifed

from earlier steps:

X'RTX +VH X'R%Z X'R™M p| |XR™O
ZRIX  Z RZ +(z®A)" Z RM “l=| zr0
M’ R™X M RE M RM +(Z®)7 ([e] |vRrte| (o)

where,R = 3. ® 1.

The conditional posterior distributions for each location paranfigtey, and &
were given by normal distributions defined by the coefficients and the right-hand side

(RHS) of the mixed model equations (Eq. [10]):
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RHS-Z 2y t

f(BI | B.|,9,u,Zg,c’Zc’Ze’ng 1y) ~ N A1 )
Ai A
RHS-Z}\,”tj
f(ui | wi,0,p,Xg,¢,Xc,Xe,065,y) ~ N S R N R
Ai A
RHS'Z)\,UII
f(Chl C-hse,B,u,Zg,EC1Ze,st,y) - N %% ’

wherep., u i, and cn, are the vectors including the current values of these effects after
discarding the'! one, h represent the SNP markers (h = 1, 2, ..., 237) and A is the
corresponding element from the coefficient matrix of the mixed models equations.
The conditional posterior distributions for the (co)variance matrices were the
following inverted Wishart distributions:
f(Zg]0,B,u,c,Zc,Ee,05,y) ~ IW[@'A 1), Na - (0 +1)],

f(Xc]0,B,u,Xg,¢,Xe,04,y) ~ IW[(c'e),Nn - (np +1)], anc
f(Ze| 0,B,u,Xg,¢,Xc,04,y) ~ IW[(e'e), N - (np +1)].

where R is the number of parameters assumed in the growth curve aisdtine total
number of SNP markers.
The conditional posterior distribution for the residual standard deviatigméve
not closed form, thus the Metropolis-Hasting algorithm was used:
f(og| 0,B,u,Xg,¢,Xc,Xe,y)

n [yij'(aieXp(' bj )eXp(-kitij ))]2

o« [Texp| -
=1 g 20,4

We applied a Metropolis-Hastings algorithm with a uniform proposal distribution
centered at the current valuesbd k (as mentioned earlier). The choice of the limits for
this distribution determines the acceptance rate. If the width of such an interval is too

small, the proposed values will be closed to the current ones, the rejection rate will be low
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but the process will move slowly throughout the parameter space. On the other hand, if it
IS too large, the proposed values are far away from the current ones and these results in a
high rejection rate (Blasco et al., 2003). The above choice led to acceptance rates ranging
between 50.74% and 52.45%X), 45.00% and 48.76% (M2), 48.80% and 50.6KA48)(

49.50% and 52.64% (M4), 46.66% and 51.28% (M5).

A total of 400,000 samples were generated, assuming a burn-in period and
sampling interval (thin) of 100,000 and 10 iterations, respectively. The convergence of
the MCMC chains was verified by graphical inspection and BOA (Smith, 2007) R
software. Convergence was assessed using the Heidelberg e Welch (1983), Geweke
(1992) and Raftery and Lewis (1992) methods.

Model testing
The goodness of fit analyzes for the considered models was based on the deviance

information  criterion (DIC) developed by Spiegelhalter et al. (2002):
DIC = D(§)+2pD, where D(0) is a point estimate of the deviance obtained by

replacing the parameters by their posterior means estimates in the likelihood function and
pD is the effective number of parameters in the model, wpgre D(0) - D(0). Models

with smaller DIC should be preferred to models with larger DIC.

In addition to the goodness of fitting, we also calculated the predictive ability by
cross-validation, which involved training one subset of the population (300 animals), and
validating on the remaining individuals (45 animals). Here, we randomly split the data
sets into two groups from the original data set (345 animals), these two subset were
redefined 10 times, D1, D2, ..., D10. Finally, the average of the 10 correlation coefficients

between the predicted and observed phenotypes was obtained.
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The predicted weight)A(ij ) for animal i in time j based on Gompertz model was
calculated as follows¥; = & exp(d exp(k; t ))where &, b andk;are elements of

the estimated vectdt given by:® = XB + Za + Mé. Thus, the solutions for these animals

of the validation population were obtained based on the solutions of the training
population animals.

The five tested models were applied to the 10 cross-validation replicates. In each
replicate, systematic, genetic effects and SNPs markers effects were estimated and
provided a phenotypic prediction for the masked animals. Finally, the predictive ability
used to measure the efficiency of the models was given by the correlation between
observed and predicted phenotypes from the validation population.

QTL identification

Based on SNP markers that were considered as relevant based on M2 (Eq. [4]) we
verified the existence of QTL already described for growth traits by using the PigQTLdb
tool (National Animal Genome Research Program, 2016). The traits which have been
used in the PigQTLdb were body weights 34 weeks and at slaughter (related to parameter

“a”) and average daily gain (related to parameter “k”).

RESULTS AND DISCUSSION
Model comparison
The M2 (Eq. [4]) was used only to estimate SNP variance and thus to fit reduced
models M4 (Eg. [6]) and M5 (Eqg. [7]) based on the results from M2, in this way their
results are not shown or discussed.
Models were compared using the Deviance Information Criteria (DIC). The
following results were obtained: model M3 (DIC=10572.73), model M1

(DIC=10745.97), model M4 (DIC=11083.42) and model M5 (DIC=10823.73) (Table 1).
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The M3 that considered the pedigree of animals associated with the information of all
SNP markers presented the best fit based on the lower DIC value. Thus, we can note that
the selection of markers explaining the higher percentage of variance did not improve the
goodness of fit, and that SNP markers explained a lower percentage of variance could be

relevant to explain the observed covariance between relatives.

Table 1.Deviance Information Criterion (DIC) for models.

Models DIC
Pedigree and markers (M3)! 10,572.73
Pedigree and markers (M4)? 11,083.42
Pedigree and markers (M5)? 10,823.73
Pedigree (M1)* 10,745.97

‘complete model (pedigree and SNP markers informatitpgdigree and SNP markers information
(considers the SNP markers higher effect for commons parametgnsand k)?pedigree and SNP markers
information (considers the SNP markers higher effect for different gdeasa a, b and k)*Only pedigree
information.

Correlation coefficient between all predicted and observed phenotypic values
were also used to access the goodness of fit (Table 2). The same model indicated by DIC
(Pedigree and markers) was considered as the best one since presented higher correlation
coefficients at all ages, except at birth. The superiority of this model was remarkable at
last age (150 days), which has the greater economic relevance because correspond to
weight at slaughter.

This result is in agreement with de los Campos et al. (2009) that, analyzing a mice
population, concluded that the model that considered the pedigree with SNP’s markers

effects showed the best goodness of fit.
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Table 2. Correlation coefficient between predicted and observed values from models
including different sources of genetic information (pedigree, and pedigree and markers)
and their standard errors (SE) and below means of the correlations of the 10 groups of the

cross-validation and their standard deviatiSB);

Pedigree and Pedigree and  Pedigree and Pedigree
Dataset Age
markers (M3)  markers (M4}  markers (M5) (M1)*
1 0.450[0.048] 0.450[0.048] 0.454 [0.048] 0.440 [0.049]
21  0.795[0.033] 0.772[0.034] 0.770[0.034] 0.770 [0.035]
42  0.864[0.027] 0.844[0.029] 0.845[0.029] 0.844 [0.029]
Full data 63 0.887 [0.025] 0.871[0.026] 0.879[0.025] 0.868 [0.027]
77  0.932[0.019] 0.919[0.021] 0.927[0.020] 0.916 [0.021]
105  0.922[0.021] 0.916[0.021] 0.917[0.021] 0.916 [0.021]
150  0.814[0.031] 0.760[0.035] 0.797[0.032] 0.737 [0.036]
1 0.198[0.031] 0.204 [0.030] 0.208[0.032] 0.202 [0.030]
21  0.224[0.052] 0.238[0.057] 0.280[0.058] 0.262 [0.053]
42  0.311[0.032] 0.326[0.030] 0.361[0.033] 0.360 [0.030]
cross: 63  0.376[0.025] 0.390[0.030] 0.386[0.026] 0.393[0.031]
validation
77  0.408[0.042]  0.426[0.042] 0.423[0.041] 0.423[0.044]
105  0.393[0.036] 0.410[0.037] 0.407 [0.036] 0.459 [0.022]
150  0.245[0.028]  0.258[0.027] 0.257[0.022] 0.247 [0.023]

‘complete model (pedigree and SNP markers informatitpedigree and SNP markers information
(considers the SNP markers with higher effect for commons paramedgts and k)2pedigree and SNP
markers information (considers the SNP markers with higher effedifferent parameters a, b and k);

“Only pedigree information.

Predictive abilities were also calculated for all tested madeéach evaluated
ages (Table 2). All models presented lower predictive ability for initial phase of growth
curve. Nevertheless, they were able to predict with higher predictive ability the weights

at ages above 21 days. This lower predictive ability may be related to the fact that growth
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models do not fit well to the initial age, once prenatal growth of animals is not measured.
This period is known for the maximum rate of tissues and organs, so will determine traits
such as weight birth of piglets and the consequences established during prenatal life will
be continuous throughout the life of the animal (Fall et al., 2003; Foxcroft and Town,
2004).

A slight decrease in the correlations at later ages (105 to 150 days) was also
observed. This decay can be explained because the last age considered in this study is not
the age of maturity itself, but the age at slaughter (150 days - 65 kg), i.e., the animals
continue to growing after this period, as can be seen in Peloso et al. (2010) that evaluated
carcass traits and meat quality in five distinct genetic groups of pigs with animals up to
202 days old.

Correlations between the predicted and observed phenotypes at different ages in
growth functions are seldom used in the literature. However, the importance of these
results is remarkable because they are useful in identifying factors in animal production
that may be modified in order to change growth trajectories.

Variances components and heritability

The marginal posterior densities of the variance components showed that a large
part of adult weight variation is due to additive genetic effects (Table 3). Higher influence
of additive genetic factors on these growth curves parameters was also reported by
Koivula et al. (2008) and Cai et al. (2012) in pigs, and by Forni et al. (2007) in beef cattle.
The "a" parameter of the growth curve can be used as a selection criterion to control adult
body weight that increases when selecting for growth rate, especially in situations in
which the slaughter weight is reached before the maturity, as occurred in this study. Also
"k" parameter can be used as a selection criterion indicating the rate that animals approach

the adult weight (Table 3).
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Table 3. Features of the marginal posterior distributions of additive genetic and residual

variance components and heritability and highest probability density (HPD) of growth

curve parameters from models including different sources of genetic information

(pedigree, markers, and pedigree and markers) for each parameter.

Additive Genetic Variance and HPD

Traits

Pedigree and

markers (M3)
30.42

[0.28, 68.10]
0.10

[5x102, 2x10Y
2x107

[2x108, 3x107]

22.35
[0.90, 48.16]
0.03
[4x10%, 5x107]
1.3x107

[2x108, 2x107]

0.56
[0.15, 0.94]
0.77

[0.54, 0.97]

Pedigree and Pedigree and

markers(M4)>? markers(M5)*
24.55 19.23
[0.61,53.00]  [0.47, 41.46]
0.10 0.08

[6x102, 2x10Y  [4x102, 3x10Y]

1x10’ 1x10’

[3x108, 2x107]  [3x10%, 2x107]

Residual Variance and HPD

20.26 16.69
[1.05, 43.08]  [0.70, 36.86]
0.03 0.03

[4x108, 5x107]  [6x10%, 6x107

9x108 9x108
[3x108, 2x107]  [3x1078, 2x107]

Heritability and HPD

0.54 0.53
[0.12, 0.93] [0.12, 0.94]
0.80 0.73
[0.60, 0.97] [0.47, 0.95]

Pedigree (M1)

23.95
[0.40, 51.43]
0.10
[6x109, 1.5x10]
1x107

[4x108, 2x107]

20.18
[0.78, 43.06]
0.02
[5x103, 5x107]
9x108

[3x108, 2x107]

0.53
[0.11, 0.95]
0.79

[0.60, 0.97]
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0.57 0.55 0.55 0.55

[0.27, 0.87] [0.25, 0.84] [0.24, 0.84] [0.24, 0.84]

‘complete model (pedigree and SNP markers informatiépgdigree and SNP markers information
(considers the SNP markers with higher effect for commons paramedets and k)2pedigree and SNP
markers information (considers the SNP markers with higher effedtfferent parameters a, b and k);

4Only pedigree information.

We opted to show only the results obtainedptoameters “a” and “k”, since the
parameter “b” has no biological interpretation. The heritability estimates (Table 3)
indicate that‘a” and “k” parameters can be an alternative for pig breeding programs that
aim to produce animals with higher growth rate. Estimated heritability values of the
present study were higher than those found by Koivula et al. (2008) (a=0.44, b=0.55 and
k=0.31), working on Finnish Yorkshire pigs also using the Gompertz model. This may be
due to the effect of the variance of performance given the production function parameters,
which was not considered in the analyses of those authors, what causes the estimation
noise to be absorbed by the residual variances (Varona et al., 1999).

Considering the model that showed the best goodness of fit to the data (Pedigree
and markers - M3), genetic correlation between the growth curve parameters was obtained
in order to assess whether the traf®’ (@nd“k”) are relevant for a breeding program.
Direct selection for a high value of "a" parameter will also imply in selection for higher
value of "k" parameter (as indicated by the high and positive genetic correlation, 0.78,
between the two parameters), and therefore the selection will result in animals more
precocious (high maturation rate) and heavier animals. This high and positive correlation
between the parameters "a" and "k" was also reported in others growth curve studies, e.g.,
Cai et al. (2012) in pigs, which have obtained the same value reported here, and Forni et

al. (2007) in beef cattle.

25



The use of pedigree associated with SNP markers may capture extra sources of
genetic variance compared with models based only on pedigree (de los Campos et al.,
2009). Similarly, Calus and Veerkamp (2007) working with simulated data, concluded
that the inclusion of polygenic effects associated with marker information improved the
variance components estimation. Results similar to those reported by these authors, we
could see in this study (Table 3), in which the genetic variance was higher in model M3
(Pedigree and markers) compared with model M1 (Pedigree).

Small number and sparse distribution of SNP markers in the whole genome could
be a limitation of the approach used at the present work. However, these markers were
located in regions where QTLs have been found in previous studies in this same
population (Silva et al., 2010; Hidalgo et al., 2013), thus generating a SNP marker panel
that was able to capture the genetic variation on the considered traits (a, b and k
parameters). Despite the relatively small number of animals evaluated, the population was
structured with a F2 design, which results in large linkage disequilibrium blocks that
improve the capture of genetic variance, even in low-density marker panels (Costa et al.,
2015).

QTLs identification

The list of relevant SNPs based on the joint analysis, that affect the adult weight
(2) and the maturity rate (k) in pigs, as well as their genome positions and the related
QTLs (PigQTLdb - National Animal Genomes Research Program, 2016) are shown in a
Supplementary Material. We considered only the markers that explained at least 0.5% of
the total genetic variance (Figure 1). A total of 22 SNPs for the "a" parameter, 17 SNPs
for the “b” parameter and 26 SNPs for the "k" parameter, distributed in chromosomes
(SSC) 1, 4, 7, 8, 17 and X were selected. We opted to show only relevant markers that

have influenced "a", "k" and both parameters simultaneously.
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Figure 1. Percentage of total variance explained by each SNP for: (a) parameter “a”, (b)

parameter “b”, (c) parameter “k”.

The SNPs explaining higher percentage of variance for the "k" parameter were
associated with average daily gain. Approximately 23% of these SNPs are located in the
SSCY7. These results are in agreement with Ai et al. (2012) who found QTL for growth
traits in this same chromosome, in a F2 pig population (White Duroc vs Erhualian); and
Ruckertz and Bennewitz (2010), who reported QTLs in SSC7 for daily weight gain in

crossbred pigs (European wild boars vs Meishan females).
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The "a" parameter was associated with the weight at slaughter and the weight at
34 weeks, with the most relevant SNPs located on chromosomes 1, 4 and 8. These
findings are in agreement with Koning et al. (2001) who found QTLs associated with
final weight traits in these chromosomes in a F2 population (Meishan vs Large White,
Dutch Landrace); Ai et al. (2012), who reported QTLs for weight at slaughter on
chromosomes 4 and 8; and Liu et al. (2007) who detected QTLs for carcass composition
and average daily gain in the SSC1, suggesting multiple QTLs in this chromosome in
crossbred pigs (Pietrain vs Duroc).

We identified three relevant SNPs (55840514 bp at SSC17, 55814469 at SSC17
and 76475804 at SSC X) for "a" and "k" simultaneously, and three SNPs affecting only
"a" (292758 bp at SSC1, 67319 bp at SSC8 and 50290193 bp at SSC17), that are located
in genome regions not previously described in the literature (see Supplementary
Material).

In summary, whereas the genome association analysis is an impartial scan of the
entire genome without any assumption about the role of a certain gene, the QTL approach
allows researchers to investigate the region where a specific marker of the gene
underlying a complex trait is located. When combining these two approaches in the same
study, we have the advantage of identifying QTLs from the same population in which
relevant markers for the traits of interest were identified. In this context, a joint genomic
association analysis of multiple potentially correlated traits, like growth curve parameters,
may be advantageous. This approach has increased the power of QTL detection as
reported by Galesloot et al. (2014), when comparing several multitrait and single trait
GWAS methods. In addition, these authors suggested that the multitrait method may be
able to identify genetic variants that are currently not identifiable by standard single trait

analysis.
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CONCLUSIONS

Markers may allow capturing fractions of additive variance that would be lost if
pedigrees are the only source of genetic information used. The model including marker
and pedigree information had better goodness-of-fit than pedigree-based or marker-based
models.

The heritability estimates for mature weighd’{) and maturity raté‘k”) indicated
that these traitis a feasible alternative for breeding programs aiming to change the shape
of growth curves in pig breeding programs.

The multitrait GWAS was efficient to report QTLs associated with functions
related to biological processes of growth in pigs. Relevant SNPs are located in genome
regions not previously described in the literature. Future studies targeting these areas
could provide further knowledge to uncover the genetic architecture underlying growth

curves in pigs.
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SUPPLEMENTAR MATERIAL
Relevant SNPs for the parameters (a, and k) in pigs, their positions in base pairs (bp) at pig
chromosome (chr) with their references, and the marker selected that explain at least 0.5%

on the SNP variance for the three parameters.

SNP Param. chr Position  Variance Evidenced by

(bp) (%0)

Kim et al. (2000);
Harmegnies et al. (2006)

ALGA0007908 k 1 190856045 0.7802 Liu et al. (2007): Ruckert
and Bennewitz (2010)
Koning et al. (2001); Liu

ALGA0007015  a 1 150093073 0.4760 L ak (2007);Liuetal.

(2008); Ruckert and
Bennewitz (2010)
Koning et al. (2001); Liu
ALGA0001557 a 1 16104793 0.5500 etal. (2007); Ruckert ant
Bennewitz (2010)
ALGA0000022 a 1 292758 0.5241
Koning et al. (2001); Liu
et al. (2007); Liu et al.
(2008); Ruckert and
Bennewitz (2010)
Kim et al. (2000);
Harmegnies et al. (2006)
Liu et al. (2007); Ruckert
and Bennewitz (2010)
Koning et al. (2001); Liu
et al. (2007); Liu et al.
(2008); Ruckert and
Bennewitz (2010)
Koning et al. (2001);
Evans et al. (2003); Liu €
al. (2007); Ruckert and
Bennewitz (2010)

ALGA0006721 a, k 1 142016866 1.2464

ALGA0007897 k 1 190593688 0.8416

ALGAO0007023 k 1 151750737 0.7175

ALGA0005071 a 1 80441657 1.7000

33



ALGA0005714

ALGA0029783

ALGA0027472

ALGA0022414

ALGA0026242

ALGA0029781

ALGA0027463

a, k

a, k

a, k

1

4

4

4

4

4

4

105010422 0.6111

127966743 1.0901

100262783 0.7273

3097092  0.7633

80196806  1.1400

127915978 0.7701

100209536 0.9127

Evans et al. (2003); Liu €
al. (2007); Ruckert and
Bennewitz (2010)
Knott et al. (1998);
Nagamine et al. (2003)
Andersson et al. (1994);
Knott et al. (1998); Wanc
et al. (1998); Marklund e
al. (1999); Walling et al.
(2000); Bidanel et al.
(2001); Koning et al.
(2001); Knott et al.
(2002); Cepica et al.
(2003); Nagamine et al.
(2003); Mercade et al.
(2005); Murani et al.
(2006); Fontanesi et al.
(2010); Ruckert and
Bennewitz (2010);
Tortereau et al. (2010)
Nagamine et al. (2003);
Edwards et al. (2008); Li
et al. (2008)
Andersson et al. (1994);
Knott et al. (1998); Wanc
et al. (1998); Marklund e
al. (1999); Walling et
al.(2000); Bidanel et al.
(2001); Knott et al.
(2002); Cepica et al.
(2003); Nagamine et al.
(2003); Mercade et al.
(2005); Murani, et al.
(2006); Sanchez et al.
(2006); Fontanesi et al.
(2010); Tortereau et al.
(2010)
Knott et al. (1998);
Nagamine et al. (2003)
Andersson et al. (1994);
Knott et al. (1998);
Walling et al. (1998);
Wang et al. (1998);
Marklund et al.
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ALGA0026446

ALGA0022429

ALGA0024036

ALGA0029474

ALGA0025382

a

4

85013698

3183518

20554086

122989609

60311651

0.6947

0.8508

0.8087

0.6906

0.5680

(1999); Walling et al.
(2000); Bidanel et al.
(2001); Koning et al.
(2001); Knott et al.
(2002); Cepica et al.
(2003); Nagamine et al.
(2003); Mercade et al.
(2005); Murani et al.
(2006); Fontanesi et al.
(2010); Ruckert and
Bennewitz (2010);
Tortereau et al. (2010)
Andersson et al. (1994);
Knott et al. (1998); Wanc
et al. (1998); Marklund e
al. (1999); Walling et
al.(2000); Bidanel et al.
(2001); Knott et al.
(2002); Nagamine et al.
(2003); Nagamine et al.
(2004); Mercade et al.
(2005); Murani et al.
(2006); Sanchez et al.
(2006); Fontanesi et al.
(2010); Tortereau et al.
(2010)

Nagamine et al. (2003);
Edwards et al. (2008); Li
et al. (2008)

Knott et al. (1998);
Wallling et al. (1998);
Wallling et al. (2000);
Nagamine et al. (2003);
Liu et al. (2008)

Knott et al. (1998);
Wallling et al. (2000);
Malek et al. (2001);
Bidanel et al. (2001);
Knott et al. (2002);
Nagamine et al. (2003)
Andersson et al. (1994);
Knott et al. (1998);
Walling et al. (1998);
Wang et al. (1998);
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ALGA0040318

ALGA0045009

ALGA0040948

ALGA0044983
ALGA0045338

ALGA0044302

ALGA0041266

ALGA0044524

ALGA0049235

ALGA0047819

a, k

35289714

120884969

45579337

120615826
125022538

110744562

50275200

115268795

55138365

20455978

0.4684

0.6200

0.5843

0.6660
0.7978

0.6815

0.6610

0.5526

1.7988

0.4827

Marklund et al. (1999);
Walling et al. (2000);
Bidanel et al. (2001);
Knott et al. (2002);
Koning et al. (2003);
Nagamine et al. (2003);
Evans et al. (2003);
Mercade et al. (2006);
Murani et al. (2006);
Fontanesi et al. (2010);
Tortereau et al. (2010); #
et al. (2012)

Koning et al. (2003);
Evans et al. (2003);
Nagamine et al. (2004);
Sanchez et al., (2006); L
et al. (2008); Ruckert anc
Bennewitz (2010); Ai et
al. (2012)

Nagamine et al. (2003)
Bidanel et al. (2001);
Quintanilla et al. (2002);
Kim et al. (2006); Liu et
al. (2008); Ruckert and
Bennewitz (2010); Ai et
al. (2012)

Nagamine et al. (2003)
Onteru et al. (2013);
Nagamine et al. (2003);
Edwards et al. (2008);
Wang et al. (2015);
Nezer et al. (2002);
Quintanilla et al. (2002);
Nagamine et al. (2003);
Kim et al. (2006); Liu et
al. (2008); Ruckert and
Bennewitz (2010)
Nagamine et al. (2003);
Wang et al. (2015)
Koning et al.,(2001); Ai e
al. (2012)

Koning et al.,(2001);
Beeckmann et al. (2003)
Evans et al. (2003);
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Ruckert and Bennewitz
(2010); Ai et al. (2012)

ALGA0050287 a, k 8 66561233 0.9245 Koning et al. (2001); Ai e

al. (2012)
ALGA0049233 Kk 8 55126130 0.6233 oningetal (2001);Aie

al. (2012)

Koning et al. (2001);
ALGA0047008  a 8 10356235 0.5783 Quintanilla et al. (2002);

Ai et al. (2012)
ALGA0046028  a 8 67319  0.4970

ALGA0096707 a, k 17 55840514 1.1371

ALGA0094911 a,k 17 35020233 0.4920 Pierzchala et al. (2003)
ALGA0096701 a, k 17 55814469 1.2122

ALGA0094915 a 17 35099305 0.5832 Pierzchala et al. (2003)
ALGA0096093 a 17 50290193 0.6675

MARCO0099472 a, k X 76475804 2.4284

Cepica et al. (2003);

ALGA0099785 a X 35172136 0.6496 Geldermann et al. (2003]
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Genetic evaluation of age at first calving for Brazilian Brahman cattle using
censored Bayesian models

ABSTRACT: The purpose of this study was to estimate genetic parameters and compare
models for handling censored data of age at first calving (AFC) in Brahman Brazilian
beef cattle. Censored records were defined as AFC records out of range of 731 and 1824
days. Data including information of 53,703 Brahman cows were analyzed using 4
different methods: conventional linear method (LM), considering only uncensored
records; simulation method (SM), which data are augmented by drawing random samples
from positive truncated normal distributions; penalty method (PM), in which a constant
of 21 days was added to censored records and a bitrait threshold-linear method model
(TLcens) considering any prior information about censored records. The additive genetic
variance components estimated from LM and PM were similar. Heritability estimates for
AFC ranged from 0.09 (TLcens) to 0.20 (LM). In general, genetic breeding values
correlations from different methods and the percentage of in common selected animals
indicated moderate reranking, ranging from 0.82 (LM x SM) to 0.97 (LM x PM) and
32.70% (SM x TLcens) to 89.12% (LM x PM), respectively. Comparisons based on cross-
validation analyses, indicated LM as a suitable alternative for predicting breeding values

for AFC in this Brahman population.

Key words: age at first calving, censored data, Brahman cattle, threshold analysis
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INTRODUCTION

One of the most relevant selection criteria for the genetic improvement of
reproductive efficiency in beef cattle is the age at first calving (AFC). De=gstaess of
recording, AFC may show recording mistakes due to non-occurrence and/or delay in
communication of the calving until a given pre-fixed time period. Thus, this trait is widely
referred as censored (Tarrés et al., 2006).

The simplest option to handle this problem is omitting these observations, which
leads to loss of a number of information and may decreases the prediction accuracy.
Furthermore, it may distort the real variability of the trait and to mask genetic differences
between animal§Guo et al., 2001; Dias et al., 2004). Another option is to use suitable
statistical models in studies with Zebu real data which the censored observations are more
effectively exploited in the genetic evaluation.

Some methods have been proposed to deal with censured traits in genetic
evaluations. One is based on simulation of censored records from positive truncated
normal distributions taking into account the estimated effects of the model (Donoghue et
al., 2004a; Korsgaard et al., 2003). Another one is the penalty methodology proposed by
Johnston and Bunter (1996), which consistsnpute information by adding a constant
(number of days) to real data. For AFC, 21 days are often included based on the
assumption that the heifer should be fertile in the subsequent estrous cycle. The linear-
threshold bivariate analysis considers the censoring status (threshold binary trait) as an
additional trait to improve the accuracy of genetic parameter estimates. In the last method,
it assumes that the correlation between fertility traits (e.g., AFC) and the censoring status

might improve the prediction accuracy (Urioste et al., 2007a).
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In this context, we aimed to compare the mentioned methods under a Bayesian
framework for genetic evaluation of AFC in Brazilian Brahmartlediy accessing

predictive performance via cross-validation.

MATERIALS AND METHODS
Data

Brahman fertility data were provided by Brazilian Association of Zebu Cattle
Breeder{ABCZ). Age at first calving (AFC) was defined as the interval between birt
and first parity of the cows. The AFC records were obtained during the period of 1960
and 2014. Before editing the data, there were 59,929 trait records available in the
database. Data from females with AFC above 1825 days of age were assumed to have
failed to calvej.e. censored data. Data editing was performed by removing 1) animals
with incomplete records; 2) single record by contemporary groups (CG); 3) animals
belonging to contemporary groups consisting of only noncalvers; 4) outliers based on 3
standard deviation within CG.

The CG were formed as the combination of herd, year and birth season. CG with
eight or more animals with phenotypic information were kept in the database for analysis.
The values of censored records were generated using two different strategies: 1) Females
without phenotypic information received as censored record the biggest CG value of
AFC; 2) Adding the highest AFC valwe21-day penalty, within contemporary group
which correspond to an estrous cycle (Johnston and Bunter, 1896pmplete

description of the databases is presented in the table 1.:
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Table 1. Description of the database structure to trait to the age at first calving (AFC)

as the number of records, descriptive statistics and information groups contemporary

Records N (%) Mean SD Minimum Maximum
(days) (days)
UR 50,630 94.28 1,189.97 239.89 731 1,824
CR 3,073 5.72 1,74457 112.90 859 1,825

1UR — uncensored data; GRcensored data

Methodologies

AFC data were analyzed using four different Bayesian methods to deal with
censored phenotypic records.
Linear Method (LM) was based on uncensored AFC data (DS1). The LM was used to
evaluate the scenario when censored records were not used (DS1 dataset). For this, the
following standard animal model was fitted:

y=XB+Wcg+ Za+e [1]

where y is the vector of AFC recordg is the vector of systematic effects (mean,
registration class and mating typey; is the vector of contemporary group (herd-year-
season) effects is the vector of additive genetic effeatss the residual vector; and

W andZ are the incidence matrices associated Witlag and a, respectively. It was
assumed thgt~ N (0, 1 %), beings?s a known variance with value 1e+10 (large variance)
to represent vague prior knowledgg~ N (0, | 6%), a ~ N (0, Ac%:) ande ~ N (0, Io%),
beingA the numerator relationship matriée the contemporary group varianeé; the
additive genetic variancé,the identity matrix, and? the residual variance. The vector
p included registration claganimals registered as pure by origin or in open book) and
mating type (artificial insemination, embryo transfer, fertilizatiowitro, natural mating

and controlled mating).
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Simulation Method (SM)is based in the same model presented in Eq. [1], however the

dataseDS2 (censored data + uncensored data) was used instead DS1. For heifers with
censored record, the methodology considers data simulation. Bhus[y . y.]" is

a vector in whichyur is the vector of uncensored records of AFC, sadhe vector of
simulated values for censored records. Using Gibbs sampling approach (Sorensen et al.,
1998; Guo et al., 2001y, were sampled from their respective predictive distributions.

It was assumed thatr values followed a truncated Gaussian distribution whose lower
limit is defined by the maximum values of AFC within the corresponding contemporary
group. Thus, the augmented dsta were considered within each iteration of the Gibbs
sampler as an observation for each censored record (Donoghue et al., 2004a; Korsgaard
et al., 2003).

Penalty Method (PM)s equivalent to SM, however the censored records were replaced
by a set of augmented records by adding a constant of 21 days over the highest AFC value
within each contemporary group (DS3). The penalty suggested that the cows failing to
become pregnant would conceive if they had another opportunity, as an extra estrous
cycle (Donoghue et al., 2004b; Hou et al., 2009).

Threshold- Linear censored (TLcensinethod is based on bitrait analysis where one

trait is continuous and the another one is a threshold binary trait (calving success), which
indicates the censored status. Females that calved were coded as 2, and cows without a
recorded calving were assigned a 1 (failure). The binary records were associated to
liability values given by a latent continuous variable (Sorensen and Gianola, 2002). At

each MCMC iteration, the binary records generate a liability value below or over a given
threshold. This model consideys=[y,, y.,]", whereyc are the higher day of AFC

records within contemporary group (DS4
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wherey is the vector of AFC recordsjs the vector of liability generated from censored
statusX, g, W, Z, c¢g, aandeisthe same of model [1]. The following priori distributions

were assumed:

[ay] ~N(0,Go® A),|:ﬂy:| ~N(@©O,Z® |),[ng} ~N (0,CGo® )
a| ﬂ| g

and[ev:| ~N O,Ro® I)

€

whereGo andRo are the additive genetic and residual (co)variance matrices, respectively

(as proposed by Varona et al., 19900 is the (co)variance matrix for CG effects; and
X is a diagonal known matrix with values 1e+10 (large variances) to represent vague

prior knowledge for systematic effects.
Markov Chain Monte Carlo (MCMC) Sampling

Parameters were drawn from the posterior distributions using Gibbs sampling, as
implemented in the programs TM, kindly provided by Andres Legarra, INRACastanet
Tolosan, France (Legarra et al., 2008). A total of 400,000 samples were generated,
asuming a burn-in period and sampling interval (thin) of 100,000 and 10 iterations,
respectively. The convergence of the MCMC chains was verified by graphical inspection
and R package BOA (Smith, 2007). For all analyses, convergence was assessed using
methodology presented by Heidelberg e Welch (1983), Geweke (1992) and Raftery and
Lewis (1992).

Methods Comparisons

48



The predictive ability was accessed by cross-validation, which was implemented
considering in the training dataset all censored records, and 70% of uncensored records
obtained randomly within each contemporary group and validating on the remaining
individuals. Here, we randomly split the data sets into two groups from the original data
set, as specified above, these two subset were redefined 10 times, D1, D2, ..., D10.
Finally, the average of the 10 correlation coefficients between the predicted and observed

phenotypes was obtained.
The predicted phenotypes vector was calculategl as)(ji‘ + Wd + Za. Thus, the

solutions for the animala the validation population were obtained based on the solutions
of the training population animals. Finally, the predictive ability used to measure the
efficiency of each method was given by the correlation between observed and predicted
phenotypes from the validation population and mean square errors.

The individual accuracy of breeding value for each animas also calculated
and used to compare the considered methods. The accuracy (r) was calculated as showed

in Eq. [3]:

: [3]

whereSD; is the posterior standard deviation of the breeding value of each aranshl
o%ais the additive genetic variance.

Spearman’s correlation coefficients between predicted breeding values from
different methods were computed to infer on differences in the ranking of animals. In
addition, the percentage of in common animals selected at different percentiles (TOP1%

and TOP10%) based on the compared methods were also calculated.
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RESULTS
Variance Components

Posterior means with respective standard deviation and HPD95% region for variance
components and heritability from different methods are presented in table 2. The LM only
considers AFC uncensored values and its results should be used as reference (simplest model).
The additive genetic variance obtained from LM and PM were similar and showed
overlapping of HPD intervals. The corresponding estimates from SM and TLcens methods
presented the higher and lower values, respectively. Since the SM method was based on
simulated random numbers based on a truncated normal distribution, thus inserting some
source of variation in the data, this method produces higher estimates for additive genetic
variance. The lowest posterior means for the residual variance was observed forM, and
whereas the highest value was reported for $Ms higher value for SM suggests that
obtaining random numbers based on a truncated normal distribution for all censored records

canoverestimatehis variance component.

Table 2. Posterior means, standard deviation and highest posterior density region (95%) for

heritability and variance components and genetic parameters for AFC in Brahman cattle.

Method? h? 6%, 6%c 6%
N 0.20(001)  11.887.01 (598.41)  5,780.80 (766.84) _ 43,205.65 (516.72)
[0.18;0.21] [10,765.1313,070.92] [4,331.42; 7,309.51] [42,198.82; 44,205.45]
. 0.19 (0.01)  31,481.96 (1,378.36) 54,378.23 (6,188.77) 80,271.21 (1,110.02)
[0.17;0.21] [28,748.36; 34,210.96 [42,632.60; 66,547.76] [78,032.36; 82,409.43]
o 018 (0.01)  14354.36 (712.52)  17,560.54 (2,063.04)  46,658.04 (598.47)
[0.16;0.20] [13,014.01; 15,783.45 [13,715.58; 21,650.96] [45,494.81; 47,833.18]
floone  09(0006)  8221.12(518.38) 2096041 (2476.74)  64038.80 (503.00)

[0.08;0.10]  [7,281.80; 9,261.24] [16,191.94; 25,910.80] [63,064.86; 64,972.09]

h?= heritability, o2, 0% ando? = additive genetic, contemporary group and residual variances, respectively;

LM, SM, PM, TLcens: linear, simulation, penalty, threshold-linear censoettiodologies.
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The estimates of heritability were similar and ranged from 0.09 (TLcens data set) to
0.20 (LM data set). Heritability estimate using LM, SM and PM were similar and greater than
that fromTLcens (Table 2). As result of the lower estimate of the additive variance under
TLcens, its posterior mean of heritability was smaller than the other methods.
Methods Comparisons
The predictive ability was performed by correlation coefficients (between observed
and predicted phenotype) using cross-validation approach and mean square erron.(Table 3
Higher correlation and lower MSE were found 1dvl, indicating that this method is
recommended to be used in AFC genetic evaluation with censored records in Brazilian

Brahman cattle.

Table 3.Average mean square error (MSE) and correlations between observed and predicted

phenotypes from 10 fold of the cross-validation with respective standard deviation (SD)

Comparison method

Method? MSE (SD) Correlation (SD)
LM 52,541.85 (643.26) 0.30 (0.006)
SM 81,104.72 (8,137.71) 0.19 (0.078)
PM 55,267.17 (1,320.13) 0.25 (0.008)

TLcens 56,660.74 (541.39) 0.22 (0.005)

ILM, SM, PM, TLcens: linear, simulation, penalty, threshold-linear aeaso

Spearman correlation coefficients, accuracy of breeding values and percentage of in
common selected animals (considering different percentiles, TOP1% and TOP10%) between
breeding values predicted from different methodologies are shown in Table 4. Spearman
correlations between the LM method and all other were higher among predictions obtained
from linear model.

Concordance between the selected top 1% animals ranged from 32.70% (SM and

TLceng to 82.96% (M and PM). For the top 10% of animals it was slightly higher and
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ranged from 59.48%SM and TLcens) to 89.12%. K and PM). These results show that
although most animals in the top 1% or 10% were not ranked similarly under methods, there

were exceptions.

Table 4. Spearman correlation between all animals (above diagonal) and accuracy (below
diagonal) of predicted breeding values of AFC trait and percentage of animals in common
between methods at 1% (above diagonal) and 10% (below diagonal) of selected individuals

Method? LM SM PM TLcens
Spearman correlations and accuracy
LM _ 0.82 0.97 0.95
SM 0.95 _ 0.88 0.83
PM 0.98 0.96 _ 0.95
TLcens 0.87 0.88 0.89 _
Percentage of animals in common
LM _ 46.96 82.96 55.65
SM 61.23 _ 52.17 32.70
PM 89.12 66.48 _ 51.48
TLcens 81.70 59.48 78.33

LM, SM, PM, TLcens: linear, simulation, penalty, threshold-linear censoettodologies.

Threshold-Linear Analysis with Calving success (CS)

Summary of the posterior distributions of (co)variance components, heritabilities,
and genetic correlation from the CS-AFC bitrait analysis are presented in Table 5. For the
AFC trait analyzed joint with CS in the TLcens method, the contemporary group and residual
variances were more variable than the additive genetic variance, illustrating the importance
of environmental effects in this trait (AFC). For the CS trait, the posterior means for additive

genetic variance and heritability in this study were liownagnitude (Table)5

52



Table 5.Estimates of (co)variance components and genetic parameters and their standard deviation (SD) fronhysisait ana
of age at first calving in days (AFC, trait 1) and calving success (CS, trafl2)ens method

Trait
AFC CS
2 8,221.12 (518.38) 0.01(0.001)
a [7,281.80; 9,261.24] [0.006: 0.015]
2 20,960.41 (2,476.74) 0.61 (0.071)
g [16,191.94; 25,910.80] [0.48; 0.75]
" 64,038.80 (503.09) L oo
[63,064.86; 64,972.09] '
» 0.09 (0.006) 0.01 (0.001)
[0.08; 0.10] [0.004; 0.009]
o -8.72 (1.08)
— [-10.71; -6.60] —
-82.58 (11.55) .
Ocgt2 — [-106.20; -60.77]
o -249.60 (1.09) .
oet2 [-251.65; -247.44]
o -0.95 (0.031) o
fa12 [-0.98; -0.90]
. -0.87 (0.009) .
fp12 [-0.89; -0.85]

02, - additive genetic variance; 6%q — contemporary group variance; 6% — residual variance;?h- heritability; cai2 - additive genetic covariance; Gcg12

— contemporary group covariance; ce12— residual covariancex— genetic correlationpt, phenotypic correlation



DISCUSSION
LM and PM reported similar estimates for all variance components, indicating

the correspondence among the simplest and penalty methods. Using either LM or PM to
handle censored fertility records, a small impact on estimation of its variance components
was expected. On the other hands, Urioste et al. (2007b) found similar additive genetic
and residual variances estimates for SM and PM considering days to calving in Angus
cattle. Probably, the correlation generated by the tritrait analysis (three calving intervals)
used for these authors could have affected the variance components estimates. However,
Forni and Albuquerque (2003) reported that imputation of censored data did not improve
the identification of genetic differences between animals.

All methods showednedium heritabilities for AFC trait (0.18 to 0.20, Table 2)
indicating a good scope for selection, except the TLcens method that, showed low
heritability (0.09). Garcia et al. (2016) reported low heritability estimate (0.14) foridFC
Nellore cattle using TLcens method. In general, heritability estimates for AFC from field
data reported in the literature also oscillated as observed in the present study, ranging from
0.10 to 0.37 in Brazilian Zebu cattle (Boligon and Albuquerque, 2011; Barrozo et al., 2012,
Moreira et al., 2015). Differences on heritability estimates observed in the literature
comparedto our study, may reflect differences in populations, in trait definitions,
management practices that eventually confounding genetic and environmental effects
estimates, or the influence of the data structure.

Donoghue et al. (2004a) and Donoghue et al. (2004b) using simulation and real data
of fertility for days to calving, respectively, reported similar results among heritability
estimates in relation to our study using penalty (PM) and simulation (SM) methods. On the
other hand, the heritability results under threshold analysis conflicts with some authors

(Johnston and Bunter, 1996; Morris et al., 2000; Phocas and Sapa, 2004). These authors have
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reported higher heritability estimates using TLcens models than linear models, in
disagreement with the results pregeittere. TLcens estimates were lower than the other
methods, however, according to Boligon et al. (2008), different populations and models may
affect genetic parameter estimates for AFC.

Heritability estimate for CS (calving success) (Tablen5a bitrait analysis was
0.01. Estimates for CS or related traits, using threshold models, have been reported varying
between 0.03 (Donoghue et al., 2004c) and 0.25 to 0.27 (Rust and Groeneveld, 2002). In
general, unlike observed in our study, the use of threshold models have estimated higher
values for heritabilities in comparison with linear models (Johnston and Bunter, 1996;
Morris et al., 2000; Phocas and Sapa, 2004).

Although the genetic correlation between AFC and CS (-0.95, negative and
genetically favorable) has been little exploited in the literature, especially in Bralttien c
it is a relevant finding. Johnston and Bunter (1996) reported a very high negative genetic
correlation (—0.97) for days to calving and CS in Angus females, suggesting that they can be
considered genetically the same trait. Donoghue et al. (2004c), working with field data from
first-calf Angus females, reported genetic correlation equal to -0.73. The higher negative
genetic correlation indicate that AFC could act as an indicator trait of CS and could be
implemented as a selection criterion for fertility traits, since females with a higher
probability of calving success will also present a lower AFC. Furtheremore, selection to
increase probability of CS would result as a correlated response, since CS has lower
heritability estimate (0.01) than AFC (0.09), as can be seen in Table 5. The high negative
genetic correlation (-0.95) between the two $rtakes the AFC to be measured earlier in
life of the animal. Nevertheless, disadvantage majysbeplementatiorin large data sets.

Urioste et al. (2007a) using predictive ability on fertility traits (days to calving and

calving success) of Uruguayan Aberdeen Angus cattle found similar correlations for PM and
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SM, and PM and TLcens. However, Urioste et al. (2007b) found the main disadvantage
implementation difficulties for large data sets for threshold analysis compared to linear
models.In our study, the LM method besides presenting less MSE and higher predictive
ability (Table 3) demanded less computational effort compared to other methods.

Spearman correlations and accuracy (table 4) were very similar for all methods
suggesting there are small differences in the ranking of animals. Similar to results reported
by Donoghue et al. (2004a), we observed that correlations and accuracies based on the
uncensored data were slightly higher than censored.

The Spearman correlation between LM and SM was lower than other methods
(0.82). This result is similar to Donoghue et al. (20GAhAt worked with days to calving in
Australian Angus cattle (0.81). According to the authors, these results indicated some
reranking of animals when censored recovds ignored when compared with methods that
included noncalving females in the analysis. Assuming that the former approach is inferior,
asit is ignoring an important source of genetic variation in fertility, these results highlight
the need to include records from noncalving cows in order to accurately estimate differences
in fertility for animals. On the other hand, in our study the Spearman correlation between
LM and PM was higher than for other methods (0.97). It may reflect differences in
populations, since these authors used only sires for correlation analysis and different trait
definition.

Despite the differences observed for predictive abilities and genetic parameter
estimates, the Spearman correlations and accuracies among methods were similar and closed
to unity, indicating that no major reranking would be expected across these methodologies.
These similarities and another previously results suggests that either approaches (LM and

PM) could be used for genetic evaluations of AFC trait.
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Percentage of animals in common (Table 4) showed the same pattern as observed
for Spearman correlations of breeding value predictions and accuracy estimate, which were
higher among linear model. The percentages of animals in common were higher between
LM and PM, indicatingho great reranking of animals when censored records are used. These
percentages were, even, smaller when only TOP1% of the animals was considered compared
to the TOP10%. These results indicate high changes in the ranks, although most animals in
the top 1% or 10% were similarly ranked under different methods, there were exceptions.

Similar to the present study, Garcia et al. (2016) working with Nellore cattle found
coincidence in sire ranking approaching, higher values among linear models. On the othe
hand, Hou et al. (2009) found high coincidence of TOP10 bulls in Danish Holstein when
breeding values were predicted using PM, SM and TLcens. We can infer that the choice of
methodology in our study could have large effect in the identification of the best animals in

this population.

CONCLUSIONS

A linear model using censored data was the most accurate method for genetic
evaluation of AFC in Brazilian Brahman cattle. Penalty method is also an alternative method
to genetic evaluations of AFC data.

The larger estimate of the residual variance under the simulation method (SM)
suggests that ihapproach does not provide a good method for handling censored records
in beef fertility data.

The genetic correlation reported between AFC @8dndicates a strong negative
correlation. Selecting animals with shorter age first to calving genetically will lead to

correlated increases in calving success.
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Genetic parameter estimates for age at first calving and visual scorgsBrazilian

Brahman cattle through Bayesian multitrait models

ABSTRACT: We aimedo evaluate the genetic association between visual scores (body
structure, precocity and muscularity) and age at first calving (AlSI)g Bayesian
multitrait models in Brazilian Brahman cattke total of 7,539records of body structure,
precocity and muscularity areD,630 records oAFC were used to estimate genetic
parameters. Heritability estimates were 0.59, 0.44, 0.38 and 0.20 for body structure,
precocity, muscularity and AFC using bitrait majednd 0.60, 0.440.40 and 0.20,
respectively, using full multitrait model. The genetic correlations were 0.57 between body
structure and precocity, 0.56 between body structure and muscularity, and 0.82 between
precocity and muscularity. The genetic correlations between visual scores and AFC were
negative and moderate (-0.29, -0.24 and -0.31 for body structure, precocity and
muscularity using bitrait model and -0,29.22 and -0.29 for body structure, precocity

and muscularity using full multitrait model). The results indicate that visual scores can be
used as extra selection criteria in Brahman breeding programs since favorable correlated

responses with age at first calving were observed.

Keywords: body structure, precocity, muscularity, bitrait, multitrait

62



INTRODUCTION

The advantage of incluay visual scores in breeding programs is that a large
number of animals can be evaluated without being subjected to the stress of
measurements, a fact that makes the process faster and more economically feasible (Jorge
Junior et al., 2001, 2004). According to Koury Filho et al. (2009) studies on visual scores
are relevant to understand genetic correlations with other traits of interest, such as age at
first calving (AFC).

Since visual scoring of body structure, precocity and muscularity is a recent visual
assessment method, there are few studies correlating these traits with other economically
important traits (for example, age at first calving - AFC). Studies estimating geneti
parameters for these visual scores are therefore needed. In Brazil, there are few scientific
studies approaching Brahman cattle, a fact that makes investigations on genetic breeding
relevantfor the development of this breed in the counBgr(ipaglia et al., 2012

The inclusion of reproductive traitss selection criteria is fundamental due to
predominant poor fertility in Zebu breeds, characterized by a long postpartum anestrous
period (Nava-Trujillo et al., 2010). Thus, the attempt is to select for sexual precocity in
one of the most important fertility trait, the age at first calving (AFC), since lower AFC
values are associated with heifer precocity, high lifetime productivity, increase in the
number of calves and allows higher genetic progress rate (Bazzoli et al., 2014).

The use of appropriate methodologies to estimate genetic correlations between
categorical morphological and continuous reproduction traits through multitrait
framework has great intereist animal breeding (Faria et al., 2009a). However, studies
correlating visual scores with reproductive performance of cows are scarce in the
literature (Faria et al. 2009b; Boligon and Albuquerque 201@)s,we aimed to estimate

genetic parameterbetween age at first calving and visual scores (body structure,
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precocity and muscularity) using linear bitrait and full multitrait Bayesian models in

Brazilian Brahman cattle by accessing predictive performance via cross-validation.

MATERIALS AND METHODS
Data

Brahman fertility and visual scores data were provided by Brazilian Association
of Zebu Cattle Breeders (ABCZ). The categorical traits of visual scores of bodwsruc
(S), precocity (P) and muscularity (M), and the reproductive agatat first calving
(AFC) were studied.

Age at first calving was defined as the interval between birth and first parity of
the cows. These records were obtained during the period fromt@98®L2. Before
editing the data, a total of 59,929 traits records were available in the database. The total
number of animals in the pedigree was 61,616. Data from females AFC ranged from 731
to 1824 days of age. Data editing was perfortmgdemoving: animals with incomplete
records; single record by contemporary groups (CG); outliers based on three standard
deviation within CG. The animals were visually evaluated and received scores varying
from one to six for the traits: body structure, precocity and muscularity. The animal that
was considered to be intermediate to the traits (body structure, precocity and muscularity)
received the score three or four, the animals that were considered inferior received the
scores one or two and the best animals for the traits (S, P and M) receivestidughes.

Records of visual scores of body structure, precocity and muscularity were
collected according with the method of Morphological Evaluation System (MES, Sistema
de Avaliacdo Morfologica - SAM) developed by company Brasilcomz, which applies
modern procedures to collecting data on visual sc&ésevaluated by the quantity of

meat in the carcass, using measurement of body length and height of the animal, with
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larger animals receiving higher scores; P is evaluated by the measurement of the ratio of
rib depth to limb height, with higher scores corresponding to animals that will deposit fat
earlier; and M is evaluated by the determination of muscle distribution, volume and
length, with animals with more convex musculature receiving higher scores. These scores
were assigned to each animal. On the figure 1 are shown the distribution of body structure,

precocity and musculature scores.
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Figure 1. Distribution of visual body structure (S), precocity (P) and muscularity (M)

scores in 18,530 Brahman females (worse = 1; best = 6). For the visual score one, the

number of animals were 10, 6 and 9 respectively.

The visual scores were obtainatthe sobreano (550 days) and varied from 490
days to 610 days, thus the definition of contemporary groups for visual scores traits
(CGvs) were defined, taking into account the farm, year, season of birth, management lot
and the diet. And the contemporary groups for age at first cal@@g-¢) were formed

as the combination of herd, year and birth season. CG with eight or more animals with
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phenotypic information were kept in the database for analysis. The descriptive statistics

for the studied traits are shown in Table 1.

Table 1.Descriptive statistics of body structure (S), precocity (P), muscularity (M) and

age at first calvingAFC) in Brahman cdt

Traits N GC Mean SD CV (%) Minimum Maximum
AFC (days) 50,630 186 1,189.97 239.89 20.16 731 1824
S (points) 7,539 96 4.65 0.88  18.86 1 6
P (points) 7,539 96 4.40 0.85 19.30 1 6
M (points) 7,539 96 4.24 0.89 21.00 1 6

N - number of observations; SD - standard deviation; CV - coefficient of varigbd.

Methodologies

The (co)variance components and genetic parameters were estimated using bitrait
and full multitrait Bayesian models. A total of four models were fitted, being three bitrait
(AFC with S, P and M) and one multitrait (AFC, S, P and M):

The following general animal multitrait model was considered:

y =X+ Za+ ZCOpc + Z3CY5+e [1]

wherey is the vector containing records for the traits AFC body structure (S), precocity
(P) and muscularity (M) scoreg is the vector of systematic effects (mean, registration
class and mating typeggarc is the vector of contemporary group for age at first calving
(herd-year-season) effectggvsis the vector of contemporary group for visual scores
(herd-year-season-diet) effeatsis the vector of additive genetic effeatds the residual

vector; X, Z1, Z;,andZs are the incidence matrices associated Wit, cgarg and gevs,

respectively. It was assumed tifat- N(0, x, ® I), beingx; a known diagonal matrix

66



with values 1e+10 (large variances) to represent vague prior knowledge,

COnrc | ZCQAFC -~ N(O,ZOQAF ® 1), COys | Ecgvs -~ N(O’Z(@va@) ),

C

alx,,A~NQO,x,®A), and e|x, ~ N(O,x.® I), being A the numerator

relationship matrixzchFC is the contemporary group for age at first calving (co)variance
matrix, Zeg, is the contemporary group fo visual scores (co)variance majgixs the

additive genetic (co)variance matrix, the identity matrix, andg, is the residual

(co)variance matrix. The vectgrincluded registration class (registered animals as pure
by origin or in open book) and mating type (artificial insemination, embryo transfer,
fertilizationin vitro, natural mating and controlled mating). For (co)variances matrices of

random effects the inverted Wishart was defined pagor distribution. Thus,
Y =[Yac Yyd IS avectorin whictyarc represents the vector of AFC recoeats

yvs the vector of visual scores records (S, P or M and the three scores together).

Markov Chain Monte Carlo (MCMC) Sampling

Parameters were drawn from the posterior distributions using Gibbs sampling
using theTM (Legarra et al., 2008) software. A total of 400,000 samples were generated,
assuming a burn-in period and sampling interval (thin) of 100,000 and 10 iterations,
respectively. The convergence of the MCMC chains was verified by graphical inspection
and BOA (Smith, 2007) R software. Convergence was assessed using the Heidelberg e

Welch (1983), Geweke (1992) and Raftery and Lewis (1992) methods.

Models Comparisons
The predictive ability was accessed by cross-validation, which involved training
one subset of the population (about 70% of the animals), and validating on remaining
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individuals. Here, we randomly split the data sets into two groups from the original data
set, as specified above, these two subset were redefined 10 times, D1, D2, ..., D10.
Finally, the average of the 10 correlation coefficients between the predicted and observed
phenotypes was obtained.

The predicted phenotype vector was calculated as
§ = XB+ Zia + Z5C8,c + Z3CY,c.Thus, the solutions for the animais the

validation population were obtained based on the solutions of the training population
animals. Finally, the predictive ability used to measure the efficiency obtained by full
multitrait and bitrait models was given by the correlations between observed and

predicted phenotypes from the validation population.

RESULTS

Variance Components

Posterior means with respective standard deviation and HPD95% region for
variance components obtainleg full multitrait and bitrait models are presented in table
2. In general, the estimates provided by these two different models were very similar and
showed overlapping through HPD intervals.
Heritabilities, Genetic and Phenotypic correlations

The heritability estimates with respective standard deviation and HPD95% region,
genetic and phenotypic correlations among AFC, body structure, precocity and
muscularity obtainedby multitrait and bitrait analyses are presented in Tabl€h&.
heritabilities reported in the present study for the visual scores traits presented high
magnitude, being higher for body structure (~ 0.60) when compared to pydedait4
and muscularity (~ 0.40). The heritability estimate for AFC was moderate (around 0.20

for all analysis.
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The genetic and phenotypic correlations between visual scores traits were medium

to high, ranged from 0.57 to 0.82 and 0.48 to 0.67, respectively. Both the genetic and

phenotypic correlations among AFC, body structure, precocity and muscularity were

medium magnitudand negativén both bitrait and full multitrait modelgrable 3).

Table 2. Posterior means, standard deviation and highest posterior density region (95%)

for variance components for age at first calving (AR©@Yy structure (S), precocity (P)

and muscularity (Mpbtained by fullmultitrait and bitrait Bayesian models in Brahman

cattle
Additive genetic variance 6%)
Models AFC S P M
Full 11,994.53 (597.89)  0.48 (0.04)  0.32 (0.03) 0.30 (0.03)
Multitrait ~ [10,812.34; 13,1536]  [0.40; 0.55]  [0.26; 0.37] [0.23; 0.35]
Bitrait 11,958.91 (595.70)  0.48 (0.03) . .
AFC-S  [10,816.70; 13,137.72] [0.40; 0.54]
Bitrait 12,041.68 (594.40) o 0.31 (0.03) .
AFC-P  [10,911.03; 13,225.75] [0.25; 0.37]
Bitrait 11,974.18 (596.13) . 0.28 (0.03)
AFC-M  [10,857.16; 13,169.28] [0.22; 0.35]
Contemporary group variance 62y)
Full 5,453.07 (737.26)  0.03(0.008) 0.03(0.008)  0.03 (0.01)
Multitrait ~ [4,083.47; 6,947.96]  [0.01; 0.04]  [0.01; 0.04] [0.01; 0.05]
Bitrait 5,449.61 (734.82)  0.02 (0.006) o
AFC-S  [4,055.81; 6,933.64] [0.009; 0.03]
Bitrait 5,451.43 (735.03) . 0.02 (0.007) .
AFC-P  [4,093.95; 6,974.59] [0.01; 0.03]
Bitrait 5,437.82 (732.90) . 0.02 (0.008)
AFC-M  [4,072.32; 6,939.07] [0.01; 0.04]
Residual variance (6%)
Full 43,268.98 (516.59)  0.31 (0.02)  0.40 (0.02) 0.45 (0.02)
Multitrait ~ [42,254.55; 44,279.37 [0.26; 0.36]  [0.35; 0.43] [0.40; 0.49]
Bitrait 43,280.62 (516.10)  0.31 (0.02) .
AEC-S [42,23385; 44,258.35] [0.27; 0.36]
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Bitrait 43,219.68 (515.33) 0.40 (0.02)
AFC-P  [42,186.79; 44,2161] [0.35; 0.44]
Bitrait 43,273.27 (516.19) . 0.45 (0.02)
AFC-M  [42,217.40; 44,243.40 [0.40; 0.49]

SPM - body structure, precocity and muscularity together

Table 3. Heritability (diagonal), standard deviation and highest posterior density region
(95%), genetic (above the diagonal) and phenotypic correlations (below the diagonal) for
age at first calving (AFCRody structure (S), precocity (P) and muscularity @idained

by full multitrait and bitrait Bayesian models in Brahman cattle

Full Multitrait model

Traits AFC S P M
AFC 0.20 (0.01) -0.29 (0.06) -0.22 (0.05) -0.29 (0.04)
[0.17, 0.21] [-0.40, -0.18] [-0.32, -0.13] [-0.41, -0.15]
S -0.19 (0.02) 0.60 (0.04) 0.57 (0.05) 0.56 (0.05)
[-0.22,-0.15] [0.53, 0.67] [0.48, 0.66] [0.46, 0.66]
-0.17 (0.02) 0.48 (0.01) 0.44 (0.04) 0.82 (0.03)
P [-0.20, -0.13]  [0.45, 0.50] [0.37, 0.51] [0.76, 0.87]
M -0.22 (0.02) 0.49 (0.01) 0.67 (0.008) 0.40 (0.03)
[-0.25, -0.18] [0.46, 0.51] [0.66, 0.69] [0.33, 0.46]
Bitrait model
Traits hi,2 h22 rGi2 P12
AFC-S 0.20 (0.01) 0.59 (0.03) -0.29 (0.05) -0.18 (0.01)
[0.18, 0.21] [0.52, 0.66] [-0.40, -0.18] [-0.21, -0.15]
AFC-P 0.20 (0.01) 0.44 (0.03) -0.24 (0.04) -0.17 (0.02)
[0.18, 0.21] [0.36, 0.50] [-0.32, -0.14] [-0.19, -0.13]
AFC-M 0.20 (0.01) 0.38 (0.03) -0.31 (0.06) -0.22 (0.02)
[0.18, 0.21] [0.31, 0.46] [-0.44, -0.18] [-0.25, -0.18]

hy » — heritability of AFC in the presence of S, P or Mph heritability of S, P or M in the presence of
AFC; rG12— genetic correlation between AFC and S, P or MaRphenotypic correlation between AFC
and S, PorM

Figure 2 shows the posterior distributions of the genetic correlations between AFC

and body structure, precocity and muscularity scores obtained by bitrait analyzes.
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Figure 2. Posterior density of genetic correlations of age at first calving (AFC) with
scores of body structure (S), precocity (P) and musculaturity (M) in Brahman cattle by

using bitrait models.

Model Comparison

The predictive ability was performed by correlation coefficients (between
observed and predicted phenotype) using cross-validation approach (Table 4). The lower
standard deviations for this statistic suggest high precision of the cross-validation
inference. The correlations vessimilar between traits, indicating that both models (full
multitrait or bitrait) are recommended to be used in AFC genetic evaluation with visual

scores body structure, precocity and muscularity in Brazilian Brahman cattle.
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Table 4. Correlations (with respective posterior standard deviation) between predicted
and observed phenotypes from 10 fold of the cross-validation from full multitrait and
bitrait Bayesian models in Brahman cattle.

Models AFC S P M

Full Multitrait 0.13(0.08) 0.96 (0.02)  0.97 (0.01)  0.77 (0.20)
Bitrait AFC-S 0.10 (0.09)  0.95 (0.06)
Bitrait AFC-P 0.10 (0.09) 0.96 (0.04)

Bitrait AFC-M 0.10 (0.10) 0.97 (0.01)

AFC — age at first calving; S body structure; R- precocity; M— muscularity; SPM - body structure,
precocity and muscularity together

DISCUSSION

The full multitrait and bitrait models presented similar results in tefngenetic
parameter estimates since the regions of credibility have overlapped.

The heritability estimate for AFC (around 0.20) is considered moderate to high
for fertility traits. Heritability estimates for AFC from field data reported in the literature
ranging from 0.10 to 0.37 in Brazilian Zebu cattle (Boligon and Albuquerque, 2011;
Barrozo et al., 2012; Moreira et al., 2015).

Studies estimating heritabilities for body structure, precocity and muscularity in
Brahman cattle are scarce. It was noted that heritability estimates found for these traits
were high (Table 3), thus, it is expected a high response for direct selection. These results
are in agreement with those found fgria et al. (2009ahatevaluated visual scores in
Nellore cattle and also obtained high heritability bady structure(0.68), precocity
(0.65) andmuscularity (0.62)In order to evaluate the possible use of visual scores as
selection criteria to improve carcass quality in Brahman cattle, Bertipaglia et al. (2012)
found smalleheritability values for body structure, precocity and muscularity, 0.39, 0.43

and 0.40, respectivelyLow heritability estimates have been reported by Shiotsuki et al.
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(2009) for conformation (0.15jinishing (0.21)andmuscling (0.23) of Nellore heifers
exposed to reproductiat 16 months of age.

Cardoso et al. (2004) stated that the differences in heritability estimates for visual
scores observed between studies might be due to inconsistencies in the evaluation
systems, which vary among examiners and breeding programs. Differences in the
estimation models may also affect the magnitude of heritability estimates.

The mean heritabilitiedor visual scores of body structure, precocity and
muscularity were of high magnitude (Table 3) indicating that great part of the variation
in these traits are due to genes with additive effects (Falconer and Mackay, 1996)
Consequently, their adoption as selection criteria will be effective in this population and
expressive genetic gain could be achieved in breeding programs.

The genetic correlations between visual scores of body structure, precocity and
muscularity were high (0.57 to 0.82). These findings are in agreement with Koury Filho
et al. (2009) that estimated genetic correlations of 0.49, 0.63 and 0.90, S and P, S and M,
and P and M, respectively in Nellore cattle. In Brahman cattle, Bertipaglia et al. (2012)
found positive association between visual scores, with genetic correlations ranging from
0.79 to 0.91The high values of genetic correlations estimates indicate that one trait
captures a high proportion of the genetic variance of the other two and would be enough
in a selection scheme aimed on the improving of the three traits. However, including the
three traits in one selection index will have the benefit of avoiding that individuals with
extreme scores for one trait will not be seleced even if it would have high values in the
other two.

The estimated genetic correlations between visual scores and age at first calving
were negative and presented medium magnitude (Table 3) for both models (bitrait and

full multitrat). In this sence, the selection of animals with better body composition will
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bring as correlated response more eficiente animals in terms of age at first calving. These
results corroborate with those obtained by Boligon and Albuquerque (2010), that
estimated genetic correlations between visual scores and age at first calving varying from
-0.23 to -0.29n Nellore heifers. Boligon et al. (2012) reported évgenetic correlations
between conformation, finishing precocity, muscling and days to calving (-0.11, -0.19
and -0.16 respectively).

The negative genetic correlation, in this case, imphesfavorable association
between traits (visual scores and AFC). Although estimates of the genetic correlations
obtained have been to vary from -0.22 to 0.31, the selection for animals with the best
biotype may leatb favorable responses for AFC. The selection of animals for a desirable
biotype, evaluated by visual scores, can to lead animals with higher sexual precocity. The
genetic correlations recorded for AFC with the traits of muscularity (M), body structure
(S) and precocity (P) in Brahman cattle presenting moderate magnitudes, being favorable
to selection. Animals with desirable biotype will present greater fertility and sexual
precocity, indicating that selection for visual scores will promote reduction in the age at
first calving, a fact that would be beneficial for the Brazilian production systems.

In average, the age at first calving in Brazilian beef cattle is higher than 40 months
(Barbosa et al., 2015). Thus, the identification of females that conceive at younger ages
should be one of the priorities of the most breeding programs in Brazil. It is relevant to
mention that conception is a trait more related to body weight than to the age of the
animal, since it is common practice in many herds to adopt minimum weight for the entry
of females into reproduction (Mercadante et al., 2000).

The phenotypic correlations of visual scores with AFC were negative and
presented medium magnitud (Table @)ertheless, may suggest that the improvement

in envirommental conditions for visual scores does not almost interfere in the age at first
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calving of cows. Since heritability estimates between AFC and visual scores were
medium to high magnitude (0.20) for reproductive traits, the phenotypic correlation is
mainly determined by genetic correlation. In this context, Boligon et al. (2012) found
phenotypic correlations of visual scores with subsequent rebreeding and days to calving
close to zero in Nellore heifers. Bertipaglia et al. (2012) reported phenotypic correlations
close to zero between visual scores and scrotal circumference (-0.0002 to 0.03) in
Brahman cattle. Consequently, joint selection for visual scores and reproductive traits
(AFC) induces a favorable genetic correlation among the traits without necessarily
expressing a phenotypic association.

A selection index considering visual scores will increase, at long term, the
frequency of desired genes for AFC, thus improving cow reproductive performance.
Therefore, visual scores are alternative traits to compose new selection indexes, since
they present sufficient genetic variability to promote genetic progress. However, studies
in this area are scarce, and further investigations are necessary.

Correlation coefficient between predicted and observed phenotypic values were
used to access thredictive ability” (Table 4. The correlations were similar among
traits, indicating that both models (full multitrait or bitrait) are recommended to be used
in AFC genetic evaluation with visual scores. Finally, basasur study, we conclude
that using of the full multitrait model would be the best choice, since the results were very
similar to those obtained with the bitrait model. Thus, it would reduce the number of

analyzes to be performed.

CONCLUSIONS
The visual scores of body structure, precocity and muscularity can be used as

selection criteria, once they show high heritability.
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Direct selection for visual scores together with female reproductive trait is
recommended to improve carcass composition and increase the fertility of beef cows.
Full multitrait model would be the best option for genetic evaluation of Brazilian

Brahman cattle for Bayesian models, since the number of analyzes would be reduced.
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GENERAL CONCLUSIONS

In the pig data, the model including marker and pedigree information had better
goodness-of-fit than pedigree-based or marker-based models. The heritability estimates
for mature weight‘@’) and maturity rat¢“k”) indicated that these traits a feasible
alternative for breeding programs aiming to change the shape of growth curves in pig
breeding programs.

The multitrait GWAS was efficient to report QTLs associated with functions
related to biological processes of growth in pigs. Relevant SNPs are located in genome
regions not previously described in the literature.

In Brahman cattle, the age at first calving censored data could be incorporated in
genetic evaluations through a linear model. Given the heritability estimates, individual
selection should imply in genetic gains for visual scores traits (body structure, precocity
and muscularity) and age at first calving. The direct selection for visual scores together
with female reproductive trait (AFC) is recommended to improve carcass composition

and increase the fertility of beef cows.
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