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ABSTRACT 

 
SILVA, Felipe de Figueiredo. D. Sc., Universidade Federal de Viçosa, February, 2017. 
Tradeoff between agriculture and forest preservation in the Brazilian Amazon. Advisor: 
Marcelo Jose Braga. Co-Advisors: Richard K. Perrin and Lilyan E. Fulginiti. 

 

The Brazilian Amazon forest region has experienced agricultural area expansion with high 

rates of progressive technical change as well as deforestation over the last decade. This has 

generated concern about the tradeoff between forest preservation and production of agricultural 

commodities. The literature suggests specifically grains, livestock and timber as the main 

drivers of deforestation in this region. In this study we estimate the tradeoff between agriculture 

and forest preservation in municipalities of the Legal Amazon for 2006 and their rate and biases 

in technical change during the period 2003-2015. To obtain these estimates, we use a 

directional distance function to estimate a production possibility frontier, considering 

deforestation as an undesirable output. Using this information we calculate the shadow price 

of reducing deforestation in terms of agricultural income foregone. Results indicate that, to 

preserve an average hectare of forest, US$ 796.81 in annual agricultural GDP has to be 

foregone. At a social discount rate of 10% and a conservative estimate of 100 tons of carbon 

per hectare of forest, these results imply an average shadow price of US$21.71 per ton of CO2 

emissions. This estimate varies with assumptions on discount rate, carbon content and length 

of period considered. We have also estimated an average rate of technical change of about 4.6% 

per year during the period 2003-2015. It means that, with no change in inputs, technical change 

allowed an expansion of agricultural outputs and a contraction of deforestation of 4.6 % during 

this period. Technical change has been biased toward agricultural outputs and against 

deforestation suggesting that increases in output are now possible with less deforestation. 
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RESUMO 

 

SILVA, Felipe de Figueiredo. D. Sc., Universidade Federal de Viçosa, fevereiro de 2017. 
Tradeoff entre agricultura e a preservação da floresta na Amazônia Brasileira. Orientador: 
Marcelo Jose Braga. Coorientadores: Richard K. Perrin e Lilyan E. Fulginiti. 

 

A fronteira agrícola no norte do Brasil tem ocasionado altas taxas de desmatamento na Floresta 

Amazônica, o que tem gerado debate sobre o tradeoff entre a preservação da floresta e a 

produção agrícola. Segundo a literatura econômica, a produção de grãos, de gado e de madeira 

são os principais causadores do desmatamento. Nesse estudo, o tradeoff entre agricultura e a 

preservação da floresta é estimado para os municípios da Amazônia Legal para o ano de 2006. 

A taxa de progresso tecnológico também é estimada para esses municípios para o período 2003-

2015. A output directional distance function é usada para a estimar a fronteira de possibilidade 

de produção considerando desmatamento como um produto indesejável. O custo de 

oportunidade, tradeoff, é medido em termos da renda agrícola que tem que se abrir mão para 

preservar um hectare de floresta. Os resultados mostraram que, para preservar um hectare de 

floresta Amazônica, os municípios, anualmente, deveriam abrir mão de cerca de US$ 800,00. 

Medidas de conversão entre 01 hectare de floresta e a quantidade de carbono sequestrada pela 

floresta permitiram estimar que o custo de manter sequestrada 01 tonelada de CO2 na floresta 

são, pelo menos, US$ 21.71. Os resultados indicaram, ainda, que houve progresso tecnológico, 

na média de 4,6, e que esse foi direcionado a um aumento da produção agrícola, incorrendo em 

menor acréscimo de desmatamento. Isso significa que, anualmente, a produção agrícola 

expandiu 4.6%, enquanto o desmatamento contraiu 4.6%. 
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INTRODUCTION 

 

Agricultural expansion and deforestation are two of the major issues in worldwide climate 

change discussions due to their impacts on atmospheric Carbon Dioxide (CO2). Brazil is 

responsible for the largest tropical forest in the world, the Amazon forest, which accounts for 

13% of the world’s forest area and 58% of Brazil’s surface (Food and Agricultural Organization 

of the United Nations, FAO, 2015). Strong agricultural expansion, starting in the 1990s, has 

impacted this area greatly (Nepstad et. al. 2007). Grains, livestock and timber production have 

been pointed as the main drivers of deforestation in this region (Riveiro et al. (2009); Margulis 

(2004); and Nepstad et al. (2001)). 

There is a vast literature discussing the Amazon Forest deforestation seeking to identify the 

main agricultural drivers of deforestation [Riveiro et al. (2009); Margulis (2004); and Nepstad 

et al. (2001)], to calculate the opportunity cost of forest preservation [i.e. Nepstad et al. (2007), 

Boner et al. (201), May et al. (2011), and Heres et al. (2013)], and to evaluate the effect of 

technical change in deforestation [Villoria et al.(2014) and indirectly Filho et at. (2015)]. None 

of these studies have treated deforestation as undesirable output directly on the evaluation of 

these issues. Most of these studies are qualitative or derive the tradeoff between agriculture and 

forest preservation based on budget data or simulation. In this work, we aim to provide more 

information by explicitly assuming deforestation as undesirable output when identifying the 

opportunity cost of forest preservation and the effects of technical change on this tradeoff. 

Preserving a hectare of Amazon forest brings many benefits enjoyed by mankind as a whole, 

while the opportunity costs of preservation fall upon the Brazilians themselves, who must trade 

off potential agricultural income forgone in exchange for a hectare of forest preserved. We 

model the tradeoff between forest preservation and agricultural production using a directional 

distance function to estimate a production possibility frontier introducing deforestation as an 

undesirable output. This frontier is then used to answer the following questions:  

a) What is the opportunity cost of preserving the forest in terms of agricultural output? 

b) What is the rate of technical change in agriculture considering deforestation as an 

undesirable output?  

c) Has technical change been biased toward agricultural outputs or deforestation? 

To answer the first question, we estimate marginal rates of transformation to identify the 

opportunity cost of forest preservation in terms of foregone agricultural production. Using 
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coefficients of forest carbon content, we then calculate the opportunity cost of sequestering 

CO2 in the forest. To answer the second question, we estimate the shift in the production 

possibilities frontier due to exogenous technical change in the direction of output expansion 

and deforestation contraction. To answer the third question we estimate the change in the 

marginal rate of transformation due to exogenous technical change.   

The production possibilities frontier is estimated using different methodologies. In chapter 

1 we use Data Envelopment Analysis (DEA), a non-stochastic, non-parametric approach, to 

identify the opportunity cost of forest preservation in terms of grains, timber and livestock 

revenues forgone. We use data for 156 municipalities in the “arc of the deforestation” region 

of the Brazilian Amazon during 2006. In chapter 2, we use a parametric stochastic frontier 

approach to identify the opportunity cost of forest preservation in terms of agricultural Gross 

Domestic Product for 590 municipalities in the Legal Amazon forest region of Brazil in 2006. 

In chapter 3 we use a stochastic frontier approach and data for 200 municipalities in the “arc 

of deforestation” during the period 2003-2015 to investigate the nature of technical change, 

that is its rate and bias.  

Our study finds higher costs of forest preservation than those in the literature, including the 

costs used by the Amazon Fund to raise funds to preserving the forest.  We also find that during 

2003-2015 average productivity of the sector has increased allowing more output produced per 

unit of deforestation. We note that our results also imply higher abatement costs as a result of 

potential regulation to reduce deforestation. 
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CHAPTER 1 

TRADEOFF BETWEEN AGRICULTURE AND FOREST PRESERVATION IN THE 

“ARC OF DEFORESTATION” OF THE BRAZILIAN AMAZON. 

 

1.1.INTRODUCTION 

 

Brazil has the largest tropical forest in world, which is extremely relevant to worldwide 

biodiversity and the CO2 cycle. The Brazilian Amazon forest is distributed along the northern 

states of the country, where deforestation has been affected by agriculture (Hargrave and Kis-

Kato, 2013). In 2006, 29% of livestock, 21% of grains and 81% of legal timber production in 

Brazil was generated in this region (Brazilian Institute of Geography and Statistics – IBGE, 

2016). In addition, the National Institute for Space Research (INPE, 2014) indicates that more 

than six million hectares were deforested in this region during the period between 2004 and 

2006. In this paper, we estimate the tradeoff between forest preservation and agriculture by 

estimating the production possibility frontier (PPF), which also allows us to infer a shadow 

price of Carbon Dioxide (CO2). 

The economic literature on Amazon deforestation suggests a link between agricultural 

activities and deforestation [Cattaneo (2001), Morton et al. (2006), Rivero et al. (2009), 

Richards et. al. (2012), Hargrave and Kis-Kato (2013), and Richards et al. (2014)]. 

Additionally, a few studies have evaluated the role of Brazil’s participation in REDD+ such as 

Nepstad et al. (2007), Boner et al. (2010), May et al. (2011), and Heres et al. (2013), also 

taking into account livestock, timber and soybean production activities.  

Our study provides an alternative approach for estimating the tradeoff between agricultural 

production and deforestation. Our approach diverges from these studies by modeling the 

relation between agriculture and deforestation based on a simultaneous production of desirable 

(agriculture) and undesirable (deforestation) outputs represented by an estimated PPF. Our 

focus is on identifying the trade-off between forest and agricultural activities for the 

agricultural frontier in the Northern region of Brazil or the “arc of deforestation” using 

municipal scale data from the Agricultural Census of 2006. Thus, we estimate several 

directional distance functions using Data Envelopment Analysis (DEA), based on Färe et al. 
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(2007). We are not aware of any study that investigates Amazon deforestation using these 

methods. 

On average, to reduce one hectare of deforestation we estimated a revenue foregone of more 

than nine hundred dollars (from livestock, grains and timber). This implies an average shadow 

price of a ton of Carbon Dioxide (per ton of CO2) of US$ 25.00, depending on the discount 

rates used and the estimates of carbon content on a hectare of forest.  

 

1.2.BACKGROUND  

 

Agricultural expansion in Brazil in the last three decades has driven Amazon deforestation in 

the Northern region of Brazil. This region is known as agricultural frontier or “arc of 

deforestation”, which represents municipalities with high level of deforestation driven by 

agriculture. In this paper, we focus on a sample of municipalities in this region with more than 

10 thousand hectares of deforestation during the period ranging from 2004-2006. It includes 

municipalities from the states of Acre (AC), Amazônia (AM), Rondônia (RO), Para (PA), Mato 

Grosso (MT), Tocantins (TO) and Maranhão (MA). In 2006, more than 1 million hectares1 

were deforested in the Brazilian Amazon, in which 83% was on the municipalities located in 

the arc of deforestation. See Figure 1. 

The total revenue obtained from cattle, grains and timber activities as well as deforestation 

activities are clustered in the outer boundary of the arc of deforestation, which validates the 

assertion that deforestation in this region is a by-product of agricultural activity.  

                                                           

1 Around 10 thousand km2. 
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Figure 1 – Total Revenue (in US$ 100 thousand) and deforestation (in 10 thousand hectares)  

Note: “Other mun.” in these maps represent municipalities that are not being using on the estimation of Eq. (3). 

Source: Own elaboration using Stata 14. 
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One of the main activities in this region, livestock, is considered as the main driver of 

deforestation by studies such as Cardille et al. (2003), Margulis (2004) and Riveiro et al. 

(2009). The former also suggests crops production. Nepstad et al. (2001) and Quintanilha and 

Lee Ho (2005) indicated timber activity as an important driver of deforestation in this region. 

Margulis (2004) highlights the dynamic interaction between deforestation and agricultural 

activities in this region, suggesting a non-contemporaneous relation between them. 

Additionally, Nepstad et al. (2014), Gibbs et al. (2014), Hargrave and Kis-Katos (2013) and 

Soares-Filho et al. (2014) suggest that governmental institutions has been contributing to 

deforestation control2.  

Margulis (2004) estimated a social cost of deforestation taking account not only timber 

logged but also existence value and ecotourism. He found a social cost of US$ 108 per 

hectare/year. There is a wide range of opportunity cost for a ton of Carbon Dioxide (CO2) in 

the literature.  Studies that considered Brazil (such as when estimating a price for Latin 

America) found prices ranging from US$ 1.00 to US$ 50.00 per ton of CO2. Myers (2008) 

presents a summary of a ton of CO2 price for different countries (his Table 2.3). Nepstad et al. 

(2007) estimated the opportunity cost of forest conservation over 30 years and found a value 

of US$ 5.50. They used a spatial dynamic model mostly based on simulation to obtain an 

opportunity cost of forest preservation in terms of CO2 in which livestock, soy and timber 

production are considered.  

Vera-Diaz and Schwartzman (2005) used investment tools and secondary data from the 

literature to set up a budget and estimate a break-even price for CO2. They report a total revenue 

of US$ 3,465 per hectare from one-time logging (US$ 1,435 per ha at a timber potential of 

40m3/ha), a 30-year present value cattle of ranching of US$106 per ha and a 30-year present 

value of soybean production of US$ 1925 per ha. They found a break-even price of US$ 22 per 

ton of carbon and 6.1 per ton of CO2 (ranges from US$ 3.90 to US$ 6.10 depending on the 

model used) using a 10% discount rate and an average carbon content of 155 tons of carbon 

per hectare. Börner et al. (2010) used a similar approach to Vera-Diaz and Schwartzman (2005) 

and found similar results.  

 

                                                           

2 However, Soares-Filho et al. (2014) suggested that the Forest Code fails to regulate deforestation on other 
biomas, such as the Cerrado and Caatinga. 
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1.3.THE MODEL 

 

We are proposing to use a directional distance function as in Färe et al. (2007)3 to evaluate 

the trade-off between forest preservation and agricultural production. The output vector with 

two sub-vectors (y, b) with y �+� and b �≥�  where y denotes the desirable output y and b 

the undesirable output; and x will be the input vector, x �+� . The undesirable output is 

deforestation while desirable outputs are livestock, grains and timber production. The output 

correspondence represents the production technology as 

 � � = { �, � : � ��� ������� �, � }, � � ℜ+� , � �+� ��� � �≥�    (1) 

 

or the set of desirable (y) and undesirable (b) outputs that can be produce by inputs x, � � . As 

in Färe et al. (2007), the output set is compact, desirable outputs are strongly disposable, and 

undesirable and desirable outputs are jointly weakly disposable. This output set is represented 

in Figure 2, where null-jointness property imposes that undesirable output is a byproduct of the 

production of desirable output (if � = , then � = )4. The straight line DE illustrates the 

strong disposability of desirable outputs while 0BC segment represent weak disposability of 

undesirable output and null-jointness property.   

 

 

 

 

 

 

 

 

 

 

                                                           

3 Färe et al. (1989) modeled a similar issue using hyperbolic measures. Färe et al. (2005) and Färe et al. (2006) 
also used directional distance functions to address similar issue. Several other papers used this methodology, see 
Zhou et al. (2014) for a literature review.  

4 Macpherson et al. (2010) discuss these properties and its suitability to the estimation of a similar topic.  
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We identify the distance to the output set using several different directional distance 

functions, the directional distance function is  

 �⃗⃗ �(�, �, �; ��, −��) = ���{�: (� + ���, � − ���) � � � } (2) 

 

where the pre-determined directional vector is defined as � = ��, �� , and the subscript j 

refers to output directional distance functions with diferent directional vectors. Three 

directional vectors relevant to this study are illustrated in Figure 2, � − , , � = ,−  and � = ,− .  The vector � = ,  expands desirable output for given levels of undesirable 

output and projects the allocation at point k to point g. The vector � ,−  contracts 

undesirable output for given levels of desirable outputs and projects allocation k to f. Finally, � = ,−  implies simultaneous expansion of desirable outputs and contraction of 

undesirable outputs and projects allocation k to point h.  

On the boundary 0BC, regulations such as disposal fees and quantity restrictions on 

undesirable output production impose a tradeoff between desirable and undesirable outputs. 

This structure implies a positive non-negative marginal rate of transformation between these 

two types of output. 

We use DEA, a nonparametric nonstochastic approach, to calculate the directional distance 

and the production possibilities frontier. The linear piecewise technology identified by this 

1 

-1 

g 

h 

f 

g(gy, gb) 

Figure 2: Output Set - P(x), and directional output distance 
measures 

k 

b 

y 

C 

E 

D 

B 
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approach seeks to increase desirable outputs and decrease undesirable output production 

simultaneously by solving the following problem 

 �⃗⃗ �(��, ��, ��; ��, ��)  = max{��: (�� + ����, �� − ���� , ��  ) � � �� } =��∗             
Subject to   ∑ ������= �� + ��� ,        

                                ∑ ������= �� + ��� ,  
                                ∑ ������= �� + ��� ,  
                                ∑ ������= = �� − ���� ,  
                                ��� ∑ ��������= ,                            � = ,… ,� 

                                ��  ,                                               � = , … , �           

(3) 

 

where ��∗ = �⃗⃗ �(��, ��, ��; ��, ��) or the distance of the unit k from the frontier (a measure 

of inefficiency); �� for y = 1,2 and 3 or respectively timber, livestock and grains; � = ,… ,� 

refers to n inputs; weak disposability of undesirable outputs is assumed (∑ ������= = ��) to 

model the output set as in Figure 2; and �� are the intensity variables, where constant returns 

to scale is assumed.  

First, in Figure 2 a movement upward of the unit k (northern region of the output set) is 

modeled by assuming a directional vector of � = � , � , � , �� = , , , , where the 

objective function seeks to increase desirable output production of unit k while keeping the 

same level for the undesirable output. Technical inefficiency is represented by the distance 

from each observation k to the frontier – i.e. g – k in Figure 2. This is also presented in Table 1 

(second row), which summarizes all technologies estimated in this paper.  

Second, a directional output distance function assuming a directional vector of � =� ,� , � , �� = , , , −  is estimated, where the objective function seeks to decrease 

undesirable output production of unit k keeping the same level of desirable output and inputs. 

Technical inefficiency is represented by the distance between the observation and the frontier 

– i.e. f – k in Figure 2.  

All variables are normalized by the mean, so ��� = ���∗/�̅ where ���∗ represents the actual 

observation and �̅  represents the overall mean, as in Färe et al. (2005). In our case, the 



10 

 

maximum desirable output achieved by unit k under zero inefficiency (or when the observation 

is driven to the boundary) is found as ��� + �� ∗ �̅  for the models where �� ≠ .  

 

Table 1 – Models with alternative directional vectors, � � , � , � , �� , in Equation (3)  

Models Directional vectors Brief model explanation 

A � = , , , −  
Simultaneous expansion of all desirable 

outputs and contraction of deforestation 

B � = , , ,  
Expansion of all desirable outputs given an 

amount of deforestation 

C 
� = , , , , � = , , ,  and � = , , ,  

Expansion of one desirable output given an 

amount of deforestation 

D 
� = , , , − , � = , , , −  

and � = , , , −  

Simultaneous expansion of one desirable 

output and contraction of deforestation 

E � = , , , −  
Contraction of deforestation given amount 

of all desirable outputs production 

Note: � , � , � , �� = (������� , ���������� , ������� , ��������������). 
 

The objective of this paper is to estimate the trade-off between agricultural commodities 

and forest, which can be represented by the difference between points in the frontier boundary. 

We propose a trade-off measure based on the different quantities achieved by projecting the 

observed unit k to the frontier by two different directions, designated here as i and h: 

 

Ω� = ∑ ��� ∗ [��,��� − ��,�ℎ� ]�
�= ,      ��� � ≠ ℎ,� = , , ��  ���  

(4i) Ω� = � ,��� − � ,�ℎ� ,      ��� � ≠ ℎ ��� �ℎ��� ��,��� = ��� + �̅ ∗ �⃗⃗ �(��, ��, ��; ��, ��) ∗ ��, � = ℎ = �; �; �� �, � � ,��� = �� + �̅ ∗ �⃗⃗ �(��, ��, ��; ��, ��) ∗ �� , � = ℎ = �; �; �� �, � 
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where ��,���  represents the potential level of desirable output measured by distance function i;  � ,���  is the potential reduction in bad output using distance function i; and ���  is the agricultural 

output price obtained in the Agricultural Census dividing output value of production by its 

quantity. Distance function i projects the observation to the maximum achievable output while 

holding bad output constant, while distance j projects it to the maximum achievable reduction 

in bad output while holding good output constant. Our measure of tradeoff is the revenue 

forgone to achieve a reduction in the undesirable output. This we measure as the ratio of the 

two equations in (4i),  Ω� and Ω�, the value of agricultural output that must be foregone per 

unit of deforestation reduced:  

 

�������� = (Ω� Ω� ) , �� ��$ℎ������.       (4ii) 

 

This measure will be calculated using a three step procedure. First, we calculate Ω� and Ω� 

for each observation. Second, we aggregated these measures across states and region. Third, 

we evaluate Equation (4ii) using the aggregate estimates. It will also be converted in terms of 

Carbon Dioxide (CO2) using an estimate of the density of CO2 per hectare, which in our case 

comes from the Brazilian Ministry of Environment (MMA/DPCD – 2011).  Equation (4ii) 

represents the revenue foregone in one year as a result of deforestation. To preserve the forest, 

this amount must be foregone each year, so we also calculate Net Present Value of this stream 

in perpetuity, which allows us to compare our results with those in the literature. The linear 

programs described in Equation (3) were estimated using GAMS5.  

 

1.4.THE APPLICATION 

 

The Legal Amazon consists of more than 700 municipalities stretched in nine states (Amapá 

– AP, Acre – AC, Amazonas – AM, Mato Grosso – MT, Maranhão – MA, Tocantins – TO, 

Para – PA, Rondônia - RO and Roraima – RR).  The arc of deforestation defined in this paper 

                                                           

5 We would like to thank Carl A. Pasurka Jr. for his help sending us the codes for his paper (Färe et al., 2007), 
which was used as base to build our codes.  
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consists of 156 municipalities that deforested more than 10 thousand hectares over the period 

ranging from 2004 to 2006. These municipalities coincide with the agricultural frontier (as you 

can see in Figure 1), where is constantly pointed out as the main driver of deforestation. This 

sample of municipalities also has a more homogenous technology, which is highly desirable 

on DEA estimations6.  

The dataset consists of 156 municipalities obtained in the Agricultural Census of 2006 

(online) at Intistuto Brasileiro de Geografia e Estatistica (IBGE). Three agricultural 

commodities are considered desirable outputs – livestock, grains and timber production. The 

inputs used are labor, capital, area, production expenses such as energy and fuel and cattle 

inputs. Descriptive statistics are in Table 2. In Appendix 1.A we present descriptive statistics 

per state. 

Deforestation is measured in hectares. Margulis (2004) suggests that deforestation might 

occur over three years, and be detected only in the third year of the process, depending on the 

process of deforestation used. Thus, we measure deforestation in 2006 as the average of the 

previous three years (2004-2006). It was obtained from the PRODES/National Institute for 

Space Research (INPE, 2014) website. The variable representing timber production was based 

on Merry et al. (2009). They used m3 of wood production available from IBGE (Table 289) 

increased by 50% to account for illegal logging not in IBGE. Livestock was measured as 

number of cattle slaughtered and sold (sold heads), given the importance of livestock in the 

region. Grains are the sum of soybean and corn production (in tons). The output price for grains 

used is a weighted average of the prices of both crops where the weights are the relative 

importance of that crop in amount of production for the municipality.  Figure 1 illustrates that 

higher level of deforestation and of agricultural revenue is clustered in the outer border of the 

arc of deforestation. 

In the input side, labor is the number of employees over 14 years of age, capital is obtained 

by adding the number of equipment and machinery in the municipality following Bragagnolo 

et al. (2010), and area consists of the total farm area in hectares. Expenses related to fuel and 

energy (electricity) were aggregated into one variable. Expenses7 related to seed, pesticides and 

fertilizers were also aggregated into a single variable to represent other crop inputs. Finally, 

                                                           

6 This method suffers more with outliers than the stochastic estimation. 

7 Expenses were obtained from Table 820 on IBGE (SIDRA) website.  
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expenses related to animal medication, animal purchase and feed were aggregated into one 

variable to take into account inputs related to livestock. Municipalities in Mato Grosso have 

higher expenses in these three inputs, which highlights its importance on agricultural 

production in this region. In the application, all the variables were divided by their means, 

shown on Table 2. 

 

Table 2 – Descriptive statistics for output and input variables for the municipalities (number 

of observations = 156) in the arc of deforestation 

Variables Mean  
Stand. 

Dev. 
Min. Max. Total 

Output: 

Livestock 

(Sold Heads) 
34838.63 31004.38 355 167495 5434827 

Grains (tons) 43241.38 188254.60 0 1998855 6745655 

Timber (m3) 95342.97 237423.12 0 2100000 14873504 

Average Deforestation 

(hectares - 2004-06) 
10993.72 11111.49 3363.333 108413.3 1715020 

Inputs: 

Labor (number of  

employees) 
5465.15 4469.02 490 37360 852564 

Capital (units) 2530.87 1604.38 364 11283 394815 

Area (hectares) 353969.20 265664.22 28188 1581759 55219195 

Fuel (US$ 1000) $4,554.42 11795.96 0 141351 $327,414.75 

Crop. Inputs  

(US$ 1000) 
$20,874.52 104322.94 0 1069961 $1,500,656.68 

Livestock 

inputs (US$ 1000) 
$8,837.27 8039.96 117 37226 $635,305.99 

Note: Descriptive statistics per states are available upon request from the author. All variables are for 2006 

except deforestation which considers the period 2004-2006. 

 

 



14 

 

1.5.RESULTS AND DISCUSSION 

 

In this section, we present results for the models described in Table 1 which uses Equation 

(3) for the estimation of the directional distance functions which consider livestock, grains and 

timber production as desirable output, deforestation as undesirable output and six inputs. The 

average distances (inefficiency) per state obtained for selected models are displayed in Table 

3. 

 

Table 3– Average distances measured for the models (Table 1) estimated by equation (3)  

State/ Region 
Models (described in Table 1) 

A B E 

Rondônia (RO) 0.24 0.29 0.80 

Acre (AC) 0.22 0.27 0.45 

Amazonas (AM) 0.09 0.09 0.38 

Para (PA) 0.23 0.25 0.91 

Tocantins (TO) 0.22 0.39 0.27 

Maranhão (MA) 0.15 0.18 0.41 

Mato Grosso (MT) 0.24 0.31 0.68 

Arc of 

Deforestation 
0.22 0.27 0.73 

Note: Model A is represented by ��,� �� , ��, ��; , , , − , B by �� �� , ��, ��; , , , , E by �� �� , �� , ��; , , , − .  

Source: Own elaboration. 

 

The number of efficient municipalities (�⃗⃗ � = ) found for Equation (3), was higher where 

the directional vector related to desirable outputs is not zero (�� ≠ ). For the models A and 

B, which considered an expansion of all three desirable outputs, 27% (42 municipalities) of the 

municipalities were efficient – they established the frontier of the production set. The outcome 

of model A is displayed in Figure 3. Although MT and PA municipalities have shown the 

highest number of efficient municipalities (15 or 35% of each state’s municipalities), 

proportionally the state of Amazonas has shown a higher proportion of efficient municipalities 

(50%) and Roraima a lower proportion (13%).  On average, a 22% increase in output and a 

22% decrease in deforestation could have been achieved by overcoming inefficiency. By only 
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correcting inefficiency, we would observe a decrease in deforestation of more than two 

thousand hectares on the average municipality (0.22 x 10994 = 2418.68). 

 

 

The main objective of this paper is to evaluate the tradeoff 8  between the value of 

agricultural commodities and forest. These results are obtained by comparing model B [� =, , , ], where an expansion of all three ag. activities occur, and E[� = , , , − ], where 

only a contraction of deforestation occurs. By evaluating Equation (4ii)9, we found that, on 

average, US$ 920.6110 of revenue from cattle, grains and timber has to be foregone to decrease 

one hectare of deforestation. Tocantins and Mato Grosso have higher shadow prices. The latter 

state also has the largest agricultural production in the area, which suggests that deforestation 

                                                           

8 In Appendix 1.B we present these tradeoff in terms of ag. activity quantity foregone to decrease one hectare of 
deforestation. Numbers found are higher than observed given that these models impose a one-output reduction 
(only livestock, grains or timber) to decrease deforestataion. 

9 Our estimates of tradeoff in terms of foregone forest and tons of CO2 are lower when comparing models B and 
A [� , , , − ]. Therefore, the cost of preservation becomes US$ 514.16 per hectare of forest and US$ 1.40 
per ton of CO2. 

10 At an average price of US$ 920.61, a reduction to zero in the amount of deforestation occurred in 2006   
would cost more than 50% of the total revenue, from  the three agricultural activities used in this study, for  the 
municipalities in the arc of deforestation. 

Figure 3 – Geographic distribution of the shadow prices from model A for the Arc of 
Deforestation (plotted on the Amazon Region map) 

Note: Model A is represented by ��,� �� , ��, ��; , , , − , “Other mun.” in these maps represent 
municipalities that are not being using on the estimation of Equation (3). 
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control would have a more severe effect in the revenue of the largest agricultural producer in 

the region.  

 

Table 4 –Revenue foregone per hectare of forest (deforestation) and per tons of CO2, 

obtained using equation (4) 

State 
Forest (ha)  

Shadow prices 

CO2  

Shadow prices 

Rondônia (RO) $812.47 $2.21 

Acre (AC) $1,233.74 $3.36 

Amazonas (AM) $604.82 $1.65 

Para (PA) $796.44 $2.17 

Tocantins (TO) $2,555.44 $6.96 

Maranhão (MA) $1,000.98 $2.73 

Mato Grosso (MT) $1,091.39 $2.97 

“Arc of deforestation” $920.61 $2.51 

 

Figure 4 shows the geographic pattern of this tradeoff, which illustrates that the outer border 

of the arc of deforestation has higher shadow prices for sequestering CO2, reflecting the 

importance and development of agriculture in this area.    

Given our measure of the shadow price for a hectare of forest preservation, it is possible to 

calculate also the shadow price for sequestering a ton of Carbon Dioxide (CO2). MMA/DPCD 

(2011) establishes that one hectare of forest has 100 tons of carbon, and one ton of carbon is 

equivalent to 3.67 per ton of CO2.  Using this carbon density, our results imply an annual 

average foregone income of US$ 2.50 per ton of CO2 (= US$ 920.61/367) To sequester the 

carbon in perpetuity, this amount must be foregone every year. This is equivalent to a present 

value of US$ 25.00 per ton when discounted at 10%, US$50.00 per ton at a 5% rate.  
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Figure 4 – Tradeoff between agricultural activity (US$) and forest (hectare) – revenue from 

the three outputs foregone by one less hectare of deforestation – using equations (4)  

Note: “Other mun.” in these maps represent municipalities that are not being using on this paper. 

Source: Own elaboration using Stata 14. 

 

Nepstad et al. (2007) estimated an annual opportunity cost of one ton of carbon from timber, 

livestock and soy of US$5.50 using their 5% discount rate. Vera-Diaz and Schwartzman (2005) 

estimate annual opportunity cost from cattle, soy and timber of US$6.10 per ton of CO2 at the 

10% rate they used. Our estimate price of a ton of CO2 is US$12.41 if we calculate it as these 

authors: using a 30-years NPV analysis for cattle and grains foregone revenue and one-time 

foregone revenue for timber, using a 10% discount rate and a carbon content of 155 tons of 

carbon per hectare.  

 

1.6.CONCLUSIONS 

 

Preserving a hectare of Amazon forest brings many benefits. The opportunity costs of 

preservation fall upon the Brazilians themselves, while mankind as a whole receives the 

benefits. This paper provides new estimates of the tradeoff between forest and agricultural 

commodities at a municipal scale for the Legal Amazon, in Brazil. This study contributes to 
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the literature by using DEA to estimate a Production Possibility Frontier that includes the 

relation between agriculture and deforestation.  

Overall, we found that more than nine hundred dollars in total revenue from livestock, grains 

and timber has to be foregone yearly to decrease one hectare of deforestation, implying that the 

annual cost of sequestering CO2 by reducing deforestation is about $2.50 per ton.  Thus, the 

present value of the average shadow price for sequestering CO2 permanently is $25 per ton at 

a 10% discount rate, $50 per ton at a 5% discount rate.  These estimates are several times higher 

than previous estimates of US$2.80 to US$ 6.10 by Nepstad et al. (2007), Vera-Diaz and 

Schwartzman (2005).  

This analysis does not attempt to quantify all the benefits of forest preservation, but instead 

estimates the opportunity cost to Brazil of reducing deforestation in terms of foregone 

commercial agricultural activity. The study does not consider the impact of changes in 

expectations and dynamic adjustment that might be important given the period of analysis and 

the type of products. It would be useful to examine how agents involved might respond to 

market driven policies given the production possibilities identified here, but that is beyond the 

scope of the present paper.  
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CHAPTER 2 

TRADEOFF BETWEEN AGRICULTURE AND FOREST PRESERVATION IN THE 

BRAZILIAN AMAZON 

 

2.1.INTRODUCTION 

 

Agricultural expansion and deforestation are two of the major issues in worldwide climate 

change discussions due to their impacts on atmospheric CO2. Brazil is responsible for the 

largest tropical forest in the world, the Amazon forest, corresponding to 13% of the world’s 

forest area and 58% of Brazil’s surface (Food and Agricultural Organization of the United 

Nations, FAO, 2015). Strong agricultural expansion, starting in the 1990s, has impacted this 

area greatly leading to the introduction of forest conservation policies (Nepstad et. al. 2007).   

This study focuses on a region referred to as the Legal Amazon comprising more than 500 

municipalities in nine northern states of Brazil (Brazilian Institute of Geography and Statistics, 

IBGE, 2015). We estimate the opportunity cost of preserving the forest by finding the marginal 

rate of transformation between agricultural activities and deforestation. We use a stochastic 

approach, based on Färe et al. (2005) and Färe et al. (2006), to fit a quadratic directional output 

distance function to describe the technological opportunities that includes deforestation as an 

undesirable output. We are not aware of any other paper that analyzed the cost of Amazon 

deforestation using an approach similar to this.  

We measure opportunity cost of forest preservation in terms of agricultural Gross Domestic 

Product (GDP) given up. Our analyses contribute to the literature by providing new estimates 

of the shadow prices of forest preservation and of reduced CO2 emissions using an alternative 

approach to those found in the literature. Our results indicate that, on average, US$ 796.81 of 

agricultural GDP annually is foregone to preserve one hectare of Amazon forest. Given 

previous estimates of CO2 sequestered per hectare of forest, we estimate the shadow price of 

CO2 to be, on average, US$ 21.70 per ton. 86% of the municipalities have a shadow price lower 

than this average.  
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2.2.BACKGROUND  

 

The Legal Amazon refers to an area that includes municipalities in the Amazon Forest 

biome, in addition to other biomes, in nine northern Brazilian states.  It includes municipalities 

in the states of Acre (AC), Amazônia (AM), Roraima (RR), Rondônia (RO), Amapá (AP), Para 

(PA), Mato Grosso (MT), Tocantins (TO) and Maranhão (MA). This area has lower GDP per 

capita than the rest of the country, and is heavily dependent on agriculture and forestry. 

Grain and livestock expansion in the North and Midwestern regions led to high rates of 

deforestation between 1995 and 2006 (Rivero et al., 2009). Several recent studies highlight the 

relationship between agriculture and deforestation in Brazil, such as Reis and Guzmán (1992), 

Andersen et al. (2002), Diaz and Schwartzman (2005), Nepstad et al. (2007), Rivero et al. 

(2009), Araujo et al. (2009), Börner et al. (2010), Bowman et al. (2012), Assunção et al. 

(2013), Nepstad et al. (2014) and Filho et al. (2015).  

Riveiro et al. (2009) and Margulis (2004) assert that livestock is the main driver of 

deforestation while Cardille et al. (2003) suggests that this result is not uniform across states, 

that livestock and crop production share the responsibility. Nepstad et al. (2001) and 

Quintanilha and Lee Ho (2005) also indicate timber activity as one of the main drivers. In a 

more recent analysis, Nepstad et al. (2014) indicate that interventions11 and market restrictions 

on soybeans and livestock production led to a decrease in deforestation, although they are still 

important drivers.  

Only a few papers highlight the relationship between deforestation and carbon dioxide 

(CO2) emission using economic theory. Deforestation releases CO2 and other greenhouse gases 

(GHGs) due to several factors such as tree burning, gradual decomposition of the forest 

biomass left on the ground and gradual release by commercialized forestry products while 

agricultural activity takes place (Aguiar et al., 2012). FAO (2015) has endorsed the need for 

forest preservation since it is important not only for carbon sequestration but also for other 

ecological and environmental services. CO2 concentration in the atmosphere is 18% higher 

                                                           

11 Interventions such as the Soy Moratorium (SoyM) in 2006, and the Cattle Agreement in 2010, constituted 
obstacles to deforestation despite the fact that neither are enforced, but instead are voluntary policies (Nesptad 
et al., 2014; Gibbs et al., 2014). The enforcement of new regulations such as the Brazilian Forest Code (FC), 
the Rural Environmental Registry of private properties (CAR), and surveillance by Brazilian Institute of the 
Environment and Renewable Natural Resources (IBAMA), have had positive impacts as deforestation control 
mechanisms (Gibbs et al., 2014; Soares-Filho et al., 2014; Hargrave and Kis-Katos, 2013).  
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than in 1980 and 27% higher than in 1960 (NOAA/ESRL, 2015), which suggests a rapid 

increase over the last 50 years. 

Brazil participates in REDD+ (Reducing Emission from Deforestation and Forest 

Degradation), a clearing house for results-based payment agreements for reducing 

deforestation established by Parties to the United Nations Framework Convention on Climate 

Change (UNFCCC) with the objective of preserving the forest, ameliorating climate change 

and conserving biodiversity. Nepstad et al. (2007) focused on CO2 emissions from land use in 

this region, aiming to evaluate the impact of REDD+12 policies, and suggest a price of US$ 

5.50 per ton of CO2. 

Nepstad et al. (2007) findings are based on a spatial dynamic modeling system proposed 

by Soares-Filho et al. (2006), named “SimAmazonia”, that integrates a soy rent, cattle rent and 

logging rent models embedded with biophysical characteristics, transportation cost and other 

factors. These rent models are loosely described on their paper but are explained in several 

other papers including Vera-Diaz et al. (2008) and Merry et al. (2009). To model soybean 

yields, Vera-Diaz et al. (2008) used an instrumental variable regression of soybean observed 

yields on simulated soybean yields, transportation cost, credit available to soybean agents 

(producers and trading companies), fertilizer expenditure, latitude and longitude. To investigate 

the Amazon timber industry, Merry et al. (2009) proposed a 30-year partial equilibrium 

simulation model that incorporates both economics and engineering aspects using data from 

the literature and several Brazilian institutions such as IBGE. Therefore, Nepstad et al. (2007) 

findings on CO2 price are based mostly on simulations that include only soybean production, 

cattle production and timber sales, which underestimate agricultural activity in this region and 

therefore miss some of the agricultural benefits from deforested land. Soybean was responsible 

for only 34% of production value from crops in the Amazon Legal region in 2006, a slightly 

higher percentage (37%) was contributed by the cassava, corn, rice and sugarcane (IBGE, 

2006), which are not considered in their model. Additionally, soybean production is clustered 

in the south region of the Amazon Forest, in the state of Mato Grosso, instead of uniformly 

spread across the Amazon Forest region.  

Margulis (2004) described the interaction between deforestation and agricultural activities 

such as cattle and soybean production as dynamic, and provided an alternative estimate of the 

social cost of preventing deforestation at US$ 108 per hectare per year. The measure of benefits 

                                                           

12 May et al. (2011) and Heres et al. (2013) also discuss the role of REDD+ policies on Brazil. 
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from deforested land in this paper includes both direct use value (timber and non-timber 

products, and ecotourism), indirect use value (carbon stocking), option value (bioprospection) 

and existence value. These values are obtained from the literature rather than estimated by the 

author. At the average of 100 tons of C per hectare, this estimate is equivalent to $2.94 per ton, 

compared to the $5.50 of Nepstad.   

Vera-Diaz and Schwartzman (2005), using budget information from the literature, 

constructed cash flows for soy, timber and cattle production and used Net Present Values 

(NPV) to reflect benefits from deforested land.  Their estimate of the cost of a ton of CO2 

sequestrated ranged from US$0.80 to US$ 6.10.  Börner, et al. (2010) used a similar method, 

but accounted for the dynamic land transition in the region when estimating the NPV. They 

conclude that even the most conservative carbon-offset price would lead to a decrease in 

deforestation due to the low per-hectare returns of the region.  

A few papers have investigated Brazilian agriculture performance and its impact on Amazon 

Forest. Recently, Filho et al. (2015) showed that deforestation control will have small effects 

on the Brazilian food supply and that these effects could be neutralized by technological 

improvements. Basic rates of agricultural productivity gain in Brazil and in the Amazon region 

have been studied by Gomes and Braga (2008), Mendes et al. (2009), Bragagnolo et al. (2010), 

Gasques et al. (2012) and Rada and Valdes (2012)13. These papers did not include deforestation 

as an undesirable output.  

We propose to estimate the trade-off between agriculture and forest preservation in the 

Amazon considering deforestation explicitly in the methodology as an undesirable output and 

accounting for all agricultural activities represented in the agricultural GDP. This will also 

allow estimation of a shadow price for CO2 emissions from this source. 

 

2.3.THE MODEL 

 

Recent studies use directional distance functions to represent a technology that includes the 

joint production of an undesirable output, approximated both non-parametrically (Chung et al., 

1997; Macpherson et al., 2010) and parametrically (Färe et al., 2005; Färe et al., 2006). 

                                                           

13 A few other studies such as Trindade et al. (2015), Fuglie (2010), estimated Brazil’s TFP growth rates jointly 
with other countries. 
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Application of this framework to environmental issues such as the production of a byproduct 

like CO2 and SO2 has been fruitful14. Chung et al. (1997) raised questions about the inadequacy 

of long-established frameworks that do not consider undesirable outputs when measuring 

productivity, resulting in overstated productivity growth rates. Most of these papers have the 

intention of filling in the lack of information on price by estimating the shadow price of the 

undesirable output in terms of good outputs.  

Alternative approaches and functional forms have been proposed to address production 

systems that include undesirable outputs.  Färe et al. (2005) fit a stochastic quadratic directional 

distance function while Cuesta and Zofio (2005) and Cuesta et al. (2009) fit a translog distance 

function. A production technology useful for our purpose is described in Färe et al. (2005) and 

Macpherson et al. (2010). The production technology for agriculture uses inputs � ℜ+� to 

produce outputs � ℜ+� .  Some outputs are desirable, � ℜ+� (agricultural GDP) and some 

are undesirable, � ℜ≥�  (deforestation). The functional representation is  

 �⃗⃗ �(�, �, �; ��, ��) = max� {�: (� + ���, � − ���) � � � } , (1) 

 

an output directional distance function for an output possibility set � � , where �� and �� are 

the directional vector � = (��, −��). The directional distance function15 is non-negative in (y, 

b), non-increasing and strongly disposable in y, non-decreasing in b, jointly weakly disposable 

and concave in (y, b), and undesirable outputs are considered a byproduct of desirable outputs, 

known as the null-jointness hypothesis. The translation property, also referred to as 

homogeneity in outputs, is also satisfied if 

 �⃗⃗ �(�, � + ���, � − ���; ��, −��) = �⃗⃗ �(�, �, �; ��, −��) − �,       � � ℜ (1i) 

 

which states that increasing desirable outputs by ��� while decreasing undesirable outputs by −��� is equivalent to subtracting the translation factor � from the original directional distance 

                                                           

14 Badau et al. (2016) applies a framework similar to the one in this paper to a set of 141 countries aiming to 
find the shadow price of a ton of CO2. Bokusheva et al. (2014) also estimated a distance function considering 
undesirable outputs. 

15 Appendix I, located at the end of the thesis describes these properties more extensively. 
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function. Equation (1) is represented in Figure 1 in output space considering a case with one 

desirable output y and one undesirable output b, and assuming a directional vector � =(��, −��) = ,− . The production possibility frontier represents all efficient units, captured 

by �⃗⃗ � �, �, �; , − = . For all observations in the output set �⃗⃗ � �, �, �; , − ; and the 

distance of each observation from the frontier is a measure of inefficiency.  

 

 

Figure 1 - Output Set - P(x), and directional output distance function 

Note: the scalars q and p represent price of undesirable and desirable outputs respectively. 

 

The slope of a production possibility frontier is the marginal rate of transformation (MRT). 

Under profit maximization, producers would locate where the MRT is equal to the ratio of 

output prices (figure 1).  For two desirables outputs the MRT is negative under strong 

disposability. When undesirable outputs are considered, weak disposability is assumed and the 

MRT is positive in the vicinity of preferred combinations (more desirable output and less 

undesirable output). This scenario, represented at point A in figure 1, is expected to occur when 

undesirable production has costly disposal fees or when restrictions are imposed on production 

of undesirable output.  

The rate of transformation between desirable and undesirable output can be found by setting 

the total differential equal to zero and solving: 
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��⃗⃗ �d� + ��⃗⃗ �d� + ��⃗⃗ �d� = d�⃗⃗ �   (2i) 

 

where on the frontier d�⃗⃗ � =  and d� = . The MRT between desirable output m and 

undesirable output r is 

 ������ = − ��⃗⃗ � ���⁄��⃗⃗ � ���⁄   ,  ∀ � ��� �. (2ii) 

 

Equation (2ii) is the opportunity cost of a change in br in terms of ym. It is non-negative due 

to monotonicity in both desirable outputs (��⃗⃗ � ���⁄ ) and undesirable output 

(��⃗⃗ � ���⁄ ).  

Let � = � , � , … , �� ℜ+� and � = � , � , … , �� ℜ+�  represent the prices of desirable 

and undesirable outputs. The dual relationship between the revenue function and the output 

distance function is (Färe et al. (2006)) 

 � �, �, � = ����,�{�� − �� ∶ �⃗⃗ � �, �, �  } (3) 

or 

��⃗⃗⃗⃗  ⃗ �, �, �; � = ����,� {� �, �, � − �� − ����� + ��� } (4) 

 

Note that in the presence of undesirable outputs the revenue function could be negative.  

Using the envelope theorem,  

 ��� + ��� ��⃗⃗ � �, �, �, � = �  
(5) ��� + ��� ��⃗⃗ � �, �, �, � = −�  

 

then the shadow price of an undesirable output, qr, in terms of a desirable output �� is 
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�� = −��  [��⃗⃗ � �, �, �, � ���⁄��⃗⃗ � �, �, �, � ���⁄ ] (6) 

 

where �� is the known market price of the desirable output ym,  � =  , , … ,M  and � = , , … , R. Equation (6) is the shadow price or the opportunity cost of decreasing production 

of undesirable outputs, evaluated at market prices of a desirable output. Expression (6) is non-

negative given that the marginal rate of transformation in brackets is negative due to the 

monotonicity property of the distance function with respect to the desirable and undesirable 

outputs. Given estimates of the marginal rates of transformation, we use this equation to infer 

the shadow prices of deforestation, and from that the estimates of the cost of CO2 released by 

deforestation. 

2.4.THE APPLICATION 

 

We use the Agricultural Census of 2006, made available by IBGE, which includes 59016 

municipalities in nine states; Amapá (AP), Acre (AC), Amazonas (AM), Mato Grosso (MT), 

Maranhão (MA), Tocantins (TO), Pará (PA), Rondônia (RO), and Roraima (RR). Desirable 

outputs and inputs were obtained from IBGE while deforestation was obtained from the 

National Institute for Space Research (INPE). Descriptive statistics are in Table 1. Appendix 

2.A presents more information on these variables. 

Deforestation is measured in hectares. Margulis (2004) suggests that deforestation might 

occur over three years, and be detected only in the third year of the process, depending on the 

process of deforestation used. It is possible that agricultural activities would be occurring 

during this process with revenue from both agriculture and timber sales during this period. This 

leads us to measure deforestation in 2006 as the average of the previous three years (2004-

2006). The states of Roraima (RO), Mato Grosso (MT), Pará (PA) and Maranhão (MA) have 

higher absolute and per hectare measures of deforestation. Over three years, MT and PA each 

contributed more than 30% of the total deforested area, jointly approximating 69% of what was 

deforested in this period.  

 

                                                           

16 IBGE states that the Legal Amazon includes 771 municipalities, however some municipals did not have any 
forest in 2006. 
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Table 1 - Descriptive Statistics for Agricultural Production, Inputs and Deforestation in 590 

Municipalities in the Legal Amazon, Brazil, 2006. 

Variable Description Mean Std. Dev. Min Max 

�  
Av. Deforestation 

2004-06 (ha) 
3438.90 7917.37 0.00 108406.70 

�  Ag. GDP (US$ 1000) 8862.21 11224.85 410.47 119599.20 �  Capital (units) 1637.64 1374.53 49.00 11283.00 �  Labor (units) 3870.83 3776.78 126.00 39883.00 �  Irrigation (ha) 415.08 1381.82 0.00 12850 �  Credit (US$ 1000) 2449.30 12485.24 0.00 263341 �  Shared of family owned farms 0.86 0.13 0.03 1.00 �  Total forest area in 2006 (km2) 5190.67 13459.67 0.10 144093.00 �  Total hydrology area in 2005 (km2) 184.07 480.06 0.00 4499.90 

Source: Deforestation is from PRODES/INPE, Ag. GDP is from IPEA, and grains, timber, sold heads, capital 

and labor are from the Agricultural Census (IBGE). 

 

Municipalities in the state of Mato Grosso had larger agricultural production in 2006, with 

an average agricultural GDP of $15,992 thousand dollars. This state was responsible for 39% 

of what was produced in the 590 municipalities considered in this research, as reflected in its 

agricultural GDP. Table A1 and Figure A1 display the distributions of agricultural GDP and 

average deforestation during the three years from 2004 to 2006. 

We were able to obtain information on four inputs; labor as the number of employees; area 

of land irrigated (in hectares), total credit obtained by the municipality (in US$ 1000) and 

capital obtained by summing the number of pieces of equipment and number of landowners in 

the municipality, following Bragagnolo et al. (2010). Following Färe et al. (2005), all variables 

are normalized by their means17, aiming to achieve convergence in the stochastic estimation. 

                                                           

17 For a hypothetical municipality that uses mean inputs and produces mean outputs, the input and output 
variables would be �, �, � = , , − . It implies that Figure 1 is in normalized values. Thus observation J1 
(illustrated in Figure 1) can be expanded by �∗�̅, and contracted by ∗�̅ simultaneously.    
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2.4.1. Empirical Strategy 

 

We approximate the distance function (Eq. 1) using a quadratic functional form, with the 

subscript � = , , … , �  representing municipalities  

 

�⃗⃗ �� ��, �� , ��; , − =  � +∑������= + ∑∑����������=�= + � � � 
       + � � �� � + � � � + � � �� � + � � �� � +∑������� ��= +∑������� ��=   (7) 

 

where ��� are labor, capital, irrigation and credit, � � is agricultural GDP, � � is deforestation, 

and ’s, ’s, ’s, ’s, ’s and ’s are parameters to be estimated. As Färe et al. (2005) we use 

the directional vector � = (��, −��) = ,−  representing a simultaneous expansion in 

desirable outputs and a contraction of undesirable outputs. The symmetry and translation 

property in outputs are imposed before estimation, requiring the following restrictions  

 � − � = − , � − � = ,       � − � = , �� − �� =  (7i) 

 

where k =1, …,4 are inputs. We estimated equation (7) after imposing (7i) as 

 −�� = �⃗⃗ ��(��, �� + � , �� − �; , − ) +  �� ,   (8) 

 

where �� is the translation factor; in our case, �� = � �18.  The following quadratic functional 

form with symmetry and translation properties imposed is estimated 

                                                           

18 Summary and Weber (2012) and Weber and Xia (2011) have considered as the translation factor the negative 
of a desirable output (i.e. �� = −� �), since they only have desirable outputs. Kumar and Managi (2010) 
include undesirable outputs in their analysis and have used as the translation factor a desirable output (i.e. �� =� �). These specifications would change equation (7i). 
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−� �  = � +∑������= + ∑∑����������=�= + � �′ � + � �′ ��′ � + � �′ �
+ � �′ ��′ � +∑�������′ ��= +∑�� ����′ ��= + �� (9) 

 

where the prime (’) represents the normalization with respect to �� that captures the translation 

property, �′�� = ��� + �  and �′�� = ��� − �  and � = � � . Desirable output �′ �  is 

agricultural GDP, inputs ��� are capital, labor, irrigation and credit and �′ i is deforestation. 

We use the translation property to recover parameters of the output used to impose the 

translation property. To estimate the parameters of equation (9) we use corrected ordinary least 

squares (COLS) and maximum likelihood (MLE) approaches.  

Using equation (6) and given prices for the desirable output, � �, the shadow price for an 

undesirable output in each municipality i is19: 

 

�� �,� � = −� � [ � + � � � + ∑ �� ��� + � � ��=�� + � � � + ∑ �������= + � � �]. (10) 

 

where there are  � =  , . . . ,  inputs. Equation (10) is used in this study to estimate the 

shadow price of reducing one hectare of deforestation in terms of agricultural GDP foregone.  

Equation (9), was estimated using Corrected Ordinary Least Squares (OLS) and Maximum 

Likelihood Estimation (MLE)20. Estimates of the COLS were used as starting values for the 

MLE procedure. In the first approach, inefficiency is calculated by modifying the error term. 

This error term, appended to equation (9), is  �� = −�� + �� ,  where = −��  represents an 

inefficiency term, and ��,  is the random error. Since � �� ≠ , the estimate of the intercept, � , is biased although those of the slope coefficients, �̃, are not. The intercept is adjusted 

upwards, post estimation, by the min {��̂}, so that the adjusted function bounds observations 

from above. On the other hand, MLE does not incur on parameter biases given that we assume 

                                                           

19 To express this in units of output we need to multiply by the ratio of means, as the outputs had been 
normalized by their means. 

20 Appendix II, located at the end of the thesis, describes these methods more extensively in addition to guide 
you to the references on these methodologies. 
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a half-normal distribution ( ��~�+ , ��� ) for the inefficiency term, as described in 

Kumbhakar et. (2015). The distribution of the efficiency error, specifically ���, is assumed to 

be a function of exogenous variables (��). Therefore, the coefficients estimated for �� are not 

to be interpreted as a marginal effect on � �� , although their signs give the direction of their 

impact on � �� . In this paper, we represent �� by forest area in 2006, hydrological area in 

2006, and share of farms that are family owned. The estimation was done using Stata 14 

following the command sfmodel suggested by Kumbhakar et. (2015) and sfcross suggested by 

Belotti et al. (2012). Estimates are in Table 2. 

 

2.5.RESULTS AND DISCUSSION 

 

We estimated the quadratic specification for the directional distance function in equation 

(9)21 using COLS and MLE. Parameters estimated are displayed in Table 2. 

 

Table 2 – COLS and MLE Parameter Estimates for Directional Distance Function in 

Municipalities of the Legal Amazon, Brazil in 2006  

Coefficient Variable COLS MLE �� �  -0.8388*** -0.8315*** 
  (0.0176) (0.0199) ��� = ��� = ��� �  -0.0150*** -0.0147*** 
  (0.0034) (0.0033) �� �  -0.2158** -0.1816* 
  (0.1108) (0.1091) ��� �  -0.1009 -0.097 
  (0.1000) (0.0970) �� �  0.4901*** 0.4921*** 
  (0.1589) (0.1540) ��� �  -0.1737 -0.1583 
  (0.2027) (0.1967) 

                                                           

21 As robustness check, we estimate the same model using a different econometric approach, Generalized 
Method of Moments, and using MLE considering different ways of building the variable capital. Summary 
and Weber (2012) and Weber and Xia (2011) suggest possible existence of endogeneity. These papers used 
datasets that have both temporal and cross-section units, which allows use of the procedure in Atkinson et al. 
(2003) to recover inefficiency. Even though efficiency estimation is not the main concern of this paper we use 
this method to allow for possible endogeneity of outputs and inputs. We also use the Hansen J statistic to test 
overidentification of our instruments. We learn that MLE results are robust to these specifications given the 
median and average shadow prices are similar among models.  Therefore, we prefer the MLE model, 
especially because it allows us to incorporate additional heterogeneity through the efficiency component of the 
error term. 
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��� � �  0.1369 0.1226* 
  (0.1359) (0.1320) ��� = ��� � �  0.0265 0.0353 
  (0.0204) (0.0213) ��� = ��� � �  -0.0021** -0.0143*** 
  (0.0277) (0.0288) �� �  0.0756*** 0.0689*** 
  (0.0310) (0.0298) ��� �  -0.0071*** -0.0072*** 
  (0.0004) (0.0004) ��� � �  -0.0089*** -0.009*** 
  (0.0020) (0.0018) ��� = ��� � �  0.0361 0.0365 
  (0.0037) (0.0036) ��� � �  0.0060 0.0071 
  (0.0205) (0.0199) ��� � �  -0.0163*** -0.0142*** 
  (0.0240) (0.0237) �� �  0.1555*** 0.1478*** 
  (0.0252) (0.0241) ��� �  -0.0128 -0.0125*** 
  (0.0232) (0.0019) ��� � �  -0.0135 -0.0126 
  (0.0239) (0.0223) ��� � �  -0.0143 -0.0140 
  (0.0174) (0.0166) ��� = ��� � �  0.0233*** 0.0238*** 
  (0.0041) (0.0039) �� Constant 0.0996 0.1500** 
  (0.0646) (0.0678) ��    �� �  

 
- 15.2584* 

 - (8.4439) �� �  - 7.25E-05*** 
  - (2.79E-05) �� �  - -0.0036* 
  - (0.0020) �� Constant - -18.0230** 
  - (8.0975) ��  - 0.4669*** 
  - (0.0140) 

N  590 590 
Note: COLS parameters used as starting values for MLE. Standard error in parenthesis; *** for p-value smaller 

than 0.01, ** smaller than 0.05, and * smaller than 0.1. The dependent variable is the negative of average 

deforestation. All models include eight state dummies.     
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COLS estimation has eleven statistically significant parameters out of 21 (excluding state 

dummies), while MLE has thirteen. The properties of monotonicity and null-jointness22 were 

checked at each data point after estimation with the MLE estimates presenting fewer violations. 

A Likelihood Ratio test of 15.37 indicates that MLE estimates with a half-normal distribution 

for the one-sided error term are superior to the COLS estimates at 1% of significance (critical 

value is 14.32). The analysis that follows uses the MLE estimates. Only six observations did 

not satisfy monotonicity on desirable output for both MLE and COLS while four observations 

do not satisfy monotonicity on undesirable output for the COLS and three for the MLE. 

An estimate of the distance of each municipality from the frontier is obtained from equation 

(9), and is interpreted as a measure of inefficiency. The average distance estimated for the 

region was 0.087. This means that, on average, agricultural GDP could be expanded by 8.7% 

(an average of US$ 771 thousand) while simultaneously decreasing deforestation by 8.7% (an 

average of 299.12 hectares). A higher share of family owned farms and of forested area is 

associated with higher inefficiency while hydrological area with lower. Resources for one 

municipality are not in fact identical to those of the others, so the inefficiency estimates are at 

least in part an indicator of the heterogeneity across these municipalities not captured by the 

variables included in our model. 

Using equation (10) and the estimated parameters we calculate the shadow price at each 

observation. The results are displayed in Figures 2 and 3 and in Tables 3 and 4.  

 

 

 

 

 

 

 

 

 

 

                                                           

22 Null-jointness property was not imposed but checked after. This property was violated in less than 32% of the 
sample. Both COLS and MLE have satisfied the concavity property. 
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Table 3 –Average Estimates of Shadow Prices for Deforestation and CO2, Legal Amazon and 

‘arc of deforestation’, Brazil, 2006. 

 COLSa MLEa 

Median −��  [��� �,�,�,� ���⁄��� �,�,�,� ���⁄ ] in US$ 556.82 577.80 

Mean −��  [��� �,�,�,� ���⁄��� �,�,�,� ���⁄ ] in US$ 770.72 796.81 

at −��  [��� �,�,�,� ���⁄��� �,�,�,� ���⁄ ] in US$ b 705.73 728.84 

CO2 Shadow price in US$ 

(base on median, r =0.1) 
15.17 15.74 

CO2 Shadow price in US$ 

(base on median, r =0.06) 
25.29 26.24 

Note: a Shadow prices are calculated only using observations that satisfied monotonicity; shadow prices would 

be slightly smaller if calculated with all observations as there are only six violations for GDP and 3 (4 in COLS) 

for deforestation in the MLE estimation. COLS parameters used as starting values for MLE.  b The shadow price 

evaluated at the mean of all observations, x, y, b = , , . 

 

On average, the MLE estimates indicate that US$ 796.8123 in agricultural GDP has to be 

given up each year to preserve a hectare of forest (i.e., to decrease deforestation by one hectare). 

The frequency distribution of these estimates shows a concentration of municipalities with 

shadow price around this average, as displayed in Figures 2 and 3.  

 

                                                           

23 In 2006 the revenue given up to preserve one forested hectare is $796.81.  To keep it preserved this revenue 
has to be given up every year. This value was obtained considering only the observations that satisfied 
monotonicity in both desirable and undesirable outputs. An average shadow price of US$ 580.20 is found 
when considering all observations.  
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Figure 2 – Estimated shadow prices of deforestation in terms agricultural GDP in the 

Legal Amazon, Brazil, 2006 (MLE) 

 

Table 3 illustrates that 50% of the sample has a shadow price equal or smaller than US$ 

557.80. About 86% of the area that was deforested appears to have an opportunity cost of less 

than $796. The cost to preserve the forest in perpetuity, using a discount rate of 10% and the 

median shadow price estimated, is the present value of that future revenue stream, or US$5,578 

per hectare. Using a more restricted dataset and a simpler methodology based on budget data 

and calculating Net Present Value, Margulis (2004) estimates a much lower annual social cost 

of approximately US$108 (US$135 in 2006 currency) per hectare preserved.  
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Figure 3 – Cumulative distribution and histogram of estimated shadow prices of forest 

preservation in terms of agricultural GDP for the Legal Amazon, Brazil, 2006  

Note: The higher 5% percentile is not included in these graphs for scale reasons. 

 

Table 4 suggests that municipalities in Mato Grosso (MT), Roraima (RR), Maranhão (MA) 

and Para (PA) have higher shadow prices than municipalities in other states. These 

municipalities are in the lower geographical boundary of “arc of deforestation” region, where 

agriculture has been fast developing during the last decades. As expected, then, municipalities 

with higher agricultural production rates have larger tradeoffs (shadow prices).   
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Table 4 – Average Shadow Prices of Forest Preservation in Terms of Agricultural GDP 

(US$), in the Legal Amazon, Brazil, 2006 

 ��������������,��� (US$) 

 Mean 
Standard 

Deviation 
Minimum Maximum 

Acre (AC) 552.87 57.00 435.65 690.33 

Amazonas (AM) 603.16 117.23 309.39 931.67 

Amapá (AP) 554.89 57.95 504.82 710.92 

Maranhão (MA) 744.19 904.82 318.21 9950.55 

Mato Grosso (MT) 1252.85 2311.84 126.72 17064.06 

Para (PA) 669.38 340.87 21.98 2748.87 

Rondônia (RO) 616.02 264.04 197.00 2212.24 

Roraima (RR) 974.83 1420.30 489.71 6088.08 

Tocantins (TO) 689.47 653.52 491.56 5664.03 

Legal Amazon (LA) 796.81 1206.76 21.98 17064.06 

 

2.5.1. A shadow price of Carbon Dioxide (CO2)  

 

We use the estimates above to approximate the shadow price of CO2 emissions from 

expanding agricultural activities in the Legal Amazon. This is very relevant information if 

global markets for CO2 were developed. We then compare our results with others in the 

literature (Vera-Diaz and Schwartzman (2005), Nepstad et al. (2007), Börner et al. (2010) and 

Assunção et al. (2013)) and with the CO2 price estimates used by the Brazilian Ministry of the 

Environment24. 

                                                           

24 Technical note No. 40, Departamento de Politicas para o Combate ao Desmatamento, Ministerio do Meio 
Ambiente (MMA/DPCD), 2012. In this document, Brazilian government discuss how much should have 
raised for the “Fundo Amazonia” to preserve the forest. The estimations are based on data from 
PRODES/INPE and, for 2012 considering US$ 5 per ton of CO2, US$ 2.5 billion has to be raised to decrease 
deforestation to zero.   
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The Brazilian government estimates that on average, one hectare of Brazilian forest 

sequesters 100 tons of carbon (Ministerio do Meio Ambiente, 2012; Amazon Fund, 2015). One 

ton of carbon is equivalent to 3.67 tons of CO2, therefore one average hectare of Brazilian forest 

sequesters 367 tons of CO2. Using this carbon intensity coefficient, our results imply an 

estimated shadow price of US$1.57 per ton of CO2 sequestered per year in a median hectare 

($2.16 for the average hectare). This means that to retain (rather than release by deforestation) 

one ton of CO2 indefinitely on an average hectare, US$2.16 of agricultural GDP has to be 

foregone every year.  Assuming a social discount rate in the range of 5% to 10%, as in Margulis 

(2004), Vera-Diaz and Schwartzman (2005), Nepstad et al. (2007), and Börner et al. (2010), 

this implies an average shadow price of CO2 ranging from US$ 21.7 to US$ 43.2 per ton.  

Given our distribution of estimates 86% of the municipalities have annual tradeoffs lower 

than the average of US$2.16 per ton of CO2 per year. These municipalities represent 88% of 

the average deforestation that occurred during 2004-2006. These estimates are much higher 

than the shadow price of US$ 5.00 per ton of CO2 used by the Amazon Fund to raise funds to 

preserve the forest. At a 10% discount rate and a carbon content of 155 tons of Carbon per 

hectare as in Vera-Diaz and Schwartzman (2005), the price of a ton of CO2 goes down to US$ 

14.00 in perpetuity. 

 

2.6.CONCLUSIONS 

 

The benefits of preserving a hectare of Amazon forest are not restricted to Brazilians, but 

accrue to mankind as a whole. However, the opportunity costs of preservation fall upon the 

Brazilians themselves, who must trade off potential agricultural income forgone in exchange 

for a hectare of forest preserved. This paper evaluates the tradeoff between forest preservation 

and agricultural expansion in the Legal Amazon region of Brazil, by estimating the aggregate 

municipality-level technology using directional distance functions. Data is for more than 500 

municipalities obtained from the Agricultural Census of 2006 and from the National Institute 

for Space Research (INPE/PRODES) for deforestation. The directional distance function was 

approximated by a flexible quadratic form and estimated using stochastic methods.  

The tradeoff estimates differ widely across municipalities, reflecting the diversity of 

resources and agricultural activities. On average, we estimate that US$796.81 in agricultural 

GDP has to be foregone annually to preserve one additional hectare of forest.  This translates 
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to an average shadow price of US$21.70 per ton of CO2 sequestered in perpetuity (at a social 

discount rate of 0.10 and 100 tons per hectare of carbon sequestered). This average is much 

higher than the US$5 used in official transactions. It is important to notice that that the 

distribution of estimated shadow prices is skewed and that almost 90% of the estimated 

shadows are lower than the average. These values depend on the assumptions made on carbon 

content per hectare, discount rate and exchange rates.  

Although our estimates of the opportunity cost embody all agricultural activities 

contributing to agricultural GDP rather than only livestock, timber and grains production as in 

most of the literature, we do not include forest benefits such as existence value and benefits 

from preservation of habitat and biodiversity. Thus, our estimates should be interpreted as a 

lower-bound opportunity cost. 

 

 

 

 

 

 

 

 

 

 

 

 

 



39 

 

CHAPTER 3 

 

THE EFFECT OF TECHNICAL CHANGE ON THE TRADEOFF BETWEEN 

AGRICULTURE AND THE AMAZON FOREST IN THE BRAZILIAN “ARC OF 

DEFORESTATION” 

  

3.1.INTRODUCTION 

 

Brazil encompasses the largest tropical forest in the world, the Amazon forest – 

corresponding to 13% of the world’s forest area and around 60% of Brazil’s surface. Strong 

agricultural expansion, starting in the 1990s, has impacted this area greatly. In the literature, 

grains, livestock and timber production are indicated as the main drivers of deforestation in the 

agricultural frontier in this region, also known as the “arc of deforestation” (Riveiro et al. 

(2009); Margulis (2004); and Nepstad et al. (2001)).  

However, this region, as well as Brazil overall, has been experiencing high rates of technical 

change. Bragagnolo et al. (2010) reports an average technical progress for the states that 

includes the municipalities we are considering as the “arc of deforestation” of around 7.2% a 

year.  A few studies have investigated technical change effects on deforestation. Filho et al. 

(2015) showed that deforestation control will have small effects on the Brazilian food supply 

and that these effects could be neutralized by technological improvements.  

Villoria et al. (2014) highlights the role of technical change (and productivity change) on 

forest preservation and the lack of empirical work to evaluate it. In this paper, we estimate the 

rate of technical change seeking to shed light on its effect on the tradeoff between agricultural 

production and forest preservation in the “arc of deforestation” in the Brazilian Amazon. We 

are also interested on whether technical change in agriculture has been biased toward 

agricultural production or deforestation.  

To evaluate the effects of technical change on the tradeoff we first estimate the production 

possibility frontier (PPF) for agricultural production and forest preservation at municipality-

level for the period from 2003 to 2015. Then, we identify whether technical change was 

progressive or regressive by analyzing the marginal change on the PPF, as proposed by Färe 

and Karagiannis (2014). Finally, we propose a primal-oriented technical change bias definition 

based on Fulginiti (2010) to evaluate whether technical change was bias against deforestation 
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or not. This paper contributes to the literature by shedding light on the influence of technical 

change on forest preservation.   

Our results suggest that these municipalities have been experiencing progressive technical 

change in agriculture of, on average, around 4.6% a year. It means that, on average, due to 

innovations agricultural outputs expanded 4.6% while deforestation contracted by 4.6%. 

Technical change has also led to a higher marginal rate of transformation between agricultural 

outputs and deforestation. In other words, technical change has been biased toward agricultural 

outputs and against deforestation.  

 

3.2.BACKGROUND 

 

In the literature, the “arc of deforestation” is defined as the municipalities in the agricultural 

frontier in the northern region of Brazil with high level of deforestation. In this paper, we 

investigate technical change in agriculture when deforestation is also considered.  We use 

information of two hundred municipalities in seven states that have high level of 

deforestation25: Acre (AC), Amazonas (AM), Pará (PA), Rondônia (RO), Mato Grosso (MT), 

Maranhão (MA) and Roraima (RR). Figure 1 displays total deforestation during the period 

from 2001 to 2015 at municipality scale. To better understand the magnitude of the 

deforestation in this region, in 2015, 1675.23 square miles were logged in the “arc of 

deforestation”, it represents 2.2% of the state of Nebraska (77,421 square miles). 

                                                           

2525 In the application section we describe how we define this sample. 
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Figure 1 – Sum of deforestation (in km2) for the two-hundred municipalities in the “arc of 

deforestation” in the northern region of Brazil.  

Note: “Other mun.” in these maps represent municipalities that are not being using on the estimation of 
Equation (1). In the application section we describe how we defined the two-hundred municipalities. 
Source: Own elaboration using Stata 14. 

 

Rivero et al., (2009) assert that high rates of deforestation between 1995 and 2006 were 

caused partially by grain and livestock expansion in the North and Midwestern regions. In 

addition to these two activities, timber revenue has also been indicated as a motivation to 

increase deforestation [Riveiro et al. (2009); Margulis (2004); Cardille et al. (2003); Nepstad 

et al. (2001); and Quintanilha and Lee Ho (2005)]. Other studies also highlight this relationship, 

between agriculture and deforestation in Brazil, such as Reis and Guzmán (1992), Andersen et 

al. (2002), Diaz and Schwartzman (2005), Nepstad et al. (2007), Rivero et al. (2009), Araujo 

et al. (2009), Börner et al. (2010), Bowman et al. (2012), Assunção et al. (2013), Nepstad et 

al. (2014) and Filho et al. (2015).  

On the role of technical change in forest preservation Villoria et al. (2014) presents a 

literature review and a discussion of studies that investigate this topic. They suggest that 

technical change (and productivity change) could lead to two opposite effects on forest 

preservation; higher level of deforestation as commercial activity is expanded, or lower 

deforestation due to a less land intensive production (input substitution). They argue that to 
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conclude whether it is the first or the second hypothesis that takes place in a particular region 

empirical work has to be done.  

Filho et al. (2015) investigate whether Brazil can increase food supply without increasing 

deforestation. They highlight that conversion of low-yield pasture area and a low exogenous 

technical change can neutralize the effect of controlling deforestation on agricultural supply. 

To obtain these results, they have used a Computable General Equilibrium (CGE) model of 

Brazil to model land use over 20 years. One of drawbacks of these type of models is the rigidity 

on the assumptions made about the agricultural technology, input and output substitution and 

its relationship with forestry area – constant elasticity of substitution (CES).  

On productivity change, several papers have studied Brazilian agriculture. Bragagnolo et al. 

(2010) estimate Total Factor Productivity (TFP) for Brazilian agriculture using a panel of 

municipalities and agricultural census data (1975, 1985, 1995 and 2006). They fit a translog 

production function to obtain the TFP and its several components including technical change. 

For Brazil, they found an average technical progress of around four percent. Using their state 

averages, we calculated the average technical progress of the states that include municipalities 

included here as the “arc of deforestation” of around seven percent a year. State average of 

technical progress for this sample ranges from 3.9% (Maranhão) to 10.2% (Roraima) a year. 

On a broader context, Gasques and Conceicao (1997), Gasques et al. (2004), Gasques et al. 

(2009) and Fuglie (2010) have found TFP rates higher than three percent for Brazil. Gasques 

et al. (2014) argue that a favorable international scenario, public research, and credit 

availability had an important role in these results. Rada and Valdes (2012) has also found 

positive TFP mainly driven by technical change (around 4%) for the last decades. Mendes et 

al. (2009) and Trindade and Fulginiti (2015) have found a lower TFP, 1% growth rate for 1985-

2004 and 2% growth rate for 1969-2009 respectively. None of these studies have estimated 

technical change at municipality level or have considered the effects of agriculture on the 

environment.  

Additionally, Gomes and Braga (2008) have investigated which factors explained the Total 

Factor Productivity of the Legal Amazon region at a state level data. They have found that 

infrastructure and credit made available by a regional institution (Fundo Constitutional de 

Financiamentos do Norte) has contributed to TFP, leading to higher rates.  

The harmful effects from production of goods on the environment has been addressed using 

directional output distance functions where undesirable outputs (i.e. pollution) and desirable 

outputs (i.e. goods production) are being treated asymmetrically. Chung et al. (1997) argue that 
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productivity change rates estimated using conventional methods without considering the 

harmful effects on the environment might be overestimated. Only a few studies have included 

undesirable outputs to evaluate productivity change in agriculture such as Färe et al. (2006) 

and Kabata (2011) for United States and Flavigna et al. (2013) for Italy. In this paper, we 

estimate the rate of technical change in a set of municipalities in the northern agricultural 

frontier of Brazil seeking to identify whether bias has been toward agricultural production or 

towards deforestation. 

 

3.3.THE MODEL 

 

Several studies have used directional distance functions to represent a technology that 

includes the joint production of an undesirable output (Chung et al., 1997; Macpherson et al., 

2010; Färe et al., 2005; Färe et al., 2006). Chung et al. (1997) raised questions about the 

inadequacy of long-established frameworks that do not consider undesirable outputs when 

measuring productivity, resulting in overstated productivity growth rates. We will compare 

technical change estimated in this paper with estimates reported in the literature. The 

production technology that involves both desirable and undesirable outputs is describe in Färe 

et al. (2005) and will be summarized here26. 

The agricultural production technology uses inputs �� = � �, … , ���  ℜ+�  to develop 

outputs �� = � �, … , ���  ℜ+� . Some outputs are desirable �� = � �, … , ���  ℜ+�, such 

as grains production and some undesirable �� = � �, … ,  ���  ℜ+� , such as deforestation. 

The subscript � = , , … , �  represents the observed unit. The subscript t for time is dropped 

in this sections for simplicity. The mathematical representation of the directional output 

distance function is given by   

 �⃗⃗ � �, �, �, �; , − = ���{�: (� + ���, � − ���) � � � } (1) 

 

an output directional distance function for an output possibility set � � , where �� and �� are 

the directional vector � = (��, −��). The directional distance function is non-negative in (y, 

b), non-increasing and strongly disposable in y, non-decreasing in b, jointly weakly disposable 

                                                           

26 Appendix I, located at the end of the thesis describes these properties more extensively. 
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and concave in (y, b), and undesirable outputs are considered a byproduct of desirable outputs, 

known as the null-jointness hypothesis. The translation property, also referred to as 

homogeneity in outputs, is also satisfied if 

 �⃗⃗ �(�, � + ���, � − ���; ��, −��) = �⃗⃗ �(�, �, �; ��, −��)  − �,      � � ℜ (1i) 

 

which states that increasing desirable outputs by ��� while decreasing undesirable outputs by −��� is equivalent to subtracting the translation factor � from the original directional distance 

function. Equation (1) is represented in Figure 2 in output space considering a case with one 

desirable output y and one undesirable output b, and assuming a directional vector � =(��, −��) = ,− . This scenario, represented as a movement from point A in direction to 

point B in figure 2, is expected to occur when undesirable production has costly disposal fees 

or when restrictions are imposed on production of undesirable output. In the Figure 2, the 

observation J1
t jointly produces desirable (y) and undesirable (b) outputs given an input set (x). 

The directional output distance function seeks to maximize the simultaneous expansion of y 

and contraction of b.  

 

 

 

 

 

 

 

 

 

 

 

 

The distance of the observation with respect to the contemporaneous frontier, also known 

as inefficiency, is the distance from the frontier (efficient units have a distance equal to zero), 

given by B – A for period t and D – C for period t +1. All efficient units are on the frontier, 

Figure 2: Output Set - P(x), and directional output distance function 
Source: Own elaboration. 
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captured by �⃗⃗ � �, �, �; , − = . For all observations in the output set �⃗⃗ � �, �, �; , −
.  

An outwards parallel shift of the frontier suggests neutral progressive technical change while 

an inwards shift indicates a neutral regressive technical change. A neutral progressive technical 

change suggests that it is possible to obtain more desirable output and less undesirable output 

given input levels at the same transformation rate (Marginal Rate of Transformation). A non-

neutral technical change is described by a non-parallel shift of the frontier that suggests a 

change in the transformation between desirable and undesirable outputs. We investigate 

whether technical change was progressive (regressive) and neutral (non-neutral) or not by 

focusing on the shift of the output sets described in Figure 2 between D and B.  

 

3.3.1. Primal output-based directional measure 

 

We evaluate the impact of technical change following the strategy developed by Färe and 

Karagiannis (2014)27 . Following Färe and Karagiannis (2014) the total differential of the 

distance function is 

    −( ��⃗⃗ �)′���� + ( ��⃗⃗ �)′���� + ��⃗⃗ ��� �� + ��⃗⃗ ��� �� =  (2) 

Given the definition of technical change we assume �� =  and a common marginal change 

in both desirable and undesirable translation factors (��). Solving for technical change and 

using the translation property28 it is possible to obtain the rate of technical change as  ���� = ��⃗⃗ ���  (3) 

Färe and Karagiannis (2014) define technical change as the common number of times the 

desirable output and the undesirable output vectors (�� and ��) can be added to the desirable 

output and subtracted from the undesirable output as a result of technological change. In Figure 

2 it is represented by the length of the segment DB. 

 

                                                           

27 Badau et al. (2016) have applied these concepts. 

28Translation property implies that the unit will be more efficient by � if an increase on desirable output by � 
and contraction in undesirable output by � occurs (Färe et al., 2005). Chambers (2002) shows that this can be 

represented as  −( ��⃗⃗ �)′�� + ( ��⃗⃗ �)′�� = − . 
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3.3.2. Bias technical change 

 

There are several ways of investigating technical change biases. Kumar and Managi (2009) 

uses Antle’s (1984) profit-based multifactor measure of biased technical change. We use a 

primal definition of bias proposed by Fulginiti (2010) and based on Hicksian biases of technical 

change. These are defined as the change in the MRT as a result of technical change along an 

expansion path ��� �, �, �, � ≡ � ln(�����)��  =  � ln( ���⃗⃗ � ���⃗⃗ �⁄ )��  ,�, � = ,… ,�,� ≠ � (4) 

where m and j represents desirable and undesirable outputs, and ���⃗⃗ �  and ���⃗⃗ �  are 

derivatives with respect to outputs.  Due to monotonicity, this derivative is positive for 

desirable outputs and negative for undesirable outputs. It measures the biases in technical 

change as a rotation on the production possibility frontier (PPF) in output space (Fulginiti, 

2010). ��� >  suggests that technical change is biased towards the production of the desirable 

output m relative to undesirable output j.  ��� <  indicates that technical change is biased 

against production of desirable output m relative to undesirable output j.  

A positive technical change means that more desirable output and less undesirable output is 

produced after the innovation or technical change. If the bias of this technical change is 

positive, it is less costly in terms of undesirable goods to increase production of desirable 

goods.  

 

3.4.THE APPLICATION 

 

Our sample was selected based on the accumulated level of deforestation over the period 

from 2001 to 2015. We first calculated total deforestation over this period per municipality 

(more than 700 municipalities in the Legal Amazon region). For example, the municipality of 

Sao Felix do Xingu, in the state of Para, have deforested one million hectares29 during the 

period from 2001 to 2015. On average, each municipality deforested thirty-one thousand 

hectares over this period. To build our sample we selected municipalities that have total 

deforestation during this period above this average. Thus, our sample consists of municipalities 

                                                           

29 This is equivalent to 5% of Nebraska state area.  
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that have deforested more than thirty-one thousand hectares during the period 2001-2015. In 

total, the panel is composed of two hundred municipalities during the period 2003-2015, 

twenty-six hundred observations.  

Desirables outputs and inputs were obtained from the Brazilian Institute of Geography and 

Statistics (IBGE, 2017). We use data from the Municipal Agricultural Production30 (PAM) 

statistics at county level to measure these variables during the period 2003-2015. We have 

chosen to include in the model grains, livestock and timber production as the main drivers of 

deforestation. Grains production is the sum of corn and soybean (in tons), timber is measured 

in cubic meters and livestock in thousand liters of milk. Sold heads would be a better measure 

of livestock but it is only available for the year of 2006  

Deforestation was obtained from the National Institute for Space Research (INPE/PRODES, 

2017) and it is measured in hectares. Margulis (2004) suggests that deforestation might occur 

over three years, and be detected only in the third year of the process, depending on the process 

of deforestation used. It is possible that agricultural activities would be occurring during this 

process with revenue from both agriculture and timber sales during this period. This leads us 

to measure deforestation as the average of the previous three years. Descriptive statistics are in 

Table 1. 

Municipalities in the state of Para and Mato Grosso have shown the largest average 

deforestation, 8,762 and 6,606 hectares of average deforestation respectively. The average 

grain production is driven by municipalities in the state of Mato Grosso, they have shown a 

yearly average production of 248,806 tons of grains. On milk production, municipalities in the 

state of Rondônia have shown the largest average, of 10,078 thousand liters of milk. 

Municipalities in the state of Para have shown the largest average production of timber, 67,951 

m3. In Appendix 3.A we display the geographical distribution of these activities.  

 

 

 

 

 

 

                                                           

30 The Agricultural Census is only available for the year of 2006. 
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Table 1. Descriptive Statistics for Agricultural Outputs, Inputs and Deforestation in 200 

Municipalities during the period from 2003-2015 in the “arc of deforestation”, Brazil. 

 Variable Mean 
Standard 

Deviation 
Min. Max. 

Outputs      

Average Deforestation (ha) �  6144.9 9996.3 0.0 142463.3 

Grains (tons) �  79099.8 299309.6 0.0 4584870.0 

Milk (1000 litters) �  5539.1 8313.4 0.0 91953.0 

Timber (m3) �  50946.9 129764.5 0.0 1521233.0 

Inputs      

Labor (units) �  40237.5 83333.6 1225.0 1064197.0 

Capital (units) �  199093.3 223584.2 0.0 2282445.0 

Public Expenditure (R$ 1000) �  531346.8 1130518.0 0.0 13700000.0 

Agricultural area (ha) �  419933.8 411943.0 420.0 4269020.0 

Source: Desirable outputs and inputs were obtained at SIDRA/IBGE and deforestation at INPE/PRODES. 

 

We were able to obtain information on four inputs. Labor is represented by municipality 

population. On average, fifty-one percent of the municipality’s population are in rural areas; 

less than twenty-five percent of these municipalities have rural population less than thirty 

percent. Agricultural area is measured in hectares and it was built subtracting total municipality 

area by forest area each year. Capital has been represented in the literature by stock of livestock. 

We use this approach to measure capital in cattle numbers. We also included public expenditure 

on agriculture (in R$ 1000) seeking to capture extension31 as an input. The first three inputs 

were obtained at IBGE while the last input at the Brazilian National Treasure Secretary 

                                                           

31 This expenditure accounts to extension support, livestock and crop promotion and irrigation support. This 
series was deflated using the IGP-DI index available at the Institute for Applied Economic Research (IPEA, 
2017).  
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(2017)32. Following Färe et al. (2005), all these variables are normalized by their means33, 

aiming to achieve convergence in the stochastic estimation. In addition to these inputs we add 

a time trend to capture exogenous technical change.  

 

3.4.1. Empirical strategy 

 

We approximate the distance function (Eq. 1) using a quadratic functional form, with the 

subscript � = , , … , �  representing municipalities, subscript t dropped for simplicity 

 

�⃗⃗ �,� �, �, �, ; �, , − =  � +∑������= + � �� + ∑ �����= + ∑∑����������=�=  

+ ∑ ∑ ���′�����′��′=�= + � �� +∑∑����������=� +∑��������=  

+∑ ��������= + � � + � � + ∑�� ��,���= +∑������� + � ��� 
(5) 

 

where ��� are labor, capital, public expenditures in agriculture and area, ��� are timber, milk 

and grains, �� is deforestation, t is technical change and � , ’s, ’s, ’s, ’s, �’s, �’s and ’s 

are parameters to be estimated. The constant is composed by a constant term and municipality 

fixed effects (dummies). As Färe et al. (2005) we use the directional vector � = (��, −��) =,−  representing a simultaneous expansion in desirable outputs and a contraction of 

undesirable outputs. The symmetry and translation property in outputs are imposed before 

estimation, requiring the following restrictions  

 

                                                           

32 Specifically, we use the dataset available online named Financas do Brasil (FINBRA, 2017). 

33 For a hypothetical municipality that uses mean inputs and produces mean outputs, the input and output 
variables would be �, �, � = , , − . It implies that Figure 1 is in normalized values. Thus observation J1 
(illustrated in Figure 2) can be expanded by �∗�̅, and contracted by ∗�̅ simultaneously.    
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∑ mm − =− ;   ∑ mm′m′= − m= ;   − ∑ mm= = ;  ∑δmkm − φk=  

∑ mm − = , m = ,  and ; k = , ,  and ;   ��� = ��� 

  

We estimated equation (5) after imposing these properties as 

 −�� = �⃗⃗ ��(��, �� + �� , �� − ��; , − ) +  �� ,   (6) 

 

where �� is the translation factor. The following quadratic functional form with symmetry and 

translation properties imposed is estimated 

 

−�� = � +∑������= + � �′� + ∑ ���′��= + ∑∑����������=�=  

+ ∑ ∑ ���′�′���′�′��′=�= + � �′� +∑∑�������′���=� +∑������′��=  

+∑ ���′���′��= + � � + � � +∑�� ��,���= +∑���′���� + � ��′� 
(7) 

 

where �′ � = � � + ��, �′� = �� − ��. In our case, �� = ��34, then the parameters associated to �� are obtained after estimation using the translation property restrictions. Technical change is 

estimated following equation (3) as 

 

                                                           

34 Summary and Weber (2012) and Weber and Xia (2011) have considered as the translation factor the negative 
of a desirable output (i.e. �� = −� �), since they only have desirable outputs. Kumar and Managi (2010) 
include undesirable outputs in their analysis and have used as the translation factor a desirable output (i.e. �� = � �). These specifications would change equation (6). 

 



51 

 

��⃗⃗ ��� =  � + � � + ∑�� xk,i�= +∑������ + � �� (8) 

 

Technical change biases are calculated using Equation (4) as 

 ���� ,�� ���, �� , �, � ≡ [ ��⃗⃗ �� − ���⃗⃗ ���] (9) 

 

where �⃗⃗ �� and �⃗⃗ ���  represent the first derivative of the directional distance function with 

respect to the undesirable and desirable outputs, respectively, or 

 

�⃗⃗ �� = + � +∑φk xki +r= ∑ ������= + � �  

(10) �⃗⃗ ��� = � + ∑ ���′���= +∑δk xkik= + m b + ���  

 

by the monotonicity property, i.e. the directional distance should not decrease with undesirable 

outputs and not increase with desirable outputs. These properties will be cheeked after 

estimation.  

Equation (7) was estimated using Maximum Likelihood Estimation (MLE)35. We first 

estimate this equation using Corrected Ordinary Least Squares (COLS) to use its estimated 

parameters as starting values for the MLE procedure. The inefficiency is estimated as � ��| �� = �� − �� ). The MLE does not incur on parameter biases as the COLS given that the 

random error ��~�. �. �. � , �� . The estimation was done using Stata 14 following the 

command sfmodel suggested by Kumbhakar et al. (2015) and sfcross suggested by Belotti et 

al. (2012). Our empirical strategy does not impose the properties of monotonicity and 

concavity.  

                                                           

35 Appendix II, located at the end of the thesis, describes these methods more extensively in addition to guide 
you to the references on these methodologies. 
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3.5.RESULTS AND DISCUSSION 

 

We estimated the quadratic specification for the directional distance function in equation 

(7) using MLE. Parameters estimated are displayed in Table2. The MLE estimation has thirty-

seven statistically significant parameters out of 45 (excluding municipality dummies). On the 

theoretical properties 36 , 37 , monotonicity property was checked at each data point after 

estimation; less than 2% of the observations violate monotonicity in grains, around 9% violate 

it with respect to timber, less than 2% with respect to livestock and less than 4% with respect 

to deforestation. A Likelihood Ratio test of 19.85 indicates that MLE estimates with a half-

normal distribution for the one-sided error term are superior to the COLS estimates at one 

percent (critical value is 5.4).  

 

Table 2 – MLE Parameter Estimates for Directional Distance Function in Municipalities of 

the “arc of deforestation”, Brazil in from 2003-2015  

Coefficient Variable Parameter Standard Error �� �  -0.2071*** (0.0131) �� �  -0.4904*** (0.0130) �� �  -0.1104*** (0.0086) ��� �  0.0016*** (0.0004) ��� �  0.0614*** (0.0029) ��� �  0.0072*** (0.0006) ��� � �  -0.0485*** (0.0024) ��� � �  0.0165*** (0.0019) ��� � �  -0.0124*** (0.0019) �� �  -0.0368 (0.0614) �� �  0.4629*** (0.0453) �� �  -0.0312*** (0.0102) 

                                                           

36 Our estimate of the directional distance function is not concave on y and b. Although non-concavity is not 
desirable the violation of this property influences the analysis of the change in the slope within outputs second 
derivatives. Specifically, it affects analysis that depend directly of the second order coefficients associated with 
the outputs, ���′. For example, Färe et al. (2012) has estimated the output elasticity which depends directly of 
these coefficients. Our analysis does not depend of those directly.  

37 Less than 25% of the observations violate null-jointness hypothesis. 
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�� �  -0.0927** (0.0421) ��� � �  0.0222*** (0.0057) ��� � �  -0.0936*** (0.0206) ��� � �  -0.0005 (0.0010) ��� � �  0.0228*** (0.0075) ��� � �  -0.0115 (0.0114) ��� � �  -0.0005 (0.0006) ��� � �  0.0477*** (0.0183) ��� � �  -0.0194*** (0.0047) ��� � �  -0.0795*** (0.0186) ��� � �  0.0064** (0.0031) ��� � �  -0.0426*** (0.0044) ��� � �  -0.0325*** (0.0069) ��� � �  -0.0018*** (0.0006) ��� � �  0.0414*** (0.0054) ��� � �  0.0316*** (0.0057) ��� � �  -0.0031 (0.0070) ��� � �  0.0106*** (0.0030) ��� � �  -0.0298*** (0.0078) ��� � �  -0.0062*** (0.0021) ��� � �  0.0100*** (0.0033) ��� � �  -0.0023** (0.0011) ��� � �  -0.0007 (0.0027) �� � 0.0158*** (0.0060) ��� �  0.0001 (0.0009) ��� � � -0.0083*** (0.0015) ��� � � 0.0106*** (0.0022) ��� � � 0.0049*** (0.0009) ��� � � -0.0048*** (0.0019) ��� � � 0.0109*** (0.0008) ��� � � 0.0045*** (0.0012) ��� � � 0.0030*** (0.0007) 
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�� Constant -0.0576 (0.0918) ��  -2.7948*** (0.2075) ��  -3.7911*** (0.1767) ����  0.2472*** (0.0256) 

Note: COLS parameters used as starting values for MLE. Standard error in parenthesis; *** for p-value smaller 

than 0.01, ** smaller than 0.05, and * smaller than 0.1. The dependent variable is negative of average 

deforestation. ���� refers to the estimated ��/�� (see Appendix II) instead of the parameter associated to the interaction 

between undesirable output and time trend (Eq. 7). It includes municipality dummies. Parameters for the 

translation factor, deforestation, are recover using these parameters and the translation property. In total, 2600 

observations were used to estimate this regression.     

 

An estimate of the distance of each municipality from the frontier is obtained from equation 

(7), and is interpreted as a measure of inefficiency. The average distance estimated for the 

region was 0.19. This means that, on average, agricultural outputs (grains, timber and livestock) 

could be expanded by 19% each while simultaneously decreasing deforestation by 19%.  

Our first objective was to identify whether technical change was progressive or regressive, 

that is if the PPF has shifted outwards or inwards. The rate and biases vary over the production 

space, depending on the level of inputs and outputs for individual counties at each point in 

time.  We estimated average technical change in three ways. First taking the simple average of 

the technical change rates, which will be present in the body of the text (Table 3). Second, we 

used a weighted average approach where the weights are the share of the value of production 

per state (and per region). These results are presented in the Appendix 3.B. This weighting 

strategy considered only agricultural production as a weight factor and did not include any 

measure of deforestation. Therefore, we only present them on the Appendix. Third, we have 

evaluated Equation (8) on the average of all outputs (desirable and undesirable) and inputs. 

Technical change rate using this approach is 5.4%.  

The average rate of technical change estimated for this region during the period 2003-2015 

is 4.58%,38,39. It means that, on average, technical change has allowed municipalities to expand 

                                                           

38 Standard error and p-value were estimated for these estimates. State averages were statistically significant at 
least at 10%. 

39 Technical change rates presented in this section were calculates taking the simple average of the evaluation of 
Equation (8) for every observation in the sample. 
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agricultural outputs (grains, timber and livestock) by around 4.6% while simultaneously 

contracting deforestation by 4.6%. Table3 displays theses estimates per state over the period 

from 2003 to 2015.  

 

Table 3 – Average rates of technical change (in percentage) for municipalities in the “arc of 

deforestation” in states in the Legal Amazon, Brazil, 2003-2015 [evaluation of Eq. (8)]. 

Year RO AC AM RR PA MA MT 
Yearly 

Average 

2003 5.65 4.34 4.02 2.95 6.85 6.77 7.24 6.40 

2004 6.06 4.59 4.45 2.38 5.78 1.94 8.13 6.40 

2005 6.33 4.23 4.86 2.48 5.94 1.83 7.87 5.49 

2006 5.98 4.30 4.37 1.88 5.76 1.82 7.02 5.42 

2007 5.79 3.91 3.66 2.82 4.94 1.73 6.15 5.11 

2008 5.24 3.56 3.56 3.18 5.14 1.78 5.63 4.61 

2009 4.85 3.78 3.12 2.97 4.89 1.82 5.51 4.43 

2010 4.70 3.24 2.79 2.67 4.72 1.87 5.39 4.26 

2011 4.84 4.02 2.73 2.06 4.17 1.73 5.23 4.12 

2012 5.61 4.16 2.96 2.57 4.17 1.59 5.34 3.93 

2013 5.32 3.87 3.53 2.03 3.82 1.55 5.36 3.99 

2014 5.44 3.58 3.59 2.18 3.96 1.59 5.58 3.84 

2015 5.37 3.27 3.95 2.19 3.90 1.56 5.60 3.91 

State 

Average 
5.47 3.92 3.66 2.51 4.91 2.12 6.23 4.58 

 

The regional average is driven by municipalities in three states on the outer boundary of the 

Amazon Forest: Mato Grosso, Rondônia and Para. They have shown a state average rate of 

technical change for the entire period of 6.23%, 5.5% and 4.9%, respectively. Figure 3 displays 

these results graphically and Figure 4 presents their geographical distribution for 2012.  
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Figure 3 –Average technical change rates by state in the “arc of deforestation”, northern 

region of Brazil, from 2003 to 2015.  

 

The lower boundary of the “arc of deforestation” (or the outer boundary of the Amazon 

Forest), where agricultural production has been established for several years, has municipalities 

with high rates of technical change. Analysis of Figure 4 indicates that municipalities with the 

highest rates of technical change are clustered in the south and southeast part of the “arc of 

deforestation”. They are located in the state of Mato Grosso and in the southeast of the state of 

Para. Some of these municipalities have had high rates of deforestation. 

 

  

Figure 4 – Stochastic municipal technical change rate in the “arc of deforestation” in the 

northern region of Brazil, in 2012.  
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In 2007, the Brazilian government created a list of priority municipalities, which have a high 

level of deforestation. They are spread in the “arc of deforestation” region40 but clustered on 

Para and Mato Grosso, as seen in Figure C31 in Appendix 3.C. Given the government efforts 

in controlling deforestation in these municipalities, we perform a test of means of technical 

change rates comparing this set of municipalities with the other municipalities in the “arc of 

deforestation”. The test41 suggests that priority municipalities have shown a higher technical 

change rate than the other municipalities, probably due to a sharper decrease on deforestation. 

Figure 5 displays the evolution of agricultural output, deforestation as well as the estimated 

average rates of technical change. It suggests that the technical change has led to increase in 

agricultural outputs (mainly grains) and decrease in deforestation for the entire region.  

 

Figure 5 – Evolution of agricultural output, deforestation and the average rate of technical 

change for the “arc of deforestation” in the northern region of Brazil.  

Note: Grains (in tons), timber (in m3) and milk (in 100 liters) vertical axis is displayed at left axis while 

deforestation (in million hectares) and technical change (in percentage) on the axis at the right. 

 

The exogenous technical change rate may have been affected by policies during this period. 

Brazilian government has worked in the two fronts in this region: controlling deforestation and 

promoting agricultural production. Deforestation control in these municipalities has been 

                                                           

40 The 49 priority municipalities appointed by INPE/PRODES are within the sample we selected in this paper. 

41 The null hypothesis of no difference in their mean was rejected at 1%. The priorities municipalities have an 
average technical change of 0.078 while the other have an average of 0.048. The calculated value for the test 
was -5.44. this test was performed using Stata 14. 
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enforced and voluntary applied by different institutions. Brazilian government launched in 

2004 the Action Plan for Deforestation Prevention and Control in the Legal Amazon42 seeking 

to control the deforestation in the Legal Amazon region. Nepstad et al. (2014) suggest that this 

program increased governance performance and allowed a wider forestry monitoring and 

enforcement of the policy, which led to a decrease in deforestation on the following years.  

Interventions such as the Soy Moratorium (SoyM) in 2006, and the Cattle Agreement in 

2010, constituted obstacles to deforestation despite the fact that neither are enforced, but 

instead are voluntary policies (Nesptad et al., 2014; Gibbs et al., 2014). The enforcement of 

new regulations such as the Brazilian Forest Code (FC), the Rural Environmental Registry of 

private properties (CAR), and surveillance by Brazilian Institute of the Environment and 

Renewable Natural Resources (IBAMA), have had positive impacts as deforestation control 

mechanisms (Gibbs et al., 2014; Soares-Filho et al., 2014; Hargrave and Kis-Katos, 2013). 

On the other hand, the Brazilian government has invested on infrastructure, public research 

and promoted agricultural production via increasing credit availability and extension support 

(Gomes and Braga (2008); Gasques et al. (2014)). From 1999 to 2009, credit availability 

through the Program to Support the Family Farming (PRONAF)43 has increased yearly at a rate 

of 23% for the seven states considered in this paper. The total credit made available by the 

government to this region was six-fold in 2009 compared to 2001. Additionally, total municipal 

public expenditure on agriculture in this region, � , in 2015 was almost twice 2003 expenditure 

level. These policies certainly affected agricultural production and forest preservation and may 

have influenced how innovations take place on agriculture in this region.  

     

3.5.1. Technical change biases 

 

Our second objective was to verify whether technical change was biased for agricultural 

production and against deforestation or vice-versa. We evaluate this assertion by estimating 

how the Marginal Rate of Transformation between agricultural outputs and deforestation has 

changed after technical change took place. Our results as derived below indicate that 

municipalities in the “arc of deforestation” have been experiencing biased technical change in 

                                                           

42Plano de Ação para a Prevenção e Controle do Desmatamento na Amazônia Legal – PPCDAm found at 
http://www.mma.gov.br/florestas/controle-e-preven%C3%A7%C3%A3o-do-desmatamento/plano-de-
a%C3%A7%C3%A3o-para-amaz%C3%B4nia-ppcdam 
43 Programa Nacional de Fortalecimento da Agricultura Familiar 
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favor of agricultural output and against deforestation.  This means that, after the technical 

change took place, the cost of increasing agricultural output in terms of deforestation has 

decreased. That to increase agricultural output, less deforestation is necessary. 

We evaluate technical change bias relative to deforestation using Equation (9), for each 

subset of desirable outputs. For example, to evaluate whether technical change has been bias 

toward grains production and against deforestation we evaluate Equation (9), ��  ,� ,  for all 

observations. We proceed in the same manner when evaluating the technical biases with respect 

to timber and livestock. Then, we take a simple average of these pairwise biases to represent 

the bias. We have found that the simple averages of the regional biases for grains-deforestation 

was ��  ,� = . 9, of timber-deforestation was ��  ,� = .  and of milk-deforestation was ��  ,� = . . These estimates indicate that more of these agricultural outputs have to be 

foregone to decrease one hectare of deforestation. It suggests that due to bias technical change, 

abatement costs are more costly and increases in grain output now require less deforestation. 

 

3.6.CONCLUSIONS 

 

This paper evaluates whether the high rates of technical change reported in the literature for 

Amazon agriculture stand when deforestation, an undesirable output, is consider in the 

calculation. It also evaluates the nature of the biases in technical change under these 

circumstances to understand if innovations have made it less or more costly in terms of 

deforestation to increase agricultural production. Our sample is composed by two hundred 

municipalities in the “arc of deforestation” in Brazil over the period 2003-2015. An aggregate 

municipality-level technology was estimated using a directional distance function with data 

from the IBGE and the INPE. The directional distance function was approximated by a flexible 

quadratic form and estimated using a stochastic approach.  

Our results reveal that technical change have led to an increase agricultural production and 

a decrease in deforestation during the period from 2003 to 2015.  Municipalities in Mato Grosso 

state has shown the highest average technical change rate, 6.2%, while the overall average was 

4.6%. On average, these estimates are lower than the 8.5% for this state reported by Bragnanolo 

et al. (2010) for the period 1975-2006. Villoria et al. (2014) highlights the lack of empirical 

studies investigating the effects of technical change in agriculture on forest preservation. Our 

results suggest that innovation in the sector have allowed increased agricultural production with 
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less deforestation. The estimated biases indicate that an increase in agricultural production is 

now possible with a smaller increase in deforestation.  

Although deforestation has been decreasing and it has achieved the lowest level in 2015 

compared to entire period, it is still a prominent activity in these municipalities. New numbers 

have shown an increase in deforestation in 2016 compared to 2015; the state of Mato Grosso 

has shown an increase in deforestation of 190% during the first months of 2016 compared to 

2015 44 . Future research will focus on imposition of all the regularity properties of the 

technology as they will impact our estimates. We would also benefit from a dataset such as the 

Ag. Census for the years 1975, 1985, 1995 and 2006 made available by IBGE on-site. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                           

44 http://g1.globo.com/mato-grosso/noticia/2016/05/desmatamento-da-amazonia-legal-aumenta-190-em-mt-diz-
imazon.html 
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FINAL REMARKS 

 

Preserving a hectare of Amazon forest brings many benefits – it sequesters carbon and thus 

reduces potential climate change, it contributes to preservation of many plant and animal 

species with unknown value, and people value its existence, per se.  However, these are benefits 

to mankind as a whole, while the opportunity costs of preservation fall upon the Brazilians 

themselves, who must trade off potential agricultural income forgone in exchange for a hectare 

of forest preserved. This work uses a new approach and new data to provide new estimates of 

this opportunity cost in the Brazilian Amazon. It also evaluates the effects of technical change 

on this tradeoff. It does so by estimating the aggregate municipality-level technology using 

directional distance functions. Three different datasets and two estimation approaches were 

used to accomplished these goals.  

We have found that, on average, US$796.81 in agricultural Gross Domestic Product has to 

be foregone annually to preserve one additional hectare of forest. This translates to an average 

shadow price of US$21.7 per ton of CO2 sequestered in perpetuity (at a social discount rate of 

0.10 and 100 tons per hectare of carbon sequestered). Our estimates of the opportunity cost of 

a ton of CO2 are higher than what has been used by the Amazon Fund to raise funds to preserve 

the Amazon Forest. These estimates do depend on the assumption on carbon content, discount 

rate and length of the period considered.  

Technical change has been progressive in this region over the period from 2003 to 2015. It 

means that innovations have led to agricultural expansion with less deforestation. Technical 

change has been biased toward grains, timber and livestock outputs and against deforestation. 

Strengthening agricultural research and extension efforts in a policy environment that leads to 

forest preservation could result in increases in agricultural production with lower increases in 

deforestation. It is also the case that if regulation were put in place to decrease deforestation 

abatement costs will be higher. 
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Appendix 1.A – Data description 

 

Table A31: Desirable and undesirable outputs – livestock, grains and timber production, and 

deforestation per state for the Arc of deforestation in the Brazilian Amazon region in 2006, 

average and sum across municipalities. 

State 
# of 

Munic. 
 

Livestock 

(units) 

Grains 

(tons) 

Timber 

(m3) 

Deforestation 

(ha)  

RO 24 
Mean 29402 3645 61370 31307 

Sum 705655 87490 1472880 751370 

AC 6 
Mean 27236 7526 53382 22120 

Sum 163415 45157 320292 132720 

AM 6 
Mean 11720 353 50203 23465 

Sum 70321 2115 301217 140790 

PA 50 
Mean 37895 5056 196487 40201 

Sum 1894766 252785 9824337 2010050 

TO 1 
Mean 16305 1298 38 10640 

Sum 16305 1298 38 10640 

MA 11 
Mean 17858 7616 7272 19510 

Sum 196433 83771 79991 214610 

MT 58 
Mean 41171 108156 49565 32498 

Sum 2387932 6273039 2874750 1884880 

ARC 156 
Mean 34839 43241 95343 32981 

Sum 5434827 6745655 14873504 5145060 

Source: Data obtained at IBGE (2014). 

Note: Deforestation (ha) is the average deforested area occurred during the period 2004-2006. 
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Table A32: Sum of inputs (labor, capital, area, fuel, agricultural inputs, and livestock inputs) 

per state for the Arc of deforestation in the Brazilian Amazon region in 2006 

State  
Labor 

(unit) 

Capital 

(unit) 

Area 

(ha) 

Fuel 

(US$) 

Ag. 

Inputs  

(US$) 

Livest. 

 Inputs 

(US$) 

RO 
Mean 6227 2976 211823 1254 692 3504 

Sum 149437 71424 5083745 30102 16616 84090 

AC 
Mean 5433 2904 272016 981 240 2331 

Sum 32595 17426 1632095 5886 1442 13986 

AM 
Mean 5541 1673 210053 414 91 1036 

Sum 33245 10038 1260316 2483 545 6218 

PA 
Mean 7583 2666 327891 1372 792 3549 

Sum 379172 133320 16394552 68619 39594 177452 

TO 
Mean 2946 1408 119137 589 2666 2972 

Sum 2946 1408 119137 589 2666 2972 

MA 
Mean 5810 2264 181106 735 502 3060 

Sum 63908 24907 1992164 8082 5522 33659 

MT 
Mean 3298 2350 495469 3649 24729 5464 

Sum 191261 136292 28737186 211653 1434271 316930 

ARC 
Mean 5465 2531 353969 4554 20875 8837 

Sum 852564 394815 55219195 327415 1500657 635306 

Source: Data obtained at IBGE (2014) 

Note: Capital is the sum of machinery; Fuel is the sum of expenses with electricity and fuel; Agricultural inputs 

is the sum of expenses with seed, pesticides and fertilizer; and Livestock inputs is the sum of expenses with 

feed, medication and animals. All variables signed with a US$ are in thousand dollars. 
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Appendix 1.B – Different models 

 

These tradeoff measures are described in the set of equations (4). First, we compare the 

quantities (each separately) obtained by projecting to the frontier with different directional 

vectors � , � , � , �� = , , ,  for livestock for example, represented by the model  C in 

Table 1, with the quantities obtained by projecting along the vector � , � , � , �� =, , , − , represented by the model E in Table 1. In figure 2, this comparison is represented 

by the vertical distance from point g to point f. Table B1 also displays the comparison between 

quantities in the frontier from model C and D. The difference between these two quantities 

gives an idea of how much desirable output the municipality has to forego to achieve the largest 

reduction in undesirable output possible without decreasing the other two desirable outputs 

from their 2006 level. These measures represent a hypothetically case where we could decrease 

deforestation by only affecting one agricultural activity. 

Table B1 reports the average of these reductions in output and due to decrease on 

deforestation for municipals within each state. It suggests that more than eight sold heads have 

to be foregone to reduce one hectare of deforestation, while a smaller ratio is observed for tons 

of grains (7.38) and a higher ratio for m3 of timber (597.60). As expected, this ratio is smaller 

when comparing models C and D (or the vertical distance from g and h) since in this case an 

expansion on desirable outputs is also allowed for model D.  
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Table B31 – Tradeoff for several models, obtained using equation (4), in quantity (heads, 

tons and cubic meters) per hectare of forest (deforestation)  

State 

Region 

Model C – Model E Model C – Model D 

Liv/Def Gr/Def Tim/Def Liv/Def Gr/Def Tim/Def 

RO 6.97 6.76 601.43 2.12 5.46 596.58 

AC 13.52 11.09 976.76 6.55 7.25 972.64 

AM 5.98 4.24 381.00 1.78 2.48 367.90 

PA 6.21 4.94 471.22 1.78 3.06 465.80 

TO 17.63 39.05 1240.41 11.17 27.67 1238.09 

MA 10.20 7.44 815.90 6.67 4.42 880.21 

MT 10.57 10.17 697.55 8.10 6.83 686.76 

Region 8.21 7.38 597.60 4.50 5.42 593.25 

Note: “Liv/Def” represents Sold Heads per Deforestation (ha), “Gr/Def” represents Grains (tons) per Def. (ha), 

and “Tim/Def” represents Timber (m3) per Def. (ha). 

Source: Own elaboration. 

 

In the Brazilian Amazon region one sold head, on average, is produced within half hectare, 

a ton of grain needs half of hectare, and one hectare of forest produces a range from 25m3 to 

70m3 of timber (Vera-Diaz and Schwartzman, 2005). Thus, in terms of agricultural activity 

area, using the analysis in Table 4, a reduction of one hectare of deforestation would have a 

more severe effect on cattle activity when only one activity is affected, given that would be 

necessary to decrease around 12 hectares of pasture. 
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Appendix 2.A – Data description 

 

 

Figure A1. Average deforestation (during 2004-2006 period) and agricultural GDP in 590 municipalities in the Legal Amazon, 

Brazil in 2006 

Source: Own elaboration with data from Prodes/INPE and agricultural Census 2006/IBGE. 
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Table A21. State Level Descriptive Statistics: Agricultural GDP, Inputs and Deforestation in 590 Municipalities in the Legal 

Amazon, Brazil in 2006 

  RO AC AM RR PA AP TO MA MT LA 

Municipals Sum 52 22 62 15 104 16 69 124 126 590 

Ag. GDP 

(US$1000) 

Mean 11818 9189 7266 4727 8180 3157 3420 6025 15922 8862 

Sum 614553 202161 450519 70907 850767 50508 236010 747091 2006185 5228703 

Deforest. 

(hectares) 

Mean 5663 2709 1470 1454 6895 438 280 832 5677 3438 

Sum 294493 59590 91147 21813 717100 7000 19287 103193 715330 2028953 

Capital 

(Sum of equip.) 

Mean 2646 1960 1142 773 2088 252 660 1406 2080 1638 

Sum 137582 43113 70804 11595 217136 4025 45532 174358 262062 966207 

Labor 

(Sum of employees) 

Mean 5341 4526 4301 1967 6340 818 1322 4084 2700 7544 

Sum 277757 99579 266667 29509 659336 13095 91192 506440 340213 2283788 

Irrigation 

(hectares) 

Mean 272 66 99 848 197 142 310 321 1005 415 

Sum 14119 1446 6119 12721 20467 2279 21368 39765 126615 244899 

Credit 

(US$ 1000) 

Mean 1252 457 237 666 1181 142 752 498 8782 2449 

Sum 65088 10044 14709 9997 122853 2272 51898 61744 1106485 1445090 
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Appendix 3.A – Data display 

 

 

 

 

 

Figure A31 – Grains, timber and livestock (milk) output in the “arc of deforestation” in the 

northern region of Brazil.  

Source: Own elaboration using Stata 14. 
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Appendix 3.B – Weighted technical change rates 

 

Table B31. Stochastic estimates of the weighted state average of technical change rate for the 

municipalities in the “arc of deforestation” in Brazil from 2003-2015 [evaluation of Eq. (8)]. 

Year RO AC AM RR PA MA MT 
Yearly 

Average 

2003 0.070 0.045 0.038 0.033 0.120 0.051 0.180 0.154 

2004 0.081 0.047 0.039 0.028 0.116 0.030 0.194 0.169 

2005 0.094 0.042 0.044 0.027 0.112 0.032 0.174 0.150 

2006 0.092 0.045 0.040 0.021 0.105 0.033 0.164 0.136 

2007 0.078 0.041 0.038 0.031 0.095 0.030 0.166 0.138 

2008 0.066 0.044 0.034 0.039 0.080 0.034 0.178 0.153 

2009 0.054 0.038 0.032 0.027 0.074 0.033 0.166 0.142 

2010 0.048 0.033 0.027 0.023 0.073 0.033 0.161 0.132 

2011 0.054 0.043 0.028 0.020 0.064 0.031 0.177 0.150 

2012 0.065 0.044 0.026 0.025 0.060 0.027 0.212 0.182 

2013 0.072 0.042 0.038 0.012 0.058 0.028 0.231 0.196 

2014 0.082 0.044 0.034 0.020 0.061 0.031 0.208 0.182 

2015 0.079 0.035 0.038 0.019 0.075 0.035 0.231 0.203 

State 

Average 
0.072 0.042 0.035 0.025 0.084 0.033 0.188 0.161 

Note: To build the state averages we first calculated the share of the value of production (obtained by summing 

up the revenue from timber, milk and timber) per state and per year. Second, we multiply the technical change 

rate by these shares. Finally, we sum the observation within a state and a year. To build the region weighted 

average, we first obtained the share of the value of production per year (only). Second, we multiply the technical 

change rate by these shares. Finally, we sum the observations within a year.   
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Figure B31 – Stochastic weighted state average technical change rates in the “arc of 

deforestation” in the northern region of Brazil.  
Note: In this figure, we multiply Table C1 outcome by one hundred to obtain technical change in percentage. 

However, given our normalization of the data by the mean, this number should be interpreted only at the mean. 
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Figure B32 – Evolution of agricultural output, deforestation and the weighted average rate 

of technical change for the “arc of deforestation” in the northern region of Brazil.  

Note: Grains (in tons), timber (in m3) and milk (in 100 liters) vertical axis is displayed at left axis while 

deforestation (in 100 thousand hectares) and technical change (in percentage) on the axis at the right. 
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Appendix 3.C – Priority municipalities 

 

 

Figure 3.C1 – Priority municipalities in deforestation control defined by the Brazilian 

government.  
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Appendix I – Directional distance function properties description 

The output distance function derives its properties from the output possibility set � � .  These 

are (Färe et al., 2005) 

 �⃗⃗ �(�, �, �; ��, −��)  �� ��� ���� �� �, � �� �� ������� �� � �  (I 1.i) 

�⃗⃗ �(�, �′, �; ��, −��) �⃗⃗ �(�, �, �; ��, −��)  ��� �′, � �, � � �  (I 1.ii) 

�⃗⃗ �(�, �, �′; ��, −��) �⃗⃗ �(�, �, �; ��, −��) ��� �, �′ �, � � �  (I 1.iii) 

�⃗⃗ �(�, ��, ��; ��, −��)  ��� �, � � �  ��� �  (I 1.iv) 

�⃗⃗ �(�, �, �; ��, −��) �� ������� �� �, �  (I 1.v) 

 

The directional distance function is non-negative (I 1.i) for feasible output vectors (y, b), 

and will take a value equal to zero when the unit is on the frontier. Desirable outputs are 

strongly disposable (I 1.ii), which means, that the directional distance function is non-

increasing in desirable outputs for given inputs and undesirable outputs. The directional output 

distance function is non-decreasing in undesirable outputs (I 1.iii) and both desirable and 

undesirable outputs are jointly weakly disposable (I 1.iv). Properties (I 1.ii) and (I 1.iii) states 

the monotonicity condition of desirable and undesirable outputs, respectively, which means 

that the output distance does not increase as desirable outputs increase and as undesirable 

outputs decrease. The directional output distance function is concave in both types of outputs 

(I 1.v), which determines the sign of transformation elasticities. These properties can be seen 

in Figure 2 of chapter 1 and 3 and Figure 1 of Chapter2.  

The null-jointness property states that no desirable output can be produced without 

generating undesirable output. Jointly with weak disposability of undesirable outputs, it implies 

that it is costly to reduce the undesirable output. This cost is measured in terms of foregone 

production of desirable outputs. It is represented by: 

 �� �, �  � �  ��� � =  �ℎ�� � =  �ℎ��ℎ ������� �⃗⃗ �(�, �, ; ��, −��) <    (I 1.vi) 
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which can be interpreted as a negative output directional distance, since the observation (y,0) 

is not in � � , as it would contradict property (I 1.i). It is represented in Figure 1 of chapter 2 

by the origin of the production possibility frontier. The directional output distance function can 

be used as an efficiency measure. For firms on the production possibility frontier it takes a 

value of zero and for firms within it takes non-negative values. 

Additionally, we impose the translation property45, which corresponds to Shepard’s (2015) 

homogeneity condition for the output distance function (Färe et al. 2006), and insures that the 

directional output distance function is homogeneous of degree one in outputs,  

 �⃗⃗ �(�, � + ���, � − ���; ��, −��) = �⃗⃗ �(�, �, �; ��, −��) − �,       � � ℜ (I 1vii) 

 

which states that increasing desirable outputs by ��� while decreasing undesirable outputs by −��� is equivalent to subtracting the translation factor � from the original directional distance 

function. The distance function obtained by increasing desirable outputs by ���  while 

decreasing undesirable outputs by ���  (Färe et al., 2005), is the same as subtracting the 

translation factor �  from the original directional distance function. We demonstrate this 

property below using a hypothetical case with one desirable outputs, one undesirable output, 

and one inputs. The subscripts identifying cross section units are dropped for sake of clarity. 

This section follows Hudgins and Primont (2007).  First, we assume a quadratic directional 

output distance function 

 

�⃗⃗ �(�, �, �; ��, −��) =  � + � � + � � � + � � + � � + � � � + � � � + � � �   +� � � + � � �   
 

Now, with respect to the translation property, we can re-write the left-hand side of the equation 

as  

                                                           

45 Luenberger (1992) proves the translation property using a benefit function.  
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= � + � � + � � � + � � + � + � � − � + � � + � � + � + � �− � � − � + � � � + � + � � � − � + � � + � � − �   
= � + � � + � � � + �� + � � + � � � + �� � + �� � + � � − � �

+ � � � − � � � + � �� + � � � +  �� � + � � � − � � �+ � � � − �� � + �� � − � �� 

 

which can be rearranged by factorizing � out 

 

= � + � � + � � � + � � + � � � + � � + � � � + � � � + � � � + � � �⏞                                                              ���� �
 

+� [� + � � + � � + � − � � + � � + � � − � � + −� � + � � − � �]⏟                                                            ���� �  

 

Now, we can use of equation (I 1vii), which means equalizing to �⃗⃗ �(�, �, �; ��, −��) − �, and 

cancelling some terms out, in specifically, the first row of the previous equations (Part A) we 

obtain: 

 � [� + � � + � � − � − � � + � � + � � − � �  − � � + � � − � �] = −� 

 

dividing both sides by �, we obtain 

 � + � � + � � − � − � � + � � + � � − � �  − � � + � � − � � = −  

 

differentiate with respect to � , 

 � − � =  

  

which is a simplified version of equation (7i) in the chapter 2. Now, differentiate with respect 

to �  and � , 
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� − � =  −� + � =  

 

which is also represented in equation (7i) of chapter 2. These equations can be arranged as  

 � = � = �  

 

plugging all these results we found that 

 � + � � + � � − � − � � + � � + � � − � �  − � � + � � − � � = −  

 

and several of these terms cancel out leading to  

 � − � = −  

which is also stated in Equation (7i) in chapter 2. These findings are applicable to a model with 

one desirable output and one undesirable output, except for the restriction in inputs given that 

in this hypothetical model we have only one input. Imposing the translation property in a model 

with more than one input would lead to a similar result, illustrated in chapter 2 and 3. We will 

continue to assume that we have only one input, one desirable output and one undesirable 

output. Let’s assume that � = � and that �� = �� = , re-arranging Equation (II 1i) 

 �⃗⃗ �(�, � + ���, � − ���; ��, −��) + � = �⃗⃗ �(�, �, �; ��, −��)  �⃗⃗ � �, � + � , � − � ; , −=  � + � � + � � � + � � + � + � � − � + � � + � � + �
+ � � − � � − � + � � � + � + � � � − � + � � + � �− �  

 

which leads to 

 −� = � + � � + � � � + � � + � + � � + � � + � + +� � � + �  
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and it is estimated using different methodologies. This equation can be estimated using 

Corrected Ordinary Least Squares, Generalized Method of Moments, and Maximum 

Likelihood Estimation. It is important to notice that we also imposed symmetry. Hudgins and 

Primont (2007) asserts that the quadratic and the transcendental exponential are the only 

candidates to the application of the translation property. 

A quadratic flexible functional form allows to evaluate global concavity, property (I 1.v), 

by analyzing the matrix of second order derivatives, the Hessian matrix. This matrix is 

composed only by parameters, different from other functional forms such as translog. Equation 

(I 2) displays this matrix for the directional distance function used in chapter 3 

 

� = � �⃗⃗ �,� = 

�  �  �  �  �  �  �  �  �  �  �  �  �  �  �  �  
 

(I 2) 

 

 

where �  denominates the Hessian matrix and � �⃗⃗ �,�  defines it as the second order, � , 

derivatives of the directional output distance defined in Equation (5) of chapter 3. The reader 

has to bear in mind that some of these coefficients are recovered using the translation property 

[they are � , � , � and � ]. 

The Hessian matrix is concave if it is negative semidefinite (I 2i) and strictly concave if it 

is negative definite (I 2ii).  
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Appendix II – Stochastic Frontier: Theory and practice 

This appendix was written based on Kumbhakar and Lovell (2000), Aigner, Lovell and 

Schmidt (1977), and Kumbhakar, Wang and Horncastle (2015). Stochastic frontier models 

were first presented simultaneously by Aigner, Lovell and Schmidt (1977) and Meeusen and 

van den Broeck (1977). This methodology allows producers’ output to be affect by random 

shocks outside their control and technical inefficiency. Production of y is obtained using J 

inputs x and affected by these two factors as  

 

�� = � +∑������
�=� + �� − �� (II.1) 

 

where �’s are the parameter to be estimated, �� is the two-side noise component and �� is the 

non-negative technical inefficiency component. �� is i.i.d symmetric distributed independently 

of ��. Estimation of equation (II.1) under the assumption that both �� and �� are independently 

distributed from ��� leads to consistent estimation of the ��’s but not of �  given that � � =� �� − �� = −� �� . A simple test of skewness of the distribution of �  allows to infer 

whether producers’ inefficiency is different from zero. �� =  implies that all parameter of 

Equation (II.1) estimated by Ordinary Least Square (OLS) will be consistent while �� >  

implies that the constant term, � , has to be corrected.  

Although estimation of equation (II.1) using OLS does not provide directly information on 

technical inefficiency it does not impose any distribution to this component. Aigner, Lovell 

and Schmidt (1977) proposed to estimate Equation (II.1) using Maximum Likelihood 

estimation (MLE) approach imposing a half-normal distribution on the inefficiency 

component, ��. This estimation does not lead to non-consistency of the constant term, � . The 

following assumptions are required 

 ��~��� �+ , ��  (II.2i) ��~��� �+ , ��  (II.2ii) �� and �� are distributed independently of each other and of the regressors (II.2iii) 
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Given these distributions, the Log Likelihood function for a sample of N producers is defined 

as 

 ��� = � ∗ �� − � ∗ ��� − � ∗ ��� +∑��Φ(−���� )� − � ∑���   (II.8) 

 

where � = �� + �� / , � = �� ��⁄  and Φ is the standard normal cumulative distribution. 

Kumbhakar et al. (2000) indicates that as � →  the one-sided error component dominates the 

determination of � while if � → +∞ the technical inefficiency error component dominates the 

determination of �. The first case indicates the OLS could be used while in the second case 

producers’ output is not affected by random shocks (a linear programming would be suitable). 

Both �  and �  are jointly estimated with the � ’s. Technical inefficiencies are estimated as 

proposed by Jondrow, Lovell and Schmidt (1982), by taking the mean of the conditional 

distribution of u given � 
 � �|� = √ ��∗ ��� {− � − �∗�∗ } [ − Φ(−�∗�∗)]⁄  (II.9i) 

� �|� = �∗� + �∗ [ Φ −�∗� �∗⁄− Φ −�∗� �∗⁄ ] (II.9ii) 

 

where �∗ = ����/� and �∗ = −��� �⁄ . 

Additionally, in chapter 2 we assume that u is heteroskedastic. It implies that municipality-

specific factors influence technical efficiency. It requires substituting (II.2ii) by  ��~��� �+ , ���  with ��� = � ��; �  where the municipality-specific factors are �� and �  

the estimated parameters. The Log Likelihood function become than 

 ��� = � �� − � ��� − �ln [� ��; � + �� ] +∑��Φ(− ������ )� − ∑ �����   (II.10) 
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where �� = �� + ��� = �� + � ��; �  and � = √� ��; � ��⁄ . After estimation, values of ��  and ��� can be substitute in (II.9ii) to obtain technical inefficiencies. 

In chapter 2 and chapter 3 we use both46  COLS and MLE approaches to estimate the 

directional distance function. However, the translation property imposes a few changes in 

Equation (II.1). In our estimation, �� = −��  where ��  represents the undesirable output 

(deforestation in both cases), ��� are composed by all linear and quadratic terms formed by 

output and inputs, and �� represents the distance, which is a measure of technical inefficiency. 

A deeper discussion of these methodologies can be found in Kumbhakar et al. (2000).    

 

                                                           

46 In chapter 2 we even used Generalized Method of Moments as a robustness check to test whether endogeneity 
plays a role on shadow price estimates. In Both chapter 2 and 3 we also estimate the directional distance 
function using a non-stochastic approach, Linear Programming. These estimations are not presented in here 
because they have led to similar results.  


