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Abstract In this paper we consider a model for grav-
ity in four-dimensional space-time originally proposed by
Chamseddine, which may be derived by dimensional reduc-
tion and truncation from a five-dimensional Chern–Simons
theory. Its topological origin makes it an interesting candi-
date for an easier quantization, e.g., in the loop quantiza-
tion framework. The present paper is dedicated to a classical
analysis of the model’s properties. Cosmological solutions
as well as wave solutions are found and compared with the
corresponding solutions of Einstein’s general relativity with
cosmological constant.

1 Introduction

Gravitation as described by Einstein’s general relativity is
notoriously difficult to reconcile with quantum theory, a task
which is nevertheless necessary if one want to understand
physics at the very small scale defined by the Planck length
lP ∼ 10−35 m, also in the hope that quantum mechanics
will cure the singularities of the classical theory such as the
Big Bang and Black Hole ones. Loop quantum gravity [1–3]
(LQG) is one attempt to do it. It starts from Einstein’s clas-
sical general relativity (GR) in the Ashtekar–Barbero for-
malism where the dynamical variables are an SU(2) Yang–
Mills type connection together with its canonical conjugate
momentum field. The dynamics is expressed as a set of con-
straints which correspond to the gauge invariances of the the-
ory [4,5], namely SU(2) local invariance and the invariances
under the space and time diffeomorphisms. The quantum
theory is then defined by constructing a Hilbert space whose
elements are certain wave functionals of the connection obey-
ing the constraints. The latter should be well defined as self-
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adjoint operators, and then solved in the sense that they select
the physical wave functionals as those which are annihilated
by them. The main difficulty is in the definition of the time
diffeomorphism constraint and its solution. Much progress
has been made by Thiemann et al. [2], and more recently by
Rovelli et al. in the spin foam formalism [3], leading to very
promising results.

General relativity is a “background invariant theory”,
which means that no a priori geometric structure is given
to the space-time manifold where the theory is defined: the
metric belongs to the dynamical fields. Another class of
background-independent theories is provided by topological
theories such as the Chern–Simons (CS) theories.1 Remark-
ably enough [6], gravity in three space-time dimensions can
be written as a CS theory whose gauge group is the local
Poincaré group ISO(1,2), but also SO(1,3) or SO(2,2) if there
is a positive or negative cosmological constant. The question
is: Could one describe higher-dimension gravity as a CS the-
ory [7–14]? An essential difference between gravity in 3D
and gravities in more than three dimensions is that the former
has no local degree of freedom, whereas the latter do. The
same happens for the CS theories in 3D and in more than
three dimensions. Since CS theories live in odd-dimensional
space-times, the first one which admits local degrees of free-
dom is the one in 5D, with the gauge group ISO(1,4), SO(1,5)
or SO(2,4) (Poincaré, de Sitter or anti-de Sitter).

An advantage of topological theories—with the gauge
groups mentioned above—is that (some of) the diffeomor-
phism invariances are consequences of the gauge invariances.
For CS in 3D, all diffeomorphism invariances follow on
shell from gauge invariance [15,16], whereas, in 5D, only
the invariance under the time diffeomorphisms follows on
shell [17,18]. In the latter case this means that the constraint
associated with the time diffeomorphisms is a consequence

1 We could also mention the BF theories. However, unless some con-
straints are applied to them, they have to address local degrees of free-
dom in any space-time dimension.
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of the other constraints. Thus the difficult task of defining
and solving the diffeomorphism constraint in the 5D quan-
tum gravity described by this CS theory would be avoided.

Being interested in 4D gravity, can we find a similar,
topological-like theory? An answer has been provided by
Chamseddine [13]: a theory which, beyond containing the
gravitation fields is also containing a dilaton-type scalar field.
It can be derived from the 5D CS theory by dimensional
reduction and truncation of some of the component fields. As
we will show, the set of solutions of the Chamseddine model
is a subset of the solutions of the complete, non-truncated 5D
CS theory reduced to 4D. As such, in view of the interesting
properties concerning the constraints mentioned above, it is
worthwhile to study the classical aspects of the Chamseddine
model, which is the purpose of the present work. A study
of the whole 5D CS theory, with or without Kaluza–Klein
dimensional reduction, classically and quantum mechani-
cally, will be reported elsewhere [19]. More specifically, the
proposal of the present work is to investigate the dynamics of
the Chamseddine model and compare some of its solutions
with solutions of the conventional Einstein theory. We will
in particular focus on solutions of the cosmological type and
wave solutions.

The present paper begins in Sect. 2 with a review of
Chamseddine’s derivation of his 4D model—whose gauge
invariance is de Sitter SO(1,4) or anti-de Sitter SO(2,3)—
from a SO(1,5) or SO(2,4) 5D Chern–Simons theory by
dimensional reduction and truncation of some fields. We
clarify some points of this truncation, and, moreover, show
through a well-chosen gauge fixing that the model is a theory
of a dilaton-like scalar field interacting with a gravitational
field with torsion. We also show here that the field equations
of the Chamseddine theory are special solutions of the full
untruncated CS theory reduced to 4D. Linear approximations
are studied in Sect. 3, leading to the Newtonian limit and to
gravitational wave solutions. Section 4 is devoted to the study
of cosmological solutions of the theory and their comparison
with the �CDM model. Conclusions and outlooks are pre-
sented in Sect. 5. Conventions and notations are displayed in
an appendix.

2 The Chamseddine model

2.1 5D (A)dS Chern–Simons theory as a theory of gravity
in 5D

We start with a description of the five-dimensional Chern–
Simons (CS) theory for the (anti-)de Sitter gauge group and
its interpretation as a gravitation theory [9–11] (see [12] for
a comprehensive review). Our notations and conventions are
summarized in the appendix.

The gauge group transformations are those which leave
invariant the metric ηMN = diag(−1, 1, 1, 1, 1, s), with
M, N , . . . = 0, . . . , 5 and where s takes the values ±1. The
signatures (−1, 1, 1, 1, 1, 1) and (−1, 1, 1, 1, 1,−1) corre-
spond, respectively, to the Minkowskian de Sitter group
SO(1,5) and anti-de Sitter group SO(2,4) for 5D space-time.
They will be collectively denoted2 by (A)dS6.

A basis of the Lie algebra (a)ds6 of (A)dS6 is given by
the generators MMN = −MNM , realized as the 6×6 matrices
(MMN )P Q := −δPMηNQ + δPNηMQ , obeying the commuta-
tion relations

[MMN , MPQ] = ηMPMNQ − ηMQMNP − ηN PMMQ

+ηNQMMP . (2.1)

The field variables3 of the theory are the components of a
connection form Â = Âαdxα , with values in the Lie algebra
(a)ds6. In the basis (MMN ), the connection form reads

Â = 1

2
ÂMN MMN = 1

2
ÂMN

α dxαMMN , (2.2)

and it transforms as

δ ÂMN = d̂ ε̂MN + ÂM
P ε̂PN − ÂN

P ε̂PM (2.3)

under the infinitesimal (A)dS6 gauge transformations. The
gauge invariant CS action is given by4

SCS = 1

24
εMN PQRS

×
∫
M5

(
ÂMN d̂ ÂPQd ÂRS + 3

2
ÂMN ( Â2)PQd ÂRS

+3

5
ÂMN ( Â2)PQ( Â2)RS

)
. (2.4)

εMN PQRS is the Levi-Civita totally antisymmetric tensor
with the normalization condition5 ε012345 = 1. The field
equations obtained by varying the connection Â are

1

4
εMNPQRS F̂

PQ F̂ RS = 0, where F̂ PQ = d̂ ÂPQ + ( Â2)PQ,

(2.5)

with F̂ MN = d̂ ÂMN + ÂN
P ÂPN the Yang–Mills curvature.

In the same way as one can interpret the three-dimensional
CS theory for the pseudo-orthogonal gauge group SO(1,3)
or SO(2,2) as a gravitation theory with cosmological con-
stant [6], one can indeed do the same here making the fol-
lowing identifications of the generators MMN with the five-

2 The suffix N in (A)dSN makes explicit the dimension of the defining
representation space.
3 Fields and forms in five-dimensional space-time M5 are written with
a hat, space-time indices being denoted by α, β, . . . = 0, . . . , 4.
4 We do not write explicitly the wedge symbol ∧ for the external
products of forms. E.g., the product ( Â2)PQ = −( Â2)QP stems from
ÂPT ∧ ÂT

Q .
5 Indices are lowered and raised using the metric ηMN .
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dimensional Lorentz generators MAB and “translation” gen-
erators PA, with A, B, . . . = 0, . . . , 4:

MAB = MAB, PA := λMA5, (2.6)

where λ > 0 is a parameter with the dimension of a mass or of
the inverse of a length in the system of units where c = h̄ = 1.
The commutation relations (2.1) take the explicit form of the
(a)ds6 commutation relations (A.4), with ηAB being the five-
dimensional Lorentz metric (−1, 1, 1, 1, 1) and s|λ2| playing
the role of the “cosmological constant” (see Appendix A.2).
We define accordingly the spin connection form ω̂AB and the
5-bein form êA as

ω̂AB := ÂAB, êA := 1

λ
ÂA5. (2.7)

We can thus write the infinitesimal (A)dS6 gauge trans-
formations (2.3) and the CS action (2.4) as6

δω̂AB = d̂ ε̂AB + ω̂A
C ε̂CB − ω̂B

C ε̂CA

+λ
(
ε̂A

5ê
B − ε̂B5ê

A
)

,

δêA = êC ε̂C
A + 1

λ

(
d̂ ε̂A5 + ω̂A

C ε̂C5
)

, (2.8)

S(5D) = λ

8

∫
M5

εABCDE

×
(
êA R̂BC

(5) R̂
DE
(5) − 2sλ2

3
êAêB êC R̂DE

(5) + λ4

5
êAêB êC êDêE

)
.

(2.9)

We recognize in the second and third terms the standard
Einstein–Hilbert and cosmological terms of 5D gravity,
respectively. The novelty of the Chern–Simons action is the
appearance of the first term, which is of the form eR̂(5) R̂(5);
this term does not enter through an arbitrary coupling con-
stant, but instead through a rational number which is pre-
fixed by the requirement of the theory to be (A)dS6 invariant,
although the action is written in a manifestly Lorentz SO(1,4)
invariant form.

Since later on we will proceed to a dimensional reduc-
tion from 5D to 4D, we will need the decomposition of the
(A)dS6 group in terms of 4D Lorentz SO(1,3) representa-
tions, as displayed in (A.6, A.7). The connection components
are accordingly decomposed as

6 A subscript will be used to distinguish the (A)dS5 curvature from the
Lorentzian SO(1,3) curvature. We opt not to write the subscript in the
latter case. Thus we have

R̂ AB
(5) = d̂ω̂AB + ω̂A

C ω̂CB ,

R̂ I J = d̂ω̂I J + ω̂I
K ω̂K J .

Let us note that the latter is not just obtained by restricting the former
to the indices I, J , instead we have

R̂ I J
(5) = R̂ I J − ω̂4I ω̂4J .

ω̂AB = {ω̂I J , ω̂I4 =: λb̂I }, êA = {ê I , ê4}.
With these definitions, the action (2.9) is written

S(5D) = 1λ

8

∫
M5

εI J K L

(
ê4(R̂ I J − λ2(b̂I b̂ J + sêI ê J ))

× (R̂K L − λ2(b̂K b̂L + sêK êL))

+ 2λD̂êI b̂ J
(
R̂K L − 2λ2

3
b̂K b̂L

)

− 2λD̂b̂I ê J
(
R̂K L − 2sλ2

3
êK êL

) )
, (2.10)

with D̂ the covariant external derivative: D̂êI = d̂ ê I +
ω̂I

J ê J , etc. , and R̂ I J = dω̂I J + ω̂I
K ω̂K J . Let us note

that the fields ê I and b̂I play a symmetrical role in the
action, so in principle we can use any of the two to define
a four-dimensional soldering form. A qualitative difference
between these quantities will show up after a suitable trun-
cation.

In view of the announced dimensional reduction, we make
explicit a split of the D=5 space-time coordinates in D=4
space-time coordinates xμ, μ = 0, . . . , 3 and the fifth coor-
dinate χ := x4 by writing the form fields as

ê I = eIμdxμ + eIχ dχ,

b̂I = bIμdxμ + bIχ dχ,

ê4 = e4
μdxμ + e4

χ dχ,

ω̂I J = ωI J
μ dxμ + ωI J

χ dχ.

(2.11)

The corresponding splits for the curvature components read

F̂ MN = FMN + FMN
χ dχ (2.12)

where

FMN = 1

2
FMN

μν dxμdxν, FMN
χ = FMN

μχ dxμ.

We also have to split each of these forms in terms of their
Lorentz SO(1,3) components,

FMN = (F I J , F4I , F5I , F45),

FMN
χ = (F I J

χ , F4I
χ , F5I

χ , F45
χ ).

Then with the relabeling (2.11), (2.12), the curvature com-
ponents take the form

F I J = RI J − λ2bI bJ − sλ2eI eJ ,
F I4 = λDbI − sλ2eI e4,

F I5 = λDeI + λ2bI e4,

F45 = λde4 − λ2bI eI ,
F I J

χ = RI J
χ + λ2(bIχb

J − bI bJχ ) + sλ2(eIχe
J − eI eJχ ),

F I4
χ = λ(DbIχ + ωI

χ J bJ ) + sλ2(eIχe
4 − eI e4

χ )

F I5
χ = λ(DeIχ + ωI

χ J eJ ) − λ2(bIχe
4 − bI e4

χ ),

F45
χ = λde4

χ + λ2(bIχe
I − bI eIχ ),

(2.13)
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where D, and RI J represent the covariant exterior derivative
and the curvature 2-form associated to the Lorentz connec-
tion ωI J . The field equations (2.5) are then split into 4-forms
equations and 3-form equations (the χ components). The 4-
form equations are

εI J K L(F45FKL − 2FK4FL5) = 0,

εI J K L F J5FKL = 0,

εI J K L F J4FKL = 0,

εI J K L F I J FK L = 0,

(2.14)

and the 3-form equations are

εI J K L(F45
χ FKL + F45FKL

χ

−2FK4
χ FL5 − 2FK4FL5

χ ) = 0,

εI J K L(F J5
χ FKL + F J5FKL

χ ) = 0, (2.15)

εI J K L(F J4
χ FKL + F J4FKL

χ ) = 0,

εI J K L F
I J FK L

χ = 0,

with the curvature components given by (2.13).
This theory is still invariant under the full (A)dS6 transfor-

mations, which now read, in terms of the 5D “hat” quantities:

δω̂I J = D̂ε̂ I J +λs
(
ε̂ I5ê J −ε̂ J5ê I

)+λ
(
ε̂ I4b̂ J −ε̂ J4b̂I

)
,

δê I = (1/λ) D̂ε̂ I5 + ê J ε̂J I + b̂I ε̂45 − ê4
χ ε̂ I4,

δb̂I = (1/λ) D̂ε̂ I4 + b̂ J ε̂J I − sêI ε̂45 + sê4
χ ε̂ I5,

δê4 = (1/λ) d̂ ε̂45 − b̂I ε̂ I5 + êI ε̂ I4.

(2.16)

A partial gauge fixing

The action (2.9) or (2.10) and the field equations (2.14) and
(2.15) may be simplified by a partial gauge fixing consisting
of the eight conditions

bIχ = 0, eIχ = 0, I = 0, . . . , 3, (2.17)

which fix the gauge symmetries generated by MI5 = PI /λ
and MI4 = QI /λ, respectively, as can be inferred from the
transformation laws (2.16) for the χ components of ê I and
b̂I , the field ê4

χ being assumed not to vanish. This reduces
the explicit gauge symmetry to the group SO(1,3) × (A)dS2,
where SO(1,3) is the 4D Lorentz group and (A)dS2 = U(1)
if s > 0 (theory with positive cosmological constant) or the
dilatation group if s < 0 (theory with negative cosmological
constant). Of course (2.17) is only a gauge fixing: the theory
remains a full (A)dS6 gauge theory.

2.2 The Chamseddine action

A 4D theory may be obtained trough a Kaluza–Klein dimen-
sional compactification in which “matter-like” fields are real-
ized as fifth-dimension components of the 5D fields. In our
context we may assume that the fifth dimension, of the coor-
dinate x4 = χ , is compact and “microscopic”, and the

fields are expanded in Kaluza–Klein modes. In the present
paper, we restrict the study to the zero-mode sector—which
amounts to considering all fields as constant in χ—leaving a
complete discussion involving all modes for future work [19].
This means

∂χ f (x) = 0, ∀ field f. (2.18)

The Chamseddine model has been obtained [13] by a trun-
cation consisting in setting some fields to zero:

eIχ = 0, ωI J
χ = 0, e4

μ = 0, bIμ = 0. (2.19)

We may observe that the first condition is in fact nothing but a
gauge fixing condition, the second of (2.17). The other three
truncation conditions do indeed break (A)dS6, apparently to
SO(1,3). However, a reordering of the remaining fields in
new multiplets allows one to show that the resulting theory
actually has a hidden (A)dS5 gauge invariance [13]. In order
to see this, one does not apply for the moment the first of the
gauge fixing conditions (2.17), and one reorders the fields in
(A)dS5 multiplets as

A
AB = {AI J ,AI4} := {ωI J , λeI }, (2.20)

�A = {�I ,�4} := {−bIχ , e4
χ }. (2.21)

Using these definitions together with the truncation condi-
tions (2.19), the action (2.9) or (2.10) reduces to the obvi-
ously (A)dS5 invariant expression7

S(4D) = 1

8

∫
M4

εABCDE�A
F
BC

F
DE , (2.22)

with the (A)dS5 curvature

F
AB = dAAB + A

A
CA

CB, (2.23)

which in terms of the SO(1,3) components reads

F
I J = RI J − λ2eI eJ , (RI J = dωI J + ωI

KωK J )

F
I4 = λDeI (DeI = deI + ωI

J e
J ).

The infinitesimal (A)dS5 gauge transformations which leave
the Chamseddine action invariant may be written as

δAAB = dεAB + A
A
C εCB − A

B
C εCA,

δ�A = �B εBA.
(2.24)

The equations of motion from (2.22) are

δS(4D)

δ�A
= 1

8
εABCDEF

BC
F
DE = 0, (2.25)

δS(4D)

δAAB
= 1

2
εABCDED�C

F
DE = 0. (2.26)

7 No parameter is needed in front of the action, since any such parameter
may be absorbed in a redefinition of the scalar field �A.
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Or, in terms of the SO(1,3) components,

δS

δeI
= −λ

2
εI J K L (D�J +sλeJ�4)(RKL−sλ2eK eL ) = 0,

δS

δωI J
= 1

2
εI J K L

×
(
(d�4 − λeI ′�I ′

)(RKL − sλ2eK eL )

+ λ(D�K + sλeK�4)DeL
)

= 0,

δS

δ�4 = 1

8
εI J K L(RI J − sλ2eI eJ )(RKL − sλ2eK eL ) = 0,

δS

δ�I
= λ

2
εI J K L DeJ (RKL − sλ2eK eL ) = 0. (2.27)

2.2.1 Introducing matter: continuity equation

We may introduce matter adding to the action (2.22) a matter
term Sm which we will suppose (A)dS5 gauge invariant and
independent of the scalar field �A. (A)dS5 gauge invariance
of the total action,

S = S(4D)[e, ω,�] + Sm[e, ω], (2.28)

can be expressed through the local “Ward identity”

WABS := −D
δS

δA
+ �A

δS

δ�B
− �B

δS

δ�A
= 0.

We shall be interested in particular in the Ward identity linked
to invariance along the generators MI4:

WI S := −λeJ
δS

δωI J
− 1

λ
D

δS

δeI
+�I

δS

δ�4 −s�4 δS

δ�I
= 0.

(2.29)

Note that these identities hold separately for both actions,
S(4D) and Sm. Defining

TI := δSm

δeI
, TI J := δSm

δωI J
,

we may rewrite (2.29) as

λeJTI J + 1

λ
DTI = −λeJ

δS(4D)

δωI J
− 1

λ
D

δS(4D)

δeI

+�I
δS(4D)

δ�4 − s�4 δS(4D)

δ�I
= WI S

(4D) = 0,

(2.30)

the last equality expressing the invariance of S(4D). This leads
to the general continuity equation

λ2eJTI J + DTI = 0. (2.31)

The 3-form TI is related to the energy-momentum tensor
components T N

I in the tetrad frame by

TI = 1

6
εN JK L T N

I e
J eK eL . (2.32)

If TI J = 0, i.e., if the matter action Sm does not depend on
the spin connection ω, (2.31) is interpreted as the continuity
equation for energy and momentum.

2.2.2 Partial gauge fixing of the Chamseddine theory

From the gauge transformations (2.24) leaving the action
(2.22) invariant, one sees that a possible partial gauge fixing
is given by the four conditions

�I = 0, I = 0, . . . , 3. (2.33)

The total action, including matter, then reduces to

S̄ = 1

8

∫
M4

εI J K L�4
F
I J
F
K L + Sm

= 1

8

∫
M4

εI J K L�4(RI J −sλ2eI eJ )

(RKL − sλ2eK eL) + Sm, (2.34)

where the matter action Sm is supposed to be independent of
�A, as above, but will also be assumed not to depend on the
spin connection ω from now on. The field equations derived
from the latter action—to which we may add a matter action
Sm, supposed to obey the same (A)dS5 gauge invariance as
the pure Chamseddine part—are

δ S̄

δeI
= −1

2
sλ2�4εI J K L (eJ RK L − sλ2eJ eK eL ) + TI = 0,

δ S̄

δωI J
= 1

2
εI J K L

(
d�4(RKL − sλ2eK eL ) + 2sλ2�4eK DeL

)
= 0,

δ S̄

δ�4 = 1

8
εI J K L (RI J − sλ2eI eJ )(RKL − sλ2eK eL ) = 0,

(2.35)

where T I := DeI is the torsion and TI the energy-
momentum 3-form (2.32).

Comparison of the first of Eq. (2.35) with the standard
Einstein equation in the first order formalism,

εI J K L

(
eJ RK L − �

3
eJ eK eL

)
= −16πGTI ,

T I = DeI = 0,

(2.36)

suggests one to identify 3sλ2 with the cosmological constant,

� := 3sλ2, (2.37)

and to define the function

G(x) := − 3

8π��4(x)
, (2.38)

as a variable “Newton parameter”, proportional to the inverse
of the dilation field �4. With this, the field equations (2.35)
take the form
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εI J K L

(
eJ RK L − �

3
eJ eK eL

)
= −16πG(x)TI ,

εI J K L

(
dG(x)

(
RKL− �

3
eK eL

)
−2

�

3
G(x)eK DeL

)
=0,

εI J K L

(
RI J − �

3
eI eJ

) (
RKL − �

3
eK eL

)
= 0,

(2.39)

where we have emphasized the x-dependence of the Newton
parameter G.

Let us finish this subsection with some comments:

1. The theory is clearly singular in � = 0. This value would
correspond to a vanishing s in the (A)dS5 metric (A.2),
which thus would become singular.

2. The first field equation in (2.35) has the form of the usual
Einstein equation in the first order formalism, but with
varying Newton coupling parameter G(x). The second
one determines the torsion T I in terms of the basic fields
ωI J , eI , and G. In particular, the torsion is zero if G is
constant. The third equation is a new constraint. One must
emphasize that the torsion here is not an independent
field.

3. A canonical analysis [19] shows that the number of phys-
ical degrees of freedom of the theory is three: this corre-
sponds to the two degrees of freedom of the gravitational
field plus one corresponding to the scalar dilaton field
�4—the Newton coupling parameter G.

4. In the absence of matter, an obvious trivial solution is the
constant curvature and torsion free (anti-)de Sitter space:

RI J =
�

3
eI eJ .

5. The last equation, which clearly admits the constant cur-
vature solution, is also compatible with non-trivial solu-
tions, as the examples treated below do show.

6. It is interesting to note that the gauge fixing condition
(2.33) is nothing but the first of the gauge fixing condi-
tions (2.17) [see Definition (2.21)].

2.2.3 Energy-momentum continuity

In Einstein theory, the continuity equation for the energy-
momentum tensor reads, in the first order formalism used
here,

DTI = 0, (2.40)

where D is the exterior derivative with respect to the spin
connection ωI J and the 3-form TI is related to the energy-
momentum tensor by (2.32). The continuity equation (2.40)
follows from the Einstein field equations (2.36) and the
Bianchi identity DRI J = 0. As we saw in Sect. (2.2.1),
it turns out that it still holds in our case, as a consequence of

the (A)dS5 invariance expressed by the identity (2.30) and of
the hypothesis we have made that the matter action is inde-
pendent not only from the scalar fields �, but also from the
spin connection ω.

It is interesting to look at the identity (2.30) with the gauge
fixing condition �I = 0 being applied. Taking into account
the hypothesis that Sm only depends on the tetrad e, this leads
to the identity

DTI = �

3
eJ

δ S̄

δωI J
+

√ |�|
3

�4 δS

δ�I

∣∣∣∣∣
�I=0

,

where S̄ is the total gauge fixed action (2.34), and S the total
action (2.28) before gauge fixing. Since DTI = 0, the latter
identity shows that the equation

δS

δ�I

∣∣∣∣
�I=0

= 0 (2.41)

is valid “on shell”, i.e., if the field equations (2.35) of the
gauge fixed theory are satisfied. This is just the equation of
the non-gauge fixed theory obtained by varying �I , taken at
�I = 0. In fact, the on-shell validity of (2.41) can be derived
directly from the Ward identity (2.29) taken at �I = 0, as
one can easily check.

2.2.4 The field equations of the Chamseddine model as
particular field equations of the dimensionally
reduced 5D Chern–Simons theory

One may ask if the equations of motion derived from the
truncated theory, namely the Chamseddine model equations
(2.25) and (2.26), together with the truncation equations
(2.19) and the χ -independence conditions (2.18), are also
solutions of the equations of motion (2.5) of the full original
(A)dS6 Chern–Simons theory. In the following we show the
answer is positive.

The field equations of the full CS theory reduced in four
dimensions are given by (2.14) and (2.15) together with
(2.13). After imposing the truncation (2.19) together with
the restriction (2.18) and the relabeling (2.20), (2.21), the
curvature components take the form

F I J = RI J − sλ2eI eJ , F I4 = 0, F I5 = λDeI , F45 = 0,

F I J
χ = 0, F I4

χ = −λD�I − sλ2eI�4, F I5
χ = 0

F45
χ = λd�4 − λ2eI�

I . (2.42)

Inserting the expressions (2.42) in the eight equations (2.14)
and (2.15), we obtain four trivial equations 0 = 0, and four
non-trivial ones which are identical to those obtained from
the action of the (A)dS5 Chamseddine model, Eq. 2.27. We
conclude that the set of solutions of the equations of motion
of the (A)dS5 is a particular subset of the solutions of the
general (A)dS6 Chern–Simons theory.
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It is noteworthy that the four trivial equations are those
derived from the CS action by varying the four fields des-
tined for truncation. Had we performed any other sort of
truncation in the field equations, we would have obtained
more independent equations than what one obtains directly
from the truncated action.

It is also enlightening to see that the effect of the trunca-
tion, when applied directly to the original (A)dS6 connection,
leads to

Â = 1
2A

AB
μ MABdxμ + �APAdχ, (2.43)

where A
AB and �A were introduced in (2.20) and (2.21).

We see that the effect of the truncation is to confine the
(A)dS5 symmetry to a four-dimensional connection, whereas
the “translational” sector of the group is restricted to the χ

dimension. Then it is clear why the truncation, which may
seem not obvious at first sight, results after some simpli-
fications in a four-dimensional (A)dS5 gauge theory with
� a four-dimensional scalar transforming as a vector under
(A)dS5 transformations.

The curvature associated with the truncated connection
(2.43) is

F̂ = 1
4F

AB
μν MABdxμdxν + Dμ�APAdxμdχ. (2.44)

A straightforward calculation shows that by replacing the
above result in (2.5) we obtain (2.25), (2.26), the field equa-
tions of the truncated action (2.22).

3 Linear approximations

In order to investigate the Newtonian limit of the Chamsed-
dine theory or to look for the presence of wave-like solu-
tions of the theory in the vacuum, we split the field variables
between background ones, marked with an index 0 on the
top, and perturbations as follows:

ωI J = ω̊I J + aI J , eI = e̊ I + hI , G = G̊ + φ. (3.1)

Up to terms of order higher than one in the perturbation, the
curvature R = dω + ω2 and the torsion T I = DeI read

RI J = R̊ I J + D̊aI J , T I = T̊ I + D̊h I + aI
J e̊

J ,

where D̊ is the covariant derivative corresponding to the
background connection ω̊. The background considered here
is a constant curvature de Sitter space-time, solution of

R̊ I J − �

3
e̊ I e̊ J = 0,

hence the expression F I J = RI J − �
3 e

I eJ is of first order:

F I J = f I J (+ orders > 1),

f I J = D̊aI J − �

3
(e̊ I h J − e̊ J h I ).

We shall also assume that the zeroth order Newton parameter
G̊ is a (non-zero) constant. The second field equation then
implies that the zeroth order torsion is vanishing: T̊ I = 0.
The first field equation shows that the energy-momentum 3-
form TI must be considered to be of first order, and the third
equation is identically solved up to and including the first
order.

The first and second field equations read, at first order,

εI J K L e̊J
(
D̊aK L− �

3
(e̊K hL−e̊LhK )

)
= −8πG0TI ,

εI J K LG0 e̊K
(
D̊h I + aI

J e̊J
)

= 0,

(3.2)

where G0 = G̊ is the Newton parameter at zeroth order,
interpreted as the actual Newton constant. The second of
these equations implies a vanishing torsion at first order, too:

D̊h I + aI
J e̊

J = 0.

We are thus left with the first of equations (3.2), where the
first order connection aI J may be solved in terms of the
vierbein perturbation components hI

μ and their derivatives
through the null torsion condition. This is just Einstein GR
with cosmological constant at first order of the perturbation,
in a de Sitter background.

A first implication is that the theory admits a Newtonian
limit like Einstein’s does. A second implication concerns the
theory with cosmological constant in the vacuum. Since at
first order the theory coincides with Einstein’s, we can rely on
the results of an extensive study made by the authors of [20,
21], where they show that, beyond the constant curvature
solution, there are propagating wave solutions. We refer to
their paper for more details.

4 Cosmological solutions

In order to explore the physical content of the Chamsed-
dine model, we look in this section for solutions of the cos-
mological type and compare them with the known �CDM
results [22].

4.1 Isotropy and homogeneity

We examine the solutions of the field equations (2.35) consid-
ering a space-time foliated by a family of isotropic and homo-
geneous three-dimensional spatial slices, as described by the
standard Big Bang cosmology. The metric that describes
this is the Friedmann–Lemaître–Robertson–Walker (FLRW)
metric, given by

ds2 = −dt2 + a2(t)

[
dr2

1 − kr2 + r2dθ2 + r2 sin2 θ dϕ2
]

,
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depending on the time-dependent scale factor a(t) and the
space curvature parameter k = 0, ±1. The space-time coor-
dinates are the time coordinate t and the spatial spherical
coordinates r, θ, ϕ. The FLRW metric admits six isometries
generated by six global Killing vectors associated with three
spatial translation ξ(a) and three rotation ξ[ab] invariances—
i.e., such that Lξ[ab]gμν = Lξ(a)

gμν = 0—which read in Carte-
sian coordinates xa, a = 1, 2, 3,

ξ(a) =
√

1 − kr2∂a, and ξ[ab] = xa∂b − xb∂a .

We assume that the torsion and the scalar field (the Newton
parameter G) have the same isometries as the metric, i.e.,
LξT ρ

μν = 0 and LξG = 0. These conditions imply G =
G(t), and the non-vanishing components of T α

μν are8 [23]

T r
θϕ = 2 f (t)a(t)r2

√
1 − kr2 sin θ, T ϕ

rθ = 2 f (t)a(t)√
1 − kr2 sin θ

,

T θ
rϕ = −2 f (t)a(t) sin θ√

1 − kr2
, T r

rt = T θ
θ t = T ϕ

ϕt = h(t)

where f (t) and h(t) are functions of time to be determined
by the field equations.

Working in the first order formalism, we have to choose a
corresponding parametrization of the vierbein. A convenient
choice [23] is9:

e0 = dt, e1 = a(t)√
1 − kr2

dr,

e2 = a(t)rdθ, e3 = a(t)r sin θdϕ.

In this basis the torsion 2-form becomes

T 0 = 0, T i = h(t)ei e0 + f (t)εi jke
j ek .

(The indices i, j . . . take the values 1,2,3.) The spin connec-
tion ω which gives rise to this torsion reads

ω0i = (H + h)ei , ω12 = −
√

1 − kr2

ar
e2 − f e3,

ω31 =
√

1 − kr2

ar
e3 − f e2, ω23 = −cotθ

ar
e3 − f e1,

where

H := ȧ(t)/a(t) (4.1)

is the Hubble parameter. The Riemann curvature is given by

R0i = (
(Ḣ + ḣ) + H(H + h)

)
e0ei + f (H + h)εi jke

j ek,

Ri j =
(

(H + h)2 + k

a2 − f 2
)
ei e j + ( ḟ + H f )εi jke

ke0.

8 Torsion T I
μν is defined by T I = DeI , whereas T ρ

μν = eρ
I T

I
μν .

9 This choice amounts to a gauge fixing of the local Lorentz invariance.

Consequently

F0i =
(

(Ḣ + ḣ) + H(H + h) − �

3

)
e0ei

+ f (H + h)εi jke
j ek,

Fi j =
(

(H + h)2 + k

a2 − f 2 − �

3

)
ei e j

+( ḟ + H f )εi jke
ke0.

4.2 Field equations

We assume matter to consist of a perfect fluid of density ρm

and pressure pm, with an energy-momentum tensor T I
J =

diag (−ρm, pm, pm, pm). Substituting in the field equations
(2.35), with dG = Ġe0, we get the system of differential
equations

U 2 + k

a2 − f 2 − �

3
= 8πG

3
ρm, (4.2)

U 2 + k

a2 − f 2−� + 2
(
U̇ + HU

) = −8πG pm, (4.3)

Ġ

(
U 2 + k

a2 − f 2 − �

3

)
− 2�

3
Gh = 0, (4.4)

f

(
ĠU − �

3
G

)
= 0, (4.5)

(
U 2 + k

a2 − f 2 − �

3

) (
U̇ + HU − �

3

)

−2 f U
(
ḟ + H f

) = 0, (4.6)

where U := H + h and G = G(t) is the Newton coupling
parameter (2.38).

4.3 Continuity equations

A first continuity equation for the energy and pressure of mat-
ter follows directly from the energy-momentum continuity
equation (2.40). Calculating the components of the energy-
momentum 3-form TI , from (2.32) one finds

T0 = −ρm(t)

6
εi jke

i e j ek,

Ti = − pm(t)

2
εi jke

0e j ek,

consequently

T0 = −ρm(t)e1e2e3 = −ρm(t)a(t)3r2 sin θ√
1 − kr2

dr ∧ dθ ∧ dϕ,

T1 = −pm(t)e0e2e3 = −pm(t)a(t)2r2 sin θdt ∧ dθ ∧ dϕ,

T2 = −pm(t)e0e3e1 = −pm(t)
a(t)2r sin θ√

1 − kr2
dt ∧ dϕ ∧ dr,

T3 = −pm(t)e0e1e2 = −pm(t)
a(t)2r√
1 − kr2

dt ∧ dr ∧ dθ.
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The equation DT0 = 0 yields the density–pressure–torsion
continuity equation

ρ̇m + 3H(pm + ρm) + 3h pm = 0. (4.7)

The equations DTi = 0 for i = 1, 2, 3 are trivially satisfied,
being of the form 0 = 0.

Note the torsion dependence in the last term of (4.7). How-
ever, for a matter with zero pressure (cold matter, dust), this
continuity equation takes the usual form [24]:

d

dt

(
ρma

3
)

= 0, if pm = 0. (4.8)

A second continuity equation can be found in the follow-
ing way: One notes that, substituting U = H + h in Eqs.
(4.2) and (4.3) leads to analogs of the standard Friedmann
equations:

H2 = 8πG0

3
ρtot, 2Ḣ + 3H2 = −8πG0 ptot, (4.9)

where G0 is the Newton constant, taken as the present value
of G(t), and ρtot, ptot are the “total density and pressure”,

ρtot = G

G0
(ρm + ρk + ρT + ρ�) ,

ptot = G

G0
(pm + pk + pT + p�) ,

with

ρk = − 3

8πG

k

a2 ρT = 3

8πG
( f 2 − 2Hh − h2), ρ� = �

8πG

pk = −ρk/3, pT = 1

8πG
(2ḣ + 4Hh + h2 − f 2), p� = −ρ�.

ρT and pT may be interpreted as the contributions of the
torsion to the total density and pressure ρtot and ptot. As a
consequence of the Friedmann-like equations (4.9), the total
density and pressure satisfy the continuity equation

ρ̇tot + 3H(ρtot + ptot) = 0.

4.4 Pressure-less matter with � > 0 and k = 0

In this subsection we present the general solution of Eqs.
(4.2)–(4.6) in the case of pressure-less matter (cold matter
or dust), with pm = 0, with a positive cosmological con-
stant � and a null curvature parameter k, as favored by the
observational results [22]. From Eq. (4.5) follows

either f (t) = 0, or ĠU − �

3
G = 0. (4.10)

We have first checked that the former case leads to the “triv-
ial” solution of a null torsion de Sitter space with cosmolog-
ical constant �, the vierbein or the metric being defined by
the scale parameter a(t) = exp(

√
�/3t).

We hence assume the function f (t) to be non-vanishing.
The equations to be solved are Eqs. (4.2)–(4.4), (4.6), and
the second of (4.10), together with the Hubble parameter

definition (4.1) in terms of the scale a(t). The general solu-
tion is given by the following expressions10, where the time
coordinate has been redefined by

τ(t) :=
√

�

3
t.

Scale parameter:

a(t) = C4
(
3eτ(t) + C3e−τ(t)

)1/3
(cosh (τ (t) − C1))

2/3 .

(4.11)

Torsion parameter f (t):

f (t) =
√

�

3

[(
−9e2τ(t) − 3C3 +

(
6e2τ(t)−2C3

)
tanh(τ (t)−C1)

+
(

3e2τ(t)+C3

)
tanh2(τ (t) − C1)

) / (
3e2τ(t)+C3

)]1/2
.

(4.12)

Torsion parameter h(t):

h(t) =
√

�

3

(−3e2τ(t) + C3 + (
3e2τ(t) + C3

)
tanh(τ (t) − C1)

)
9e2τ(t) + 3C3

.

(4.13)

Hubble parameter H = ȧ/a:

H(t) =
√

�

3
tanh(τ (t) − C1) − h[t]. (4.14)

Newton parameter G(t) = −3/(8π��(t)) [cf. (2.38)]:

G(t) = C2 sinh(τ (t) − C1). (4.15)

Cold matter density:

ρm(t) = 3

8πG(t)

(
(H(t) + h(t))2 − f 2(t) − �

3

)
. (4.16)

The four integration constants C1, C2, C3, C4 and the
cosmological constant � have to be determined by five phys-
ical conditions, which we choose to be

a(0) = 0 : hypothesis of a Big Bang,

a(t0) = 1 : t0 = present age of the Universe,

H(t0) = H0 : present value of the Hubble parameter,

G(t0) = G0 : present value of the Newton parameter,

ρm(t0) = ρ0 : present value of the cold matter mass

density, (4.17)

with the present observational [22] and experimental data
given by

t0 = 13.8 × 109 Gy (1 Gy = 109 years = 3.155816 s),

H0 = 0.0693 Gy−1,

ρ0 = 2.664 × 10−27 Kg m−3,

10 The solution is obtained using the program Mathematica [25].
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G0 = 6.674 × 10−11 m3 s−2 kg−1.

For comparison with the standard �CDM results, we need
the �CDM formula for the scale parameter a(t), for a Uni-
verse dominated by cold dark matter of the present relative
density [22] �m = 0.309. With the contribution of radiation
neglected, the normalized �CDM scale parameter reads [24]

a�CDM(t)

=
(

sinh

(
3

2
H0

√
1−�m0 t

)/
sinh

(
3

2
H0

√
1−�m0 t0

))2/3
.

(4.18)

Figure 1 shows the time evolution of the scale parameter
a, of the Hubble constant H , of the deceleration parameter q
= −äa/(ȧa2), of the mass density ρm, and of the normalized
Newton parameter G/G0, each one being compared with the
corresponding �CDM quantity. Except for the deceleration
q, the deviations are rather small. The Newton parameter,
which has to be equal to the actual Newton constant G0 at
the present time, shows a slight decrease toward the past,
growing to ∼85 % of its present value near of the Big Bang.
The deceleration q differs notably from the �CDM one, but
the time of the transition between the deceleration and the
acceleration era almost coincides. The present value q(t0) =
−0.25 is, however, only half of the �CDM value.

Time evolutions of the torsion parameters h and f , as well
as the relative densities �m(t), ��(t), and �T (t) for matter,
cosmological constant, and torsion, respectively, are shown
in Fig. 2a, b.

We observe from Fig. 2c that the end of the cold matter
dominance area, at t ∼ 10.2 Gy for �CDM, occurs at t ∼ 8.5
Gy for our model, matter dominance being defined, in the
latter case, as the dominance of �m over the sum �� + �T .

Finally, the present values of the concentrations are:

• �m(t0) = 0.308 (which belongs to the input data),
• ��(t0) = 0.289,
• �T (t0) = 0.403.

This has to be contrasted with the �CDM values �m(t0) =
0.308 and ��(t0) = 0.692: in our model the torsion con-
tributes together with the cosmological constant to the accel-
eration.

Finally, as a matter of verification, we have checked that
our solution of the field equations does satisfy the continuity
equation (4.8).

4.5 Search for other solutions

Since torsion may contribute to the acceleration, as in the
solution studied above, one could expect solutions present-
ing a positive present acceleration even with a negative cos-
mological constant. This occurs for instance for the class of
models investigated in [23]. In our case, we have checked
that there is no solution with � < 0 and a positive accelera-
tion fulfilling the physical boundary conditions represented
by the present values of the cold matter density and of the
Hubble and Newton parameters. Another class of solutions
with a bounce at some time in the past do exist, but none of
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Fig. 1 a Normalized scale parameter a(t); b Hubble parameter H(t); c deceleration parameter q(t); d cold matter density ρm(t); e time-dependent
gravitation coupling parameter G(t); Solid lines model predictions; dashed lines standard �CDM results
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Fig. 2 a Torsion parameters f (t) (solid line) and h(t) (dashed line); b relative densities �m(t) (solid line), ��(t) (dashed line) and �T (t) (dotted
line); c �m(t) (solid line)and ��(t) + �T (t) (dot-dashed line); �CDM results are shown for �m (dashed line) and �� (dotted line)

them is compatible even roughly with the physical boundary
conditions.

5 Conclusion and outlooks

We have seen in rather great detail how the dimensional
reduction and truncation of the (A)dS6 Chern–Simons theory
in 5D to the 4D Chamseddine model is working. In particular,
we have shown that the field equations of the latter form a sub-
set of the field equations of the former, which is a non-trivial
result. Chamseddine’s theory involves a scalar dilaton-like
field which we have interpreted as a varying Newton cou-
pling parameter. We have explored the solutions of the field
equations, focusing on two examples. In the first one we have
shown the existence, in a linear approximation, of a Newto-
nian limit and of gravitational waves of the same type as the
ones of standard GR. The Newton parameter is supposed to be
constant in the zeroth order and turns out to remain undeter-
mined at first order. The wave solutions confirm the canonical
result [19] of three degrees of freedom: two for the “graviton”
and one for the Newton parameter field. The second example
is of the FLRW cosmological type. We have found a solution
with boundary conditions corresponding to the present values
of the physical parameters: the Newton and Hubble param-
eters, and the cold matter mass density. It shows a behavior
fitting rather well that of the standard �CDM model, at least
qualitatively. The cosmological constant of this solution turns
out to be positive, however, smaller than that of the �CDM
model, the torsion contributing substantially to the present
acceleration of the expansion. A similar but different model
has been studied by the authors of [23]. The main differ-
ence is that, in their action, a scalar field appears as a factor
only in the supplementary term, quadratic in the curvature.
In our case, the scalar field appears as a common factor of the
whole Lagrangian density and, moreover, the term quadratic
in the curvature is not independent due to the constraint of
the (A)dS5 gauge symmetry SO(1,4) or SO(2,3).

A study of the full 5D Chern–Simons theory is under way,
with one spatial dimension being compactified [19]. It will
allow one to explore a larger domain of solutions, this theory
possessing 13 degrees of freedom as shown in [17,18].

Concerning the quantization, the prospect [19] is for a
Loop Quantization [1,2] of the 5D CS theory. Indeed, the
latter is generic in the sense of the authors of [17,18], i.e.,
the scalar or “Hamiltonian” constraint is a consequence of
the other constraints, which are easier to solve [1,2].
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Appendix: Conventions and notation

A.1 Conventions

4D and 5D space-time indices: μ, . . . = 0, . . . , 3 and
α, . . . = 0, . . . , 4.

3D and 4D space indices: a, . . . = 1, . . . , 3 and m, . . . =
1, . . . , 4.

The de Sitter or anti-de Sitter groups SO(n,N-n) are collec-
tively denoted by (A)dSN . Their indices and corresponding
invariant metrics are denoted by

(A)dS6 : M, N , . . . = 0, . . . , 5, ηMN = diag(−1, 1, 1, 1, 1, s),

(A.1)
(A)dS5 : A, B, . . . = 0, . . . , 4, ηAB = diag(−1, 1, 1, 1, s),

(A.2)

where s takes the values ±1 for dS or AdS, respectively. 4D
Lorentz SO(1,3) indices are denoted by I, . . . = 0, . . . , 3), the
corresponding metric being ηI J = diag(−1, 1, 1, 1). These
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metrics and their inverses allow one to lower and raise the
various group indices.

The respective Levi-Civita symbols are defined as

εMN PQRS =
{

ε012345 := 1,

εABCDE4 := εABCDE ,

εABCDE =
{

ε01234 := 1,

εI J K L4 := εI J K L ,

εI J K L =
{

ε0123 := 1,

ε0i jk := εi jk,

for the internal spaces, and

εαβγ δε =
{

ε01234 := 1,

εμνρσ4 := εμνρσ ,

εμνρσ =
{

ε0123 := 1,

ε0abc := εabc,

for the 5D and 4D space-times.

A.2 Lie algebra basis

A basis of the Lie algebra (a)ds6 of the group (A)dS6 may be
given by the 15 matrices MPQ = −MQP :

(MPQ)MN := −(δAPηNQ − ηPN δMQ )

satisfying the (a)ds6 commutation relations

[MMN , MPQ] = −ηMQMNP − ηN PMMQ

+ηMPMNQ + ηNQMMP . (A.3)

One can decompose this basis according to representations
of the 5D Lorentz group SO(1,4) as

MMN =
{
MAB

PA := λMA5

where a positive dimensionful parameter λ has been intro-
duced, related to a cosmological constant � ∼ sλ2 (s = η55)
of a 5D gravitation theory. The commutation relations read
now

[MAB, MCD] = −η̃ADMBC − η̃BCMAD + η̃ACMBD

+η̃BDMAC ,

[MAB, PC ] = η̃AC PB − η̃BC PA,

[PA, PB] = sλ2MAB, (A.4)

with η̃AB = diag(−1, 1, 1, 1, 1). The ten generators MAB

generate the 5D Lorentz group, and together with the five
generators PA, generate the (A)dS6 group for 5D space-time.
The MAB may be represented by the 5 × 5 matrices

(MCD)AB := −(δAC η̃BD − η̃CBδAD).

The first line of A.4, namely

[MAB, MCD] = −ηADMBC − ηBCMAD

+ηACMBD + ηBDMAC , (A.5)

but this time with the metric ηAB = diag(−1, 1, 1, 1, s),
gives the commutation rules of the Lie algebra of (A)dS5.
Its decomposition according to representations of the 4D
Lorentz group reads

MAB =
{
MI J

PI := λMI4
.

In the same way as above we have introduced the dimension-
ful parameter λ related now to the cosmological constant of
a 4D gravitation theory. Thus

[MI J , MKL ] = −ηI LMJK − ηJ K MI L

+ηI K MJL + ηJ LMI K ,

[MI J , PK ] = ηI K PJ − ηJ K PI ,

[PI , PJ ] = sλ2MI J .

We are also interested in the full decomposition of the (A)dS6

algebra according to representations of the Lorentz group
SO(1,3):

MI J , PI := λMI5, QI := λMI4, R := M45, (A.6)

[MI J , MKL ] = −ηI LMJK − ηJ K MI L

+ηI K MJL + ηJ LMI K ,

[MI J , PK ] = ηI K PJ − ηJ K PI ,

[MI J , QK ] = ηI K QJ − ηJ K QI ,

[MI J , R] = 0,

[PI , PJ ] = sλ2MI J , [QI , QJ ] = λ2MI J ,

[PI , QJ ] = λ2ηI J R,

[PI , R] = sQI , [QI , R] = −PI . (A.7)

A.3 Dimensions

The dimensions of the fields and the parameters of the theory,
given in mass units, are

ds ωI J eI λ � MI J PI
dim −1 1 0 1 2 0 1
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