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Abstract

COTA, Wesley Francis Costa, D.Sc., Universidade Federal de Viçosa, September, 2020. Spread-

ing phenomena on complex networks and social systems. Adviser: Silvio da Costa Ferreira
Junior. Co-adviser: Jesús Gómez-Gardeñes.

Epidemic spreading has been one of the most prominent and widely investigated issues in the

recent literature of complex networks. Despite several advances, the mathematical modeling

of spreading processes remains the target of intensive investigations. In this thesis, we initially

focused on the fundamental aspects of these dynamical processes on large and highly hetero-

geneous networks. We investigate some modifications of the susceptible-infected-susceptible

(SIS) epidemic model to determine the robustness of epidemic thresholds by using extensive

computer simulations and mean-field theories. Our results suggest that the metastable states of

the standard SIS dynamics are not universal on networks that follow a power-law degree distri-

bution %(:) ∼ :−�, with � > 5/2. We also investigated the effects of quenched disorder in the

SIS dynamics on modular networks, whose results point to the existence of extended regions of

criticality in networks with infinite dimension and lack of hierarchy, leading to Griffiths phases,

which can be a mechanism to explain the criticality of complex systems such as the brain. We

also focused on more specific problems of spreading processes involving social and human

mobility patterns. First, we explored the influence of political lean in information spreading

over a political communication network reconstructed using data collected from Twitter. In this

case, we showed that although opposite sides of a discussion form the so-called echo cham-

bers, sharing similar opinions with each other, some users were able to spread the information

better than others, breaking these echo chambers. This spreading capacity was strongly re-

lated to a diversity of users reached. Finally, we also examined the epidemic spreading on

top of metapopulations. We adapted an existing analytical framework for the SIS dynamics

on populations with recurrent mobility to accommodate the heterogeneous nature of human

social contacts. We derived an analytical expression that involves demography, mobility, and

contact patterns, that were used in synthetic networks to understand how they can change the

epidemic threshold. All these contributions take a step further to a better understanding of

the relationship between the structure of networks and epidemic dynamics, which is extremely

important to improve epidemic models to deal with real situations.

Keywords: Complex networks. Spreading processes. Critical phenomena. Sociophysics.



Resumo

COTA, Wesley Francis Costa, D.Sc., Universidade Federal de Viçosa, setembro de 2020. Pro-

cessos de espalhamento em redes complexas e sistemas sociais. Orientador: Silvio da Costa
Ferreira Junior. Coorientador: Jesús Gómez-Gardeñes.

A disseminação de epidemias tem sido um dos problemas mais proeminentes e amplamente in-

vestigados na literatura recente de redes complexas. Apesar de diversos avanços, a modelagem

matemática de processos de espalhamento ainda permanece como alvo de investigações inten-

sivas. Nesta tese focamos inicialmente em aspectos fundamentais desses processos dinâmicos

em redes grandes e altamente heterogêneas. Investigamos algumas modificações do mod-

elo suscetível-infectado-suscetível (SIS) para determinar a robustez dos limiares epidêmicos

usando simulações computacionais intensivas e teorias de campo médio. Os resultados sug-

erem que os estados meta-estáveis do modelo SIS tradicional não são universais em redes que

seguem distribuições em lei de potência %(:) ∼ :−�, com � > 5/2. Também investigamos os

efeitos da desordem congelada na dinâmica SIS em redes modulares, cujos resultados apon-

tam para a existência de regiões estendidas de criticalidade em redes com dimensão infinita

e sem hierarquia, levando às fases de Griffiths, que podem ser um mecanismo para explicar

a criticalidade de sistemas complexos como o cérebro. Focamos também em problemas mais

específicos de processos de espalhamento envolvendo padrões sociais e de mobilidade humana.

Primeiramente, exploramos a influência da inclinação política no espalhamento de informação

em redes de comunicação política reconstruídas usando dados coletados do Twitter. Neste caso,

mostramos que apesar de lados opostos de uma discussão formarem as chamadas câmaras de

eco, compartilhando opiniões semelhantes entre si, alguns usuários foram capazes de espalhar

a informação de forma melhor que outros, quebrando essas câmaras de eco. Essa capacidade de

espalhamento está fortemente relacionada à diversidade dos usuários alcançados. Finalmente,

também examinamos o espalhamento de epidemias em metapopulações. Adaptamos um fer-

ramental teórico já existente para a dinâmica SIS em populações com mobilidade pendular

para acomodar a natureza heterogênea dos contatos sociais humanos. Determinamos uma ex-

pressão analítica que envolve demografia, mobilidade e padrões de contato, que foram usados

em redes sintéticas para entender como eles podem mudar o limiar epidêmico. Todas essas

contribuições dão um passo adiante para o melhor entendimento da relação entre estrutura e

dinâmica de epidemias, que é extremamente importante para aprimorar modelos epidêmicos

para lidar com situações reais.

Palavras-chave: Redes complexas. Processos de espalhamento. Fenômenos críticos. Sociofísica.
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Chapter 1

Introduction

Our daily life is permeated with networked systems [1–4] as the biochemical networks reg-

ulating cell processes inside our bodies, connections of neurons in our brain, transportation

infrastructure through which we move, social media in which we get informed, which are just

a few examples. Major advances have been made in the past few decades in the understanding

of the structure and functioning of networks [1, 2], and network science has been marked by

its interdisciplinary nature since its consolidation as a new branch [2, 5], especially in the in-

vestigation of dynamical processes on networked substrates [6]. This highly multidisciplinary

discipline is dedicated to the understanding of how complex systems can be described by net-

works, which are mostly large and highly heterogeneous [2], and how dynamical processes

evolve on top of them. There are many distinct fields of science such as mathematics, sociol-

ogy, computer science, and physics involved in these studies. In particular, statistical physics

contributes with its deep connection with graph theory and its characterizations of emergent

collective phenomena by looking at the basic microscopic elements of a system [7].

Among the investigated problems, an important question is how pathogens spread in het-

erogeneous populations. Indeed, the epidemic spreading is one of the most prominent and

widely investigated issues, usually through stochastic agent-based models [8]. Despite sev-

eral advances in the understanding of epidemic models on networks [8–15], it remains target

of recent intensive investigations [16–23] and there are still big challenges in the theoretical

frameworks for dynamical processes in general evolving on top of these networked complex

systems [2, 6].

Epidemic models on networks [8] assume that individuals of a population are represented

by vertices while the infection can be transmitted through edges connecting them. Not only
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approximated and exact theories have been developed, but also simulations of very large

systems have played a key role in the understanding of central issues of epidemic spreading

on highly heterogeneous networks. Most of these studies involve thresholds separating an

absorbing, disease-free state and an active phase where epidemics can thrive and, thus, this

problem can be suited in the framework of absorbing-state phase transitions (APTs) [8, 24, 25].

The location and the existence of a finite epidemic threshold [11, 15–17, 26–28] and the exponents

describing the dynamics near the transition [29–33] have been a matter of intense discussions

fomented by numerical simulations in networks with power-law degree distributions %(:) ∼

:−�. Therefore, computer simulations have become fundamental tools to corroborate or to point

out the limitations of the theories as well as to provide physical insights into the construction

of new ones.

In this thesis, we investigate a series of spreading processes problems on networks. Initially,

we briefly review some basic concepts of network theory and the analysis of epidemics on

finite networks as an absorbing-state phase transition in Chapters 2 and 3, respectively. After

discussing important properties of complex networks in the former, we proceed to describe

dynamical processes on top of these structures in the latter. In particular, since accurate and

efficient simulation methods have become imperative for the progress of this field, we define

some optimized algorithms [34], which are simultaneously accurate and efficient, in Sec. 3.3.2

of Chapter 3.

One of the most basic but still not fully understood epidemic processes on networks is the

susceptible-infected-susceptible (SIS) model [8], which consists of agents lying on the vertices

of a network which can be infected or susceptible. Infected individuals become spontaneously

healed (susceptible) with rate � and transmit the disease to their susceptible contacts with

rate �. In principle, the SIS dynamics can exhibit a phase transition between a disease-free

(absorbing) state and an active stationary phase, in which the epidemics persists in an endemic

state. The transition occurs at an epidemic threshold �c. However, for uncorrelated random

networks with a power-law degree distribution, it was rigorously proved [9] and later put in

sound physical grounds [15] that the absorbing phase is unstable in the thermodynamic limit

implying that �c is formally zero. We check the robustness and fragility of these results for

the SIS model [35] in Chapter 4. We do this by looking at two modifications of the standard

SIS model that preserve the central properties of spontaneous healing and infection capacity

of a vertex increasing unlimitedly with its degree. For uncorrelated random networks with



1. Introduction 18

� < 5/2, the SIS dynamics is robust exhibiting essentially the same outcomes for all investigated

models. However, we observe differences among them for � > 5/2, implying different activation

mechanisms.

Another interesting issue is the presence of critical states in complex systems, in which spatial

and temporal correlations diverge [36, 37]. There are many questions about why and how these

systems are tuned to criticality, and models [38, 39] and mechanisms [40, 41] on homogeneous

substrates have been used to address these questions. Yet, the natural heterogeneity of networks

can be relevant for the outcomes of models investigated on them, as discussed previously. In

particular, the quasi-static (quenched) disorder, with timescales much longer than those of the

dynamics, originated from the heterogeneous network topology affects the observed critical

state. In Chapter 5 we discuss the so-called Griffiths phases (GPs) [42] that lead to dynamical

criticality with long-term temporal correlations. Extensive simulations were made by averaging

the activity density over many realizations of networks and we found extended regions of the

control parameter space with Griffiths effects induced by these topological inhomogeneities [43].

We also found these extended control parameter regions with continuously changing dynamical

exponents for single network realizations of heterogeneous random networks with a highly

modular structure and non-hierarchically organized [44]. These results can have implications

on the understanding of how systems with modular structures behave, such as in the brain [45],

socio-techonological [46, 47], and protein interaction networks [48].

Social interactions of individuals exchanging information and opinions about specific sub-

jects on social networks can also be investigated as spreading processes. Indeed, social contagion

phenomena have strong similarities with those described by epidemiological models [6]. In

Chapter 6 we develop a method [49] able to quantify the effect of the so-called echo chambers [50]

in social networks using spreading models such as the SIS model. These echo chambers are

formed by users that tend to share information and opinions among others with similar be-

liefs, reinforcing their view about a subject. In particular, we look at discussions about the

impeachment process of the former Brazilian president Dilma Rousseff [49], finding strong cor-

relations between political lean and information spreading capacity on political communication

networks. The proposed method can be applied for any context where opposing opinions are

possible to observe echo chamber effects and their implications.

Finally, in Chapter 7 we investigate the effect of the interlacing of human mobility and social

contacts with spreading processes. Besides social interactions described by networks, another
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level such as infrastructure transportation has strong effects [51] on how people move and in-

teract with others. Notably, this multiscale mobility [52] has changed drastically how diseases

spread over the whole world and can have big impacts such as those that have happened with

H1N1 [53, 54], Ebola [55, 56] and more recently, COVID-19 [57, 58]. A feasible manner to

describe mathematically these mobility patterns is by using metapopulation networks [59–64],

whose elements are places where individuals live and edges define the flows of individuals

from one place to others. Here, we incorporate the heterogeneous nature of social contacts in

a metapopulation SIS model and scrutinize their effects on how epidemics spread by general-

izing an existent model [61] on metapopulations with recurrent mobility. We used synthetic

networks to discuss the effects of heterogeneous connectivity on the epidemic threshold, show-

ing that the epidemic threshold always increases when homogeneous mobility takes place in

this model. We also extracted an analytical expression involving demographics, mobility, and

social contact patterns that can be applied for any metapopulation structure when data are

available. Certainly, the ideas shown here can be used to include the contact heterogeneity in

more realistic models based on Ref. [61], such as the ones with our contributions to investigate

the COVID-19 spreading in Brazil [63] and Spain [64], published in Physical Review Research

and Physical Review X, respectively.

After discussing general aspects about networks and dynamical processes on them in Part I,

all contributions presented in this thesis involve problems that relate the structure of complex

networks with the dynamic properties of epidemics. Not only fundamental issues were inves-

tigated, as in Chapters 4 and 5 of Part II, but also specific problems of spreading processes on

top of social and metapopulation networks in Chapters 6 and 7, respectively, of Part III.
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Chapter 2

Concepts of network theory

The discovery of the structure of interactions of many complex systems and their description

using networks has motivated several studies about the influence of structural properties and

collective phenomena on top of them [65]. Using concepts of graph theory, the elements of a

system can be represented by vertices and their interactions by edges or links between them. The

connectivity properties of these elements are often universal, sharing aspects among different

kinds of real networks, such as the small-world and scale-free phenomena that will be discussed

in this chapter, in which we present a brief overview of fundamental concepts and definitions

about networks. Concepts not used in any other part of this thesis were omitted and can be

found in the references used as the basis for this chapter [1, 2, 6, 66]. Some specific definitions

are postponed to the chapters where they are used.

2.1 Characterization of networks

Mathematically, a graph G = (V , ℰ) is composed by a set of vertices V = {1,2, . . . , #},

whose # elements are connected by � edges described by a set ℰ = {41 ,42 , . . . , 4�}, where the

ordered set 4: = (8 , 9) represents an edge pointing from vertex 8 to 9. The size of the network

is referred as the total number of vertices # . Edges are also called links or connections. It is

useful to define an adjacency matrix whose elements are

�8 9 =




1 if (8 , 9) ∈ ℰ ,

0 if (8 , 9) ∉ ℰ .
(2.1)
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Undirected Directed

Unweighted

Weighted

Figure 2.1: Examples of different kinds of graphs regarding their edge directions and weights.
The elements are represented by circles (1, 2, and 3), and edges by lines (undirected) or arrows
(directed) connecting them. Edges can have different weights represented by the thickness of
the lines. The adjacency matrix �8 9 is shown for each case for undirected and directed networks.
For weighted networks the weighted matrix,8 9 is shown while their adjacency matrices are the
same, depending only on the directionality of edges.

We will consider hereafter that self-connections �88 = 1 are not allowed, except when stated

otherwise, as in Chapter 7.

2.1.1 Directed and weighted networks

In undirected networks, connections between 8 and 9 are reciprocal such that �8 9 = 1 implies

� 98 = 1, while in directed networks �8 9 = 1 does not necessarily means that � 98 = 1. In the

former case, �8 9 is a symmetrical # × # matrix. Directionality has crucial consequences for

the connectedness of a graph and information spreading, as will be discussed in Chapter 6.

We can also assign a weight to the edges through a matrix ,8 9 whose elements specify the

weight of the connection between 8 and 9, and can assume any real value depending on the

type of interaction is being described. By definition, �8 9 = 0 implies ,8 9 = 0. For example, the

weights can be seen as the number of messages sent by one user to another in a social network,

in Chapter 6, or the flow of people from one city to other, as in Chapter 7. Figure. 2.1 shows

graphical representations of vertices and edges, and classification of networks.

If there exists an edge between 8 and 9, they are said to be connected or adjacent. In a directed

network, if an edge points from 8 to 9, 8 is called a predecessor neighbor of 9 and 9 is a successor

neighbor of 8. This concept is used in Sec. 6.3.2 of this thesis. For undirected networks, if 8 is
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connected to 9 they are said to be neighbors.

The number of all possible pairs of vertices joined by edges in a network is #(# − 1)/2. A

complete graph has all possible edges. We define the density of the network as D = �
#(# − 1) ,

and the network is considered sparse if D ≪ 1. The sparseness of many networks has a big

impact on computational efficiency, and it is useful to define adjacency lists with elements (8 , 9),

where �8 9 = 1 and 9 belongs to V(8), the set of neighbors of 8. Figure 2.2 shows an example.

Figure 2.2: Example of (a) an undirected network and (b) its representation as an adjacency list.
For each vertex 8 in (a), represented by circles, neighbors are shown as elements of the adjacency
list in (b).

In Chapters 4 and 5 we will only deal with undirected and unweighted networks, while in

Chapters 6 and 7 we will consider directed and weighted networks.

2.1.2 Connectivity and paths

A meaningful concept is the existence of paths in the network. A path is defined by the

set of sequential edges that join a sequence of distinct vertices and its length is the number of

edges in that path. If there exists a path from vertex 8 to 9, we say that 9 is reachable from 8,

otherwise they are said to belong to different connected components. A connected component

is defined by the set of vertices and edges in which there exists at least one path between all

pairs of vertices in both directions. The largest connected component (LCC) contains the largest

number of vertices.

Connected components

In Fig. 2.3(a) we show the components of an undirected graph and in (b) of a directed

graph. Directionality plays an important role in the definition of a component. For example,

while vertices {1,2,3, . . . , 8} belong to the same component in Fig. 2.3(a), there are two different

components in (b) for this set of vertices. This happens because even when a path connecting

vertex 6 to 4 exists, 6 is not reachable from 4, for example. Another important fact is that
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while in Fig. 2.3(a) the LCC is composed by edges containing vertices {9,10, . . . , 18}, when

we consider directionality, it is composed by vertices {1,2, . . . , 5}. By this definition, in the

case of directed networks, we also refer to the connected component as the strongly connected

component (SCC). We can also say that Fig. 2.3(a) is the undirected network representation of

Fig. 2.3(b), and the connected components of Fig. 2.3(a) are the weakly connected components

of the directed network, Fig. 2.3(b).

Figure 2.3: Example of connected components for (a) undirected and (b) directed networks.
Shaded areas indicate vertices belonging to the same component. The graph in (a) is also called
an undirected network representation of (b).

Distances and dimension of networks

Usually, there are many paths connecting vertices 8 and 9. We define the distance ℓ8 9 between

8 and 9 as the length of the shortest path between them, and in general it is not symmetrical in

directed networks. If 8 and 9 belong to different connected components, we define ℓ8 9 = ∞. A

measure of the size or dimension of the network is the average shortest path length, computed

over all pairs of vertices {8 , 9} belonging to the same connected component in the network,

〈ℓ〉 = 1
#(# − 1)

∑
{8 , 9}

ℓ8 9 . (2.2)
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In a complete graph, in which all vertices are connected to each other, we have 〈ℓ〉 = 1 while

in 3-dimensional hypercubic lattices it scales as 〈ℓ〉 ∼ #1/3. In most real networks, especially

in random graphs, the average shortest path length scales logarithmically with the size # ,

〈ℓ〉 ∼ ln # ; see Sec. 2.2.1. This is a property of the so-called small-world phenomena and these

networks are said to have an infinite dimension since an algebraic growth #1/3 predicts an

increase with # much faster than for any finite dimension 3.

2.1.3 Centrality measures

Some characteristic properties of complex networks can be defined and many insights can

be provided by specific vertex properties, characterizing their centrality in the network. Here

we define some of the measures used in this thesis.

Degree centrality

In general, we define the in-degree :in,8 as the number of edges pointing to vertex 8 and the

out-degree :out,8 as the number of edges departing from 8. In terms of the adjacency matrix, we

have

:in,8 =
∑
9

� 98 and :out,8 =
∑
9

�8 9 , (2.3)

respectively. In undirected networks :in,8 and :out,8 are equivalent and we only refer to those

as the degree :8 of vertex 8. This property tells how connected is a vertex in the network. The

degree of a vertex has central implications in epidemic models, as will be discussed throughout

this thesis.

:-core centrality

Another property related to the degree is the :-core centrality. It is given after a :-core

decomposition [24, 67] that split the network in subgraphs G′ = (V′, ℰ′), with V′ ⊂ V and

ℰ′ ⊂ ℰ, whose vertices have degree larger than an index :B . This decomposition consists of a

pruning process starting with the whole network. First, all vertices with degree :B = :min and

their edges are removed. Then, we remove all other vertices that now have degree :min after

the latter removal, until no more vertices of :min appear in the subgraph. Next, we repeat the

procedure for all vertices of degree :B = :min + 1, :min + 2, . . ., and so on until all vertices are

removed. The maximal :-core corresponds to the subgraph with vertices and edges removed
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1-core

2-core

3-core

Figure 2.4: Example of a :-core decomposition. The 1-core consists of the whole network. Next,
the 2-core is a subgraph of the 1-core and contains only vertices with degree : ≥ 2. Finally, the
3-core only has vertices with degree : ≥ 3, and it is a subgraph of the 2-core. It is impossible in
this case to have a :-core with an index larger than 3. Note that vertices with smaller coreness
are peripheral, while the ones in the maximum :-core are more central and densely connected.

in the last step of the decomposition, and its index :B is called the coreness of the vertices

belonging to this subgraph. In Figure 2.4 we show an example in an undirected network of

# = 15 vertices and :min = 1, resulting in a maximum :-core with coreness 3.

Activity centrality

In weighted networks a significant measure is the vertex strength, defined in terms of

weights of edges. The strength or activity centrality is defined analogously to the degree [66]

as

08 =
∑
9

,8 9 . (2.4)

As an example, if the weight ,8 9 is the number of messages sent from an individual 8 to 9 in an

online social network, 08 is the number of messages sent by 8 and

0IN
8 =

∑
9

,98 (2.5)

is the number of messages received by 8. One can expect that individuals with large activity are

more central in information spreading. This will be discussed in Chapter 6.

2.1.4 Communities in networks

Even in sparse networks, we can find complete subgraphs in which all vertices are con-

nected to each other. These subgraphs are called cliques of the network. On another level,
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some local structures are the building blocks of larger subgraphs where vertices are cohesively

interconnected but badly connected to others outside them, defining communities.

Clustering coefficient

Analyzing the local neighborhoods in a graph, many real networks present vertices that

tend to form cliques among themselves. In a social network, for example, if an individual 8 is

connected to 9, and 9 is connected to ;, there is a high frequency that 8 is also connected to ;.

This connection can represent a friendship, for example. We can measure this property by the

clustering coefficient, defined [68], in an undirected network, as the ratio between the number

of connected pairs among neighbors of 8, denoted by 48 , and the maximum number of possible

pairs between them. Then,

�8 =
248

:8(:8 − 1) , if :8 > 1. (2.6)

For :8 = 1, �8 ≡ 0. Figure 2.5 shows an example of the clustering coefficient calculation. In

general the average clustering coefficient

〈�〉 = 1
#

∑
8

�8

is used to measure the cohesiveness of the network. Real networks often have a high average

clustering coefficient.

Figure 2.5: Left: clustering coefficients of all vertices are zero. Right: when vertex 1 connects to
3, by making �13 = 1, a triangle is formed between 1, 2 and 3. Since all neighbors of 1 and 2 are
connected to each other, �1 = �2 = 1. For vertex 3, its neighbor 4 does not have any connection
neither to vertex 1 nor 2, while 1 and 2 are connected, resulting in �3 = 1/3. Vertices 4 and 5
have �4 = �5 = 0.

Modularity

Some systematic local density fluctuations [2] can appear in networks, defining what we

interpret as communities, which are locally denser connected subgraphs that do not appear
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in randomly wired networks. The community structure is encoded in the adjacency matrix,

partitioning the set of # vertices into " communities or modules 6. We denote the group to

which the vertex 8 belongs as 68 . The modularity [1] is defined as

&mod =
1

# 〈:〉
∑
8 9

(
�8 9 −

:8: 9

# 〈:〉

)
�68 69 , (2.7)

being �8 9 the Kronecker delta and 〈:〉 the average degree defined in the next section. &mod

is always smaller than 1, and the higher is its value, the better partitioned is the set ℳ =

{61 , 62 , . . . ,6# }. If one can find the optimal community structure, the maximum value of &mod

is obtained. The computational complexity for the evaluation of this optimal structure is too

high and there are many different algorithms to this aim [2]. We use the Louvain algorithm [69]

in Chapters 5 and 6 to determine modular structures.

2.2 Statistical characterization of complex networks

With the contemporary possibility of collecting and analyzing big datasets to build several

large-scale networks, many properties cannot be observed only with local measures, and statis-

tical analyses are needed. Here, we comment on some of these statistical characterizations and

their relations with the way vertices connect to each other.

2.2.1 Degree distributions

Important insights are obtained by analyzing the degree distribution %(:) defined as the

probability that a randomly selected vertex has degree :. If #: is the number of vertices with

degree : in a network of # vertices, then

%(:) = #:

#
. (2.8)

It can be defined in directed networks for :in and :out in analogous way. The moments of the

degree distributions are essential to understand critical regimes in dynamical processes such as

those described in Chapter 4 and 7. The =-th moment of the degree distribution is defined as

〈:=〉 =
∑
:

:=%(:). (2.9)
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In the case of sparse networks, 〈:〉 ≪ # . In particular, the second moment 〈:2〉 is associated

to the variance �2 = 〈:2〉 − 〈:〉2, that measures how broad is the distribution. Homogeneous

distributions, shown in Fig. 2.6(a), have small variance (comparable with 〈:〉), while hetero-

geneous distributions, such as represented in Fig. 2.6(b), have large variance with heavy tails.

That means that heterogeneous networks have hubs, that are vertices whose degrees are much

bigger than the average. Then, although the probability to find a hub of degree : ≫ 〈:〉 is

small, its contribution is not negligible.

(a)

(b)

Figure 2.6: (a) Examples of homogeneous Poisson and Gaussian distributions, and (b) hetero-
geneous power-law degree distribution with � = 3.5, with outliers indicated inside the box.
The dashed lines represent the averages 〈:〉 of the distributions, and hubs, for which : ≫ 〈:〉,
only appear in (b). Note that axes are in (a) linear and (b) logarithmic scales.

A power-law (PL) distribution follows %(:) ∼ :−�, with : ∈ [:min ,:max], and has moments

that strongly depend on the exponent �. The minimum degree of the network is denoted by

:min and the maximum is denoted by :max. Cutoffs can be fixed for the distribution, defining

the minimum (:0) and maximum (:c) degrees allowed when sampling from %(:). For � < 2,

the average 〈:〉 diverges as :c → ∞. Making a continuous approximation, we can evaluate the

moments 〈:=〉 replacing summations by integrals in the form

〈:=〉 ≃
∫ :c

:=:0

�:=:−�d:, (2.10)

where � is a normalization constant given by
∫
�:−�d: = 1. Considering a natural cutoff of
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the size of the network, :c = # and # → ∞, the average degree is well defined and given by

〈:〉 ≈ :0
� − 1
� − 2

(2.11)

for � > 2, while the second moment 〈:2〉 diverges with # → ∞ for 2 < � < 3. For � > 3, the

second moment is finite and given by

〈:2〉 ≈ :2
0
� − 1
� − 3

. (2.12)

However, even with a finite variance, the probability to find an outlier still exists. Indeed, if we

consider a PL distribution with :c = # , using extreme value theory we can show that the mean

value of the largest degree :max scales as [70]

〈:max〉 ∼ #
1

� − 1 , (2.13)

with large fluctuations [71]. Outliers are hubs that besides having degree : ≫ 〈:〉, their values

are not common among hubs. Figure 2.6(b) shows a PL degree distribution with outliers. PL

distributions for other cutoffs can be seen in Fig. 5.3, in Chapter 5. Networks presenting PL

degree distributions are said to be scale-free, and many real networks follow this distribution

for different values of �, such as those in Fig. 2.7. These hubs and heavy tails can have strong

effects on spreading processes on networks [8, 72], and their roles are discussed in all chapters

of this thesis.

With the definition of average degree, we can perform a simple calculation [2] to find 〈ℓ〉.

Consider an undirected network whose # vertices are connected randomly and have average

degree 〈:〉. We expect to find 〈:〉 vertices at distance ℓ = 1, 〈:〉2 vertices at distance ℓ = 2, and

〈:〉ℓ vertices at distance ℓ . Then, the expected number of vertices =(ℓ ) from a distance ℓ of the

starting vertex is

=(ℓ ) ≈
ℓ∑
8=0

〈:〉 8 = 〈:〉ℓ+1 − 1
〈:〉 − 1

, (2.14)

and =(ℓ ) cannot be larger than the total number of vertices # . Assuming that 〈:〉 ≫ 1, the

maximum distance ℓmax will obey the condition

=(ℓmax) ≈ #, (2.15)
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Figure 2.7: Degree distributions for some real networks, PL fits, and their respective exponents
�. The complete list and references for these networks are found in Ref. [73].

implying that

ℓmax ≈ ln #

ln〈:〉 . (2.16)

Since ℓmax is often dominated by few large paths, the latter expression gives an approximation

for the average distance between any pair of vertices, implying in 〈ℓ〉 ∼ ln #/ln〈:〉. It means

that in a network of # = 1010 vertices with 〈:〉 = 10, we can connect any pair of vertices, in

average, by a path of length 〈ℓ〉 ≈ 10.

2.2.2 Mixing and correlations

The way vertices are connected can be correlated, in the sense they tend to connect to

other vertices with specific properties. This correlation can be with the degree, which can be

measured by the probability %(:′ |:) that a vertex of degree : is connected to another of degree

:′. This probability is associated with another important measure, the average degree of the

neighbors of 8, given by

:nn,8 =
1
:8

∑
9

: 9�8 9 .

Statistically, it is more informative to take the average over all vertices with the same degree :,

:nn(:) =
1
#:

∑
8 |:8=:

:nn,8 ,
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where #: is the number of vertices with degree : and the summation is performed over all

vertices 8 of degree :8 = :. By means of the probability %(:′ |:), we can write

:nn(:) =
∑
:′

:′%(:′ |:). (2.17)

If there are no correlations, this probability is given by the probability of finding an edge

emanating from a vertex of degree :′, that is the ratio between the number of edges from

vertices with degree :′ over the total number of edges. So, %(:′ |:) for the uncorrelated case is

given by

%(:′ |:)[unc]
=

:′#:′∑
:′′

:′′#:′′
=

:′%(:′)
〈:〉 , (2.18)

independent of :, implying that

:
[unc]
nn (:) = 〈:2〉

〈:〉 , (2.19)

which is constant and only depends on the first and second moments of the degree distribution.

However, networks can have other types of correlations: assortative and disassortative. In the

former case, vertices with a low (high) degree connect more often to others with a low (high)

degree, while in the latter the ones with a low (high) degree connect more often with others

with a high (low) degree.

With a similar reasoning, a statistical measure can be used in term of the clustering coefficient

as a function of the degree, defined as

�(:) = 1
#:

∑
8 |:8=:

�8 .

Assortative

Uncorrelated

Disassortative

Figure 2.8: Schematic representation of three different types of correlations in networks. If the
curves are increasing (decreasing), the correlation is said to be assortative (disassortative). If
the value is practically uniform, the network is uncorrelated.
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Correlations in this expression can be related to the presence of structures as three-vertex cor-

relation pattern and can measure the existence of a hierarchy in the network [74, 75], expressed

by �(:) ∼ :−1. See Chapter 5 for more information about the role of hierarchy in criticality.

For both :nn and� as a function of :, the three basic patterns of correlations are schematically

drawn in Fig. 2.8.

2.3 Synthetic networks

Throughout this thesis, we use synthetic networks to explain concepts and to perform

analysis of physical phenomena. Some of these networks are simple to define, as the complete

graph. Others are built by following some rules and a complex network emerges from them.

2.3.1 Simple networks

In Fig. 2.9 we present some simple networks used in this thesis. The first is a complete

graph, already defined before, in which all vertices are connected to each other. The second is a

star graph, that consists of a vertex with : leaves around with degree 1, mimicking the hubs of

a network. When in a star graph the leaves are also connected, it can be called a wheel graph,

the third case. Finally, a random regular network (RRN) is composed of all vertices having the

same degree but randomly connected, in Fig. 2.9(d).

(a) (b)

(c) (d)

Figure 2.9: Examples of simple networks: (a) complete graph of size # = 10, (b) star graph and
(c) wheel graph with : = 10 leaves, and (d) RRN network with : = 3 and # = 10.
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2.3.2 Configuration model

There are many models to build complex networks, such as the model of random net-

works [76], better known as Erdös–Rényi [77], the Watts–Strogatz [68], and Barabási–Albert [78]

models. They are famous to explain in simple grounds the emergence of the small-world

property, the high clustering coefficient, and PL degree distributions, respectively, in many real

networks. It is worth to mention that the term “complex” in complex networks comes from the

fact that these macroscopic properties emerge from single local rules of connectivity.

However, in this thesis we will use the configuration model [79–82], that generates synthetic

undirected and unweighted networks from a predetermined degree distribution %(:) with

cutoffs :0 and :c. First, each one of the # vertices receives a degree : by sampling %(:). We

refer to edges not connected as stubs, in a way that a vertex 8 has :8 stubs at the beginning of the

process. These stubs are randomly selected in pairs and connected if the vertices in each end

are not the same and have not been connected before, avoiding self-connections and multiple

connections, respectively; see Fig. 2.10. For %(:) ∼ :−�, the large value of 〈:2〉 can introduce

correlations in the network [70, 82]. In order to avoid them, it is necessary to assign a stronger

cutoff :c to the degree distribution. The uncorrelated configuration model (UCM) is defined by

using the configuration model in a PL degree distribution %(:) ∼ :−� with a structural cutoff

:c =
√
# , for which it guarantees that :nn is approximately constant for � > 2 [82].

1
3

2

Figure 2.10: Example of trials in the configuration model. These three of # vertices have
degrees :1 = 3, :2 = 5 and :3 = 4. When two stubs in red are selected, the connection between
them is allowed since 1 is not connected to 2. However, if the stubs in green are selected, they
cannot be connected since 2 is already connected to 3. An edge connects 2 and 3, and there are
other stubs (in gray) that can be connected to other # − 3 vertices of the network.

2.3.3 Annealed networks

So far we have assumed that networks do not evolve with time, which we call quenched

networks. On the opposite extreme lay the annealed networks, in which the connections are

rewired at a rate much larger than the rates of the processes taking place on them [24]. We
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can define the adjacency matrix for this kind of network as the probability that a vertex 8 is

connected to 9 in a given time [24]. If vertex 8 has :8 stubs, in an uncorrelated model a stub

can be momentarily connected with any other stub with equal chance [71]. In this case, the

elements of the adjacency matrix are given by

�ann
8 9 =

:8: 9∑#
;=1 :;

=
:8: 9

# 〈:〉 . (2.20)

The computer implementation of uncorrelated annealed networks consists in keeping a list with∑#
8=1 :8 elements containing :8 copies of each vertex 8. The sampling of a neighbor of a vertex is

done by choosing randomly one element of this list.

2.4 Summary

In this chapter, we defined useful properties and measures in network structures. There

are many other concepts and properties not covered here and can be read in textbooks about

network theory such as those in Refs. [1, 2, 6, 66].
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Chapter 3

Spreading processes on complex

networks
Related publication:

Optimized Gillespie algorithms for the simulation of Markovian epidemic processes on large and heterogeneous networks [34]

Wesley Cota, Silvio C. Ferreira

Computer Physics Communications 219C (2017) pp. 303-312

Statistical physics has been dedicated to studying how interactions between different ele-

ments at a microscopic level emerge to macroscopic phenomena. Many systems can go through

phase transitions, that are featured by singular macroscopic changes in the order parameter,

such as in the transition from liquid to the gas state by increasing the temperature of the water.

Models of dynamical processes are developed to describe the time evolution of systems by

using, for example, their network of interactions as a substrate for these processes. In a disease

spreading process, local rules of contact between individuals can lead to epidemics, in which a

macroscopic fraction of the system is infected as a non-linear result of these interactions. In this

chapter, we provide a basic introduction to the theory and simulation procedures of dynamical

processes discussed in this thesis.

3.1 Master equations for dynamical processes

The time evolution of the macroscopic state $ of a system can be described by means

of microscopic states $8 for each element 8, such as the vertices of a network. Without loss of

generality, we assume that there areΩ possible states for each vertex, $8 = 1, 2, . . . ,Ω. The state

variables of all vertices of a network define, therefore, the microstate of the system, described

by the set $ = {$1 , $2 , . . . , $# }, in which # is the size of the network. The temporal evolution
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of the system will be given by transitions $ → $′, with $ ≠ $′. It can be impossible to follow

completely the microscopic dynamics of big systems, with large complexity in relation to the

number of variables and stochasticity. A possibility is to introduce master equations (MEs),

evaluating the probability %($,C) of a system to be in a state $ at time C. Then, the temporal

evolution can be described by

d%($,C)
dC

=

∑
$′

[
%($′,C),$′→$ − %($,C),$→$′

]
, (3.1)

with a normalization condition
∑

$ %($,C) = 1. The summation is over all possible configura-

tions and terms ,$′→$ represent transition rates from a configuration $′ to $. The first term

in the right hand side (r.h.s.) of Eq. (3.1) is related to transitions from states $′ to $, while the

second represents transitions from state $ to $′. In principle, the solution of the ME allows the

computation of average values at time C of a quantity �($), given by

〈�(C)〉 =
∑
$

�($)%($,C). (3.2)

In some cases, the global rate ,$′→$ can also be written in a simpler way. Considering that

the change of state of a vertex 8 only depends on local interactions of vertices connected to it,

we can write [6]

,$′→$ =

∏
8

F$′
8
→$8 |$9

,

where the terms in the r.h.s. are transition rates from state $′
8
to $8 conditioned to the state $ 9 ,

where 9 ∈ V(8) is a neighbor of 8. In this case we consider that the parameters for the local

dynamics are the same for all vertices. Here we see explicitly the dependence of dynamical

processes with the structure of the network mediating the interactions between the elements of

a system.

It is not always possible to solve MEs, and analytical approximations have to be compared

with statistical exact results. Among the methods, there are the mean-field approximation, that

consists of using average values of the microscopic variables under some simplifying hypothesis,

and computer simulations, in which random numbers are used associating probabilities to

transition rates and Monte Carlo (MC) steps [83]. In this context, the Gillespie algorithm [84, 85]

for Markovian processes appears. Hereafter we will only consider Markovian processes, whose

transitions depend exclusively on the state reached in the previous event at time C, without
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dependence on past events.

3.1.1 Equilibrium and non-equilibrium systems

There are processes in which the MEs can result in a stationary probability %($,C → ∞) =

%eq($). These processes describe equilibrium systems, in which the detailed balance condition

%eq($),($ → $′) = %eq($′),($′ → $) (3.3)

is obeyed. In this case, the r.h.s. of Eq. (3.1) is zero, describing necessarily an equilibrium

state. However, there are non-equilibrium systems that can be out of the detailed balance

condition and some subset of configurations may be preferred. The detailed balance condition

is a sufficient but not necessary condition for equilibrium. Indeed, even when the condition

in Eq. (3.3) does not hold, a stationary state can exist. We will denote this asymptotic limit as

%∞($) = limC→∞ %($,C), where $ is a stationary state of the system. When the system has a

finite number of states, the Markovian nature of the processes guarantees the unicity of the

stationary state [86].

Differently of equilibrium phenomena, in which one can evaluate the partition function of

the system, most dynamical processes in nature are far from equilibrium and we cannot use

the same formulation of the equilibrium statistical mechanics. However, analogous concepts

can be used, such as those of phase transitions and criticality. Before proceeding, it is useful to

define Poisson processes, that form the basis for the modeling of Markovian processes.

3.1.2 Poisson processes and the Gillespie algorithm

In a scenario where we need to count the occurrences of certain events we can define a rate

� such that the probability of an event to happen in a time interval dC is � dC. This type of event

is described by a Poisson process. Let %0(C) be the probability that no event occurred until time

C, and the complementary probability %1(C) = 1 − %0(C) that it did. The ME of this process is

given by

d%0

dC
= −�%0 ,

d%1

dC
= �%0.

(3.4)
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Considering an initial condition %9(0) = � 90, such that no event has happened until time C = 0,

the solution of Eq. (3.4) is

%0(C) = 4−�C , (3.5a)

%1(C) = 1 − 4−�C . (3.5b)

Now let us consider that there are / independent Poisson processes ? = 1, 2, . . . , /, each

happening at a rate �? . The probability that the next event will be ? and that it happens within

the time interval [C + �, C + � + dC] is given by [34]

,(�,?)dC =

no event has occured︷       ︸︸       ︷
©«

/∏
@=1

4−�@�
ª®¬

· �?dC︸︷︷︸
? occurs

=

( �?
'

)
('4−'�)dC

(3.6)

with ' =
∑

? �? being the total rate of transitions. Then, it is possible to split the problem in two

parts: the next event will occur after a time � given by a distribution

%'(�) = '4−'� , (3.7)

where 〈�〉 = '−1, and the event will be ? with probability �?/'. Thus, a set of different Poisson

processes can be described by only one exponential distribution with rate '.

Based on these ideas the GA algorithm is proposed as follows:

1. Build a list with all processes and their respective rates;

2. Select the time step size � from the exponential distribution %'(�) as � = − ln(D)/', where

D is a pseudo random number uniformly distributed in the interval (0,1];

3. Choose the process ? to take place with probability �?/', implement it and update the

state of the system;

4. Increment time as C → C + �;

5. Return to step 1.

In step 2, the value D = 0 must be strictly forbidden since it leads to an infinity time step. With
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this procedure, it is possible to evaluate averages 〈�($)〉 with the same statistical properties as

those given by the original MEs.

3.2 Epidemics in networks as an absorbing-state phase transition

In epidemic spreading, some individuals can be infected and transmit the disease to others

following some rates and interactions among vertices in a network. In closed systems, states

where the disease is eradicated are called absorbing since once one of them is visited, the

dynamics remains frozen in such a state forever, breaking the detailed balance condition.

Therefore, a state without infected individuals is an absorbing one, since infection can only

be produced through interactions involving infected and susceptible pairs and defines a non-

equilibrium process.

3.2.1 Compartmental models for epidemics

Different types of contagion can be described by epidemic processes on complex networks,

such as [2] the propagation of pathogens by physical contact between individuals, like in flu,

Ebola, COVID-19, and other infectious diseases; computer viruses in the internet, with infinite

reproductive capacity and infection patterns similar to biological ones [87]; and spreading of

information, behaviors, rumors, and news on the internet. Information spreading dynamics is

investigated in Chapter 6. All these processes involve agents that spread something by using

a network as substrate and share dynamical properties [6]. In general, we can assume that the

states of each vertex can be given by a finite set of compartments [88–90], describing individuals

that are in the same stage of a disease; see Fig. 3.1. Here we define the most used compartments:

Susceptible (S): vertices that have not been in contact with the pathogen and can be infected;

Infected (I): infectious vertices, that can transmit the disease to its contacts; and

Recovered (R): vertices that were infected before, but are neither susceptible nor infectious.

Rates and rules of interactions that can lead individuals from one compartment to another

depend on the epidemic process considered. Other compartments can be used, improving

epidemic models [90]. We will denote susceptible vertices by S and $8 = 0, infected by I and

$8 = 1 and recovered by R and $8 = 2.
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Figure 3.1: Timeline of an infection, showing the pathogen concentration (shaded area) and
the immunological response (black curve) in different stages by the medical or epidemiological
states of a host. Even when symptoms are shown and the individual is sick, it can be already
recovered by the epidemiological point of view. Figure adapted from Ref. [90].

In this thesis, we investigated processes that have a transition to an absorbing-state, from

which the dynamics do not evolves. A paradigmatic epidemic model exhibiting an absorbing-

state phase transition is the susceptible-infected-susceptible [91] (SIS) model. Its rules are the

following. Vertices can be infected or susceptible. The infected individuals spontaneously heal

with a rate �. An infected vertex 8 can transmit the disease to a susceptible neighbor 9 with a

rate �8 9 = ��8 9 , which means that an infected vertex infects each one of its susceptible neighbors

with rate� irrespective of how many it has. This infection rule has deep impacts on the behavior

of the SIS model. A noticeable one is the absence of a finite epidemic threshold for a PL degree

distribution as the network size goes to infinity [11, 15]. However, thresholds of the SIS model

can still be numerically determined for finite sizes [16, 26]; see Sec. 3.2.4. Investigations about

criticality in the SIS model are made in both chapters of Part II.

It is important to mention that the SIS model is similar to the contact process (CP) in regular

3-dimensional hypercubic lattices. The CP was initially proposed as an interacting particle

system involving self-annihilation and catalytic creation of particles. A vertex 8 can be occupied

($8 = 1) or vacant ($8 = 0). Particles are destroyed spontaneously with rate �, and a particle

in 8 can replicate in a vacant neighbor 9 with rate �8 9 = ��8 9/:8 . Notice that in CP the average

number of infections by unit of time is bounded by�, while in SIS by�:max, where :max diverges

on PL networks, as discussed in Chapter 2. Due to this simple difference, CP and SIS are very

different dynamical processes when investigated in heterogeneous networks.
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3.2.2 SIS dynamics on a star graph

Let us exemplify the GA with the important problem of the SIS dynamics on a star graph,

which is composed by 9 = 1, . . . , : vertices of degree 1, called leaves, connected to a vertex

of degree :, the center, as defined in the previous chapter. The state is determined by the

number of infected leaves and the state of the center. Let %(=,$) be the probability that there

are = = 0,1, . . . , : infected leaves and the center is in either the states $ = 0 (susceptible) or 1

(infected). The transitions and the respective rates are

(=,0) �=−−→ (=,1)

(=,0)
�=
−−→ (= − 1,0)

(=,1) �(:−=)−−−−−→ (= + 1,1)

(=,1)
�
−→ (=,0)

(=,1)
�=
−−→ (= − 1,1).

(3.8)

The ME for this process is a set of 2: equations that we numerically integrated using

fourth-order Runge-Kutta method [92]. This stochastic dynamics can be decomposed into four

independent spontaneous events: a leaf is healed with rate �1 = �=; the center is healed with

rate �2 = �$; the center is infected with rate �3 = �=(1 − $); and a leaf is infected with rate

�4 = �(: − =)$. In Fig. 3.2, we compare the probability distribution %(=,$) obtained using GA
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Figure 3.2: Probability distribution for SIS dynamics on a star graph with : = 100 leaves at
C = 10 for an infection rate � = 0.5 and � = 1. The initial condition is the center infected
and all leaves susceptible. Symbols are GA simulations (107 samples) and lines are numerical
integrations of the ME.
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simulations with the numerical integration of the ME, showing that the results are completely

equivalent, as expected.

3.2.3 Critical exponents

In order to illustrate the epidemic spreading as an absorbing-state phase transition (APT),

let us start with the SIS on an arbitrary graph of size # and adjacency matrix elements �8 9 . The

total infection rate of the network is given by

! = �

#∑
8 , 9=1

�8 9$8(1 − $ 9), (3.9)

while the total healing rate is

" = �

#∑
8=1

$8 = �#I , (3.10)

where #I is the number of infected vertices. Now, let us consider the simple case of an

annealed network with a homogeneous degree distribution%(B) = �B: , that leads to the annealed

adjacency matrix �ann
8 9

= :/# , which is introduced in Eq. (3.9) to obtain a total infection rate

! = �:#I

(
1 − #I

#

)
. (3.11)

Therefore, both total rate of infection and healing of this model are functions of the number of

infected vertices and does not depend on the specific state.

Let %=(C) be the probability that there are = infected individuals at time C and ,=< the

transition rate from a state with = to another with < infected vertices. The time evolution of

%=(C) is given by the ME

d%=

dC
=

#∑
<=0

[%<,<= − %=,=<], (3.12)

with rates

,=,=+1 = 6(=) = �:=
(
1 − =

#

)
(3.13)

and

,=,=−1 = A(=) = �=. (3.14)

The transition rates are zero otherwise.
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Plugging Eqs. (3.13) and (3.14) in (3.12) leads to

d〈=〉
dC

= 〈6(=)〉 − 〈A(=)〉, (3.15)

where 〈 5 (=)〉 =
∑

= 5 (=)%= . Neglecting fluctuations by assuming that 〈6(=)〉 ≈ 6(〈=〉), the

density of infected vertices defined by � = 〈=〉/# evolves as

d�
dC

= (�: − �)� − �:�2 , (3.16)

which is easily solved providing the stationary solution

�s =



�: − �
�:

∼ (� − �c)� , � ≥ �/:

0 , � < �/:
, (3.17)

defining an epidemic threshold �c = �/: and an exponent � = 1. The r.h.s. of Eq. (3.17) defines

a critical exponent � associated with the vanishing of the order parameter. The typical scenario

of an APT is illustrated in Fig. 3.3 in terms of the fraction of infected individuals.

Inactive Active

Figure 3.3: Schematic representation of a standard APT where the absorbing or inactive phase
is characterized by a null fraction of infected vertices while the active has a non-zero value.

For � ≠ �c, the average density approaches its stationary value as [25]

〈�〉 − �∗ ∼ exp

(
− C

�rlx

)
(3.18)

where

�rlx ∼ |� − �c |−�‖ (3.19)

is the characteristic relaxation time, where the exponent �‖ gives the divergence of the relaxation

time near to the critical point. At � = �c, the density of infected individuals asymptotically
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scales as [25]

〈�〉 ∼ C− , (3.20)

where  is another critical exponent [93]. Other exponents also appear in the temporal evolution

of critical spreading processes, with relations for the survival probability %s(C) ∼ C−� and the

number of active or infected vertices #a(C) ∼ C�, for example, which are discussed in Sec. 5.3.3.

The existence of critical exponents describing phase transitions in these systems is not ex-

clusive to APTs. In fact, there are distinct processes that, despite their dynamical and structural

differences, share the same critical behaviors. When different processes have the same set of

critical exponents, they are said to belong to the same universality class. A very important one

is the directed percolation (DP) [25] universality class, of which many processes with APTs,

such as the CP, belong to. There are other critical exponents that will appear throughout this

thesis and scaling relations among them can be derived exploring symmetry properties and

scale invariance [94]. For example, the survival probability %s(C) follows a similar behavior of

Eq. (3.17) for C → ∞,

%s ∼ |� − �c |�
′
, (3.21)

with critical exponent �′. The scaling relation � = �′ holds under rapidity-reversal symme-

try [93]. Other exponents related to the fluctuations of the order parameter � will be introduced

with the aid of the quasi-stationary state. See further discussion of the SIS critical behavior in

Part II.

3.2.4 Quasi-stationary state

Despite of the approximated solution neglecting fluctuations predicted an APT, one can

easily verify that a stationary (normalized) solution of the master equation (3.12) with rates

given by Eqs. (3.13) and (3.14) is %= = �=0, irrespective of � and �. For a finite system, the

stationary solution is unique if ,=< forms an irreducible matrix [86], which is the present case.

So, for finite sizes, this epidemic always visits the absorbing-state at a sufficiently long time

since the unique true stationary state is the absorbing one. This is a universal feature of closed

systems with absorbing-states [25]. Close to the epidemic threshold dynamical fluctuations

become too high and these effects are computationally impossible to be ignored. To overcome

these difficulties, we can use quasi-stationary values: averages are evaluated only using samples

that have not visited the absorbing-state up to a time C.
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To introduce the QS state, consider a Markovian process -∗
C described by MEs. The symbol

∗ is used to indicate that absorbing-states are present in these processes. Representing the set

of absorbing-states by ⊛, we have ,$→$′ = 0 for $ ∈ ⊛. The survival probability %s(C) that the

system does not visit the absorbing-state up to a time C is given by

%s(C) =
∑
$∉⊛

%($,C) = 1 −
∑
$∈⊛

%($,C), (3.22)

and the QS distribution for this process is given by

%̄($) = lim
C→∞

%($,C)
%s(C)

, $ ∉ ⊛. (3.23)

It is important to notice that the QS distribution is already normalized. Summing Eq. (3.1) over

$ ∈ ⊛, for which ,$→$′ = 0, and using Eq. (3.22), we have

d%s

dC
= −

∑
$∈⊛

∑
$′∉⊛

%($′,C),$′→$ ≡ −,∗. (3.24)

Assuming that the QS distribution exists and is unique, and writing %($,C) = %s(C)%̄($) in

Eq. (3.24), we get
1
%s

d%s

dC
= −

∑
$∈⊛

∑
$′∉⊛

%̄($′),$′→$ ≡ −,̄∗ , (3.25)

whose solution is a surviving probability decaying exponentially as %s(C) ∼ 4−C/�, with a lifespan

� =
1

,̄∗
. (3.26)

Now consider a stochastic process -C with identical transitions of -∗
C , except those involving

absorbing-states. So, the ME is modified replacing the summation on $′ ∈ ⊛ by &($,C),̃∗(C):

d&($,C)
dC

=

∑
$′∉⊛

[&($′,C),$′→$ −&($,C),$→$′] +&($,C),̃∗(C), (3.27)

in which

,̃∗(C) =
∑
$∈⊛

∑
$′∉⊛

&($′,C),$′→$ (3.28)

accounts all transitions to absorbing-states, and &($, C) is the new probability function. The

last term in the r.h.s. of Eq. (3.27) means that all transitions to the absorbing-state in the original
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dynamics are redirected to an active configuration proportionally to the probability that the

configuration occurs. A QS solution of the ME (3.1) is a stationary solution of (3.27) as well.

This can be checked by replacing %($,C) = %s(C)%̄($), $ ∉ ⊛, in Eqs. (3.1) and (3.24) to find a

self-consistent equation

%̄($) =

∑
$′∉⊛

%̄($′),$′→$

, ∗
$ − ,̄∗

, $ ∉ ⊛, (3.29)

with , ∗
$ =

∑
$′ ,$→$′ and ,̄∗ given by Eq. (3.25). Making the r.h.s. of Eq. (3.27) equal to zero,

corresponding to a stationary configuration of the modified dynamics, for C → ∞, we find

&̄($) =

∑
$′∉⊛

&̄($′),$′→$

,$ − ,̃∗
, (3.30)

with ,$ =
∑

$′∉⊛,$→$′, ,̃∗ given by Eq. (3.28) as C → ∞, and &̄($) ≡ &($,C → ∞). Equa-

tion (3.30) has the same form of Eq. (3.29), showing that the QS solution of the original ME

is a stationary solution of Eq. (3.27) in the modified dynamics. Note that Eq. (3.27) cannot be

written in the form of Eq. (3.1), and is non-linear, therefore it is not a ME by definition. Other

modified dynamics can be implemented, implying in different types of QS analyses [95].

The average QS density of infected vertices is defined as

〈�s〉 =
1
#

#∑
==1

=%̄= , (3.31)

where %̄= is the QS probability that the system has = infected vertices, computed after a re-

laxation time Crlx during an averaging time Cavg; see Sec. 3.3.3. We also define the dynamical

susceptibility [26] as

" = #
〈�2

s〉 − 〈�s〉2

〈�s〉
, (3.32)

where the averages 〈�〉 and 〈�2〉 are evaluated in the QS state. In some cases we can omit the

subscript “s” and the brackets in Eq. (3.31) when referring to QS quantities. The susceptibility

provides a pronounced peak at the epidemic threshold for networks without outliers [17], as

shown in Fig. 3.4. This is possible because the dynamical susceptibility around the critical point

scales as

" ∼ |� − �c |−� , (3.33)

where � is the associated critical exponent, and can be used as a criterion to locate epidemic
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Figure 3.4: Quasi-stationary (a) susceptibility and (b) density divided and multiplied, respec-
tively, by

√
# (to improve visibility) against infection rate � for � = 1 and different network sizes

indicated in the legends. The network has a PL degree distribution with � = 2.3 and cutoff
:c ∼ #1/�. Note that the susceptibility peak coincides with the point where density becomes
appreciable, indicated by dashed lines.

thresholds [26, 33]. However, in some cases, this is not possible due to, for example, a smear-

ing [96] of the epidemic transition, in which the peaks are not so pronounced; see Chapter 5

for more details. In Fig. 3.4 we used a simple QS method that just prevents the system from

falling into the absorbing-state using a reflecting boundary at = = 0, in which the dynamics

returns to the state that it was immediately before visiting the absorbing-state. The comparison

of different QS methods is performed in Ref. [95].

3.3 Simulations and analysis of epidemic processes

Here we present some details about usual methods used to investigate epidemic processes on

top of networks employing mean-field approaches and computational simulations. The results

from these approximations are compared to the ones in stochastic simulations in Chapter 4.
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3.3.1 Mean-field approximations

Many real and synthetic networks on top of which epidemic spreading happens share the

small-world property, in which vertices of the network are not far from each other. Therefore,

vertices are expected to be subjected to a similar local density of infected neighbors [8, 24].

This property resembles the mean-field assumption where the local field is replaced by the

one averaged over the whole system. For low-dimensional regular lattices, this hypothesis

is strongly violated but becomes precise in higher dimensions [94]. In the other limit, in an

unweighted complete graph the mean-field hypothesis is exact.

We also use the term mean-field when assuming that the states of distinct vertices are

statistically independent [6, 8]. Consequently, pairwise a probability factor as [�8� 9], that is

the probability that a vertex 8 is in state � and 9 in state �, is assumed to be in the form

[�8� 9] = [�8][� 9], where [�8] is the probability that a vertex 8 is in state �, neglecting dynamical

correlations between 8 and 9. These correlations are relevant in quenched networks, since, for

example, a susceptible vertex with a larger number of infected neighbors is more probable to be

infected at a later time. On the other hand, if the connections are rewired at a time scale much

shorter than state transitions, this hypothesis becomes more accurate and is exact for annealed

networks in the infinite size limit.

Consider the SIS model on a heterogeneous graph with adjacency matrix�8 9 . The probability

that a vertex 8 is infected evolves as

d[18]
dC

= −�[18] +
#∑
9=1

��8 9[0819]. (3.34)

This equation is exact [25, 97] but not solvable for general networks since it depends on [0819],

and a dynamical equation for this term depends on triplets and so on. Disregarding dynamical

correlations, it becomes

d�8

dC
= −��8 + �(1 − �8)

#∑
9=1

�8 9� 9 , (3.35)

where �8 = [18] is the probability that 8 is infected. For a quenched network, it corresponds to

the quenched mean-field (QMF) theory [11] where the full structure of the network is included,

but dynamical correlations are not. If we now consider the annealed network limit, in which
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Eq. (2.20) holds, the previous equation becomes

d�8

dC
= −��8 +

�:8
〈:〉 (1 − �8)Φ, (3.36)

where Φ =
∑#

9=1 : 9
� 9

#
is independent of 8. In the stationary limit,

�8 =

�:8
〈:〉Φ

� + �:8
〈:〉Φ

, (3.37)

meaning that the probability that a vertex 8 is infected only depends on its degree :8 in annealed

networks. Indeed, there is a heterogeneous mean-field (HMF) theory [87] where vertices are

compartmentalized according to their degree. Both HMF and QMF theories are discussed in

Chapter 4, with results for both quenched and annealed networks.

Pair quenched [97] and heterogeneous [33] mean-field approximations can also be defined

to make the previous approximations more accurate by breaking triplets as

[�8� 9�;] ≈
[�8� 9][� 9�;]

[� 9]
. (3.38)

See Refs. [33, 97] for more details.

3.3.2 Building algorithms for generic epidemic models

Due to constant inconsistencies among simulations of the same epidemic model on net-

works that are frequently reported, we describe a generic method to perform statistically exact

simulations that can be extended to arbitrary epidemic processes detailed in Ref. [34]. To

build algorithms for generic epidemic models, let us consider an unweighted network with an

adjacency matrix �8 9 where an infected vertex 8 becomes spontaneously recovered at rate �8 ,

transmits the infection to vertex 9 with rate �8 9 and, if recovered, turns again to a susceptible

state (waning immunity [88]) with rate 8 . Here we will consider the general case in which the

three compartments S, I, and R are available.

The algorithms require dynamical lists which are represented by capital calligraphic letters.

In both the standard and optimized GAs for the generic epidemic process, we build and con-

stantly update two listsV(I) andℳ with the positions (labels of the vertices)V(I)
? and recovering

rates ℳ? of the ? = 1, . . . , #I infected vertices. The list updates are simple: the entries of a
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new infected vertex are added in their ends. When an infected vertex is chosen using V(I)

and becomes recovered (or susceptible if 8 = ∞), the last entries of the lists are moved to the

index ? of the selected vertex, and the list sizes are shortened by 1. Similarly, we build and

keep updated the lists V(R) and A, with the positions V(R)
? and rates A? of the ? = 1, . . . , #R

recovered vertices. We also keep updated the total rate that infected vertices are recovered and

that recovered ones become susceptible, which are given by

" =

#∑
8=1

�8�$81 =

#I∑
?=1

ℳ? (3.39)

and

� =

#∑
8=1

8�$82 =

#R∑
?=1

A? , (3.40)

respectively, where �8 9 is the Kronecker delta. The update of " or � is done by adding

(subtracting) ℳ? or A? when a new element is added (removed) in V(I) or V(R), respectively.

Implementation of the Gillespie Algorithm

To implement the GA, we need the listsV(IS) andℒ, with the positionsV(IS)
? of the susceptible

vertices and infection rates ℒ? involving the ? = 1, . . . , #IS edges connecting infected and

susceptible vertices. It worths to remark that a same susceptible vertex 8 will appear =8 times

in the list V(IS), where =8 is its number of infected neighbors. Due to the multiplicity of edges

to be added and deleted from the list every time a change of state occurs, both V(IS) and ℒ are

rebuilt and the total infection

! =

#∑
8 , 9=1

�8 9�$81�$90 =

#IS∑
?=1

ℒ? (3.41)

is computed after each event visiting only the infected vertices and their neighbors with the aid

of V(I).

With these three lists, the steps of GA (cf. section 3.1.2) can be implemented as follows.

The total rate of spontaneous processes is ' = " + � + !. With probabilities < = "/',

0 = �/', and ; = !/' we choose the class of event I→R, R→S, or IS→II, respectively. If the

event is a recovering I→R, one element ? of V(I) is chosen with probability proportional to ℳ?

and the respective infected vertex is recovered. If a waning of immunity R→S was selected,

one element ? of V(R) is chosen with probability proportional to A? and the recovered vertex
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becomes susceptible. Finally, if an infection event IS→II was selected, one element ? of V(IS) is

selected with probability proportional to ℒ? and the susceptible vertex is infected. The time is

incremented by � drawn from the distribution %'(�) given by Eq. (3.7).

The choice of the events proportionally to ℳ? , A? , and ℒ? can be implemented using the

rejection method, in which an event ? is selected with equal chance and accepted with probability

�?/�max where �max is the largest rate in the corresponding kind of event. The rejection is

iteratively repeated until a choice is accepted. It is simpler and usually more efficient to adopt

�max = max
8

{�8}, max = max
8

{8}, and �max = max
8 9

{�8 9} along the whole network instead of to

update this value after every step.

The implementation of the infection events in this GA follows an edge-based while the

healing and waning of immunity use a vertex-based update scheme. Alternatively, all events

could be performed with vertex-based schemes [98] using a rate �8 = �8�$81+8�$82+�$80
∑

9 � 98 .

This approach, which is not considered in this work, is computationally slightly simpler to use

since no list is necessary. However, its simplest version demands to visit the whole network

to compute the rates after every time step, which is computationally prohibitive for very large

networks.

Optimized Gillespie algorithm (OGA)

Most of the computational load in the original GA holds in building the list V(IS). Here, we

describe a strategy that optimizes this step by introducing phantom processes, that do not change

the state of the system but do contribute to time counting. The phantom processes here consist

of infected vertices 8 trying to infect other infected or recovered vertex 9 with the same rate

�8 9 that they would infect 9 if they were susceptible, resulting therefore in no change of state;

see Fig. 3.5. We refer to this algorithm as the optimized Gillespie algorithm (OGA) [34]. The

method is exact by construction because it includes processes that are implemented according

to the GA rules but do not change states neither interfere in the processes that actually do.

We write the total infection rate given by Eq. (3.41) as ! = , − % where

, =

#∑
8 , 9=1

�8 9�$81 (3.42)

is the total infection rate emanating from infected vertices, including the phantom processes,
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Figure 3.5: Examples of (a)-(b) phantom and (c) real infection processes for a pair of vertices
(8 , 9).

and

% =

#∑
8 , 9=1

�8 9�$81[�$91 + �$92] (3.43)

is the total infection attempts due to the phantom processes. The total rate of processes is

' = " + � +, , which is larger than in GA since , ≥ !.

We need now to calculate once at the beginning of and to keep stored along the simulation

the maximal infection that can be produced by each vertex, given by

F8 =

#∑
9=1

�8 9 . (3.44)

The general epidemic dynamics can be simulated as follows. We build and keep updated

the lists V(I), ℳ, V(R), and A defined previously. We also need a list W with the infection W?

produced by the ? = 1, . . . ,#I infected vertices of the list V(I), and the total infection rate

, =

#I∑
?=1

W? , (3.45)

produced by these vertices. The update of W and , follows the same steps of ℳ, ", A, and

� described previously instead of the heavier task of building the list V(IS) and calculating ! in

the original GA. This point is essential for the algorithm efficiency as discussed in Ref. [34].

With probabilities < = "/' and 0 = �/' we perform, respectively, a recovering or waning

of immunity as described for the original GA. With probability F = ,/' an infected vertex is

randomly selected as an element ? of V(I) with probability proportional to W? and let 8 = V(I)
? .

Next, one neighbor 9 of 8 is chosen with probability proportional to �8 9 using the rejection

probability �8 9/�(max)
8

, where �
(max)
8

= max
9

{�8 9}. If the selected neighbor is susceptible, it is

infected. If the selected neighbor is infected or recovered, i.e. a phantom process, no change of
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state is implemented, the time is incremented as in the original GA using ' = " + � +, , and

the simulation runs to the next time step. Note that the frustrated infection attempts reckon

exactly the total rate of phantom processes % given by Eq. (3.43). The values of �(max)
8

need

to be computed once at the beginning of the simulation. Depending on the model, further

simplifications and improvements can be adopted.

The computational time required for the OGA is an order of magnitude smaller than those

to the original GA. With that, we can easily simulate networks with, for example, # = 108

vertices. More details are available in Ref. [34], while the particular application of the OGA for

the SIS model is presented in Appendix A.1.

3.3.3 Decay, spreading and quasi-stationary analysis

Through this thesis, we will refer to some kinds of analyses performed. In some, we

start by considering all individuals infected and observe the temporal evolution of the fraction

of infected individuals decaying in time. In others, we can see how a single individual, or a

small fraction of the network, can spread the disease to the whole network, defining a spreading

dynamics. Finally, we can also perform a QS analysis, without analyzing the temporal evolution

explicitly, looking only at the quasi-stationary behavior.

Decay analysis

In a decay analysis the initial condition is the whole network infected: $8 = 1∀ 8 ∈ [1,#]. The

dynamics evolves by using the SIS model and averages over independent stochastic simulations

samples are computed. The usual quantities are the following:

• Fraction of infected individuals over time: the order parameter� is observed as a function

of time, measuring the number of infected individuals for each time step of the dynamics;

• Survival probability over time: it is defined as the number of dynamical samples for

which #inf > 0 at a time C, denoted by %s(C). In an active state, it approaches a finite value

for C → ∞ and decays exponentially in the absorbing phase.

Spreading analysis

In this analysis, we start with only one or a few vertices infected, while others are susceptible.

Different independent stochastic dynamical samples are run for each vertex of the network. The

measures are similar to the previous ones, and usually the number of infected individuals #(C)

is computed instead of the fraction �(C). In the absorbing phase, we have exponential decays,
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while in the active we can see exponential growths. At the epidemic threshold, we observe

a PL behavior with time, that also happens for curves of survival probability %s(C). Another

interesting measure is of the avalanche size distribution %ava(B). The size B is defined as the

number of vertices that were infected at least once during a spreading dynamics. For more

details about how the structure of networks can affect these regimes, see Chapter 5.

QS analysis

In the two previous analyses, we are interested in the time evolution of � to check if the

curve tends to grow or to decay for a given value of the infection rate �. On the other hand,

in the QS analysis we force the dynamics to avoid the absorbing-state. There are different

methods [95, 99] to do this. One simple way is to use the reflective bound condition (RBC)

method described in Ref. [95] by adding the following rule to the SIS algorithm: if there is only

one infected vertex and a healing process is going to happen, time evolves but the healing is

not implemented. The measured quantities are the dynamical susceptibility " and the average

fraction of infected individuals in the QS state, 〈�s〉. In both cases, averages of � and �2 are

performed after a relaxation time Crlx during an average time Cavg, as shown in Fig. 3.6. These

methods converge to the real stationary state in the thermodynamic limit # → ∞ for both active

and inactive states, since in the former there is no visit to the absorbing-state, and in the latter

� converges to zero.

Figure 3.6: The average of � in a QS analysis is computed after a relaxation time Crlx during an
average time Cavg to evaluate the quasi-stationary values of the order parameter.

3.4 Summary

There are many aspects of APTs not covered in this chapter that can be found in textbooks [25,

93, 94]. For a more complete description of algorithms for computation simulations of epidemic

processes, see Ref. [34]. We will use concepts defined in this chapter in the rest of this thesis,

while other types of analyses specific to some problems are defined in their respective chapters.
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Part II

Criticality in the epidemic spreading on

complex networks



56

Chapter 4

Robustness and fragility of the

susceptible-infected-susceptible model
Related publication:

Robustness and fragility of the susceptible-infected-susceptible epidemic models on complex networks [35]

Wesley Cota, Angélica S. Mata, Silvio C. Ferreira

Physical Review E 98, 012310 (2018)

We propose two types of modifications in the standard SIS model described in Chapter 3,

preserving the central properties of spontaneous healing and infection capacity growing un-

limitedly with the degree. All models have the same mean-field epidemic thresholds, but

stochastic simulations describe different scenarios that depend on the structural properties of

the networks: the SIS threshold can change drastically, or remain robust with the proposed

changes. This study is important since the SIS behavior is not completely understood in com-

plex networks [8], even though it is a basic model for epidemics. If small changes in the model

lead to conflicting results, which would be the actual mechanisms used in models that corre-

spond to real epidemics and which would be the best approaches to analytically investigate

real epidemic processes? Our results suggest that the hub activation mechanism, intensively

investigated recently [9, 11, 15–17, 19, 21, 27, 100], seems to be more a peculiarity than a rule in

epidemic spreading.

4.1 Analytical approximations for the epidemic threshold

The SIS dynamics presents a transition between an inactive absorbing-state to an active

stationary phase, in an endemic state. Since real and synthetic networks are finite, a systematic
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study of the threshold dependence on the network size is a fundamental problem. Analyti-

cally, this can be done through mean-field methods [12], such as the heterogeneous mean-field

(HMF) [2, 6] and quenched mean-field (QMF) [11] theories. For power-law uncorrelated net-

works with exponent �, these theories predict conflicting results for � > 3 [11], and different

asymptotic behaviors for 5/2 < � < 3.

For 2 < � < 5/2, both HMF and QMF theories agree that the epidemic threshold is null in

the thermodynamic limit (# → ∞), while for � > 3 the HMF theory predicts a finite while QMF

a null threshold. The existence of a null threshold predicted by QMF theory is in accordance

with exact results [9, 10] and stochastic simulations [15, 26, 97]. In the interval 5/2 < � < 3,

both theories predict a null threshold, but with different finite-size scaling. It is important to

stress that even the addition of dynamical correlations using pair approximations [12] does not

change this scenario [20, 33, 97].

A criterion based on the mutual reinfection of hubs was developed recently for the SIS

model [15] to understand the nature of the epidemic thresholds in dynamical processes in

complex networks with power-law degree distributions [16]. In Ref. [16], according to this

criterion, when waning immunity [88] is added to the SIS model, a finite threshold is found for

� > 3, agreeing with numerical simulations and in contrast with the QMF prediction. In this

section, we investigate the robustness of this mechanism by modifying the SIS model.

4.1.1 Modifications of the SIS model

In all modified models and the standard one, infected individuals are spontaneously healed

with rate � and have the infection capacity increasing with their degrees. In the standard

SIS, denoted by SIS-S, an infected vertex infects each susceptible neighbor with rate �. In the

modified SIS-T model, infection happens with rate � when a certain number of neighbors of a

susceptible vertex is infected. Here we consider a threshold of at least one infected neighbor.

The second modified model is the SIS-A, a modification of the contact process in which all

susceptible neighbors of an infected vertex are infected simultaneously with rate �. Symbols S,

T and A refer to standard, threshold, and all, respectively. A summary of the rules for each model

is presented in Table 4.1. It is important to mention that the SIS-T model is an asynchronous

version of models investigated in seminal papers [72, 87] about epidemic processes in complex

networks.

All models can be mapped in dynamical processes on top of ordered regular networks with
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Table 4.1: Definition of the epidemic models and some computational implementation details
of the Gillespie algorithm presented in the main text. Symbols: #inf is the number of infected
vertices; #SI is the number of susceptible vertices with at least one infected neighbor; #e is
the number of stubs pointing from infected vertices; and D is a random number uniformly
distributed in the interval (0,1].

SIS-T (threshold) [101, 102] SIS-A (all) [103, 104] SIS-S (standard) [8]

Infected vertices are Infected vertices are Infected vertices are

spontaneously healed spontaneously healed spontaneously healed

with rate � with rate � with rate �

Susceptible vertices become Infected vertices infect Infected vertices

infected with rate � at once all susceptible independently infect

if they have at least one neighbors with each susceptible neighbor

infected neighbor rate � with rate �

GA infection probability GA infection probability GA infection probability

@ =
�#SI

�#inf + �#SI
@ =

�

� + �
@ =

�#e

�#inf + �#e

GA time step GA time step GA time step

� =
− ln(D)

�#inf + �#SI
� =

− ln(D)
(� + �)#inf

� =
− ln(D)

�#inf + �#e

coordination number :: SIS-S is mapped in the contact process [25, 105], in which the infected

vertices transmit with rate �CP = :�SIS. SIS-A was studied in Refs. [103, 104], while T was

investigated in Refs. [101, 102]. All models belong to the DP universality class [25] in these

networks. However, in complex networks a finite-size scaling analysis presented in Sec. 4.2.3

show non-universal exponents for these models.

To understand the microscopic difference between these three models, consider an infinites-

imal time step ΔC and an infected vertex (center) with : susceptible neighbors (leaves); see

Fig. 4.1(a). The probability that B leaves are infected by the center in both SIS-S and SIS-T is

%
(S ,T )
leaf (B) =

(
:

B

)
(�ΔC)B(1 − �ΔC):−B , (4.1)

while in SIS-A

%
(A)
leaf (B) = �ΔC�B: , (4.2)

where �B: is the Kronecker delta. Note that both expressions produce the same average number

of leaves infected 〈B〉 = �:ΔC. The probability that a susceptible center surrounded by B > 0
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Figure 4.1: Some infection processes in the SIS models. (a) An infected vertex (center) with
many susceptible neighbors (leaves). (b) A susceptible center with infected leaves. Transition
probabilities are defined in Eqs. (4.1)–(4.4).

infected leaves, Fig. 4.1(b), becomes infected is given by

%
(S ,A)
center (B) = 1 − (1 − �ΔC)B ≈ �BΔC (4.3)

for SIS-S and SIS-A, while for SIS-T it is

%
(T )
center = �ΔC. (4.4)

Consequently, while the infection of leaves by the center in the SIS-S is equivalent to the SIS-T

model, the infection of the center by leaves in the SIS-S model is equivalent to SIS-A.

4.1.2 Mean field theories and epidemic thresholds

In the HMF theory, dynamical equations describe the probability �:(C) that a vertex of degree

: is infected at a time C. The interaction between a vertex of degree : with a neighbor of degree

:′ is calculated by considering the probability %(:′ |:) that a vertex of degree : is connected to

another of degree :′. Thus, the probability that a neighbor is infected is [87]

Θ: =

∑
:′

%(:′ |:)�:′ ,

taking into account the probability of finding an infected individual over all degrees :′. So,

�:(C) evolves as
d�:

dC
= −��: + �(1 − �:)Ψ:(Θ:), (4.5)

where Ψ:(Θ:) = :Θ: for SIS-S and SIS-A, and Ψ:(Θ:) = 1 − (1 − Θ:): for SIS-T . In the first

two cases, the infection can arrive from : neighbors, multiplied by the probability that they are
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infected. In the latter case, this probability depends on the existence of at least one infected

neighbor, regardless of the others. In all models, the term −��: represents the spontaneous

healing at rate �.

The QMF theory computes the individual probability �8(C) that a vertex 8 = 1, 2, . . . , #

is infected at a time C considering explicitly the network structure by means of the adjacency

matrix �8 9 . In this case, �8(C) evolves as

d�8

dC
= −��8 + �(1 − �8)Ψ8 , (4.6)

where Ψ8 =
∑

9 �8 9� 9 for SIS-S and SIS-A models, and

Ψ8 = 1 −
∏
9

(
1 − � 9�8 9

)

for SIS-T , with the same arguments for the HMF case.

Through stability analysis and linearization of Eqs. (4.5) and (4.6) around the fixed points

�: = 0 and �8 = 0, respectively, we have the same linearized equations for the three models in

both theories:
d�:

dC
= −��: + �

∑
:′

�::′�:′ (4.7)

and
d�8

dC
= −��8 + �

∑
9

�8 9� 9 , (4.8)

where �::′ = :%(:′ |:) is the connectivity matrix. The HMF and QMF epidemic thresholds

are obtained when the leading eigenvalues of their respective Jacobians �HMF
::′ = −��::′ + ��::′

and �QMF
8 9

= −��8 9 + ��8 9 are zero. Note that both �::′ and �8 9 are positive semidefinite and

irreducible matrices, and, by the Perron-Frobenius (PF) theorem [1, p. 346], a real square

matrix with non-negative elements has a positive eigenvalue Λmax such that |Λ| ≤ Λmax for

any other eigenvalue Λ of this matrix. Besides, it guarantees that the associated eigenvector is

non-degenerated and has all elements non-negative. In the limit C → ∞, the dominant term

of �8(C) will be given by the leading eigenvalue Λmax of �::′ and �::′, for Eqs. (4.7) and (4.8),

respectively [106]. When the eigenvalues of the Jacobians are zero, the absorbing-state becomes

unstable and defines a transition to an active state.
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The HMF epidemic threshold is given by [107]

�HMF
c =

�

Λmax
, (4.9)

where Λmax is the leading eigenvalue of �::′ given by

∑
:′

�::′E:′ = ΛmaxE: .

For uncorrelated networks, �::′ = :%(:′ |:) = ::′%(:′)/〈:〉 [108]. An eigenvector is E: = : [6],

which is non-negative, resulting in

∑
:′

:
:′%(:′)
〈:〉 :′ = :

〈:2〉
〈:〉 = Λmax:

implying that Λmax = 〈:2〉/〈:〉. Therefore,

�HMF
c = �

〈:〉
〈:2〉

. (4.10)

Similarly, for the QMF theory, we have [11]

�QMF
c =

�

Λmax
, (4.11)

where Λmax is the leading eigenvalue of the adjacency matrix �8 9 , regardless of whether or not

there are correlations in the network. In many cases we will use � = 1, without loss of generality.

4.1.3 Testing HMF theory using annealed networks

In annealed networks, the edges are randomly rewired at each time step following the

probability %(:′ |:). In this regime the HMF is exact, predicting the epidemic threshold and

density of infected vertices in the thermodynamic limit [24, 71]. Simulations with absorbing-

states near the transition require special techniques [34], like the standard quasi-stationary (QS)

method described in Ref. [95], in which the averaging is constrained to the active states and

converges to the actual stationary phase in the thermodynamic limit. The threshold in finite

networks can be estimated using the principal peak of the dynamical susceptibility " defined

in Eq. (3.32).

Figures 4.2(a) and (c) confirm the agreement between simulations on annealed networks
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Figure 4.2: Comparison of HMF theory and simulations on annealed networks with # = 105

vertices, degree distribution %(:) ∼ :−3.5, minimal degree :min = 3, and upper cutoff :c =
√
# .

(a) QS density and (b) susceptibility versus infection rate curves are shown. Lines in (a) are
numerical solutions of Eq. (4.5) in the stationary regime and the arrow indicates the HMF
epidemic threshold �HMF

c = 〈:〉/〈:2〉. (c) Finite-size dependence of the threshold estimated
via susceptibility and HMF theory. The curves correspond to averages over 10 independent
network realizations.

and HMF theory for the stationary fractions of infected vertices, and epidemic threshold,

respectively, in all investigated models. However, fluctuations in the order parameter are

different, as shown by the susceptibility curves in Fig. 4.2(b). SIS-S and SIS-T models have

similar values before and after the epidemic threshold, but not around it, with the latter having

stronger fluctuations. The SIS-A has larger fluctuations in the whole investigated region of �

since all neighbors of an infected individual are infected at the same time. This effect will be

further discussed in Sec. 4.2.3.

4.1.4 Simulations on quenched random networks

The models were investigated on quenched random networks with power-law %(:) ∼ :−�

degree distributions by using the UCM algorithm [82] with minimum degree :0 = 3 and

structural cutoff :c =
√
# , ensuring the lack of correlations [70]. These networks also allow a

comparison with the HMF threshold predicted by Eq. (4.10). The simulations were performed
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by using particular cases of the optimized Gillespie algorithm [34], whose implementations are

defined in Appendix A.

In Fig. 4.3 we compare the epidemic thresholds found using the susceptibility peaks and

those predicted by the HMF and QMF theories. For � < 5/2, represented by � = 2.3 in

Fig. 4.3(a), all models have approximately the same thresholds well described by both HMF

and QMF theories, which have already been reported for the standard SIS model [26]. Different

results appear when � > 5/2. For 5/2 < � < 3, represented by � = 2.7 in Fig. 4.3(b), SIS-T and

SIS-A models have the same thresholds, whose scaling is very well fitted by the HMF theory

and deviates from QMF. The threshold of the standard SIS-S vanishes with a scaling deviating

from both HMF and QMF theories.
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Figure 4.3: Epidemic thresholds for SIS models on UCM networks with :0 = 3, :c =
√
# , and

different degree exponents (a) � = 2.25, (b) 2.7, and (c) 3.5. Solid and dashed lines correspond
to HMF and QMF theories, respectively. Curves are averages over 10 network realizations.
Negligible error bars in mean-field theories are not shown.

The difference between the models is even stronger for � > 3, represented by � = 3.5 in

Fig. 4.3(c). Again, SIS-T and SIS-A dynamics present a finite threshold in very satisfactory

accordance with HMF theory and contrasting with the standard SIS-S model that presents the

threshold approaching zero as the size increases. Note, however, that the thresholds of SIS-S

have a scaling incompatible with QMF for the investigated size range that cannot be reckoned

by neither pairwise QMF [97] or HMF [20, 33] theories. The latter still predicts a finite threshold,

inconsistent with simulations and the rigorous results [9] for SIS-S.

Pairwise mean-field theories for SIS-S

HMF and QMF theories can be improved by a pairwise approximation, considering the

dynamical correlations between states of neighbors. In the case of the SIS-S with � = 1, the
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pairwise HMF (PHMF) threshold [33] is

�PHMF
c =

〈:〉
〈:2〉 − 〈:〉

(4.12)

for uncorrelated networks, while the pairwise QMF (PQMF) threshold is obtained when the

leading eigenvalue of the matrix [97],

!8 9 = −
(
1 + �2:8

2� + 2

)
�8 9 +

�(2 + �)
2� + 2

�8 9 , (4.13)

is zero. Figure 4.4 compares the PHMF and PQMF thresholds for UCM networks with the

results of stochastic simulations. For � = 2.7, the stochastic simulations are well explained by

PQMF, but not by PHMF. For � = 3.5, both fail to describe the threshold scaling.
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Figure 4.4: Comparison of pairwise approximations with simulations (symbols) for epidemic
thresholds of the SIS-S on UCM networks, given by Eqs. (4.12) [PHMF, solid lines] and (4.13)
[PQMF, dashed lines]. Data correspond to averages over 10 network samples.

4.2 Activation mechanisms in networks

A criterion based on the mutual reinfection between hubs involves the recovering time

(lifespan) �: , which is the time that an epidemic process lasts in a star graph with : leaves

of degree 1, mimicking the hubs of the networks, and the time �(inf) needed for the infection

transmission between hubs. If �: ≫ �(inf), the hubs remain active for enough time to infect

each other, and the epidemic is said to be triggered by the mutual activation of hubs. As a
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result, the epidemic threshold vanishes in the thermodynamic limit, since hubs can keep the

active epidemic state for any value of � > 0. Nonetheless, if �: . �(inf), hubs are not capable

of sustaining the epidemics alone, and a transition to an active state can be triggered only by a

collective activation. As a consequence, the epidemic threshold is finite in this case. To clarify

the antagonistic results for � > 3 and to understand the relationship between the structure of

networks and activation mechanisms of the different SIS dynamics, we consider the recovering

time of the epidemics on star graphs for small values of �.

4.2.1 Approximated expressions for epidemic lifespan on star graphs

To obtain approximated expressions for the lifespan of the SIS models in a star graph with

: leaves, let us consider a discrete time dynamics based on Ref. [16]:

(i) At time C = 0, the center is infected and all leaves susceptible.

(ii) At time C = C1, the center is healed and = leaves are simultaneously infected with probability

%1(= |:).

(iii) At time C = C1+C2, the center is reinfected and all leaves become susceptible simultaneously

with probability %2(=).

The probability that this dynamics survives after these three steps is

& =

:∑
==1

%2(=)%1(= |:), (4.14)

and the probability that the dynamics reach the absorbing-state after the B-th step is &B−1(1−&).

So, the average number of steps is

〈B〉 =
∞∑
B=0

B&B−1(1 −&) = 1
1 −&

. (4.15)

Next, we define the times C8 and probabilities %8 (8 = 1,2) for each model. The steps for SIS-S

are reproduced here from Refs. [15, 16] and used as guides for SIS-T and SIS-A models. Let

C1 = C2 = 1/� be the average time that a vertex takes to be healed. The probability that the

center infects a leaf while it is still infected is ? = �/(� + �) [15], that happens with the same
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probability for each leaf. So, the probability that = leaves are infected at time C = C1 is

%1(= |:) =
(
:

=

)
?=(1 − ?):−= . (4.16)

The time C2 is related to the probability that at least one leaf reinfects the center before

healing and happens with probability

%2(=) = 1 − (1 − ?)= . (4.17)

Inserting Eqs. (4.16) and (4.17) in (4.14), we have

& = 1 − (1 − ?2): ≈ 1 − exp

(
−:�

2

�2

)
, (4.18)

an approximation valid for � ≪ �. Now, inserting (4.18) in (4.15), we have

�S
:
= (C1 + C2)〈B〉 ≈

2
�

exp

(
:�2

�2

)
(4.19)

for the standard SIS dynamics. As a result, exponential growth with the size of the star is

expected.

For the case of SIS-A dynamics, since all leaves are infected at the same time by an infected

center with probability ? = �/(� + �) we have %1(= |:) = ?�=: , while %2(=) does not change.

Then, we have & = ?[1 − (1 − ?):], which leads to 〈B〉 ≈ 1 and the lifespan is

�A
:

= (C1 + C2)〈B〉 ≈
2
�

(4.20)

for � ≪ �, a constant value.

Finally, since in SIS-T dynamics the infection depends on the existence of at least one

infected neighbor, the expression for %1(= |:) is the same of SIS-S, while the probability that the

center is reinfected is %2(=) = ?, irrespective of = > 0. So, 〈B〉 ≈ 1 as in SIS-A. However, since

the infection rate of the center is independent of how many leaves are infected, we should use

the average time for all leaves to be healed instead of the average time for a single leaf to heal.

Considering the healing processes of each leaf as being an independent Poisson process and

neglecting the possibility of reinfections of leaves during this process, the average time for =
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leaves to be healed is

C
(=)
2 =

∫ ∞

0
C
[
=

(
1 − 4−�C

)=−1
4−�C

]
�dC ≈

√
2�
�4

ln = ≈ 0.92
�

ln =. (4.21)

The term between brackets is the probability that one single leaf is infected at time C, �dC is the

probability that it heals at time C, and the saddle point approximation was used to compute the

integral assuming = ≫ 1. So, replacing = by the average number of infected leaves in part (ii),

〈=〉 = ?:, to estimate C2 = 〈C(=)2 〉 ≈ C
(〈=〉)
2 , we obtain

�T
:
≈ 1 + 0.92 ln(?:)

�
≃ 0.92

�
ln : (4.22)

for � ≪ �. The prediction is a logarithmic increase with the star size.

4.2.2 Activation mechanisms of the modified dynamics on quenched PL networks

Now we scrutinize the activation mechanism for all models on quenched networks with

power-law degree distributions with exponent �, whose analytical and numerical thresholds

were presented in Sec. 4.1.4. We have two different regimes, 2 < � < 3 and � > 3, that will be

considered separately in the next sections, discussing the mutual activation of hubs or collective

activation mechanisms on these networks.

� > 3

Figure 4.5(a) shows the lifespan for the three SIS models analyzed as a function of the size

of stars graphs. For the SIS-S model, exponential growth is obtained, as predicted by Eq. (4.19).

However, both SIS-T and SIS-A models present lifespans increasing very slowly with graph

size, consistent with logarithmic growths. In fact, the approximated discrete-time dynamics

presented before result in a logarithmic lifespan for SIS-T , Eq. (4.22), and finite for SIS-A,

Eq. (4.20).

An upper bound for the long-range infection times of hubs of degrees : and :′, denoted

by �
(inf)
::′ , for uncorrelated networks can be obtained, resulting in the same value [15, 16] for all

investigated SIS models, given by

�
(inf)
::′ ≤ �::′ =

1
�

[
# 〈:〉
::′

] 1(�)
, (4.23)
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Figure 4.5: (a) Activity lifespan for epidemic processes on star graphs. The initial condition is
the center infected and all leaves susceptible. The number of runs varies from 103 to 105, the
larger number the smaller �. (b) Mutual reinfection of hubs scaled according to Eq. (4.23). The
degree exponent is � = 3.5, the size is # = 106 and infection rate is � = 0.05. The vertex kept
infected has degree : = 50. The dashed line is the prediction of the right-hand side of Eq. (4.23).

in which 1(�) = ln(1 + �/�)/ln� and � = 〈:2〉/〈:〉 − 1. Even being rigorously an upper bound,

the right-hand side of Eq (4.23) works precisely for � ≪ � and � > 3, such that we can adopt

�
(inf)
::′ ≈ �::′ as done for SIS-S [15] and other epidemic models [16]. This agreement is confirmed

in Fig. 4.5(b) for � = 3.5. The simulation is performed by keeping a single vertex of degree

: = 50 always active, and computing the time the infection takes to reach for the first time each

vertex of the network, up to a maximum time Cmax = 1010. Vertices that were not reached are

not included in the averages but they represent a tiny fraction.

With the approximation given by the right-hand side of Eq. (4.23), we have that �
(inf)
::′ &

�
(inf)
:max ,:max

where :max is the largest degree of the network that scales as 〈:max〉 ∼ #1/(�−1) for

UCM networks with � > 3 [70]. Also, we have that 1(�) is finite since � converges to a constant as

# → ∞ for � > 3, providing an algebraic increase of �(inf)
::′ with # . The condition �(inf) ≫ �

(T ,A)
:

is obeyed such that epidemics in the modified SIS models cannot be activated by hubs when

� ≪ � and a collective phase transition at finite threshold is expected [16] in contrast with

�(inf) ≪ �
(S)
:

of the standard SIS, in which the hub activation mechanism is at work and the

threshold is null in the thermodynamic limit.

2 < � < 3

For � < 3, the hubs are sufficiently close [109] to infect each other even if their activity

lifespans are not too large (exponential) and the threshold goes to zero for all models as # → ∞.
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However, there exists a difference in the threshold scaling for � = 2.7 but does not for � = 2.25.

It has been claimed [13] that the most effective spreaders in an epidemic processes lie in a subset

containing the innermost core of the networks identified by the maximal index of the :-core

decomposition [24, 67]. For SIS-S, this mechanism is claimed to hold for uncorrelated networks

with � < 5/2 but the case 5/2 < � < 3 has activation ruled by the hubs [110]. Since hubs cannot

be activated in isolation for arbitrarily small � in both SIS-A and SIS-T , we propose that the

epidemic threshold should be ruled by the subgraph identified by the maximal :-core for the

whole range of scale-free networks with 2 < � < 3.

To check what happens for SIS-T and SIS-A, we perform simulations in the subgraphs

composed by the maximum :-core and in star graphs of size :max ≈
√
# , the cutoff of the

PL networks considered here. Figure 4.6(a) shows that both SIS-S and SIS-A have the same

activation thresholds in the maximum :-core for � = 2.25 and 2.7, although the star activation

is different. The results for SIS-T are essentially the same for SIS-A. As a consequence, for

� = 2.25 the maximum :-core is activated before the hubs for all models, being responsible for

the endemic state. For � = 2.7, hubs are activated before the maximum :-core only for SIS-S,

while the latter is activated first for SIS-A and SIS-T models.

Figure 4.6: Epidemic thresholds for SIS-S and SIS-A running on (a) the maximum :-core
subgraph of networks with degree exponents � = 2.25 and 2.7, and on (b) a subgraph with the
maximum :-core plus the nearest-neighbor (NN) vertices of an UCM network with � = 2.7. In
(a) the simulation results on star graphs with :max ≈

√
# leaves are also presented. The inset

in (b) shows the fraction of the network that belongs to the maximal :-core including or not its
NNs, and lines are power-law regressions.The averages were done over 10 network realizations.

It is important to stress that the thresholds for � = 2.7 in the entire network are smaller

than those calculated using only the maximal :-core or star centered on the largest hub even

with these subgraphs being associated with the activation of the epidemics. We performed
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simulations in a subgraph with the maximal :-core plus their nearest-neighbors, which still

represents a sub-extensive fraction of the network as shown in the inset of Fig. 4.6(b). The

epidemic thresholds in this subset are essentially the same as those of the whole network for

all models, as shown in Fig. 4.6(b) for SIS-A and SIS-S. The trimming of edges reduces the

epidemic activity in the subset containing only the maximal :-core while the :-core mediates

the mutual interactions among hubs in the activation driven by them. We see that a large

fraction of the network is redundant for the epidemic threshold independently if hub (SIS-S)

or :-core activation (SIS-A and T ) is at work. In both cases, the relevant region to reproduce

the numerical threshold includes the maximal :-core plus its nearest-neighbors.

Returning to the case � > 3, in these UCM networks the :-core structure is given by a single

component containing the whole network [67]. Then, since hubs do not sustain the activity for

� ≪ � in models SIS-T and SIS-A, a collective phase transition involving a finite fraction of the

network is obtained, happening in a finite threshold [16]. Table 4.2 summarizes these results,

together with what is known [16] for the SIRS and contact process [25].

Table 4.2: Activation mechanisms for different epidemic models presenting active steady states
on uncorrelated networks with degree distribution %(:) ∼ :−�.

Model 2 < � < 5/2 5/2 < � < 3 � > 3
SIS-S Max :-core Hub Hub
SIS-T Max :-core Max :-core Collective
SIS-A Max :-core Max :-core Collective
SIRS Max :-core Max :-core Collective
CP Collective Collective Collective

4.2.3 Finite-size scaling of critical quantities

The finite-size scaling (FSS) of the epidemic threshold is fundamental to characterize the

phase transition and critical exponents [25, 94]. The analyses were already done for the SIS-

S [16, 26] model and it is important to investigate what happens in the modified dynamics

on annealed and quenched networks. In this case, we consider that the QS quantities follow

power-laws with the size of the network as

� ∼ #−� and " ∼ #) , (4.24)

where � and ) are the exponents. The analyses were performed both for quenched and annealed

networks. Here we consider a hard cutoff in the degree distribution :c ∼ #1/� for � = 3.5 that
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prevents outliers in the degree distribution and multiple peaks in the susceptibility curves

of quenched networks [17, 26] making, thus, the determination of the transition point much

more accurate. In the other cases, a cutoff :c =
√
# was used. Figure 4.7 shows the results

for simulations and Table 4.3 the estimated exponents by power-law regressions for # ≥ 106.

Uncertainties were calculated using different fit regions aiming at establishing equivalences or

discrepancies between annealed and quenched simulations rather than accurate estimates of

the asymptotic exponents.

Figure 4.7: Finite-size scaling of the critical QS quantities for SIS models on UCM networks
with different degree exponents. The QS densities of infected vertices are shown in (a)-(c)
while the QS susceptibilities are shown in (d)-(f). Data correspond to averages over 10 network
realizations and error bars are smaller than symbols.

The FSS of the critical quantities provides a scenario in consonance with that observed for

the thresholds. The FSS of both SIS-T and A are in full agreement with annealed simulations

showing their mean-field behaviors for all values of � investigated. Moreover, the agreement

between quenched and annealed networks is also found for SIS-S for � < 5/2. For � > 5/2, the

dichotomy for SIS-S is again present. A significant difference in the scaling happens for � = 2.7

and a sharp difference is obtained for � = 3.5. In the latter, we can see a susceptibility curve of

the SIS-S bending downwardly for the quenched network, which has been associated with a

smearing of the phase transition [43], while in the annealed network a power-law typical of an

ordinary critical phase transition is seen. No sign of smearing is observed for SIS-T and A.

The FSS provides different exponents for distinct models. So, despite being described by the

same mean-field equations, the role played by stochastic fluctuations depends on the model.
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Table 4.3: Critical exponents of the FSS for the SIS models on UCM (� and )) and annealed
(�ann and )ann) networks. Exponents for SIS-S with � = 3.5 are missing due to the smearing of
the transition in quenched networks.

Model � = 2.25 � = 2.7 � = 3.5

� �ann � �ann � �ann

SIS-T 0.845(6) 0.84(2) 0.697(4) 0.692(6) 0.55(1) 0.555(3)
SIS-A 0.519(9) 0.517(4) 0.52(1) 0.515(9) 0.499(6) 0.49(3)
SIS-S 0.63(2) 0.655(2) 0.60(2) 0.57(1) — 0.506(7)

) )ann ) )ann ) )ann

SIS-T 0.167(2) 0.169(1) 0.353(1) 0.352(1) 0.458(1) 0.467(3)
SIS-A 0.530(2) 0.528(2) 0.514(1) 0.513(1) 0.494(1) 0.497(1)
SIS-S 0.329(5) 0.329(4) 0.372(1) 0.421(1) — 0.496(1)

4.2.4 Accuracy of the QMF theory and modified dynamics on real networks

We simulated the three models in 102 networks based on a list of Refs. [73, 111]. We also

computed correlations with a measure of the level of heterogeneity of each network, defined

as � = 〈:〉2/〈:2〉, that decreases with the heterogeneity (darker colors in Fig. 4.8). As seen in

synthetic networks, epidemic thresholds for SIS-A and SIS-T tend to agree with each other,

with exception of few networks, as in Fig. 4.8(a). In general, epidemic thresholds of SIS-A are

smaller than those of the SIS-T dynamics, while in some networks they are essentially the same.

(a) (b) (c)

Figure 4.8: (a) Epidemic thresholds for SIS-T and SIS-A models. Comparison between QMF
theory and simulations for (b) SIS-S and (c) SIS-A dynamics. Each point is one of the 102
investigated real networks, and colors are related to their level of heterogeneity � = 〈:〉2/〈:2〉.

Next, we compare the accuracy of the QMF theory for the epidemic thresholds of SIS-S,

in Fig. 4.8(b), and SIS-A in Fig. 4.8(c). In the first case, the QMF theory predicts quite well

the epidemic thresholds of the investigated real networks in the standard dynamics, except

for networks with a lower level of heterogeneity. Finally, for the SIS-A we find a correlation

between the epidemic thresholds predicted by QMF and the ones from simulations, but the

agreement is not good. For further discussions regarding the accuracy of QMF, HMF, and

pair-wise theories on real networks, see Ref. [73].
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4.3 Summary and discussions

The conception of theoretical frameworks for epidemic processes frequently passes over

the model’s fine-tuning due to the belief that universality takes over and all central features,

related to the leading properties and symmetries of a system, will be obtained irrespective of the

specific details. However, this does not seem to be always the case when the substrate carrying

out the process is a complex network. The standard SIS model, called SIS-S in this work, is an

example that behaves very differently from most of other related processes.

We investigated two slightly different versions of this model, presenting exactly the same

thresholds of the SIS-S in both QMF and HMF theories. Stochastic simulations on uncorrelated

synthetic networks, however, show a dual scenario where the three models have essentially

the same vanishing thresholds for � < 5/2 but disparate results are found for � > 5/2. The

dissonance is explained in terms of self-sustained, long-lived activation of hubs for any finite

value of � [15] that holds for SIS-S but does not for the other models.

We also analyzed the activation mechanisms of the epidemic phase on uncorrelated net-

works. While the activation for SIS-S occurs in the innermost, densely connected core of the

network, determined by the largest index of a :-core decomposition, for � < 5/2 and in hubs for

� > 5/2 [110], this happens in the hubs for the whole range of scale-free networks with 2 < � < 3

for SIS-A and SIS-T . The aforementioned dichotomy is also observed in the finite-size scaling

of the quasi-stationary density and susceptibility computed at the epidemic threshold. Agree-

ments between simulations on quenched and annealed versions of the investigated networks

are observed for SIS-A and SIS-T irrespective of the degree exponent. In turn, they deviate

in the hub activated regime with � > 5/2 in SIS-S, being more marked for � > 3 where the

transition observed for quenched networks seems to be smeared [43], in contrast with a regular

critical transition in the annealed case.

An interesting point observed in our analysis is that the HMF theory was more accurate

than QMF theory in all investigated cases, except for SIS-S. Dynamical correlations are ne-

glected in both approaches assuming that the states of interacting vertices, in the case of QMF,

or interacting compartments, in the case of HMF, are independent. This approximation be-

comes more problematic for QMF since we explicitly reckon the interactions with the actual

nearest-neighbors of each vertex and assume that their states are independent. The leading

approximation in HMF is to assume that the probability to be infected depends only on the
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vertex degree, neglecting the local structure of the network. As an effect, HMF theory may

not be able to capture localized activity due to specific motifs as those observed for star sub-

graphs in the SIS-S model. Finally, QMF theory is not a genuine mean-field approach since it

does not present mixing of vertices while HMF does through the degree compartmentalization.

Our results thus reinforces the belief that mean-field approaches with heterogeneous mixing

are suitable approximations for most dynamical processes on networks with a small-world

property.
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Chapter 5

Griffiths phases on non-hierarchical

modular random networks
Related publications:

Griffiths effects of the susceptible-infected-susceptible epidemic model on random power-law networks [43]

Wesley Cota, Silvio C. Ferreira, Géza Ódor

Physical Review E 93, 032322 (2016)

Griffiths phases in infinite-dimensional, non-hierarchical modular networks [44]

Wesley Cota, Géza Ódor, Silvio C. Ferreira

Scientific Reports 8, 9144 (2018)

A fundamental question is why and how a complex system is led to criticality, in which

spatial and temporal correlations diverge [36, 37]. As a very important example, experimental

evidence suggests that the brain operates close to criticality [38, 45, 112–114], with optimization

of information processing capabilities and sensibility to external stimuli as a result of chem-

ical interactions. Simple models on homogeneous substrates [38, 39] have been frequently

used to answer this question with self-organizing criticality [40] or an evolutionary selection

mechanism [41]. In any case, heterogeneities on the networks mediating these interactions are

fundamental in the behavior of dynamical processes, and it is a big challenge to understand

how disorder induced by these heterogeneities affects the critical state.

5.1 Effects of quenched disorder on criticality of complex systems

In condensed matter physics, quenched disorder, with timescales much longer than those

of the dynamics, can lead to the so-called Griffiths phases (GPs) [42] with dynamical criticality

and high sensitivity to external stimuli in an extended parameter space [96]. These phases are
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consequences of rare regions (RRs), that are sub-extensive local and active domains, sustaining

activity for long times. Let us start with an example of this phenomenon in a ferromagnetic

system with quenched disorder.

5.1.1 Griffiths phases on ferromagnetic systems

In a ferromagnetic system, normally there exists a critical temperature )c above which the

spontaneous magnetization does not happen and the free energy is an analytical function of

the temperature ) and magnetic field ℎ. Critical systems can be sensitive to quenched disorder

when its dimension is sufficiently small [96]. In 1969, Griffiths showed [42] that for a diluted

ferromagnetic system in Fig. 5.1, even when the spontaneous magnetization is zero the free

energy continues non-analytical in an extended region of the parameter space called Griffiths

phase. Consider, for example, a 2D lattice (3 = 2) in which vertices can have a spin with

probability @ or a vacancy with probability ? = 1 − @, shown in Fig. 5.1(a). The occupation

fraction @ is fixed and independent of ) and ℎ, defining a system with quenched disorder. As

a result, the critical temperature )c will now be a function of ? (or @). For ? = 0, the critical

temperature is )0
c , the same of the system without disorder, as seen in Fig. 5.1(b). As ? increases

from 0, the system reaches the percolation threshold ?c above which isolated patches of the

original system coexist but are rare, exemplified by the the shaded area in Fig. 5.1(a).

In real systems, the disorder can be represented by vacancies, as in the previous example,

but also impurities and atom position displacement in the lattices. The important fact is that

rare but large fluctuations, in general, can lead to Griffiths singularities close to the original

critical region in the phase diagram, resulting in a GP. In non-equilibrium quantum systems,

for example, these regions can have even stronger effects, such as power-law singularities in the

Paramagnetic

Griffiths

phaseFerromagnetic

(b)(a)

Figure 5.1: (a) Example of a diluted ferromagnetic system. The shaded region does not present
vacancies, in which spins are removed with probability ?. (b) Schematic phase diagram of a
diluted system, presenting a GP. Adapted from Figs. 1 and 2 of Ref. [96].
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free energy or even the destruction of the phase transition [96]. In the previous example, we

can calculate [96] the probability of finding a region devoid of vacancies. A region of volume

!3
RR, being 3 the system dimension, happens with probability

F(!RR) ∼ (1 − ?)!3RR = exp
(
−?̃!3

RR

)
,

with ?̃ = − ln(1 − ?). Although these regions are exponentially rare, their contributions

"RR ∼ exp
(
−?̃13/ℎ

)

for the magnetization are not, even in the paramagnetic phase, where 1 is a constant. In the

following sections, we show that similar effects can also happen with dynamical processes on

complex networks.

5.1.2 Griffiths phases in the epidemic spreading

Heterogeneity is an intrinsic feature of complex networks, in which the process rates are

dependent on the vertices’ properties. In the SIS model, for example, hubs have a larger infection

capacity than the other vertices, representing a kind of disorder in the system. Moreover,

vertices can have different healing rates, whose consequences will be discussed in Sec. 5.3.

This intrinsically disordered nature of networks calls for analogs of GP and RR phenomena.

This issue has recently been investigated [115, 116] and GPs have been found in the contact

process (CP) [105] on finite-dimensional networks. The difference between finite- and infinite

dimensional networks was discussed in Sec. 2.1.2.

To illustrate a Griffiths phase on dynamical processes, consider a spreading process with a

transition between inactive and active phases, such as in the SIS model. The control parameter

is the infection rate �, while the order parameter is the fraction of infected vertices �. A global

active phase exists for � > �c, with non-zero density � for C → ∞ (stationary limit), or zero

for � < �0. Rare regions are responsible for a very slow relaxation for �0 < � < �c, leading to

scale invariance even in the inactive phase (� = 0 for C → ∞ in this case). The susceptibility " is

a kind of response function of the system, with large values when dynamical fluctuations are

high, portraying a high sensibility to external stimuli. This regime constitutes the hallmarks of

a Griffiths phase and Fig. 5.2 shows its qualitative behavior.
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Figure 5.2: Griffiths phases and dynamical criticality on spreading processes. The top graph
shows the stationary density �s as a function of the infection rate �. The order parameter has
a finite value above the critical point �c and goes to zero as � → �c. This density is null for
� < �0. In both cases, the density decays in time are typically given by exponential curves,
with finite characteristic times. The asymptotic density is still null in the critical region, but
the decay is slow, typically described by a power law. The bottom graph shows the dynamical
susceptibility [17, 43] as a function of the infection rate. Fluctuations are finite outside the
critical region, while diverge as it is approached.

5.1.3 Conjectures about Griffiths phases on small-world networks

As discussed in Chapter 4, the standard SIS dynamics is puzzling due to the highly fluctuat-

ing size and the number of hubs realized in a network sample [17, 26, 27, 100] in finite random

networks. Indeed, in the standard SIS dynamics, the effective finite-size epidemic threshold is

finite since : ≪ 1/�2 for sufficiently small values of � and star subgraphs alone cannot sustain

a long-term activity, as discussed in Sec. 4.2.1; see Eq. (4.19). Several network realizations have

just a few vertices with a degree much larger than the rest of the network and these outliers can

sustain localized epidemics, with different activation thresholds for very long times, producing

multiple activations [17].

Neglecting interactions among hubs, Lee et al. [27] predicted that the threshold for an

endemic phase, in which a finite fraction of infected vertices is present, should take place at a

finite value for � > 3, where 〈:2〉 is finite. According to Lee et al. [27], the subcritical region

is ruled by a GP, with an ultraslow (logarithmic) decay of activity, in odds with the rigorous
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results of a null threshold for infinite PL networks [9]. This proposition was supported by

numerical simulations on very large, but finite, random PL networks [17]. Finally, in finite

PL networks, a vanishing epidemic threshold is predicted by the QMF theory [11, 117]; see

Sec. 4.1.2. In such models, Griffiths effects were also shown in the localized phase for � >

3 [118]. RR effects, localization, and heavy-tailed dynamics have also been shown in spreading

models defined on weighted PL networks by suppressing hub infection via disassortative weight

schemes [119, 120], in random networks [121, 122], or aging Barabasi-Albert graphs [121].

There exists a hypothesis based on these spreading models that affirm that heterogeneity be-

comes irrelevant in the thermodynamic limit in the case of networks of infinite dimension [115],

that is the case of small-world networks. In this work, an investigation is done to check if

both the hierarchy and finite dimensions are necessary conditions for GPs. First, we start by

considering an ensemble of independent samples of random networks with power-law degree

distribution. We show that the averaging over many independent graph realizations exhibits a

slow dynamics, analogous to GPs, in an interval of control parameter �1 < � < �2. This region

is delimited by two transitions: The former is related to the activation of the most connected hub

of the network, while the latter is related to a smeared phase transition [96]. In this chapter, we

perform analysis over independent, finite networks and results indicate that this region shrinks

as the size of the network increases and disappears in the thermodynamic limit, implying the

absence of GPs. This is in agreement with the conjecture that finite dimensionality is required

for the existence of GPs [115]. However, we also investigate these effects in weakly intercon-

nected networks, forming a non-hierarchical modular structure, and find robust GPs that seem

to hold in the thermodynamic limit. This discussion is presented in Sec. 5.3.

5.2 Independent power-law networks with cutoffs

To investigate the Griffiths effects and their relation with the presence or not of outilers we

considered three different cutoffs :c for the degree distribution: :c = # (free), :c = :0#
0.9/(�−1)

(hard) and :c =
√
# (structural). The first one, also called natural cutoff, leads to degree

distributions in which both the average and the standard deviation of the highly fluctuating

natural cutoff diverge as #1/(�−1) [17]. Conversely, the second one is engineered to render

distributions without very large gaps in their tails of the degree distribution, since the factor

0.9 guarantees that
√
〈:2

max〉 − 〈:max〉2/〈:max〉 → 0 as # → ∞ [17]. The structural cutoff is not
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fluctuating and guarantees the absence of degree correlations for � < 3 and becomes equivalent

to the absence of a cutoff for � > 3 and # → ∞ [70]. Figure 5.3 shows the qualitative behavior

of %(:) for different cutoffs and values of �. Graph edges are generated randomly, forbidding

multiple and self-connections, and using the configuration model defined in Sec. 2.3.2. All

simulations were performed for :0 = 3. Three ranges of the degree exponents were considered

separately: � > 3, for which localization is conjectured by the QMF theory; � < 5/2, where

delocalized [27] or a :-core [110] epidemic spreading activation are predicted; and 5/2 < � < 3

strict SF regime, where localization is conjectured by the QMF theory [100, 110]. It is important

to stress that in this and next chapters we only consider the standard SIS-S model investigated

in Chapter 4.

k

P
(k

)

γ = 2.3

(a)

k

γ = 2.7

(b)

k

Free
Hard
Structural

γ = 3.5

(c)

Figure 5.3: Qualitative behavior of curves for degree distributions considering different cutoffs
(indicated in legends) and exponents (a) � = 2.3, (b) 2.7, and (c) 3.5. Note that the presence of
outliers is common using the free cutoff, while the hard cutoff is able to omit them.

We performed both standard (over time) and quasi-stationary (QS) analysis; see Sec. 3.3.3

for details. Differently from previous analysis of SIS on SF networks [11, 15, 17, 26], we aim

at the average behavior of a large number " of independent realizations. Firstly, we start

performing a time-dependent analysis and discuss an optimal fluctuation theory in Sec. 5.2.3

and a finite-size analysis in Sec. 5.2.4. Later, in Sec. 5.2.5, we present the results and discussions

for the QS analysis.

5.2.1 Time-dependent analysis

In the decay analysis, 10 to 100 independent runs were performed for each network, being

the largest number of runs used for the smallest values of the infection rate. In this section, we

discuss the results for the time-dependent analysis on networks with the different cutoffs by

starting from a fully infected initial state.
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Free cutoff

Simulations for networks with free cutoff are shown in Fig. 5.4. We observe an extremely

slow logarithmic decay in an extended region of the control parameter �. For � = 3.5, the decay

is very well fitted by

� ∼ (ln C)2−� . (5.1)

For � = 2.7, in the SF regime with large fluctuations on the degree distribution, we also see

a logarithmic decay � ∼ (ln C)−, with a varying exponent  that is not quantitatively well

described by Eq. (5.1). The origin of the logarithmic decay given by Eq. (5.1) is related to the

presence of the outliers in the network and will be analytically discussed in Sec. 5.2.3 using an

optimal fluctuation theory.
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Figure 5.4: Decay of density of infected vertices for networks with a free upper cutoff (:c = #)
using (a) � = 3.5 and (b) � = 2.7 for networks with sizes # = 107 and # = 105, respectively.
The number of samples were up to " = 500 and 4000 for � = 3.5 and 2.7, respectively. Lines
are predictions of the optimal fluctuation theory in Sec. 5.2.3. The values of � are indicated in
the legends.

Hard cutoff

The localization of the QMF theory for � > 5/2 is concentrated around the largest hub [123].

So, the role played by the hubs can be evidenced by damping their number and fluctuations.

Evolution of the density of infected vertices for a hard cutoff of %(:) is shown in Fig. 5.5 for

� = 3.5 and 2.7. The data indicate PL decay with non-universal exponents at long times for

both degree exponents. Regressions fits: � ∼ C−(�) at � = 3.5 resulted in  varying from 0.70

to 0.17 by increasing � from 0.088 to 0.095. Similar range of exponents were found for � = 2.7,

varying � from 0.030 to 0.0365.
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Figure 5.5: Decay of density of infected vertices for (a) � = 3.5 and (b) � = 2.7 for networks
of sizes # = 107 and 105, respectively, using hard cutoff :c = :0#

0.9/(�−1). The numbers of
independent networks are " = 500 and 4000 for � = 3.5 and 2.7, respectively. The values of �
are indicated in the legends.

Structural cutoff

We also simulated the density decay in networks with the structural cutoff :c =
√
# with

� < 3 since otherwise it is equivalent to the natural one. This cutoff leads to the uncorrelated

configuration model (UCM) [82], that has been used in many analyses of SIS on SF networks [11,

15, 26, 27, 97, 110]. Power-law decays in time are still observed, but the extended region is

reduced compared with hard cutoffs, see Fig. 5.6.
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Figure 5.6: Decay of density of infected vertices for (a) � = 2.7 and (b) � = 2.3 for networks of
size # = 105 using structural cutoff :c =

√
# . The values of � are indicated in the legends.

5.2.2 Sample-to-sample fluctuations

The origin of the observed slow decays is the sample-to-sample fluctuations, rather than the

occurrence of rare regions in the same network. In Fig. 5.7 we present the decay of the density

for 50 networks with all parameters fixed to values for which slow decays are observed in

the averaged curves. Several curves are subcritical, while others behave super-critically before



5. Griffiths phases on non-hierarchical modular random networks 83

Figure 5.7: Sample-to-sample fluctuation of the evolution of SIS on PL networks: (a) � = 3.5,
# = 107, free cutoff, and � = 0.04; (b) � = 3.5, hard cutoff :c = :0#

0.9/(�−1), # = 107, and
� = 0.09; (c) � = 2.3, structural cutoff :c =

√
# , # = 105, and � = 0.026. Curves for 50

independent networks are shown. Thick lines represent the average of " = 500 and 2000
samples for � = 3.5 and 2.3, respectively. Three samples in (c) are highlighted with symbols
and discussed in the main text.

falling into the absorbing-state. There exist two main mechanisms for this large variation, and

the leading one depends on � and the cutoff used.

For a free cutoff, Fig. 5.7(a), the size of hubs fluctuates greatly and the presence of outliers,

creating local active domains, determines if the dynamics goes to a metastable state in that

sample. In the cases of hard or structural cutoffs, Figs. 5.7(b) and (c), respectively, these

fluctuations are smaller and another mechanism takes place, which is the variation of the

overall heterogeneity of the network. This can be measured by the average degree of the nearest

neighbors of the vertices :nn. For the structural cutoff case this becomes :nn = 〈:2〉/〈:〉 [70]

(UCM network), whose inverse provides a very precise estimate of the SIS epidemic threshold

for � < 5/2; see Sec. 4.1.3.

Density decays for networks with � = 2.3, using a structural cutoff, are shown in Fig. 5.7(c).

Three samples highlighted with symbols possess 〈:〉/〈:2〉 = 0.0270, 0.0243, and 0.0235, and

the larger values the lower densities. These values must be compared with the infection rate

� = 0.026 used in all samples. We see that samples for which 〈:〉/〈:2〉 . � are supercritical and

those where 〈:〉/〈:2〉 & � are subcritical. An optimal fluctuation theory to explain these slow

dynamics is presented in the next section.

5.2.3 Optimal fluctuation theory

The hypothesis drawn in Sec. 5.2.1, in which the slow decay is originated from sample-to-

sample fluctuations of the effective thresholds in finite-size networks can be put in a mathemat-
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ical grounds by approximating the sample average with an integral

�̄ =

∫ �

0
�(�,�c)P(�c)4−C/�(�,�c)d�c. (5.2)

Here, �(�,�c) is the quasi-static density as a function of � > �c (� ≡ 0 for � < �c), �(�,�c) is

the lifetime of the dynamical processes and P(�c) is the probability density that a randomly

selected sample has a threshold at �c.

We assume that in a free cutoff network with � > 5/2 the activation happens at the most

connected hub [110]; see Table 4.2. Consider a star subgraph, centered on the vertex of maximal

degree :max, which forms an independently activated domain in a network with # vertices.

Using QMF theory, the threshold in such a star graph is �c ∼ 1/
√
:max [26, 97]. The density in a

star of size : is1 �star ≈ � for � & �c, implying that

� ≈ �:max

#
. (5.3)

The lifespan of the activity in a star in case of SIS dynamics is given by Eq. (4.19) in the previous

chapter, or simply � ≈ �0 exp
(
0�2:max

)
where 0 and �0 are constants. Finally, the probability of

a given threshold is P(�c)3�c = Π(:max)3:max, where

Π(:max) ≃ # exp
(
−2#:

−�+1
max

)
:
−�
max (5.4)

is the probability of the largest degree to be :max in a PL network with # vertices [70]. Here 2

is a constant depending on %(:). Plugging Eqs. (5.3)-(5.4) into Eq. (5.2), we obtain

�̄ ∼ �

∫ ∞

1/�2
:
−�+1
max exp

(
−2#:

−�+1
max

)
exp(−C/�)d:max. (5.5)

If 1/�2 ≫ #1/(�−1), then the exponential suppresses the integral and a standard subcritical phase

with exponential decay is expected. For 1/�2 . #1/(�−1), the first exponential is approximately

1. After an integration by parts this integral can be easily evaluated using the saddle-point

method to return �̄ ∼ (ln C)2−�, exactly the result of Eq. (5.1). This decay is the same found by

Lee et al. [27], in a theory of SIS dynamics for infinite PL networks, with non-interacting hubs.

This predicts ultraslow decay instead of a stationary endemic state, contradicting the exact result

of the null epidemic threshold for SIS irrespective of � [9] and a question is why our simulations

1The actual density in a star must increase a � ∼ ��star , where �star > �QMF = 1.
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match this theory. The assumption that stars form independent domains of activity is incorrect

in principle, since the lifetime of epidemics on stars can be sufficiently large to permit mutual

infection of hubs, even if they are not directly connected due to the small-world property [15, 16].

However, several stars that contributed to the average epidemic activity in our simulations are

observed in different realizations of networks and are thus actually independent, being the

reason for the agreement.

In the SF regime at � = 2.7 the QMF still predicts localization, but there is a high probability

that several activated hubs occur in the same network sample even if their size is finite. Thus

neglecting the multiplicity of activated hubs as well as the interaction among them [15] is not

a quantitatively accurate approximation but it can capture the essentially logarithmically slow

dynamics observed in simulations.

In case of hard cutoff, we do not know the form of P(�c). Since the fluctuations of �c

depend on global properties of the networks, we assume their distribution to be Gaussian,

with width �(#) and centered at �0(#), tending to a delta function at � = 0 as # → ∞,

in conformity with numerics. Less is know about the lifespan. Numerically, we have data

consistent with � ∼ exp
[
0(� − �c)2

]
, where 0(#) is some function increasing with the size that

we could not determine precisely. Plugging these forms into Eq. (5.2) and using the saddle-

point approximation to solve the integral we found �̄ ∼ C−1/20�2
. This is a non-universal power

law, in agreement with the density decay simulations, as far as 0�2 is a non-universal constant.

5.2.4 Finite-size analysis

The slow dynamics observed in the ensemble averages is not a genuine Griffiths singularity,

since it is not triggered by the slowly decaying RRs; thus we can expect that these effects

disappear in the thermodynamic limit. This conjecture is confirmed for a hard cutoff in Fig. 5.8,

where we show the density of infected vertices against time for different sizes for a fixed infection

rate� = 0.088. We see that the dynamics is deeply subcritical, with exponential decay of activity,

for # = 106. For size # = 107 a PL regime can be observed but, finally, a saturation to a constant

plateau develops at # = 108. The disappearance of the PL regimes is mainly associated with

the shift of the epidemic threshold towards zero as the size increases [26, 97]. The threshold

drops from approximately 0.12 for # = 106 to 0.075 for # = 108. Similar finite-size effects were

observed in the CP on weighted trees [119] and the same mechanism shown here is probably also

present there. The CP also exhibits strong finite-size dependence of the thresholds, approaching
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Figure 5.8: Finite-size analysis of the density decay against time for networks with � = 3.5 and
hard cutoff :c = :0#

0.9/(�−1) for infection rate � = 0.088. The number of network samples is 100
for the two largest sizes and 500 for the others. The network sizes are indicated in the legend.

the asymptotic value only at exceeding large networks [32, 33]. Moreover, the range of � where

PLs are observed decreases as # → ∞ (see also Sec. 5.2.5), thus Griffiths effects disappear in

the thermodynamic limit for an ensemble of independent networks.

5.2.5 Quasi-stationary analysis

Using the free and hard cutoffs on a single network with degree exponent � > 3 we find

multiple activations as � is varied due to independent activation of different regions with

different thresholds [17]. One transition happens with a vanishing threshold predicted by QMF

theory �1 ∼ 1/
√
:max associated to the most connected vertex with degree :max. A second

transition was associated with the mutual activation of hubs [15] at a value �2. Again we tackle

this problem by performing averages over different network realizations.

Figures 5.9(a) and (b) compares the QS density against � for degree exponent � = 3.5 with

either free (left) or hard (right) cutoffs for networks of different sizes. The average QS density is a

double sigmoid, a non-monotonically increasing function of �, which indicates two activations.

At a standard clean # dependent critical point, the logarithmic derivative of the QS density

scales as [124]
d ln �

d�

����
�c

∼ !1/�⊥ , (5.6)

where ! is the system size and �⊥ is a critical exponent associated with the divergence of
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Figure 5.9: Finite size analysis of the QS state for networks with � = 3.5. The [(a) and (b)] QS
density �, [(c) and (d)] log-derivative of �, and [(e) and (f)] dynamical susceptibility are shown
for free (left) and hard (right) cutoffs, respectively. The number of samples were at least " = 50.
The network sizes are indicated in the legend.
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the correlation length. This log-derivative can also be used to identify multiple transitions in

epidemic spreading in networks [17] in association with the dynamical susceptibility ", defined

in Sec. 3.2.4. The latter quantifies the relative fluctuations of the order parameter as shown in

Fig. 5.9(e-f).

The log-derivative of the density is shown in Figs. 5.9(c) and (d), while the susceptibility is

shown in Figs. 5.9(e) and (f). Averages over the ensemble of networks wipe out the multiple

transitions of single networks, leading to two observable transitions at thresholds�1 and�2 > �1.

These correspond to the peaks of the log-derivatives and susceptibility; the latter is less evident

for �1. Notice, that the double transition identified with the hard cutoff in the log-derivative

analysis starts to emerge as a shoulder in the susceptibility curves of the largest size investigated.

The threshold at �1 can be seen in the susceptibility curves for natural cutoff only for very large

sizes and is manifested as a shoulder for the other cases, including hard cutoffs.

For the free cutoff, a QS density �free ≫ 1/# , the minimum value allowed in a QS simulation,

is observed in the interval �1 < � < �2. This resembles a smeared phase transition [96] and

the interval coincides with the region, where Griffiths effects are found in the density decay

analysis. We attribute this smearing to the presence or absence of outliers in different samples.

In the case of hard cutoff, the suppression of outliers leads to weaker smearing with a density

1/# ≪ �hard ≪ �free. In a standard smeared phase transition, patches having high-enough

dimensions can exhibit ordering transition independently. In principle outliers, represented

by stars, are high-dimensional objects, which could be activated independently. So the basic

ideas of smeared transitions are fulfilled. However, outliers plus their neighbors provide a

vanishing fraction of the network and give a vanishing contribution to the global density in the

thermodynamic limit.

The finite-size analyses at thresholds �1,2 are shown in Fig. 5.10. The left threshold, de-

termined via the log-derivative, decays consistently with QMF theory and, for � > 5/2, scales

as �1 ∼ 1/
√
:max ∼ #−0.5/(�−1) or #−0.45/(�−1) for natural and hard cutoffs, respectively. This

coincides with the activation of the star graph centered at the most connected vertex of the net-

work [11]. The position of the right peak of the susceptibility, which agrees with the right one

of log-derivative curves, goes slowly to zero as �2(#) ∼ #−0.09 in the investigated interval while

the density evaluated at �2 follows a power law �c(�2) ∼ #−0.65. These scaling laws are, within

uncertainties, independent of the cutoff. However, both response functions, log-derivative, and

susceptibility, saturate with the size, confirming a smeared transition at �2. The susceptibility



5. Griffiths phases on non-hierarchical modular random networks 89

10
3

10
4

10
5

10
6

10
7

N

10
-2

10
-1

λ
i

free - λ
2

hard - λ
2

free - λ
1

hard - λ
1

10
3

10
4

10
5

10
6

10
7

N

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

ρ
c
(λ

i)

10
3

10
4

10
5

10
6

10
7

N

10
1

10
2

χ
c
(λ

i)

(a)
(b)

(c)

Figure 5.10: Critical quantities against networks size for � = 3.5: (a) threshold, (b) critical
density, and (c) critical susceptibility at � = �8 . Solid lines are PL regressions while the
dashed lines are �1 ∼ #−0.2 and #−0.18 predicted by the QMF theory for free and hard cutoffs,
respectively.

at �1, for free cutoff, increases as "c ∼ #0.23, which is again consistent with the activation of the

most connected vertex: For a star with :max leaves we have approximately " ∼ (:max)0.55 (using

data from Ref. [97]) and given that :max ∼ #1/(�−1), we obtain an exponent, which is close to

0.23, observed in the simulations.

The peaks at finite values of �, observed in single networks [17], are wiped out and are

not evident when averages are done. In Ref. [17] networks with up to # = 108 vertices were

simulated while here we analyzed until # = 107 and performed larger ensemble averaging. So

our results do not definitely discard other transitions for higher sizes but no indications of them

were observed in the investigated size range.

Analyzing the behavior for # = 107 with free cutoff and � = 3.5, we found � ∼ ��, where

� ≈ 2.8 with �1 < � < �2. Running the dynamics only on the star centered on the most

connected vertex by permanently immunizing the rest of the network, we found �star ≈ 2.0 < �.
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This means that the mutual activation of hubs is relevant in the interval �1 < � < �2, leading

to an exponent larger than that of a single star centered on the most connected vertex. The

estimate � ≈ 2.8 for � = 3.5 is inside the rigorous bounds found by Chatterjee and Durret [9]:

� − 1 < � < 2� − 3.

5.3 Griffiths phases on loosely coupled networks of modules

There is evidence that brain networks, for example, are heterogeneous and contain mod-

ular and hierarchical structure, in which the modules are also composed of modular sub-

substructures in different levels [45, 125, 126]. This fact inspired Moretti and Muñoz [127]

to investigate the activity spreading in hierarchical modular networks of finite dimension, in

which Griffiths phases are observed [128, 129], conjecturing that the brain criticality could be

explained by the quenched disorder. The empirical organization of biological networks is highly

complex and subjective [45] and, therefore, it is not completely clear whether real brain net-

works in a cellular level are actually hierarchical [130]. Moreover, long-range connections can

reduce drastically the network dimension, even consisting of subextensive fractions [131, 132].

Furthermore, modular graphs without hierarchical structure are observed in diverse important

systems such as socio-technological [46, 47] or protein interaction networks [48], but the exis-

tence of extended critical regions due to the quenched disorder on such systems has not been

considered extensively.

To our knowledge, no investigation has been done to scrutinize whether the hierarchy is

a necessary condition for the emergence of GPs. This section aims to fill this gap, using sim-

ulations of activity spreading models on non-hierarchical modular structures. As seen in the

last section, optimal fluctuation theory and simulations provided extended critical regions on

heterogeneous networks of finite size constrained to averages over independent network sam-

ples. This inspired us to investigate the dynamical behavior of the continuous-time Markovian

SIS model on a loosely coupled network of modules. We found extended control parameter

regions with non-universal PL decays of activity in time, which are size-independent, calling

for the existence of real GPs in infinite-dimensional, but loosely connected modular structures.

Thus, our results point out that we can relax the requirement of hierarchical organization and

large-world [115, 127] for the existence of GPs on modular networks, although these factors

certainly enhance RR effects.
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5.3.1 Infinite dimensional and non-hierarchical modular networks

We generated modular networks based on the benchmark model of Lancichinetti, Fortunato,

and Radicchi [133]. Consider 6 = 1, . . . , " modules where the size (6 of each group is drawn

according to a distribution &((6). At a vertex level, the degrees are drawn from a distribution

%(:) with : ∈ [:0 ,:c] where :0 and :c are lower and upper cutoffs of the degree distribution,

respectively. The maximal number of intermodular edges connecting vertices of different groups

is predefined as :[out]
6 and, in general, can depend on the module 6. By construction, this model

produces highly modular networks if the number of intermodular connections is much smaller

than the intramodular one, which was confirmed by the calculation of the modularity coefficient

&mod, defined in Sec. 2.1.4, using the Louvain community detection algorithm [69]. Figure 5.11

shows examples of modular networks with different levels of intermodular connectivity. For

:[out] ≪ ", we find &mod ≈ 1, confirming the modular structure.

Figure 5.11: Examples of modular structures. Networks with " = 10 modules of same size
( = 200 and number of intermodular connections (a) :[out] = 10 and (b) 100 representing loosely
and densely connected modular graphs, respectively. The network degree distribution is given
by %(:) ∼ :−2.7 with :0 = 3 and :c = 14 for the lower and upper bounds cutoffs, respectively.
Connected modular structures can clearly be observed. Vertices in a same community are
plotted with the same color and their sizes are proportional to the vertex degree. The graph
was generated using Gephi visualization tool [134].

The network is generated as follows:

i) The number of stubs2 of each vertex is drawn according to the degree distribution %(:).

ii) Two stubs are randomly chosen. If they belong to the same group, a new edge is formed.

If not, an edge is formed only if the maximal number of intermodular connections in both

groups is not exceeded.

iii) Multiple or self-connections are forbidden.

2Stubs are edges that are not connected yet; see Sec. 2.3.2.
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iv) The process is iterated until all stubs are connected or it becomes impossible to form new

edges without multiple or self-connections.

v) The unconnected stubs are removed. We study only the largest connected component

(LCC) which, in the present study, contains almost all vertices of the network.

The number of removed stubs is a tiny fraction (less than 0.02% of the stubs) and does not play

any relevant role in the network properties that will be shown in Fig. 5.13 and Table 5.1.

Introducing topological disorder on modular networks

Complex networks are intrinsically disordered by the presence of heterogeneity in the

connectivity of its elements. Examples of networks with a topological disorder were shown in

Sec. 5.2, in which vertices follow a PL degree distribution with exponent �. This heterogeneity

can also happen in the level of the size of communities given by the distribution &((6). Here,

we define two classes of networks to introduce topological disorders:

Monodisperse Modular Networks (MMNs): all modules have the same number of vertices

and inter-modular connections. So, (6 = ( and :[out]
6 = :[out] .

Polydisperse Modular Networks (PMNs): the modules size distribution is given by &((6) ∼

(
−)
6 , consistent with empirical networks [133]. The upper bound size is limited by the

system size ((6 ≤ #), while the lower one is chosen such that 〈(6〉 has a predetermined

value. The intermodular connection :[out]
6 is chosen proportionally to (6 , limiting at

:[out]
6 ≥ 2 to guarantee connectivity [5].

The MMN case is similar to the idea of connecting the different networks used in Sec. 5.2.

In all investigated cases, the values 〈(6〉 = 103 and 〈:[out]
6 〉 = 5 were used for comparisons. Since

we have two levels of connectivity, one for the modules and the other for the vertices, we also

define a network of modules. In this case, we treat modules as vertices, in which modules 6

and ℎ are connected if one vertex of 6 is connected to ℎ. In Fig. 5.12 we show one example of the

usual network, formed by connections between vertices, and the network of modules obtained.

We determined the average clustering coefficient and the average shortest mean distance [5]

for both vertex and module networks. Structural properties of these modular networks are

shown in Fig. 5.13. The clustering coefficient, averaged over the whole network, saturates at a

small finite value as the network size increases (see Fig. 5.13(a)). This is a natural consequence
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(a) (b)

Figure 5.12: Example of (a) network of vertices and (b) network of modules. The network in (a)
is transformed in (b) by treating each module as a vertex and edges are formed when an edge
exists between vertices of different modules. Note that we consider the network of modules as
an unweighted network. Vertices in (a) belonging to the same module have the same color.

of the modular organization of the network that forces vertices to be connected mostly within

the modules which are of finite size and thus the probability to form triangles is not negligible.

The clustering coefficient of the network of modules vanishes as 〈�〉 ∼ "−1 in the cases of

) = 4.0 and MMNs, while it vanishes as 〈�〉 ∼ "−1/2 for ) = 2.5. Hierarchically organized

networks are clustered with coefficient independent of the size [75]. So, the analysis of Fig. 5.13

shows the lack of hierarchy in the modular networks of our investigation.

For the presented modular networks, the average shortest path increases logarithmically
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Figure 5.13: Structural properties of modular networks. (a) Clustering coefficient and (b)
average shortest path as a functions of the number of modules. Open symbols correspond
to the vertex network, while the closed ones represent the network of modules, in which the
modules are themselves treated as vertices connected by the intermodular edges. Lines denote
(a) power-law or (b) logarithmic regressions. In monodisperse modular networks (MMN), all
modules have the same number of vertices ( = 〈(6〉. Networks with module size distribution

&((6) ∼ (
−)
6 are obtained by fixing the minimal size (min such that the chosen average size is

obtained. The parameters are 〈:[out]
6 〉 = 5, 〈(6〉 = 103, � = 2.7, :0 = 3, and :c = 58; see main text.

The averages were performed over 25 independent networks.
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with the size as shown in Fig. 5.13(b) and Table 5.1. So, the investigated networks have infinite

dimensions besides the lack of hierarchy.

Table 5.1: Logarithmic regressions for the average shortest distance in modular networks.
We analyzed both the original vertex network and the one where modules are considered as
vertices connected only by the intermodular edges. Correlation coefficient of the regressions is
A2 > 0.999 for MMN and ) = 4.0, while A2 = 0.99 for ) = 2.5. The parameters are 〈:[out]

6 〉 = 5,
〈(6〉 = 103, � = 2.7, :0 = 3, and :c = 58; see main text. The averages were performed over 25
independent networks.

Vertex networks Module networks
MMN 〈;〉 = 2.35 + 3.19 ln(") 〈;〉 = −0.22 + 0.71 ln(")
) = 4.0 〈;〉 = 3.67 + 2.88 ln(") 〈;〉 = 0.37 + 0.61 ln(")
) = 2.5 〈;〉 = 7.91 + 1.35 ln(") 〈;〉 = 1.73 + 0.272 ln(")

Intrinsic disorder by defining different healing rates

SIS dynamical simulations were performed for networks with topological disorder (MMNs

and PMNs) and for networks with intrinsic disorder. In the latter case, we considered %(:) = �:4

in which all modules are composed by random regular networks (RRNs) [135], while the healing

rates �8 for each vertex 8 were randomly chosen with equal chance between binary values 1 − &

or 1 + &, and the infection rates are the same (�8 = �). In order to see the finite-size effects, we

considered networks of size # ≈ "〈(6〉, with " = 103 , 104 and 3 × 104, with 〈(6〉 = 103.

5.3.2 Decay analysis

We show the density decays for a given realization of a MMN for three models of disorder in

Fig. 5.14. Similar results were found for the other analyzed network realizations (up to 20). For

the topological disorder, a finite-size analysis increasing the number of modules is presented

in Fig. 5.14(a). The curves reveal non-universal PLs in the 0.089 ≤ � < 0.12 extended region,

which does not change within statistical error margins as the number of modules increases from

" = 103 to 3 × 104. Thus, contrary to the case of SIS on non-modular PL networks (Sec. 5.2),

we see a GP behavior. It is important to mention that the critical regimes hold for intermediate

times since the networks are still finite. Furthermore, the analysis provides numerical evidence

that the transition point is also size independent. The case of strong intrinsic disorder given

by & = 0.9, shown in Fig. 5.14(b), also presents an extended region of critical behavior with

non-universal PLs preserved as the sizes are increased. It is worth noting that the SIS dynamics
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Figure 5.14: Density decay on a single MMN. (a) Decay analysis for SIS with topological disorder
introduced by a degree distribution %(:) ∼ :−2.7 and :c = 58. The numbers of modules are
" = 103 (dotted lines), " = 104 (dashed lines), and " = 3×104 (solid lines). (b) Decay analysis
for SIS with intrinsic disorder (& = 0.9) on MMNs of sizes " = 103 (dashed lines) and " = 104

(solid lines) where the modules are themselves RRNs. (c) SIS decay without intrinsic disorder
(& = 0) on a single MMN of " = 103 modules, each one consisting of a RRN. (a-c) Legends
indicate the values of � and (c) exponents of the dashed and dotted curves.

on MMNs without intrinsic or topological disorder (�8 = 1), shown in Fig. 5.14(c), does not show

GPs and the critical behavior is given by � ∼ C−1/2, instead of a regular mean-field decay [94]

� ∼ C−1. This was also found in generalized small-world networks for which the GP shrank to

a very narrow region [116]. We also investigated weaker intrinsic disorder using & = 0.5 and

observed GPs in several networks realizations, as in Fig. 5.15(a), but in others they were weak

or absent, as in Fig. 5.15(b). However, when we performed disorder realization averaging, GPs

became evident for both values of &, as seen in Fig. 5.15(c).

We investigated the effects of module size dispersion considering PMNs with topological

disorder only. These exhibit the same truncated PL for degree distribution and average sizes of

modules as those of MMNs to permit a comparison. In Figure 5.16(a), we show extended regions

of � with PL tails in the density time decays for ) = 4.0, which corresponds to a heterogeneous,

but finite variance distribution. These results seem qualitatively similar to those of the MMN
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Figure 5.15: SIS decay with intrinsic disorder of strength � = 0.50 on a single MMN with
" = 103 modules and with uniform degree distribution %(:) = �:4 (modules are random
regular networks). The infection rates are shown in the legends. We show two different
disorder realizations, fixed for all dynamical samples, which (a) does or (b) does not exhibit GP.
(c) When a new disorder realization is generated for each dynamical sample, the average leads
to GP on extended scaling law regions in the interval 0.265 / � / 0.275. 100 to 500 dynamical
runs were used to compute averages.

case. Finite-size effects are stronger, but a GP occurs in the interval 0.095 < � < 0.115, which

is narrower than in the monodisperse case. Noticeably, GPs are not observed for the scale-free

case with ) = 2.5 shown in Fig. 5.16(b), in which modules of essentially every size may appear.

A finite variance of &((6) reduces the RR effects in comparison with MMNs, since some large

modules have many intermodular connections :[out] ≫ 〈:[out]〉 reducing their independence. For

an infinite variance, the situation becomes drastic. A single module can contain a considerable

large fraction of the whole network and alone rules the critical dynamics of the system becoming

equivalent to the non-modular case [43, 120, 121]. Once we have established under which

conditions of module size variability the GPs are robust, in the rest of the section we consider

only the case of MMNs, stressing that the central conclusions are the same as in the case of a

finite variance in the module size distribution.
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Figure 5.16: Density decay for SIS with topological disorder on a single PMN. The module size
distributions with exponents (a) ) = 4.0 and (b) ) = 2.5 are shown. The finite size analysis is
done using " = 103 (dotted lines), 104 (dashed lines), and 3 × 104 (solid lines). Other network
parameters are given in text and the values of � indicated in the legends.

5.3.3 Spreading analysis

Fig. 5.17(a) shows the number of active vertices as a function of time in spreading simulations

on a MMN. For regular dynamical criticality, this quantity is expected to evolve as #a(C) ∝ C�.

One can see non-universal PL tails in a range similar to the one found in the density decays,

including a similar exponential cutoff for long times due to the finite size of the networks.. The

survival probability curves, %s(C), defined in Secs. 3.2.4 and 3.3.3, exhibit a very similar behavior

[Fig. 5.17(b)] with the same exponents as those of the �(C) decays at a given � within the critical

region, expressing that the rapidity reversal symmetry [94, 136] is unbroken by the quenched

disorder. This symmetry implies, for example, that the asymptotic probability (C → ∞) to find

one infected vertex at a randomly chosen location is weakly dependent on the initial condition

or, more precisely, �(C) ∝ %s(C).

Due to the extended interval with PLs and the corrections, it is hard to estimate the transition

point location and the time decay functional form accurately. Simple PL fitting results in

%s(C) ∝ C−� with � = 0.42(1) at �c ≃ 0.12. Assuming a scaling in the form %s(C) ∼ ln(C/C0)−�̃, as

in case of the absorbing-state phase transition with strong disorder in lower dimensions [137],

we could obtain �̃ ≈ 5. Neither of these is in agreement with the regular mean-field behavior

obtained for absorbing-state phase transitions with quenched disorder in high dimensions [138].

We applied an alternative method [116], which assumes that the leading correction to the scaling

comes from the same scale C0 in the critical behaviors of%s(C) and#a(C). Plotting ln[#a(C)] against

ln[%s(C)], transition point curves must fit on a straight line. As Fig. 5.17(c) shows, this allows an
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Figure 5.17: Spreading analysis for SIS on a single MMN. Only topological disorder is intro-
duced as a truncated PL %(:) ∼ :−2.7 with :c = 58. Finite size analyses of the (a) number of
active vertices and (b) survival probability are done with " = 103 (dashed lines) and 104 (solid
lines) modules. (c) Determination of the transition point in a double logarithmic plot of #a(C)
vs %s(C) for " = 104 modules. Infection rates � are indicated in the legends.

estimate for the transition point �c = 0.1195(2), in which the slope is 0.53(2).

We also determined the avalanche size distributions %ava(B) in spreading simulations. The

size of an avalanche is defined as the total number of vertices B activated during a spreading

experiment. The results for " = 103 can be seen in Fig. 5.18. Power-law behavior occurs for

the 10 < B < 106 region with a variation of the exponent as a function of �. A PL fitting for the

0.1 ≤ � ≤ 0.1215 region results in %ava(B) ∝ B−� with 1.20 ≤ � ≤ 1.52, which encloses mean-

field exponent of the directed percolation class (� = 3/2) [139]. Curiously, this mean-value is

consistent with reports for activity avalanches observed in the brain [112, 140, 141]. However, it

is important to remember that other mechanisms can explain the exponent [38] � = 3/2. On the

other hand, since the spreading and decay exponents depend on �, the same should happen for

�, as the consequence of the scaling relation � = (1+�+2�)/(1+�+ �) for absorbing-state phase

transitions [139]. Indeed, the 3/2 exponent also appears in the avalanche mean-field exponents

of many models and several universality classes [136]. However, in our case, the universality
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Figure 5.18: Avalanche-size distributions for SIS spreading in a single MMN with a topological
disorder and " = 103 modules. Different values of � are indicated in the legends, and simple
PL tail fits are also shown.

class seems to be different, since the 3/2 exponent is found within the GP, while at the critical

point �c ≈ 0.12 the measured � is smaller.

At a first glance, the results presented up to this point are at odds with the conjecture that

infinite-dimensional networks cannot sustain real GPs [115]. Strictly speaking, one may argue

that the finite module sizes in the monodisperse case imply that RR lifespans can be huge, but

bounded and thus the observed PLs correspond to very strong Griffiths effects, differing from

real GPs in the sense that they disappear in the thermodynamic limit. However, we also found

size-independent GPs in the polydisperse case with ) = 4.0, where this size restriction does

not apply. To understand this, we express the typical (c for which at least one module of size

( > (c is present as

"

∫ ∞

(c

&(()d( ∼ 1 ⇒ (c ∼ "1/()−1) , (5.7)

implying that the sizes of the largest modules diverge as their number is increased. The same

result can be deduced more rigorously using extreme-value theory [70].

In general, the critical dynamical regions found are robust as # is increased and have similar

sizes to the ones found in hierarchical networks [127–129]. Besides, for MMNs the scaling regime

improves as the network size is increased, as seen in the slope analysis in Fig. 5.19(a). Lastly,

it is important to stress that the results were found for single networks realizations, without

averages as in Sec. 5.2 for independent networks.

The mechanism of GPs formation can be explained by the SIS model nature and the weak

connections between modules. In the case of topological disorder, the SIS activity is concentrated
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Figure 5.19: (a) Local exponent analysis for activity decay in MMNs with " = 104 (lines) and
3 × 104 (symbols) modules. The local exponent is defined as eff = −d(ln �) /d(ln C). After an
approximately constant interval, the exponents become large, indicating an exponential decay.
As the number of modules increases, exponential tails show up for larger times. (b) Lifespan
distribution for individual modules in a SIS dynamics in a single MMN with " = 3 × 104

and � = 0.116, inside a GP. This distribution is evaluated by using bins of size Δ�ls = 10.
(c) Comparison between SIS decays for modules of a single MMN interconnected (solid lines,
:[out]
6 = 5) and disconnected (dotted lines, :[out]

6 = 0) with " = 104 modules. The parameters are
the same used previously. Averages were done for 100 to 500 dynamical samples, depending
on �, whose values are indicated in the legends. The interconnected case has larger activity
densities due to the long-range activation of the SIS model [9, 15, 16].

in localized domains, but sub-extensive, as around the hubs or maximum :-cores, as discussed in

Chapter 4. However, connections between modules are random, resulting in a small probability

of connecting highly active regions. So, randomness results in variability of the modules,

producing lifespan distributions with high heterogeneity, as shown in Fig. 5.19(b), following a

power-law %(�ls) ∼ �−0ls , with 0 ≈ 1.8. This analysis was made by computing exponential decays

as a function of time for each module, with � ∼ 4−C/�ls for C > 20.

Active vertices in a large fraction of these modules are therefore short-lived and, from the

point of view of the spreading process, behave as if they were removed. The remaining network

that sustains the long-term activity can be approximated by isolated or weakly coupled patches,
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providing an effective zero-dimensional substrate for the activity spreading. In Fig. 5.19(c)

we compare simulations performed on a MMN with interconnected, and disconnected with

" = 104 modules. The latter is the same kind of analysis performed in Sec. 5.2. One can see

that GPs are even stronger in the former case, showing that connections between modules are

important and modify decay profiles.

5.4 Summary and discussions

Random, scale-free networks exhibit strong, quenched inhomogeneities, and therefore rare

region (RR) effects can be expected to play an important role. To see RRs of arbitrary sizes we

should simulate arbitrarily large system sizes or performing sample averages over many inde-

pendent network realizations. The latter way is not equivalent to the former one in scale-free

networks. In models defined on networks with infinite topological dimensions, a recent hy-

pothesis states that Griffiths phases cannot exist [115] and another important result for infinite-

dimensional networks with power-law degree distributions is that SIS does not exhibit a phase

transition at finite � [9]. Real networks, on the other hand, can be very large but are always

finite. Therefore, numerical analysis of different sizes is of great importance.

Here we presented extensive simulations on networks generated with the configuration

model using free (fluctuating) and structural or hard (non-fluctuating) degree cutoffs. We

focused on statistics over a large ensemble of networks. Contrary to the results obtained on

single network realization, where multiple activations were observed [17], we observe that

the network ensemble averaging exhibits Griffiths effects in an extended region of the control

parameter �1(#) < � < �2(#), which diminishes as network size increases and disappears in

the thermodynamical limit. These Griffiths effects are due to sample-to-sample fluctuations,

producing non-self-averaging within the shrinking critical dynamical region, rather than the

existence of RRs of actual Griffiths phases. We also observe the occurrence of a smeared

transition, with saturated fluctuations of the order parameter at�2. Our findings can be relevant

if we consider independent realizations as graphs occurring in a sequence of uncorrelated,

time-dependent networks at a given time and we measure quantities in the long-time average.

Alternatively, such results can describe the behavior of systems in which power-law degree

distribution in modules make up a very weakly coupled network.

Indeed, we have analyzed the activity spreading of the SIS model in loosely connected,
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non-hierarchical modular networks and observed extended regions of non-universal scaling

behavior for topological [Figs. 5.14(a), 5.16(a), and 5.17] and intrinsic [Figs. 5.14(b) and 5.15(a,c)]

disorders, using density decay and spreading analyses. The interval of the control parameter

with a dynamical critical region, which was robust under finite size analysis, showed size

similar to previous studies on hierarchical networks [127–129].

To summarize, our analysis reveals the existence of stable GPs on small-world, thus infinite-

dimensional substrates, conditioned to be sparsely connected in a modular structure, as an

alternative for the origin of criticality on modular systems. The hierarchical modular networks,

where GPs were previously observed [127, 128] are loosely connected. Hierarchy plays an

important role, by increasing the distances between the modules, thus enhancing GPs, but it

is not a necessary condition. The brain criticality hypothesis via GPs raised by Moretti and

Muñoz [127] is strengthened by our results since building connectome networks [45, 130, 142] is

far from being trivial and the hypothesis of hierarchy in the modular organization of the brain is

not fully accepted. In particular, the very restrictive condition of finite dimension is fragile due

to the presence of long-range connections. The model we used, conceived to be simple, allowed

us to address this specific issue which would not easily be accessed in a real brain network. We

expect that our results, which were not conceived for a specific system, will be important for

the investigation of criticality in other modular systems beyond brain networks.
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Part III

Models and applications on directed

social and metapopulation networks
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Chapter 6

Quantifying echo chamber effects over

political communication networks
Related publication:

Quantifying echo chamber effects in information spreading over political communication networks [49]

Wesley Cota, Silvio C. Ferreira, Romualdo Pastor-Satorras, Michele Starnini

EPJ Data Science 8, 35 (2019)

Social networks in the internet form a substrate for information propagation with unprece-

dented capabilities, in which users are at the same time producers and consumers of content,

allowing an almost instantaneous and unmediated propagation, as in Twitter1 and Facebook2.

Their emergence in the last few years changed the way people behave, decide, opine, and make

choices [143]. These networks are several orders of magnitude larger than those traditionally

available in the social sciences [144], defining the field of computational social science [145]. In

this chapter, we reconstruct a political communication network gathering data from Twitter fo-

cusing on discussions about the impeachment process of the former Brazilian President, Dilma

Rousseff. Protests and manifestations both in favor or against Rousseff left important digital

fingerprints in social networks, involving a large set of individuals in a period of almost one

year. We investigate how the political position of users affect information diffusion across the

network.

6.1 Online social networks

Data containing the content and interactions on Twitter are available with a very detailed

level of information. Each message or tweet sent on Twitter has details such as the users involved

1Online social network available at https://twitter.com/.
2Online social network available at https://facebook.com/.
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(author and users mentioned), geographical information, and the exact moment in which it was

posted with a precision of milliseconds. Different from the static networks studied in the last

chapters, we consider explicitly the time dimension in these Twitter networks, investigating the

effects of the temporal dimension on the information spreading. Hashtags, which are words

introduced by a hash symbol # , are used to define topics or even sentiments about a subject.

In the impeachment process of Dilma Rousseff, for example, users used hashtags in favor,

against, or related to the discussion. By analyzing the content of tweets containing hashtags,

we can classify the interactions between users expressing different sentiments and quantify the

so-called echo chamber effects.

6.1.1 Echo chambers in social networks

Online communications networks are marked by their degree of homophily, the property

that individuals prefer to interact with others similar to them, sharing views and opinions [146–

148]. This leads to a natural polarization in groups or communities with different perspec-

tives [149, 150]. Mutual interactions of these users can create echo chambers [50], which are

composed of users reinforcing their beliefs discussing with each other. With the large availabil-

ity of data on online social networks, it has been possible to analyze social polarization and echo

chambers in big datasets in different contexts, such as US and French elections [151], secular

vs. Islamist discussions during the 2011 Egyptian revolution [152, 153], or the 15M movement

in Spain during 2011 [154].

Echo chambers have been shown to percolate to the offline realm [155], to be related to

the spreading of misinformation [156, 157], or the development of ideological radicalism [158].

Recent studies, however, have challenged the impact of echo chambers and partisan segregation

in communication networks over online social media [159, 160]. In this work, we collect data

from Twitter to study echo chamber effects in discussions about politics in Brazil.

6.1.2 Obtaining data from Twitter

The Twitter social network allows anyone with a developer account to collect data via an

Application Programming Interface (API) in real-time filtering by keywords (hashtags or not),

users, or geographical location [161]. With this, a large amount of data can be extracted to

reconstruct large communication networks to quantify polarization and echo chambers. Users

can send and receive texts in form of tweets, containing at most 280 characters. All tweets are
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updated in real-time, without the need for approval, on the authors’ pages. Special characters

define interactions, mentioning users by prepending @ to their usernames, or a topic tagging

by using a word starting with # , defining a hashtag. Figure 6.1 shows a hypothetical example

of a tweet created by a user user1 mentioning user2 and using a hashtag #CésarLattes .

Every time a user is mentioned in a tweet, she/he is warned by the Twitter platform. Hyperlinks

are created for each mentioned user and used hashtags, allowing individuals to see the personal

pages of others and a list of tweets containing the same hashtag in reverse chronological order.

Some of these hashtags can become “trending topics”, meaning that many users are using them

at the same time interval.

User 1

@user1

Replying to @user2

"Everything I did is not worth a Mozart 
symphony." #CésarLattes

1:59 PM - 25 Feb 2015

Follow

Figure 6.1: An individual with username user1 mentions another user user2 ,
and tag her/his tweet with a hashtag #CésarLattes , highlighted in blue
as hyperlink. Users can follow others by clicking in the “Follow” but-
ton. In this example. the Twitter API returns the tweet’s content as
@user2 “Everything I did is not worth a Mozart symphony.” #CésarLattes .

Users can follow other users on the platform, receiving their tweets in a single web page

with the latest tweets, even when they are not mentioned by others. Each tweet, whether self-

authored or not, can be retweeted, replicating the message to her/his followers. In this case,

the API platform returns a text containing RT @ followed by the username of the author of

the original tweet. Note that a retweet can be considered as a kind of implicit mention. It is

important to mention that Twitter has recently implemented new interactions like quotation,

that were not considered in this study.

Individuals registered on Twitter have only two privacy choices: to keep their profile public,

meaning that anyone, registered or not, can see her/his tweets; or having a private profile,

allowing only her/his followers to see their tweets. As of 2019, Twitter stated it had 330 million

monthly active users, and more than 85% of American users keep their profile public [162].

Therefore, public tweets can be collected on large scale without violating privacy policies. In

this work, we collected tweets published between March and December 2016 by using keywords

related to the impeachment process of Dilma Rousseff [163]. Table 6.1 shows the 323 keywords
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Table 6.1: List of the 323 keywords used to collect tweets related to the impeachment process
of Dilma Rousseff between March and December 2016.

13marbrasilnasruas 13marco 13marco2016brasilnasruas 13marcobrasilnasruas 13marcoeunaovou 13marcoeuvou

13marcoouvamosouelevolta 13mareuvou 16ago 16agosto 16deago 16deagoeuvou

16deagosto 17abrilpovonasruas 17deabril 18marco 18mareuvou 31jul

31juleuvou 31julho 31julhoavantebrasil 31julhoconfirmado 31julhoeuvou 31julhopelobrasil

31julvamos 31mar 31mareuvou acaboudilma acordabrasil adeusquerida

aecio aeciogolpista aeciomedroso aecionacadeia aquempertenceaescola autorizaplanejamento

avantetemer bandidoviraministro bhnasruas bolsomito bolsonaro bolsonaro2018

boratemer brasilapoialavajato brasilapoiatemer brasilcontraogolpe brasilcontrastf brasilianasruas

brasilnasruas brasilpaisdeladroes brasilsempt brazilnocorrupt cadeia2ainstancia caixa 2

caixa2 camara camarasempt censuranuncamais cinegolpista constituicao

contraogolpeedia18 contrapec contrapec241 corrupcao coxinhaco culturapelademocracia

cunhagolpista cunhanacadeia democracia democraciaja deputados derrubargolpenasruas

desejoprotemer desligaogolpe desligatv dia13mareuvou dia16 dia17abril

dia17impeachment dia18 03 dia18 e nossavez dia18 nossavez dia18nossavez dia31juleuvou

dia31vaisermaior dilma dilmabandida dilmacaixa2 dilmacaradarenuncia dilmaculpada

dilmafeiaobrasilteodeia dilmafica dilmaguerreira100 dilmais dilmajaera dilmanaomerepresenta

dilmanovamente dilmanuncamais dilmare diretasja diretasja2018 ditaduratemer

eduardocunhagolpe eduardocunhagolpista eleicoesgerais esquentagrevegeral estamostodoscomlula eugritomoro

euquerodilmapresa euquerolulapreso felizaniversariomoro ficadilma ficalula ficaquerida

ficatemer fimdopt forabandidos foracomunismo foracoxinhas foracunha

foradilma foragolpistas foraladrao foralula forapt foraserra

forastf foratemer foratemerolimpico foratemerrio2016 fueratemer globogolpista

golpe golpeaquinaopassa golpeday golpenao golpenuncamais golpista

golpistasday grevedia29 grevegeral impeachment impeachmentday impeachmentdilma

impeachmentja jantardotemer jantartemer jucagolpista lavajato lewandowskipetralha

libertemzedirceu ligacaodilma ligacaolula lula lula2018 lulaacabou

lulacasacivil lulacovarde luladenunciado lulaestamoscomvoce lulaestamoscontigo lulaeuconfio

lulaeudefendo lulaeurespeito lulafica lulagolpista lulaisworththefight lulala

lulaladenovo lulalidermundial lulalixomundial lulaministro lulaministroja lulanacadeia

lulanacadeiaja lulanapapuda lulanuncamais lulapajaula lulaperseguidopolitico lulapersiste

lulapresidente lulapreso lularesiste lulareu lulavalealuta lulavergonhanacional

lulavolta lutarsempre lutepelas10medidas lutodilma lutopelademocracia lutopelobrasil

lutopt lutosempre mandato marchadascoxinhas marchadoscorruptos marchadoscoxinhas

mastenhoconviccao mblgolpista mexeucomlulamexeucomigo micheltemer mobilizacaototal moralistassemmoral

moropresidente mortadeladay mudabrasil naoaogolpe naovaitergolpe naovouprarua

nenhumdireitoamenos novaeleicao novaseleicoes obrigadompf ocupabh ocupabrasil

ocupabrasilia ocupabrazil ocupacopacabana ocupaolimpiada ocupapaulista ocupario

ocuparj ocupasaopaulo ocupasp ocupatudo ocupatudocontraogolpe ouvaiouelafica

ouvaiouelevolta ouvamosouelafica ouvamosouelevolta ouvocevaiouelafica panelaco passadilma

pec 241 pec 55 pec215 pec241 pec55 pecdamorte

pecdofimdomundo pelademocracia petrobras pl2431 11 planalto pmdbgolpista

povocomlula presaledopovo psdb psdbteupassadotecondena pt ptacabou

ptdesmoronando ptexit quedadoplanalto quedaplanalto queremosdilmare renangolpista

renantemealavajato renunciadadilma renunciatemer renunciedilma respeiteasurnas rippt

rjnasruas saotodosgolpistas senado senadores sessaodoimpeachment simpeloimpeachment

somostodosgolpistas somostodoslula somostodosmoro somostodospt soscoupinbrazil soupt

souptpq souptsoudilma souptsoulula spnasruas standwithlula stf

stopcoupinbrazil tchaudilmavez tchauquerida tchauqueridaday teimadilma temer

temereglobounidosnogolpe temergolpista temergolpistafrouxo temerjamais temermelhorquept thauquerido

tocomdilma tocomlula todoscomdilma todoscomlula todosnasruas31julho todosruadia13

vaiadilma vaiterforatemersim vaiterimpeachment vaiterlula vaiterlulasim vaiterluta

vaitervaia vamostirarobrasildovermelho vazatemer vemprademocracia vemprarua vemprarua13mar

vemprarua17abril vemprarua18mar vemprarua31jul vemprarua31julho vempraruabrasil voltadilma

voltadilmapresidenta voltalula voltaquerida vomitacojantardotemer votacaoimpeachment

used to collect tweets. A Python library called Twython [164], version 3.4.0, was used to make

the connection to the Twitter API and all usernames were anonymized before any analysis.

During the data collection, protests, and important events occurred, with messages ex-

changed on Twitter about these issues. Table 6.2 and Fig. 6.2 show some of these events and

their activity on Twitter, respectively. All the data were filtered by using a procedure that will

be discussed in the next sections. A total of 48 212 722 tweets were collected, and 12 322 322 of

them contained at least one hashtag. The number of tweets with hashtags collected for each

day is shown in Fig. 6.2. As expected, this activity is not constant over time, varying every day,
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Figure 6.2: Activity of tweets with hashtags collected as a function of the day. High activity can
be observed around some events, reported in Table 6.2, which are indicated by arrows. The high
activity in November 9th coincide with Trump’s victory in USA election which is, in principle,
not related to the process we are investigating. This peak disappears when we consider only
the strongly connected component of the communication network; see Sec. 6.2.2.

with peaks associated with important events described in Table 6.2. The maximum number of

tweets containing hashtags collected on the same day was more than 500 thousand on April 17,

2016, when the impeachment process was approved.
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Table 6.2: Some important dates and events during the impeachment process of President
Dilma Rousseff, indicated by arrows in Fig. 6.2. The sentiment of the majority of interactions
(belonging to the strongly connected component of the political communication network, see
Sec. 6.2) collected on that day is shown in the rightmost column.
Date Event Activity

Sun Mar 13
Biggest street manifestation against the government spread out in

more than 250 cities.
−1

Wed Mar 16
Supreme court permits the constitution of a commission on the

chamber of deputies
+1

Tue Mar 29
MDB (Brazilian political party “Movimento Democrático Brasileiro”)

left the government
+1

Sun Apr 17 Deputy chamber approves impeachment with 367 votes against 137 +1

Thu May 12 Rousseff leaves the presidency after Senate approval −1

Mon May 23 Audio of Senator Romero Jucá saying "Estancar a sangria" +1

Fri Jul 29 Rousseff delivers final arguments in the Deputy chamber −1

Mon Aug 29 Rousseff’s defense in Senate +1

Wed Aug 31 Senate approves impeachment with 62 to 20 votes +1

6.2 Reconstruction of political communication networks on Twitter

After the data collection, a filtering procedure was developed to reconstruct the network of

interactions of users discussing the impeachment process on Twitter. In this section, we describe

all these procedures, starting with the classification of hashtags by different sentiments, then

filtering out tweets not relevant for the process, and in the end, a network based procedure to

ensure paths of information between any pair of users.

6.2.1 Classification of hashtags

Hashtags can be used to define the political position of users [165]. In this work, we assign

to each hashtag C one of four sentiments BC :

i) not related to the impeachment process (BC = ×),

ii) pro-impeachment (BC = −1),

iii) anti-impeachment (BC = +1), or

iv) neutral and/or related (BC = 0).

The last one includes tweets whose sentiments are not clearly polarized but are related to or

represent both political positions. We performed a manual classification of tweets containing

these hashtags [150, 153, 166, 167]. Considering a list with 495 most frequent hashtags in our

dataset, four volunteers made the categorization. An interactive page was created, available
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at http://labs.wesleycota.com/twitter, containing all these hashtags and the four clas-

sifications. The following question was presented: “How do you think that these hashtags were

used in tweets related to the process of the impeachment of the president Dilma Rousseff along the year

of 2016?”. The volunteers were asked to read tweets containing these hashtags before choosing

their classification for each hashtag. A screenshot of the interactive page is presented in Fig. 6.3.

Figure 6.3: Screenshot of the hashtag classification web interface, available at http://labs.w
esleycota.com/twitter. Hashtags can be moved between four categories, and a field allows
to search for tweets created between March and December 2016 to decide their classifications.

The final classification of each hashtag was determined by the majority of the volunteers’

opinions. From the total of 495 hashtags, 321 (64.8%) had a full agreement, while for 443

(89.5%) of them, at least three of four volunteers agreed. These 443 hashtags are reported in

Tables B.1 to B.3 of Appendix B, colored according to their classification: blue for hashtags

used in tweets that convey pro-impeachment sentiments, red for anti-impeachment sentiments,

grey for neutral sentiments, yellow for not related hashtags. Dark (light) colors have been used

to indicate full (partial) agreement. Divergent opinions were given for 52 (10.5%) hashtags,

reported in Table B.4 of Appendix B. Table 6.3 reports the summary of the classification.

6.2.2 Filtering process of the dataset to obtain the networks

After the classification, 404 hashtags with at least 3/4 agreement were used to reconstruct

the political communication (PC) network removing tweets with the 39 classified as out of

context and the 52 without agreement. In summary, we had 200 anti-impeachment, 185 pro-

impeachment, and 20 neutral hashtags. The PC network reconstructed this way is hereafter

referred to as the 20-neutral network.

To check if the main results are robust with respect to the hashtags classification, we con-



6. Quantifying echo chamber effects over political communication networks 111

Table 6.3: Final number of hashtags for each category reported in Tables B.1 to B.3 of Appendix B.
The symbols in superscript between parenthesis correspond to the ones used in the tables. Three
different levels of agreement are listed: full agreement (full); 3/4 agreement (partial); and less
than 3 agreements (divergent). In the modified classification to reconstruct the 72-neutral
network, we include the 52 hashtags with divergent classification in the neutral class, see main
text.

full partial (∗) divergent (?) total

−1 139 45 — 184

0 3 17 0 (52) 20 (72)

+1 163 37 — 200

× 16 23 52 (0) 91 (39)

total 321 122 52 495

structed also a different PC network where the 52 hashtags for which an agreement was not

achieved were considered as neutral. The corresponding modified 72-neutral network is de-

fined by 456 hashtags, 72 considered as neutral, with only the remaining 39 classified as not

related being filtered out.

Next, tweets without mentions (explicit or not) were also filtered out, since it is not possible

to extract interactions from them. Tweets containing hashtags with opposite sentiments (pro-

and anti-impeachment) in the same tweet were also filtered out. From the total of 12 322 322

tweets with hashtags, we had:

• 2 911 655 (23.629%) without mentions (text in form @user ),

• 7 486 459 (60.76%) with at least one hashtag of the 20-neutral classification,

• 9 908 405 (80.41%) with at least one hashtag of the 72-neutral classification,

• 74 111 (0.6%) with at least two hashtags of opposite sentiments in the same tweet.

The validity of the hashtag classification method is strengthened by the fact that only 0.6% of

the collected tweets had hashtags with opposite sentiments. In the case of the 20-neutral, the

total number of mentions was 5 050 291, from which 2 327 787 (46.092%) were retweets (RTs).

For 72-neutral, 7 596 888 mentions, with 3 837 204 (50.510%) RTs.

However, RTs do not involve an explicit effort of content production and do not convey a

specific communication target. For this reason, here we discard RTs from our analysis and focus

on tweets that include an explicit mention to another user, to establish or continue a discussion

on some topic, carrying even personal messages [168]. This choice allows us to single out
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only actual social interactions between users, to reconstruct a communication network in which

people actually exchange information, discuss, and form their opinion reacting in real-time

to ongoing political events. Discarding RTs, we obtained # = 285 670 users and 2 722 504

explicit mentions for the 20-neutral, and # = 437 728 users and 3 759 684 explicit mentions for

72-neutral network. Hereafter, we consider only networks obtained with explicit mentions,

i.e., disregarding retweets.

Finally, a temporal network G was constructed, defined by the set of # vertices (users),

N = {1,2, . . . , #}, and the set of interactions ℰ = {41 , 42 , . . . , 4�}. In this case, an interaction

between users 8 and 9 (8 , 9 ∈ N) occurs at time C when user 8 mentions 9 in a tweet with sentiment

BC , being represented mathematically as 4C = (8 , 9 ,C ,BC). Multiple mentions (for different users) in

the same tweet imply multiple simultaneous interactions, and the interactions are instantaneous

(without duration) and not symmetrical, defining a temporal directed network.

An integrated weighted directed network [169] was obtained from G, defined by directed

edges between 8 and 9 whose weights are defined by the total number of times that 8 mentioned

9. If this weight is zero, the edge does not exist, as defined in Chapter 2. Twitter is known to

be populated by social bots, which contribute to the spreading of misinformation and poison

political debate [170]. To reduce the number of bots, that also interact with humans [23, 171],

the strongly connected components [172, 173] (SCCs) of the integrated networks were obtained.

This guarantees that in the resulting network the information spreading starting in one user

can reach all others; see Sec. 2.1.2. The largest SCCs have # = 31 412 vertices, � = 833 123 links,

and , = 1 552 389 interactions for 20-neutral network, and # = 39 525 vertices, � = 1 063 699

links, and , = 2 056 448 interactions in the 72-neutral network, see Table 6.4. The other SCCs

were much smaller in size compared to the larger one.

In the largest SCC of the 20-neutral network, the number of interactions with at least one

pro-impeachment, neutral, or anti-impeachment hashtag was 1 126 150, 144 405, and 756 498,

respectively, showing only a slight tendency for pro-impeachment hashtags, while the number

of users was 20 200, 10 821, and 22 566, respectively, showing a remarkable balance. We present

the number of tweets containing the 100 most popular hashtags in Fig. 6.4, showing that

pro-impeachment hashtags were the most popular but the anti-impeachment ones were more

numerous in the top 100.

Hereafter, we will consider only the set of users and interactions belonging to the largest

SCCs in the temporal networks. Only results for the 20-neutral network will be presented,
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on June 4 and July 29, when Rousseff presented her final defense in the Deputy’s chamber.

These results are shown in Fig. 6.5.
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Figure 6.5: Activity frequency of tweets for the SCC of the 20-neutral network. The legend
indicates the colors corresponding to the activity for −1, 0 and +1 interactions.

6.2.3 Properties of the temporal and integrated networks

The distributions of activity of tweets with a given sentiment are similar, as shown in

Figs. 6.6(a-c), with power-law in the form %(0) ∼ 0−1 , with 1 ≈ 2. The same happens for the

distributions of burstiness, the time interval � between two sequential interactions of a user,

Figs. 6.6(d-f), that follow

�(�) ≈ �

(1 + ��)+1
,

with parameters close to � = 0.05 and  = 0.25, as shown in Fig. 6.6(f).

Concerning the integrated network, typical properties of real networks were analyzed for

degree distribution %(:), weight distribution %(,8 9), clustering coefficient �(:) and average

nearest-neighbor degree :nn(:); see Fig. 6.7. Both degree and weight distributions follow

power-laws, while �(:) and :nn(:) show that the integrated networks are disassorative. In the
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Figure 6.6: Distributions of activity 0 and burstiness � (a,d) of senders, (b,e) receivers, and (c,f)
total, of interactions with sentiments −1, 0, +1 and all. We consider 0total = 08 + 0IN

8
. The dashed

curve in (f) is given by �(�) = �/(1 + ��)(+1), with � = 0.05 and  = 0.25.

case of the clustering coefficient, we consider the undirected version of the network.

6.3 Defining the political position as a continuous variable

We can assign to a user 8 a set of tweets with sentiments S8 = {B1 , B2 , . . . , B08−1 , B08 }, where

08 is her/his activity, and define the average sentiment of tweets, or political position %8 , as

%8 ≡

08∑
C=1

BC

08
, (6.1)

that is bounded in the interval [−1, 1]. In Fig. 6.8(a) the distribution of political position is

presented, showing that users are split in two groups of different orientations, while few of

them present neutral position (% ≃ 0), being also asymmetric in relation to % = 0: for % > 0

most of them have extreme position % ≃ +1, while for % < 0 there is a decreasing variation,

with different levels of negative average position. The number of users with positive values #+
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(a)
(b)

Figure 6.7: Structural properties of the SCC integrated network: (a) degree, (b) weight, (c)
clustering and (d) average nearest-neighbor degree distributions.

and negative #− are of the same order, as seen in Table 6.4. The average sentiment of a user is

inherently correlated to her/his activity. In a scenario in which users send tweets with opposite

sentiments with same probability, this distribution would be binomial. Figure 6.8(b) shows that

users more active are also the most extreme. For pro-impeachment position, more active users

have % ≈ −0,75, while for anti-impeachment the activity is almost constant for 0 < % < 0.5, and

increasing for % > 0.5.

Figure 6.8(c) shows a visualization of the integrated network: a user 8 is represented by

a circle, with color given by her/his political position %8 , and lines represent interactions

with other users. Two communities of opposite political positions are clearly seen in the

graphical representation, while users with neutral position are making “bridges” between

these groups. The representation was obtained using the ForceAtlas2 algorithm [174] in the

Gephi software [134]. A way to quantify this visual observation is by the identification of the

community structure [175] using the Louvain algorithm [69] to compute the modularity &mod,

as done in Sec. 5.3; see Sec. 2.1.4. Figure 6.8(d) confirms the existence of two big communities,

both with approximately 104 users, and opposite positions of values %+ ≈ 0.84 and %− ≈ −0.69;

see Table B.5. However, users with pro-impeachment position also form other communities

with considerable sizes and moderate positions, differently from users with anti-impeachment
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Figure 6.8: (a) Number of users as a function of polarization. (b) Average activity as unction
of polarization. Only users with activity 0 ≥ 10 in the SCC are considered for (a) and (b). (c)
Visualization of the time-aggregated representation of the PC network, formed by # = 31 412
users in the SCC. The size of vertices increases (non-linearly) with their degree. Colors represent
political polarization, as defined by (6.1), blue for negative, red for positive, and white for neutral
polarization. (d) Community size and average polarization of different communities identified
by the Louvain algorithm [69].

positions. We will discuss the consequences of these structures in the sequence.

6.3.1 Content diversity and political position

Another interesting quantity is the content diversity of tweets sent by user 8, defined as the

variance of sentiments expressed by 8,

+ =

∑0
C=1(BC − %)2

0
. (6.2)

The sentiments can be−1, 0 or+1. So, for a given user, we denote =+ as the number of tweets with

BC = +1, =− with BC = −1 and =0 with BC = 0. The total number of tweets is then 0 = =+ + =− + =0.

So, Eq. (6.1) becomes % = (=+ − =−)/0 and Eq. (6.2) is + = [=+(1 − %)2 + =−(1 + %)2 + =0%
2]/0.

In Fig. 6.9(a) we plot contour maps of the content diversity + of users in the SCC of the

20-neutral network with activity 0 ∈ [10,100]. By this density plot we see a large number

of pro-impeachment users with large content diversity, while users with anti-impeachment

positions are clustered together with reduced content diversity. Let us consider three limiting

scenarios in which users with % > 0 do not tweet pro-impeachment messages, and those with

% < 0 anti-impeachment messages. We then can write + as a function of the political position

%:
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Figure 6.9: (a) Contour maps and (b) scatter plot for the content diversity + of tweets sent
by users with political position %. In (b) points represent users and their content diversity,
dashed lines the predictions by Eqs. (6.3) to (6.5) and circles the average value as a function
of the political position %. Only users with 0 ∈ [10,100] (corresponding to 11 386 users) are
considered.

• =+ = 0: users send only neutral or pro-impeachment tweets. In this case, % ≤ 0. We have

=− = −%0 and =0 = 0 + %0. So,

+(%)|=+=0 = −%(1 + %), − 1 ≤ % ≤ 0. (6.3)

• =− = 0: users send only neutral or anti-impeachment tweets. In this case, % ≥ 0. We have

=− = %0 and =0 = 0 − %0. So,

+(%)|=−=0 = %(1 − %), 0 ≤ % ≤ 1. (6.4)

• =0 = 0: users send only polarized tweets. In this case, we have %0 = =+ − =− and

0 = =+ + =−. So, we have =+ = 0(1 + %)/2 and =− = 0(1 − %)/2, which leads to

+(%)|=0=0 = 1 − %2 , − 1 ≤ % ≤ 1. (6.5)

In Fig. 6.9(b) we show a scatter plot version of Fig. 6.9(a) for comparison with the last three

limiting cases, together with the average 〈+〉(%). Users with extreme positions have small

content diversity by definition since the majority of tweets sent by them are either pro- or

anti-impeachment. However, users with intermediate positions behave differently for pro- and

anti-impeachment average positions. While pro-impeachment users tend to be in a scenario in

which those with larger content diversity tend to use neutral hashtags, few anti-impeachment

users appear using them. This can be related to the breaking of echo chambers that will be

discussed later.
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6.3.2 Structural evidences of echo chambers

One way to quantify the existence of echo chambers is by the relationship between the

political position a user expresses and the sentiments of tweets she/he receives, or with the

average position of its neighbors in the integrated network. In politics, echo chambers are

characterized by users sharing messages with similar opinions [50]. From the structural point

of view in a network, this translates in a vertex 8 with position %8 connected with vertices

with positions similar to %8 , receiving with larger probability messages with average sentiment

similar to %8 . We then define for each user 8 the average position of received tweets %IN
8

, applying

(6.1) to the set of tweets of any user 9 ≠ 8 mentioning 8. The results are shown in Fig. 6.10(a).

Analogously, the average political position of the neighbors of 8, %NN
8

, can be defined by its

successors,

%NN
8 ≡ 1

:out,8

∑
9

�8 9%9 ,

or predecessors,

%NN
in,8 ≡ 1

:in,8

∑
9

� 98%9 .

Results for both cases are similar, as seen in Fig. 6.10(b-c).

Figure 6.10 shows the correlations between the political position of a user 8 and of its

neighbors. These strong correlations confirm the existence of echo chambers. Yet, it also shows

that densities are not symmetric between anti- and pro-impeachment: for % > 0 users are more

concentrated in a small region, while for % < 0 are more spread out. While users with pro-

impeachment position exchange information with pairs of distinct positions, anti-impeachment

exchange with extreme users. This is in line with the community structure shown in Fig. 6.8(d).

6.3.3 Spreading capacity as a function of political position

The presence of echo chambers can have an impact on how information is disseminated

through PC networks. A usual methodology to gauge these effects is by computing the number

of RTs that a given user can achieve [176–178]. Influential users could attract more interest

from others, accomplishing a larger number of RTs. In Figure 6.11 the number of RTs of users is

presented as a function of both her/his activity and political position. As expected, this number

is strongly correlated with her/his activity, since a user producing many tweets has a larger

chance of being retweeted, in a homogeneous assumption of equal probabilities. Instead, if we
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Figure 6.10: Contour maps for average (a) political position of tweets received %IN, (b) sentiment
of successors %NN and (c) predecessors %NN

in,8 against the political position % of a user for the
20-neutral network. Colors represent the density of users: the lighter the larger the number
of users. Probability distribution of %, %NN and %NN

in,8 are plotted in the axes. Only users with
activity 0 ≥ 10 (corresponding to 14 813 users) are considered.

consider this number normalized by the activity, there is a lack of evident correlations with the

political position, as shown in Fig. 6.11(c).

Here we propose a different methodology by considering spreading models of SIS and

SIR-like [88], that have been used to study information difusion [179, 180]. In this context,

information spreading can be studied both as a simple contagion or as complex contagion, like

in the adoption of new ideas and technologies [181]. The first case is similar to an epidemics, in

which the infection or receiving of information or opinion happens when at least one individual

tries to infect or inform other, as in the SIS and SIR models. In the case of complex contagion,

infection or adoption is only accepted by social reinforcement, when more than one interaction
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Figure 6.11: Number of retweets (RTs) received by users of the 20-neutral network in the
classified data: (a) heat map of the number of RTs of users as a function of their political
position % and activity 0, (b) average number of RTs and (c) normalized by the user activity as
a function of the political position. Error bars represent the standard error.

is needed to convince. In both cases, a susceptible vertex is unaware of the information, while

an infected one is aware and can spread it. A recovered vertex, in the case of a SIR-like model,

does not engage in discussions. The healing is given by a parameter � = �̄−1, fixed for all users.

After a time � of infection, a vertex becomes susceptible or recovered, for the SIS and SIR cases,

respectively. Note that in this case, we need to consider a discrete dynamics, defined by the

timestamps of tweets, and transmission probabilities �̄ and time � instead of rates.

Let us begin with simple contagion models SIS and SIR. The complex contagion case will

be presented later in Appendix B.5, with similar results as a robustness analysis. Figure 6.12

presents a schematic representation of both dynamics. The initial condition consists of a single

individual 8, referred to as source, infected while all others are susceptible. We follow the

explicit temporal evolution of edges for each timestep C. So, the infection can happen only

when at a time C a user 8 mentions 9 while 8 is infected. The set of users infected at least once
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Figure 6.12: Top: SIS dynamics. Bottom: SIR dynamics. In both cases, at time C1 the source (the
first vertex infected in the dynamics) tries to transmit the information to the user mentioned in a
tweet. A cascade is formed, increasing the set of influence of the source (shaded areas), defined
by the set of users that have been infected once in this dynamics. Infected vertices can become
susceptible (SIS, white vertices) or recovered (SIR, gray vertices). In the SIS these vertices can be
informed again, but do not increase the set of influence since they had been infected before. For
the SIR dynamics, recovered individuals cannot be reinfected, reducing the spreading capacity
of the source by blocking possibles paths of information spreading.

in the dynamics starting from source 8 is called the set of influence of 8, denoted by ℐ8 [182].

This set represents the spreading capacity of 8, or spreadability, that will be a function of the

transmission probability �̄ and healing time �:

(8(�̄, �) ≡
|ℐ8(�̄, �)|

#
, (6.6)

running the SIS or SIR dynamics with 8 as source, with averages by different stochastic realiza-

tions. In Fig. 6.13 color maps of the average spreadability of users as a function of their political

position % and activity 0 are presented for the SIS model with healing time � = 7 days and

different infection probabilities �̄. As expected, the greater the activity of users, the greater is

their spreading capacities (darker colors), but are not homogeneous in relation to the political

position. The spreadability is smaller for users with anti-impeachment positions while it has a

maximum for % ≃ −0,5 with pro-impeachment position.

As pro- and anti-impeachment groups have similar sizes, the spreading capacity cannot

be explained only by prevalence of users with different average sentiments. Also, users

with extreme position |% | ≃ 1 have smaller spreadability than those with intermediate pro-

impeachment positions. We can understand that by characterizing the set of users influenced

by the spreading dynamics. With this aim, we define the average of the polarization of the set
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Figure 6.13: Heat maps of the average spreading capacity 〈(〉 of users generated with the
SIS model as a function of their political position % and activity 0 for temporal network with
healing time � = 7 days for the 20-neutral network and transmission probability (a) �̄ = 0.01,
(b) �̄ = 0.05, (c) �̄ = 0.1, (d) �̄ = 0.2, (e) �̄ = 0.5, and (f) �̄ = 1. Averages were performed over
100 runs.

of influence of 8 as

�8 ≡
∑
9∈ℐ8

%9

|ℐ8 |
, (6.7)

and the variance as

�8 ≡
∑
9∈ℐ8

(%9 − �8)2
|ℐ8 |

. (6.8)

While the average �8 represents the average sentiment of users influenced by 8, the variance

�8 quantifies the diversity of this set. To isolate the effect of the political position of sources 8,

we analyze the spreadability for users with similar activity as, for example, 0 ∈ [10, 100]. The

number of users inside this interval of activity is almost uniform, and qualitative results are
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robust to this choice; see Fig. 6.14.
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Figure 6.14: Average spreading capacity 〈(〉 (black, left axes), diversity � (red, right axes),
and average political position � (top panel) of the set of influence ℐ, as a function of the
political position %, for SIS model with transmission probability �̄ = 0.2 and � = 7 days for
the temporal 20-neutral network. Only users with activity (a) 0 ∈ [10,100], (b) 0 ∈ [1,100], (c)
0 ∈ [10,500] and (d) 0 ∈ [20,200] are considered, in a total of 11 386, 27 985, 14 313 and 10 409
users, respectively. Averages were performed over 100 runs.

Analyzing the spreading capacity as a function of %, 〈((%)〉, results for SIS dynamics with

� = 7 days and �̄ = 0.20 are presented in Fig. 6.14(a). In the top panel, the average political

position of users influenced by sources of position %, 〈�(%)〉, is correlated to %, quantifying

the echo chamber effects: users tend to influence other users with a similar average political

position. The average 〈�(%)〉, indeed, gauges the strength of the echo chambers: the more the

value of 〈�(%)〉 is close to %, the stronger the echo chamber effect. Furthermore, one can note

differences between users with pro- and anti-impeachment positions, � is almost constant for

negative values of %, so echo chamber effects are smaller, while � is growing almost linearly for

positive %, indicating stronger echo chambers effects.

Even more interesting, the behavior of diversity �8 of the users reached by 8 strongly depends

on her/his political position %8 . The curve of the average diversity as a function of the position,
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〈�(%)〉, follows a behavior remarkably similar to the average spreadability of users with position

%, 〈((%)〉, in all cases of Fig. 6.14. The strict correlation observed between 〈�(%)〉 and 〈((%)〉

indicates that if a user is able to reach a diverse audience, formed by users that do not share

her/his average sentiments, then the size of her/his set of influence is much larger. This means

that individuals with large spreadability are able to break their echo chambers. Note that this

result is not trivial since the sizes of the echo chambers are much bigger than the number of

users reached. Moreover, the value of 〈�(%)〉 is statistically significant and does not depend on

the number of users considered in the average, as shown in Figs. 6.14(b-d). For instance, there

are much more users with extreme orientations (|% | ≃ 1) than users with intermediate position

(% ≃ −0.5), yet it holds 〈�(% ≃ −0.5)〉 ≫ 〈�(|% | ≃ 1)〉. Furthermore, given the larger number

of users considered, error bars for 〈�(|% | ≃ 1)〉 are smaller than the ones for 〈�(% ≃ −0.5)〉.

Analysis for different choices of parameters �̄ and �, and for the SIR dynamics are shown in

Appendix B.4.

More realistic models of information diffusion, such as complex contagions, independent

cascade, and linear threshold models [183–186], could be used to estimate the spreadability of

individuals. We have checked numerically that a modification of the classic Watts threshold

model for complex contagion [183] to the framework of temporal networks [187] leads to the

same behavior observed in the SIR and SIS models; see Appendix B.5.

6.4 Summary and discussions

The effects of echo chambers on the openness of online political debate have been argued

by the scientific community. Their impact in real communication networks, however, remains

poorly understood. The main contribution of this work is twofold: i) we quantify the presence of

echo chambers in the Twitter discussion about the impeachment of former Brazilian President

Dilma Rousseff, showing that communities of users expressing opposite political positions

emerge in the topological structure of the communication network, and ii) we gauge the effects

of such echo chambers on information spreading, showing that the capability of users to spread

the content they produce depends on their political orientation. The use of spreading models

allows us to characterize the internal structure of echo-chambers, showing that users belonging

to the same echo chamber, with different convictions (i.e., the intensity of their attitude to the

impeachment issue), can have quite different spreading capabilities.
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Our method to quantify echo chambers is built upon two main ingredients: i) we recon-

struct a communication network based on mentions, in which people can actually discuss and

exchange information related to ongoing political events, and ii) we define a continuous po-

litical position measure, by classifying hashtags as expressing sentiments in favor or against

the impeachment, which is independent of the network’s reconstruction. We then observe that

anti- and pro-impeachment sentiments clearly separate into different communities in the PC

network. It is important to remark that, while it is well known that networks formed by RTs

can have a strong partisan structure, since RTs generally imply endorsement, this observation

is new for mention networks, in which users characterized by opposite sentiments can easily

interact [149].

These two clusters of users sharing similar opinions, or echo chambers, can be characterized

by looking at the correlations between the in-flow and out-flow of sentiments, as well as between

the average sentiments of an individual and her/his nearest neighbors. The topologies of the

two echo chambers, however, are not exactly equivalent. Users expressing anti-impeachment

sentiments tend to lean towards the extreme, achieving a position % ≃ +1, while users with

pro-impeachment sentiments show smoother tendencies, reflected into the presence of medium-

sized communities with an overall negative position.

The differences in the topological structure of the two communities can be related to the

political context under study: while users characterized by anti-impeachment sentiments refer

to a more homogeneous political area (Partido dos Trabalhadores and small left-wing parties),

pro-impeachment users share different political views, including center and right-wing posi-

tions, and show different levels of sympathy in favor to the impeachment. Another possible and

important source of asymmetry is the constant release of content from other sources, in partic-

ular from the traditional media, broadcasting mostly contents that stimulate pro-impeachment

sentiments, possibly reinforcing their dissemination to a more diversified audience.

By running simple models of information spreading, we observed that, on average, users

are more likely to receive information from peers sharing the same average sentiments. We then

see that people with predominantly pro-impeachment sentiments are able to broadcast their

message to a potentially larger audience than other users. Furthermore, such audiences are also

characterized by a greater diversity of opinions, indicating that pro-impeachment sentiments

can spread to users expressing both pro- and anti-impeachment attitudes, a signature that echo

chambers can be broken.
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Chapter 7

Metapopulation structures with

heterogeneous subpopulations

The emergence and accessibility of large datasets, especially of social behavior, is helping

the study of the influence of contact patterns in epidemic models. In particular, the availability

of data about the mobility of individuals in different levels [51, 188], from global to urban, is

being essential to refine dynamical models with compartmental dynamics [59]. Data-driven

models are developed to improve the spatial-temporal accuracy of predictions of recent epi-

demic outbreaks [53, 62–64, 189, 190] using large amount of real data as inputs. However, this

refinement makes the analytical treatment of these models more complicated, and theoretical

frameworks are needed to gather mobility data and allow at the same time a theoretical analysis.

Recently, a new formalism able to overcome some of these difficulties [61, 191] was developed,

being applied to situations in which data about urban demography and mobility patterns are

available. In this chapter, we define an extension of the model developed in Ref. [61] including

different social contact patterns in the populations. We perform an analytical study in synthetic

metapopulation networks and discuss the effects of contact heterogeneities in the epidemic

threshold.

7.1 Epidemics in metapopulations with recurrent mobility

One possible way to represent mathematically mobility patterns is by using metapopula-

tions. In this case, individuals are considered to live in a set of subpopulations (or patches)

and flows of individuals happen between these patches. For the epidemic modeling, spreading
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processes are characterized by local reactions inside each patch [192, 193] and global diffusion

processes or mobility between them. Usually, these local interactions are assumed to happen ho-

mogeneously, without the explicit introduction of different contact patterns as those considered

in PL networks studied in the previous chapters. In the last decade, the use of metapopulation

models incorporating real data of flows of individuals between different geographical areas

has been made [52, 60, 194, 195] to balance the refinement capability and the ability to perform

analytical predictions from these models. However, these techniques are commonly based on

assumptions that limit the direct application in real situations. As an example, a natural hy-

pothesis of these models is to assume simplified mobility patterns such as random diffusion

of agents [196, 197] or continuous models of commuting flows [198–200]. In this perspective,

many interesting analytical results have been found for the influence of the mobility pattern on

the epidemic threshold [60].

New formalisms were developed [201–204], in which the random patterns of individuals are

put aside to include the recurrent nature of most human displacements as from home to work

and vice-versa in big metropolitan areas [52]. Yet, this refinement was done at the expense

of continuing to use very simple attributes of subpopulations by assuming a homogeneous

mixing of individuals. A particular framework was proposed in Ref. [61], allowing to compute

analytically the epidemic threshold and to extract useful information to tackle real epidemics

when data are available. Recently, this model was adapted to study the COVID-19 situation in

Spain [62, 64], and to observe the outbreak variability in distinct geographical levels in Brazil [63].

In Sec. 7.3 we include one more important ingredient, which is the intrinsic heterogeneous

nature of human contacts. This is done by a generalization of the model defined in Ref. [61]

described in the next section.

7.2 Markov-chain approach in networks with recurrent mobility

Consider a metapopulation network with 8 = 1, . . . , Ω patches (vertices) populated by

# =
∑

8 =8 individuals. Each individual is associated to its residence (one of the patches) and

can travel to another patch following mobility flows. The flow of individuals from patches 8 to 9

can be described by a directed and weighted network of patches, in which �8 9 = 1 means that at

least one individual of 8 travels to 9, and the weight ,8 9 is the number of individuals from 8 that

commute to 9 daily; see Fig. 7.1. The matrix ,8 9 is also called origin-destination (OD) matrix. It
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Figure 7.1: Example of a simple metapopulation with two patches 8 and 9. The weights ,8 9 and
,98 count the number of individuals that travel from patch 8 to 9 and vice-versa, respectively.
Inside each patch there are individuals that interact according to a compartmental dynamics.

is useful to define the probability that once an individual living in 8 decides to move, it goes to

patch 9 with probability

'8 9 =
,8 9

#∑
;=1

,8;

, (7.1)

which is the normalized weight. After each time step, all individuals return to their residence.

We can describe the recurrent dynamics as follows. Starting the dynamics at time C and

evolving it to C + 1, we have:

(i) Each individual residing in 8 choose to travel to a patch 9 with probability ?, proportionally

to '8 9 ;

(ii) Residents of 8 interact with individuals in patches 9 to where they moved. The evolution

of the fraction �8 of infected individuals residing in 8 is computed;

(iii) After one time step ΔC = 1, individuals return to their resident patch.

The recurrent mobility hypothesis guarantees that all individuals living in 8 will continue to

have this place as origin for their movement in each time step. Since we will consider that all

individuals have a same probability ? of moving to a different patch, the number of individuals

resident in 9 that travel to 8 is given by

= 9→8 =
[
(1 − ?) �8 9 + ?' 98

]
= 9 , (7.2)

where we assume that all individuals of 9 have the same probability ' 98 to travel to 8. The first

term represents individuals that stay in their residence, while the second term computes the
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probability of moving to a patch 8. This way we can compute the total number of individuals

traveling to patch 8 as

=̃8 =

∑
9

= 9→8 =

∑
9

[
(1 − ?) �8 9 + ?' 98

]
= 9 , (7.3)

where tilde variables represent quantities computed after step (i) takes place.

Let us consider a discrete-time SIS dynamics and compute the time evolution of the fraction

of infected individuals resident in patch 8 at time C. The healing probability will be represented

by �̄ and the infection probability by �̄. In this case, the number of infected individuals traveling

from 9 to 8 is � 9→8 =
[
(1 − ?) �8 9 + ?' 98

]
� 9 , where � 9 is the number of infected individuals that

live in patch 9, and the total number of infected individuals in 8 is given by �̃8 =
∑

9 � 9→8 . We can

express the fraction of infected individuals that lives in 8 as �8 =
�8
=8

, while

�̃8 =
�̃8
=̃8

=

∑
9

� 9→8

∑
9

= 9→8

=

∑
9

[
(1 − ?) �8 9 + ?' 98

]
� 9= 9

∑
9

[
(1 − ?) �8 9 + ?' 98

]
= 9

(7.4)

is the fraction of the population which is currently in patch 8. Assuming that all individuals

have the same contact patterns, interacting uniformly with everyone in the patches they visit,

the temporal evolution of the fraction of infected individuals resident in 8 in a SIS dynamics

will be given by

�8(C + 1) = (1 − �̄)�8(C) + [1 − �8(C)]Π8(C). (7.5)

The first term in the r.h.s. of Eq. (7.5) corresponds to the probability that individuals do not

recover, which happens with probability 1 − �̄ for each individual resident in 8. The second

term represents the probability that susceptible individuals become infected at time C that will

depends on Π8(C), which is the probability that a healthy individual of 8 becomes infected at

time C and is computed as

Π8(C) = (1 − ?)�8(C) + ?

#∑
9=1

'8 9� 9(C), (7.6)

where �8(C) is the probability that a healthy individual currently in patch 8 is infected at time C.

Note that this probability depends on all individuals that are in 8, not necessarily resident of 8.

In the well-mixed population approximation we can compute the complementary probability

of not being infected by any of the =̃8 individuals in 8, which happens with probability �̄�̃8(C),
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as

�8(C) = 1 −
[
1 − �̄�̃8(C)

] =̃8
, (7.7)

in which =̃8 is the total number of individuals which are in patch 8 and �̃8(C) is the fraction of

infected individuals currently in 8 at time C. The latter quantity is given by Eq. (7.4), where �8 is

now a function of the time C.

7.2.1 Critical regime and linearization

Proceeding to obtain the epidemic threshold, we look at the steady state regime of Eq. (7.5).

That will happen when �8(C + 1) − �8(C) → 0, as C → ∞ for all patches 8. Close to the epidemic

threshold, the fractions �8 are very small and represented by �∗
8
≡ &8 ≪ 1. After a linearization

of Eqs. (7.5) and (7.7) we have [61]

�̄&8 ≈ �̄
∑
9

"8 9& 9 , (7.8)

where

"8 9 =

{
(1 − ?)2�8 9 + ?(1 − ?)

[
' 98 + '8 9

]
+ ?2

∑
;

'8;' 9;

}
= 9 . (7.9)

Equation (7.8) defines an eigenvalue problem and the epidemic threshold will be given by

�̄c =
�̄

Λmax(") , (7.10)

with Λmax being the leading eigenvalue of the matrix ". Equation (7.10) can be solved numer-

ically for any metapopulation structure with demographic =8 and mobility data '8 9 .

7.2.2 Perturbation analysis for the homogeneous mixing case

Equation (7.9) can be written as

"8 9 =

[
�8 9 + ?

(
'8 9 + ' 98 − 2�8 9

) + ?2

(
�8 9 − '8 9 − ' 98 +

∑
;

'8;' 9;

)]
= 9 , (7.11)

and a pertubation analysis is made close to the static case ? = 0 in Ref. [61] resulting in Ω

eigenvalues corresponding to each patch 8, given by

Λ8(") ≈ =8 + 2?=8('88 − 1) + ?2
∑
9≠8

=8= 9

(
'8 9 + ' 98

)2

=8 − = 9
. (7.12)
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The first term in the r.h.s. corresponds to the eigenvalue of the unperturbed system, with ? = 0,

resulting in a threshold �̄c = �̄=−1
max, where =max is the number of individuals residing in the

most populated patch. The second term is the first-order correction, and is always negative since

'88 ≤ 1. So, close to ? = 0 there is always an increase of the epidemic threshold: as people start

to move, the disease will have more difficulties to spread due to homogenization of populations,

reducing the difference between effective populations =̃8 . Finally, the second-order correction

is always positive, resulting in a reduction of the epidemic threshold due to the compensation

of recovery over contagion processes [61]. This is a counter-intuitive result explained by the

existence of this trade-off between the homogenization of the population and the correlations

in the mobility patterns that change the critical behavior of the system [61].

7.2.3 Different critical scenarios and the detriment effect

In Ref. [61], authors suggest a synthetic star-like (or wheel-like) metapopulation network to

investigate different critical regimes. In this case, a central patch (hub) contains � leaves. The

hub ℎ has a population of =ℎ = =max individuals, while leaves ; have a fraction  ∈ [0,1] of

the hub population, =; = =max. The mobility of individuals living in the hub to the leaves is

uniform, given by

'ℎ; =
1
�
, (7.13)

while the mobility between leaves, hub and other leaves is controlled by the parameter �. The

flow from one leaf to the hub is

';ℎ = �, (7.14)

and between adjacent leaves happens in only one way, given by

'; ,;+1 = 1 − �, (7.15)

as shown in Fig. 7.2.

By considering a star-like metapopulation, three different critical regimes were found [61].

Applying the star-like structure in Eq. (7.12), an approximation for the leading eigenvalue is [61]:

Λmax(") = =max − 2?=max + ?2�

(
� + 1

�

)2

1 − 
=max. (7.16)
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Figure 7.2: The star-like metapopulation structure consists of � + 1 patches: a hub and its �
leaves. Flows of individuals from the hub are equal to each leaf, with probability �−1, while
the flow from a leaf to the center happens with probability �. Individuals residing in the leaves
can also travel to the next adjacent leaf with probability 1 − �. The hub has a population of
=ℎ = =max individuals and leaves have =; = =max with  < 1. The individuals are represented
by the smaller circles inside the patches. Based on Fig. 1(c) of [61].

Evaluating the value ?∗ for which the eigenvalue has an extreme value

dΛmax

d?

����
?=?∗

= 0,

resulting in

?∗ =
1 − 

�

(
� + 1

�

)2
. (7.17)

Three different regimes are possible. The first happens if ?∗ < =−1
max, for which in average no

movement is possible, since =8?
∗ < 1 for all patches. This minimum will vanish in the limit

=max ≫ 1, and will result in an epidemic threshold always decreasing with ?. An intermediate

case will happen if =−1
max < ?∗ < 1, for which the maximum eigenvalue of " will have a

minimum in this region and then the epidemic threshold will increase with ?, reaching a

maximum and then decreasing again. A non-physical probability is if ?∗ > 1, meaning that the

leading eigenvalue will always decrease, therefore the epidemic threshold will increase for all

values of ?. These three types, denoted by I, II, and III, respectively, are schematically shown in

Fig. 7.3. For further discussion see Ref. [61].
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Figure 7.3: Schematic representation of three critical scenarios in networks with recurrent
mobility. (a) Definition of three regions by the possible values of ?∗: type I, given by 0 < ?∗ <
=−1

max, type II, =−1
max < ?∗ < 1, and type III, ?∗ > 1. (b) Qualitative behavior of the leading

eigenvalue, and (c) of the epidemic threshold as a function of ? for three different scenarios.

7.3 Markovian equations for heterogeneous subpopulations

Now we propose a modification to consider different levels of heterogeneities inside each

patch. In Ref. [61], all individuals inside a patch interact with all others with the same probability

following a homogeneous mixing. Here we propose a model in which individuals have a

different social degree or connectivity :. Each patch 8 has =
[:]
8

individuals with connectivity :.

Then, the population of patch 8 is

=8 =

∑
:

=
[:]
8

=

∑
:

=8%8(:), (7.18)

where %8(:) is the probability that 8 has an individual of connectivity :,

%8(:) =
=
[:]
8

=8
. (7.19)

We assume a heterogeneous mixing similar to the one used in the HMF theory, in an annealed

regime. One hypothesis is that individuals with connectivity : will preserve this value when

traveling to another patch: socially active individuals in their residence are assumed to be

also very social when visiting others. After traveling, they interact with : others following

the probability to connect to an individual of connectivity :′ given by %(:′ |:). For the sake of

simplicity, we will consider the lack of connectivity correlations and Eq. (2.18) holds. The total
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number of individuals in the metapopulation is # =
∑

8 =8 .

We denote the number of infected individuals residing in 8 that have connectivity : as �
[:]
8

,

implying that the total of infected individuals resident in 8 is �8 =
∑

: �
[:]
8

. The fraction of infected

individuals of patch 8 with connectivity : is

�
[:]
8

=
�
[:]
8

=
[:]
8

, (7.20)

while the fraction of infected individuals of 8 is �8 =
∑

: %8(:)�[:]8
. An equation similar to Eq. (7.2)

is written as

=
[:]
9→8

=
[
(1 − ?:)�8 9 + ?:' 98

]
=
[:]
9
, (7.21)

that is the number of individuals with connectivity : that travel from patch 9 to 8 and the

effective population of these individuals in patch 8 is

=̃
[:]
8

=

∑
9

=
[:]
9→8

=

∑
9

[
(1 − ?:)�8 9 + ?:' 98

]
= 9%9(:), (7.22)

while the total effective population of 8 is =̃8 =
∑

: =̃
[:]
8

. Note that if ?: is constant, independent

of :, we have the same Eq. (7.2) since
∑

: %8(:) = 1.

Another quantity that can be evaluated is the effective connectivity distribution %̃8(:), de-

fined as the probability of finding an individual of connectivity : currently in patch 8, given by

%̃8(:) =
=̃
[:]
8

=̃8
=

∑
9

=
[:]
9→8

∑
9

= 9→8

=

∑
9

[
(1 − ?:) �8 9 + ?:' 98

]
= 9%9(:)

∑
9

∑
:′

[
(1 − ?:′) �8 9 + ?:′' 98

]
= 9%9(:′)

. (7.23)

We can define the effective moments as 〈̃:=〉 8 =
∑

: :
= %̃8(:). We will show later that a simple

analysis of these quantities is not able to predict the epidemic threshold as a function of ?. To

derive the Markovian equations we will use a similar approach to the HMF theory by computing

the time evolution of the fraction of individuals with connectivity : that live in 8 as

�
[:]
8
(C + 1) = (1 − �̄)�[:]

8
(C) +

[
1 − �

[:]
8

]
Π

[:]
8
(C), (7.24)

where

Π
[:]
8
(C) = (1 − ?:)�[:]

8
(C) + ?:

#∑
9=1

'8 9�
[:]
9
(C) (7.25)
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is the probability that a healthy individual with connectivity : belonging to patch 8 becomes

infected at time C. �
[:]
8
(C) is the probability that an individual in patch 8 of connectivity :

becomes infected at time C, which can be computed in terms of the probability that no infection

comes from the : selected contacts using Eqs. (7.28) and (7.29) as

�
[:]
8
(C) = 1 −

∏
:′

[
1 − �̄%̃8(:′ |:)�̃[:

′]
8

(C)
] :

, (7.26)

in which

�̃
[:]
8

=
�̃
[:]
8

=̃
[:]
8

=

∑
9

�
[:]
9→8

∑
9

=
[:]
9→8

(7.27)

is the effective fraction of infected individuals with connectivity : in patch 8 and %̃8(:′ |:) is

the effective probability that an individual with connectivity : is connected to another with

connectivity :′. We consider the uncorrelated case for the sake of simplicity, which translates

into

%̃8(:′ |:) =
:′=̃[:′]

8∑
:
′′
:
′′
=̃
[:′′]
8

=
:′%̃8(:′)
〈̃:〉 8

, (7.28)

which is the probability of selecting an edge from a vertex with connectivity :′ that is in patch

8; see Eq. (2.18).

Finally, the effective fraction of infected individuals with connectivity : in patch 8 is given

by

�̃
[:]
8
(C) =

∑
9

[
(1 − ?:) �8 9 + ?:' 98

]
= 9%9(:)�[:]9

(C)
∑
9

[
(1 − ?:) �8 9 + ?:' 98

]
= 9%9(:)

, (7.29)

where the denominator is given by Eq. (7.22) and the numerator is the number of infected

individuals that are in patch 8. Note that even if the population of each patch = 9 is the same,

the terms =
[:]
9

or %9(:) do not cancel out because they depend on the connectivity distribution

for each patch 9, which are not necessarily the same.

In Eq. (7.26) we need the product %̃8(:′ |:)�̃[:
′]

8
(C). Using the Eq. (7.28) and Eq. (7.27) we get

%̃8(:′ |:)�̃[:
′]

8
(C) = :′

=̃8 〈̃:〉 8

∑
9

�
[:′]
9→8

(C),
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resulting in

P[:′]
8

(C) ≡ %̃8(:′ |:)�̃[:
′]

8
(C) =

:′
∑
9

[
(1 − ?:′) �8 9 + ?:′' 98

]
= 9%9(:′)�[:

′]
9

(C)
∑
:
′′
:
′′ ∑

9

[
(1 − ?:′′)�8 9 + ?:′′' 98

]
= 9%9(:′′)

, (7.30)

where we denoted the product as P[:′]
8

(C) since it is independent of the connectivity :.

To find the steady state equation close to the epidemic threshold we will consider only terms

up to first order on �
[:]
8
(C → ∞) = &̄8: ≪ 1 and Eq. (7.26) becomes

�
[:]
8
(C → ∞) ≡ �∗

8
[:] ≈ 1 −

∏
:′

[
1 − �̄:P∗

8
[:′]

]
≈ �̄:

∑
:′

P∗
8
[:′] ,

in which P∗
8
[:] ≡ P[:]

8
(C → ∞), resulting in

�∗
8
[:]

=
�̄:

&8

∑
:′

:′
∑
9

[
(1 − ?:′) �8 9 + ?:′' 98

]
= 9%9(:′)&̄ 9:′ , (7.31)

where &8 ≡ ∑
: :

∑
9

[
(1 − ?:)�8 9 + ?:' 98

]
= 9%9(:) is the effective number of edges in patch 8.

Note that
∑

8 &8 =
∑

:

∑
9 :%9(:)= 9 is the total number of edges in the system, a conserved

quantity. The summation in Eq. (7.31) is basically the number of edges emanating from infected

individuals currently at patch 8. The steady state of the dynamics is obtained from Eq. (7.24),

resulting in

�̄&̄8: = (1 − &̄8:)Π∗
8
[:] , (7.32)

and now we have to linearize Π∗
8
[:] from Eq. (7.25), which is done by using the results of

Eq. (7.31). After some algebra and neglecting terms of order O(&̄2
8:
), we have

Π
∗
8
[:]

= �̄
∑
9

∑
:′

"̄
9:′

8:
&̄ 9:′ , (7.33)

where

"̄
9:′

8:
= ::′%9(:′)



(1 − ?:)(1 − ?:′)
�8 9

&8︸                  ︷︷                  ︸
1

+ (1 − ?:)?:′
' 98

&8︸           ︷︷           ︸
2

+ ?:(1 − ?:′)
'8 9

& 9︸           ︷︷           ︸
3

+ ?:?:′
∑
;

'8;' 9;

&;︸              ︷︷              ︸
4



= 9 .

(7.34)
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Substituting (7.34) in Eq. (7.32), and keeping only linear terms, since &̄8: ≪ 1 ∀ (8 ,:), we end up

with

�̄&̄8: = �̄
∑
9

∑
:′

"̄
9:′

8:
&̄ 9:′ , (7.35)

that defines an eigenvalue problem and an epidemic threshold

�̄c =
�̄

Λmax(") . (7.36)

The elements of matrix " given by Eq. (7.34) represent four types of interactions in the

metapopulation. Basically, the element "̄ 9:′

8:
represents the probability that a resident of patch

8 with connectivity : is in contact with another individual of patch 9 and connectivity :′. The

first term 1 accounts for interactions of residents of the patch, that do not move. In term 2 ,

an individual of 8 stays and interacts with a traveler from patch 9 in patch 8, that arrived with

probability ?:′' 98 . A similar event happens in term 3 , in which an individual of 8 travels to

patch 9 and interact there with a resident of 9 with probability ?:'8 9 . Finally, in term 4 , both

individuals of patches 8 and 9 travel to a patch ;, arriving there with probability ?:?:′'8;' 9; .

The interpretation for the expression in Eq. (7.9) for the original model is similar, with

terms of interactions between residents with probability (1 − ?)2, of resident and travelers with

?(1−?)
[
'8 9 + ' 98

]
and of travelers with ?2 ∑

; '8;' 9; . However, in that case, all individuals could

interact with each other homogeneously, without a limitation on the number of contacts, so the

probability "8 9 only depended on the demography terms = 9 . In Eq. (7.34), these interactions

also depend on the connectivity of both individuals 8 and 9, by terms in the form ::′%9(:′)= 9/&; ,

related to the number of edges available to make the connections, in which ; is the patch where

the interaction happens.

Before going ahead, it is useful to make the transformation &̄8: ↦→ :&8: in Eq. (7.35), resulting

in

�̄&8: = �̄
∑
9

∑
:′

"
9:′

8:
& 9:′ , (7.37)

where the new matrix " will be given by the elements

"
9:′

8:
= :′2%9(:′)

[
(1 − ?:)(1 − ?:′)

�8 9

&8
+ (1 − ?:)?:′

' 98

&8
+ ?:(1 − ?:′)

'8 9

& 9
+ ?:?:′

∑
;

'8;' 9;

&;

]
= 9 .

(7.38)
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If the movement is independent of the connectivity :, i.e., ?: = ?, Eq. (7.37) becomes

�̄&8 = �̄
∑
9

"8 9& 9 , (7.39)

in which the elements &8 of the eigenvectors are now independent of :. A new matrix " is

defined, whose elements are

"8 9 = 〈:2〉9
[
(1 − ?)2

�8 9

&8
+ ?(1 − ?)

(
' 98

&8
+

'8 9

& 9

)
+ ?2

∑
;

'8;' 9;

&;

]
= 9 , (7.40)

where the effective number of edges &8 is

&8 =

∑
9

〈:〉9
[
(1 − ?)�8 9 + ?' 98

]
= 9 . (7.41)

In the following sections we will deal only with this case of movement independent of :.

To check the consistency of these equations, let us consider the static case in which all

individuals stay in their patches and do not move: ?: = 0 ∀ :. So, Eq. (7.40) becomes

"8 9

��
?:=0 = 〈:2〉9

�8 9

&8 |?:=0
= 9 ,

where &8 |?:=0 = =8 〈:〉8 , that after being used in Eq. (7.39) results in �̄&8 = �̄
〈:2〉8
〈:〉8 &8 . This case

consists of isolated subpopulations in an annealed regime in which the epidemic threshold will

be given by the first subpopulation in the active state, if its population is not so small compared

to other patches. Indeed, the usual epidemic threshold known in the HMF theory is obtained,

�̄c = �̄
〈:〉8
〈:2〉8

����
8=max

, (7.42)

where 8 = max refers to the patch with the maximum value of 〈:2〉8
〈:〉8 , responsible for the leading

eigenvalue of " when =max represents a significant fraction of the total population.

7.3.1 Synthetic structures with heterogeneous subpopulations

To investigate the effects of the heterogeneities in connectivity on different synthetic net-

works, comparing exact and numerical results for the epidemic thresholds with approximations

given by effective connectivity distribution and the lower bound, we define two kinds of net-
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works. The first one is a metapopulation of only two patches, to isolate the effect of different

levels of heterogeneities between two single subpopulations. Next, we define a star-like network

such as the one presented in Sec. 7.2.3 but including contact patterns on the individuals living

in each patch.

Metapopulation of two patches

This synthetic metapopulation consists of Ω = 2 patches, in which the fluxes are symmet-

rical: '12 = '21 = 1, and '88 = 0 for 8 = 1,2. We can consider that the first patch is the most

heterogeneous one, leading the epidemic threshold of the system, without loss of generality.

As an example, we can consider that this first patch contains a fraction  of individuals of

connectivity 1, and 1 −  of connectivity :max, while the second has only individuals of con-

nectivity :2 = 〈:〉1, predetermined. So, the connectivity distribution is bimodal and given by

%1(:) = �:1 + (1 − )�::max , with  =
:max−〈:〉1
:max−1 and %2(:) = �:〈:〉1 . Figure 7.4 shows a schematic

example of this connectivity configuration for :max = 5.

Figure 7.4: Example of a metapopulation with two patches. The first is a heterogeneous
patch with individuals of connectivity 1 with probability , or :max = 20 with complementary
probability 1− :max, and the second is a homogeneous patch with all individuals with the same
connectivity :2 = 〈:〉1 = 5. Individuals can travel from one patch to the other with probability
?, always having the same destination.

Star-like metapopulation

In this metapopulation network, a hub has � leaves, whose populations are =ℎ and =; for

the hub and leaves, respectively. The mobility from leaves to the hub, and between leaves

depends on the parameter �, and the elements '8 9 of the mobility matrix are the same defined

in Eqs. (7.13) to (7.15). Figure 7.5 shows an example of this metapopulation structure with

heterogeneous individuals in the hub, while individuals have the same connectivity in the

leaves.



7. Metapopulation structures with heterogeneous subpopulations 141

Figure 7.5: Example of a star-like metapopulation network with � + 1 patches. In this example,
the center and leaves have the same number of individuals, =ℎ = =; = =, while the hub is
a heterogeneous patch with individuals of connectivity 1 with probability , or :max = 20
with complementary probability 1 − , and each leaf is a homogeneous patch with individuals
of same connectivity :; = 〈:〉ℎ = 5. The flow from hub to a leaf happens with probability
'ℎ; = �−1, from leaves to hub with ';ℎ = �, and between adjacent leaves with '; ,;+1 = 1 − �.

7.3.2 Agreement with Monte Carlo simulations

Before proceeding, it is important to check the validity of the Markovian equations. To this

aim, we define a Monte Carlo (MC) algorithm for the stochastic simulation of the SIS model

on top of the metapopulation with heterogeneous contact patterns. We expect that the average

quantities agree with the Markovian equations for the order parameters, such as the fraction of

infected individuals. The proposed process is also a discrete-time dynamics. In each time step,

each individual is tested to move with probability ? and, if accepted, it moves to a patch 9 with

probability '8 9 . Then, all individuals with connectivity : choose : individuals in the patch they

currently are at random, following %̃(:′ |:) and are infected with probability �̄ if the contacted

individual is infected. Healing happens with probability �̄ for each infected individual. The

simulation procedure is the following:

1. A fraction �ini of the population is infected as the initial condition.

2. For each time step ΔC = 1 and each patch 8, each individual resident in 8 is tested to move

with probability ?, choosing a patch 9 proportionally to '8 9 .

3. Each infected individual heals with probability �̄.
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4. Each susceptible individual with connectivity : selects at random at maximum : contacts

in patch 8. For each attempt, it can be infected with probability

�̄

∑
:

:�̃
[:]
8
(C)=̃[:]

8∑
:

:=̃
[:]
8

,

or remain susceptible with complementary probability. The attempts stop if the individual

becomes infected.

5. All individuals return to their residences and the time is updated from C to C + 1.

In step 4, the connectivity of the susceptible individual is :, and it selects : edges at random.

If the selected edge comes from an infected individual, it becomes infected with probability �̄.

The infection is proportional to the number of edges coming from infected individuals currently

in patch 8.

To avoid the absorbing-state, we infect a small fraction �pump of individuals at random

when this state is reached [95]. This keeps the dynamics always active. The comparison

between MC and Markovian equations was done for the steady-state considering two types of

metapopulations, in Figs. 7.6 and 7.7. From now on, we assume that all patches contain the

same number of individuals =8 = = to isolate the effect of contact heterogeneity.

Comparing the MC simulations with the temporal evolution of the Markovian equations,

we have an excellent agreement. The simulations were done by starting with all individuals

infected, �pump = 2 × 10−4 and 10 dynamical samples in a metapopulation of one patch with
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Figure 7.6: Equilibrium regimes of the Markovian equations (lines) and MC simulations (sym-
bols) for a two-patches metapopulation with =1 = =2 = = = 104. One patch follows a bimodal
connectivity distribution with values 1 and (a) :max = 20, (b) 50, and (c) 100, while in the second
all individuals have the same connectivity :2 = 〈:1〉 = 5. A fraction �pump = 2 × 10−4 was used
in 10 dynamical samples.
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bimodal distribution with :max = 20, 50, and 100, and another patch with :2 = 〈:〉1 = 5. The

results are shown in Fig. 7.6. As ? increases, the heterogeneities of the patches become smaller

due to the homogenization of the population, increasing the epidemic threshold. The highest

epidemic threshold happens for ? = 0.5 in all cases, and decreases symmetrically for ? > 0.5. It

is interesting to note that in the curve for ? = 0 in Fig. 7.6 we see an inflection at �̄/�̄0 ≈ 3.4 that

corresponds to the activation of the most homogeneous patch.

We also perform stochastic simulations for the star-like metapopulation by considering

different levels of mobility patterns. In Fig. 7.7 we compare the results from the Markovian

equations with MC simulations for =8 = 104 individuals with � = 10 leaves, but different levels

of contact heterogeneity. First, we consider a heterogeneity only between patches, in which the

hub has individuals with the same connectivity :ℎ = 100, while leaves have :; = 10. We observe

an increase of the epidemic threshold when individuals start to move. The agreement with MC

simulations is also remarkable.
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Figure 7.7: Equilibrium regimes of the Markovian equations (lines) and MC simulations (sym-
bols) for a star-like metapopulation with =ℎ = =; = = = 104 and � = 10 leaves. The hub contains
individuals with connectivity :ℎ = 100, and the leaves :; = 10. The mobility pattern is given by
(a) � = 0.1 and (b) 0.9. A fraction �pump = 2 × 10−4 was used in 10 dynamical samples.

7.3.3 Analytical evaluation of the epidemic threshold

We now evaluate analytically the epidemic threshold as a function of the mobility parameter

?. Using the Gershgorin circle theorem [205] it is possible to show that an upper bound for the

eigenvalue of the matrix " is given by

Λmax ≤ max
8

©«
∑
9

"8 9
ª®¬
. (7.43)
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See Appendix C.1 for more details. With that we can get a lower bound for the epidemic

threshold described in Eq. (7.40) as

�̄c ≥ �̄

max
8

∑
9

〈:2〉9
[
(1 − ?)2

�8 9

&8
+ ?(1 − ?)

(
' 98

&8
+

'8 9

& 9

)
+ ?2

∑
;

'8;' 9;

&;

]
= 9

. (7.44)

In Fig. 7.8 we compare the numerical threshold obtained by the leading eigenvalue of Eq. (7.40)

and the r.h.s. of Eq. (7.44), confirming the lower bound for the epidemic threshold. The absolute

relative deviation can be high for intermediate values of ? and depends on the structure of the

mobility network.
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Figure 7.8: Comparison between the numerical estimation of the threshold via calculation of the
leading eigenvalue of the matrix "8 9 defined by Eq. (7.40) and the estimate given by Eq. (7.44).
The relative deviation &rel is also calculated. The metapopulation consists of a star structure of
� = 10 leaves and =8 = = = 104 individuals in each patch. The parameter �, shown in the legends,
tune the mobility between patches; see Sec. 7.3.1. The center has individuals with connectivity
either 1 or 20, and individuals residing in the leaves have connectivity :2 = 〈:〉1 = 5.

An approximation for the epidemic threshold would be to use the effective connectivity

distribution to evaluate

�̄c ≈ �̄min
8

[
〈̃:〉 8
〈̃:2〉 8

]
, (7.45)

where 8 is the patch in which this value is minimal, corresponding to the one that will be

activated first. This expression describe only qualitatively the epidemic threshold, since we are

neglecting dynamical correlations.
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We investigate the precision of the epidemic thresholds obtained via effective connectivity

distribution (dotted lines), the upper bound limit (dashed lines), exact result (solid lines) and

numerical threshold (points) obtained by finding the leading eigenvalue of the matrix " in

Fig. 7.9. We start by the metapopulation with two patches. The exact result for the leading

eigenvalue as a function of ? is detailed in Appendix C.3. The maximum value happens at

?∗ = 0.5 and is equal to
Λmax(? = 0.5)

Λ
(0)
1

=
0 + 1

2
, (7.46)

where 0 = 〈:2〉2/〈:2〉1 < 1. Note that as 〈:2〉1 increases with :max, 0 → 0, this expression
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Figure 7.9: Comparison between different approximations, analytical, and numerical results for
(a-c) two patches metapopulation with the same parameters of Fig. 7.6, with (a) :max = 20, (b)
50, and (c) 100, and (d-f) star-like metapopulation where the hub contains individuals following
a bimodal distribution of connectivity with :max = 50, the � = 10 leaves have individuals
with connectivity :; = 〈:ℎ〉 = 5, and (d) � = 0.1, (e) 0.4, and (f) 0.9. All patches have =8 =

= = 105 individuals. Results for the epidemic threshold obtained by the effective connectivity
distribution (dotted lines), lower bound limit (dashed lines), exact expressions (solid lines), and
via numerical evaluation of the leading eigenvalue of " (points) are shown. The horizontal
dashed line indicates the maximum value predicted in (a-c) Appendix C.3 and (d-f) Appendix
C.4, agreeing with the numerical evaluation of the leading eigenvalue of Eq. (7.40).
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converges to 1/2 so that the highest epidemic threshold happens at �̄/�̄0 = 2. This analysis is

in consonance with the results shown in Fig. 7.9(a-c). We can also notice that in this case the

lower bound estimate given by Eq. (7.44) follows very well the behavior of the actual epidemic

threshold, while the effective connectivity distribution by Eq. (7.45) only agrees on the extremes

? = 0, 1, and in the maximum ?∗ = 0.5.

We also present a similar analysis in star-like metapopulations in Fig. 7.9(d-f) for a fixed level

of heterogeneity and varying mobility patterns. The exact result for the epidemic threshold

in this structure can also be evaluated and details are given in Appendix C.4. Again, exact

and numerical results agree with each other, and the lower bound, Eq. (7.44), gives a good

approximation for the actual epidemic threshold, while the effective connectivity distribution

only agrees for ? = 0, 1, and at ? = ?∗. It is interesting to observe that the epidemic threshold

at ? = ?∗ depends on the level of heterogeneity, but do not on the mobility patterns. These

maxima shift from right to left as � increases without changing their values.

Perturbation analysis and first order correction

We proceed by making a perturbation analysis of the eigenvalues of the matrix " up to first

order to quantify the effect of heterogeneity when mobility is small, with ? ≪ 1. We write this

expression as a polynomial up to second order in ? in Eq. (7.40), to obtain

"8 9 = 〈:2〉9
{
�8 9

&8
+ ?

[
' 98

&8
+

'8 9

& 9
− 2

�8 9

&8

]
+ ?2

[
�8 9

&8
−

' 98

&8
−

'8 9

& 9
+

∑
;

'8;' 9;

&;

]}
= 9 , (7.47)

that has terms similar to those in Eq. (7.11). With &8 being also a function of ?, we perform a

Taylor expansion up to terms of order O(?2), Appendix C.2, to obtain

Λ8

Λ
(0)
8

≈ 1 +

'88 − 1 −

∑
9≠8

' 98

= 9 〈:〉9
=8 〈:〉8


? = 1 +Λ

(1)
8
?, (7.48)

with the first order correction. Note that the coefficient of ? in this expression is always negative

since'88 < 1 and the summation is positive, resulting in the detriment of the epidemic threshold,

as in the original model with homogeneous populations defined in Sec. 7.2. Another interesting

result is that Λ(1)
8
/Λ(0)

8
does not depend on the second moment of the connectivity distribution,

but only on the ratio = 9/=8 and of average connectivity 〈:〉9/〈:〉8 of different patches 8 and 9.

In Fig. 7.10, we check the accuracy of Eq. (7.48) in star-like metapopulations for different



7. Metapopulation structures with heterogeneous subpopulations 147

parameters � and �, in which individuals of the hub have connectivity 1 or :max = 50 and

leaves have :2 = 〈:〉1 = 5. At first order in ?, the situation is always detrimental due to the

homogenization of populations. Here, since all patches have the same number of individuals,

this change is due to differences between the average connectivity of patches. First, by fixing

the number of leaves as � = 10 and varying the mobility � from leaves to hubs, we see that

the detrimental effect increases proportionally to � and �, as predicted by Eq. (7.48). In all

cases, individuals residing in the hub always travel to the leaves irrespective of the values of

�. For small values of �, individuals living in leaves do not change the effective connectivity

distribution of the hub, since the movement mostly happens from hub to leaves. As � increases,

more individuals start to move to the hub, increasing the homogenization of the population,

changing the contagion processes. But one can see that the maximum value does not depend

on �, as already seen in Figs. 7.9(d-f), since it will only change for which value of ? the

homogenization will happen. Similarly, the greater the number of leaves �, the greater the

homogenization effect. As the number of individuals in all patches are equal, there are �=8

individuals to mix with those residing in the hub. When mobility starts to work, leaving ? = 0,

several individuals of small connectivity :; = 〈:ℎ〉 = 5 cause the effective heterogeneity to

drastically drop since the number of individuals with connectivity :max is small and distributed

for more patches.
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Figure 7.10: Comparison of the first order approximation in the perturbation analysis, Eq. (7.47),
and numerical evaluation of the leading eigenvalue of the matrix " for star-like metapopulation
structures. In both cases, individuals in the hub have connectivity 1 or :max = 50, while leaves
have connectivity :; = 〈:ℎ〉 = 5. In (a) there are � = 10 leaves and different values of �, indicated
in the legend, while in (b) the parameter � = 0.4 is fixed and the number of leaves � varies,
indicated in the legend. Dashed lines are given by 1 − (1 + ��)?, from Eq. (7.47).
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7.4 Summary and perspectives

With the advance of data mining techniques in mobility and social patterns [188, 206–208],

from individual to whole population level, the representation through metapopulations has

several challenges to increase their degree of realism [209]. The new framework proposed

in Ref. [61] has been continuously improved to incorporate more ingredients, such as high-

order mobility patterns [191], different temporal scales of travels [210] and interactions between

humans and vectors of diseases [211, 212].

In this work we adapted the model of Ref. [61] to account for the heterogeneity in the

number of contacts made by individuals, that is a well-known property in many social networks.

We described a complete set of Markovian equations for a discrete-time SIS dynamics on

subpopulations with recurrent mobility. Performing a stability analysis close to the epidemic

threshold we evaluated analytically its dependence on demographic, mobility, and social data.

The Markovian equations were validated by extensive stochastic simulations. To investigate the

role of heterogeneities, we defined two synthetic metapopulation networks and calculated the

exact expressions for the epidemic thresholds. These results were compared with analytical

approximations and perturbation analysis.

The first investigated case was a metapopulation with only two patches with different levels

of heterogeneity and mobility between them. Starting with ? = 0, the epidemic threshold

increases up to a maximum at ?∗ = 0.5, and then decreases symmetrically, with the same

epidemic threshold for ? = 0 and 1. As shown by an exact expression, the maximum value of

the epidemic threshold converges to a constant value. Another structure considers a hub with

� leaves, with mobility tuned by a parameter �. Considering the same heterogeneity levels, the

maximum epidemic threshold happens for smaller values of ?∗ as the mobility from leaves to

hub increases, accelerating the homogenization process. However, the maximum value of the

epidemic threshold does not change, depending only on the different levels of heterogeneity.

We did not found configurations for which the epidemic threshold for ? > 0 would be

smaller than the original threshold when compared to the static case ? = 0, corresponding to

type I of Ref. [61]. Future works will be made analyzing the effects of a :-dependent mobility,

including correlations in mobility patterns and breaking the homogenization mechanism, since

some individuals will have a higher probability to travel between patches.

Although we only analyzed synthetic metapopulation networks, this model can be inves-
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tigated using a data-driven approach in the sense that one can easily accommodate real data

of demographics, mobility, and contact patterns to describe more realistic situations. Indeed,

the model proposed in Ref. [61] was also adapted to study the impact of mobility and social

distancing interventions for the spreading of COVID-19 in Spain [62, 64]. Another case was the

model proposed in Ref. [63] to measure the outbreak diversity of epidemic waves in different

geographical scales in Brazil. However, these models still assumed a homogeneous mixing in-

stead of the heterogeneous one described here, and the effect of contact heterogeneity deserves

to be investigated in these realistic situations, such as in super-spreading events [213].
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Part IV

Concluding remarks
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Chapter 8

Summary and prospects

Complex networks can describe different natural systems while providing an adequate

mathematical representation to deal with problems of many interacting elements. Using ideas

and basic physical principles such as local rules of interactions between agents, empirical results

can be reproduced both by models of networks and of dynamical processes. By transforming

problems that might have previously been considered impossible to solve, it is possible to

find similarities between these systems through the graph theory formalism, with universal

behaviors that seem to be independent of which systems we are describing.

In particular, basic epidemic models can lead to absorbing-state phase transitions that

strongly depend on the network structure. Analytical mean-field approximations such as

heterogeneous and quenched mean-field theories are used and their results must be compared

to statistical computational results from simulations. Since real networks are very large and

heterogeneous, in Sec. 3.3.2 and Ref. [34] we presented an optimized Gillespie algorithm (OGA)

for the simulation of generic epidemic models. Indeed, our algorithm was recently modified to

be even more efficient using a composition and rejection algorithm [214].

We also performed an investigation about some specific properties of the susceptible-

infected-susceptible (SIS) model on large networks [35]. First, in Chapter 4, we proposed

two modifications of the standard SIS model preserving its central properties of spontaneous

healing and infection capacity increasing unlimitedly with the degree. We then found that

even small modifications in the local rules lead to conflicting results among them. While in the

standard SIS model we concluded that localized regions of the network were always responsible

for the epidemic activation on PL networks, it could not be the case for the modified dynamics.

Specifically, our results suggest that the metastable, localized, and active states of the standard
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SIS model, which can sustain the endemic state for � > 3, are not universal. Our results relight

the discussion of the choice of suitable theoretical approaches and the conception of epidemic

modeling to describe real systems.

In Chapter 5 we tested the validity of an existent hypothesis that both finite dimension

and hierarchy are necessary for the emergence of Griffiths phases (GPs). First, we investigated

the dynamical behavior of the SIS model evolving on independent heterogeneous random

networks [43], showing that Griffiths’s effects were possible and explained by an optimal fluc-

tuation theory. However, these effects were wiped out in the thermodynamic limit. Motivated

by the fact that many real networks have a modular structure, such as the brain, and that several

of them can be non-hierarchical and can have infinite dimension, we also investigated the SIS

model on single weakly connected modular networks. In this case, we observed that loosely

coupled modules act as effective rare regions slowing down the inactivation and leading to

GPs [44]. As a consequence, we find extended regions of control parameter with continuously

changing dynamical critical exponents for single network realizations in the thermodynamic

limit, as in a real GP, while the avalanche size distributions of spreading events exhibit robust

PL tails. Our findings relax the requirements of finite dimension and hierarchy, which can help

to rationalize the criticality of modular systems in the framework of GPs.

We also focused on different applications of spreading dynamics on complex networks.

Instead of using only an undirected and unweighted representation of networks, as done in the

chapters in Part II, we considered directed and weighted networks in Part III.

In Chapter 6 we made an extensive study of the structural and dynamical properties of a

political communication network extracted from real data in Twitter, proposing a method to

quantify echo chamber effects on these networks [49]. Mining 12 million Twitter messages, we

reconstructed a network in which users interchanged opinions related to the impeachment of

the former Brazilian President Dilma Rousseff and observed the presence of echo chambers in

the strongly connected component of the network, reflected in two well-separated communities

of similar sizes with opposite views of the impeachment process. We found strong correlations

between the political positions of users and their spreading capacity by using a spreading model

such as the SIS and SIR models. Users expressing pro-impeachment sentiments were capable to

transmit information, on average, to a larger audience than users expressing anti-impeachment

sentiments, breaking these echo chambers. This method was recently used [215] to investigate

a theoretical model of echo chambers and polarization dynamics on populations.
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Finally, in Chapter 7 we proposed a modification of an existing model for epidemic spread-

ing [61] on metapopulations with recurrent mobility to accommodate social interaction data.

By using synthetic networks, we made an analytical study of the effects of demography, re-

current mobility, and social patterns on the epidemic threshold of the SIS dynamics on top of

these networks. In all investigated cases, we did not found any configuration for which the

epidemic threshold would be smaller than in situations in which the mobility between patches

does not happen. This can have important impacts on general metapopulations models when

applied to real situations. In fact, the model presented here can be easily adapted to handle

specific situations, in a data-driven fashion, such as in the study of super-spreading events by

introducing different values of infection probabilities �̄8 , depending on the patches, and by

mobility probabilities dependent on the connectivity of individuals.

We expect that the results of this thesis will bifurcate in other contributions. Indeed, other

works have been done with our contributions. For example, the accuracy of mean-fields the-

ories was recently compared on correlated real networks in Ref. [73] using spectral analysis

of the leading eigenvalues of the adjacency matrix. Within more practical applications, we

contributed to the modeling of COVID-19 considering recurrent mobility in Spain [62, 64], with

the data-driven Markov-chain approach presented in Chapter 7, and with stochastic simula-

tions for the situation in Brazil [63], provided by the algorithm [34] proposed in Chapter 3.

In the case of Spain, the formalism presented in Ref. [61] was adapted to consider specific

compartments, such as exposed, presymptomatic, hospitalized, recovered, and deceased in-

dividuals, and age-dependent parameters to estimate the required number of intensive care

units. Time-dependent rules of mobility and confinement were also introduced to evaluate

the effect of non-pharmaceutical interventions. The same model was used to estimate the im-

pact of interventions in Bogotá and Medellín, in Colombia. For Brazil, we also adapted the

model to have exposed, presymptomatic, and recovered compartments, but we focused on the

spatio-temporal spreading through distinct geographical scales, observing a great dispersion

of incidence curves, meaning that the disease spreads differently over regions due to the het-

erogeneity of the country. For further discussion, see the articles published in Physical Review

Research [63] and Physical Review X [64]. Both works contributed to the guidance of public

authorities in Spain, Colombia, and Brazil to mitigate the impacts of the COVID-19 pandemic,

being just a few examples of how the mathematical and simulation modeling of spreading

processes can help to combat and to control real epidemics, going beyond theoretical interests.
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Appendix A

Computer implementations of SIS

epidemic models

To build the computer implementations used in Chapter 4, all involved rates are reckoned

using statistically exact prescriptions based on the Gillespie algorithms [84]. We consider

phantom processes that do nothing but counting for time increments. Below we present recipes

for the models investigated in the present work.

A.1 SIS-S

The SIS-S dynamics in a network of size # with infection and healing rates � and � can

be efficiently simulated as follows. A list with all infected vertices, their number #inf, and the

number of edges #e emanating from them are recorded and constantly updated. Each time

step involves the following procedures. (i) With probability

? =
�#inf

�#inf + �#e
, (A.1)

an infected vertex is selected with an equal chance and healed. (ii) With complementary

probability 1 − ?, an infected vertex is selected with probability proportional to its degree. A

neighbor of the selected vertex is chosen with an equal chance and, if susceptible, it becomes

infected. Otherwise, no change of state is implemented (it is a phantom process). (iii) The time

is incremented by

� =
− ln(D)

�#inf + �#e
, (A.2)
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where D is a pseudo-random number uniformly distributed in the interval (0,1) and the simu-

lation runs to the next step.

A.2 SIS-A

This model implementation is very similar to the contact process [25]. A list with the infected

vertices and their number #inf is built and constantly updated. At each time step, the rules are

the following. (i) With probability

? =
�

� + �
, (A.3)

an infected vertex is randomly chosen and healed. (ii) With complementary probability 1 − ?,

all susceptible neighbors of a randomly chosen infected vertex are infected at once. (iii) The

time is incremented by

� =
− ln(D)

(� + �)#inf
. (A.4)

A.3 SIS-T

As in SIS-S and A, a list containing the infected vertices and their number #inf is built and

constantly updated. We have also to maintain an auxiliary list including the number of infected

neighbors =8 of each vertex 8 and the total number of susceptible vertices #SI that have at least

one infected neighbor. At each time step, the rules are the following. (i) With probability

? =
�#inf

�#inf + �#SI
, (A.5)

an infected vertex is selected with an equal chance and healed. (ii) With complementary

probability 1 − ?, an infected vertex is selected with probability proportional to its degree and

one of its neighbors is randomly chosen. If the selected neighbor 8 is susceptible it is accepted

and infected with probability 1/=8 . The procedure of choosing a susceptible vertex is repeated

until one of them is found. (iii) The time is incremented by

� =
− ln(D)

�#inf + �#SI
. (A.6)
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A.4 Simulation on uncorrelated annealed networks

On uncorrelated annealed networks, the unique difference in SIS-S and SIS-A with respect

to the quenched case is that the choice of the neighbors to be infected is done by selecting any

vertex of the network with probability proportional to its degree.

For SIS-T , however, the algorithm becomes trickier and, consequently, very slow. The

probability that a susceptible vertex 9 becomes infected is given by

%9 = 1 − (1 − Θ): 9 , (A.7)

where : 9 is the degree of vertex 9 and Θ = #e/(# 〈:〉) is the probability that a randomly selected

neighbor (at the other side of the edge) is infected in the annealed network. Let us define a

total rate that one tries to infect a susceptible vertex as ! = �(# − #inf), which is larger than

the real one since only the susceptible vertices that have at least one infected neighbor can

actually be infected and this happens with probability %9 < 1. The total rate that a vertex is

healed is " = �#inf. The algorithm becomes the following. (i) An infected vertex is randomly

chosen and healed with probability ? = "/(! + "). (ii) With probability 1 − ?, a susceptible

vertex is randomly chosen and infected with probability %9 . (iii) The time is incremented by

� = − ln(D)/(! + ").

The exactness of these algorithms is confirmed in Fig. 4.2 where simulations on annealed

networks are compared with the integration of the HMF equations.
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Appendix B

Supplementary tables and results for

Chapter 6

In this Appendix, we show supplemental information for Chapter 6. First, in Secs. B.1

and B.2, the full list of hashtags obtained by the manual classification described in Sec. 6.2.1 is

shown for pro-, anti-impeachment, neutral and divergent sentiments. In Secs. B.3, B.4 and B.5,

we present a series of robustness analysis of structure and dynamics on these networks. In

Sec. B.3 some results obtained for the 20-neutral network are presented to another network

reconstructed considering the 52 divergent hashtags as neutral, defining the 72-neutral net-

work, and some of its structural properties are compared to the ones of 20-neutral network. In

Sec. B.4, we show that conclusions drawn from the SIS dynamics are similar when we consider a

SIR-like dynamics instead. Finally, in Sec. B.5, we show results for a complex contagion model,

showing that the results are robust as well concerning different spreading dynamics.

B.1 List of the 443 hashtags with partial and full agreement

In this section, we present supplementary tables of hashtags used in the reconstruction of the

political communication networks considered in Chapter 6. Those for which an agreement was

reached are shown in Tables B.1 to B.3, while the 52 with divergent classification are presented

in Table B.4.
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Table B.1: List of all the 184 hashtags classified as pro-impeachment leaning. For each hashtag, the opinion $8 of each volunteer 8 is reported. Four
choices were possible: B = {−1, 0, + 1, ×}.

Hashtag O1 O2 O3 O4

final classification: −1

1 13marco2016brasilnasruas −1 −1 −1 −1

2 13mareuvou −1 −1 −1 −1

3 31julho −1 −1 −1 −1

4 31julhoconfirmado −1 −1 −1 −1

5 31julhodireitafirme −1 −1 −1 −1

6 31julhoeuvou −1 −1 −1 −1

7 31julhoforcatotal −1 −1 −1 −1

8 31julhopelobrasil −1 −1 −1 −1

9 31jullavajato −1 −1 −1 −1

10 31julvamos −1 −1 −1 −1

11 4dezvemprarua −1 −1 −1 −1

12 acaboudilma −1 −1 −1 −1

13 aceleramoro −1 −1 −1 −1

14 acelerasenado −1 −1 −1 −1

15 acelerastf −1 −1 −1 −1

16 agostotchauquerida −1 −1 −1 −1

17 antagonistasnasruas −1 −1 −1 −1

18 apoiamostemer −1 −1 −1 −1

19 aragaopetralhao −1 −1 −1 −1

20 atopelofimdopt −1 −1 −1 −1

21 avantelavajato −1 −1 −1 −1

22 avantetemer −1 −1 −1 −1

23 brasilapoiajuliomarcelo −1 −1 −1 −1

24 brasilapoiatemer −1 −1 −1 −1

25 brasillivredopt −1 −1 −1 −1

26 brasilquerlulapreso −1 −1 −1 −1

27 brasilreprovadilma −1 −1 −1 −1

28 brasilsemdilma −1 −1 −1 −1

29 brasilsempt −1 −1 −1 −1

30 brazilnocorrupt −1 −1 −1 −1

31 cadeia2ainstancia −1 −1 −1 −1

32 cadeialula −1 −1 −1 −1

33 camarasempt −1 −1 −1 −1

34 cassacaodosdireitospoliticossim −1 −1 −1 −1

35 decidamsim −1 −1 −1 −1

36 desculpasdopt −1 −1 −1 −1

37 dia13mareuvou −1 −1 −1 −1

38 dia31juleuvou −1 −1 −1 −1

39 dilmabandida −1 −1 −1 −1

40 dilmacaixa2 −1 −1 −1 −1

41 dilmaculpada −1 −1 −1 −1

42 dilmaculpadaoea −1 −1 −1 −1

43 dilmafungo −1 −1 −1 −1

44 dilmagolpista −1 −1 −1 −1

45 dilmajaera −1 −1 −1 −1

46 dilmamente −1 −1 −1 −1

47 dilmamentirosa −1 −1 −1 −1

48 dilmanacadeia −1 −1 −1 −1

49 dilmanaomerepresenta −1 −1 −1 −1

50 dilmare −1 −1 −1 −1

Hashtag O1 O2 O3 O4

51 euapoiodeltan −1 −1 −1 −1

52 eugritomoro −1 −1 −1 −1

53 eulutopelomoro −1 −1 −1 −1

54 euquerolulapreso −1 −1 −1 −1

55 eusoumoro −1 −1 −1 −1

56 extincaodopt −1 −1 −1 −1

57 ficatemer −1 −1 −1 −1

58 fimdopt −1 −1 −1 −1

59 foracomunismo −1 −1 −1 −1

60 foradilma −1 −1 −1 −1

61 foradilmalula −1 −1 −1 −1

62 foralula −1 −1 −1 −1

63 forapt −1 −1 −1 −1

64 herancamaldita −1 −1 −1 −1

65 impeachmentdilmaja −1 −1 −1 −1

66 impeachmentsim −1 −1 −1 −1

67 independenciasempt −1 −1 −1 −1

68 lavajato −1 −1 −1 −1

69 lavajatoeuapoio −1 −1 −1 −1

70 lulacovarde −1 −1 −1 −1

71 luladenunciado −1 −1 −1 −1

72 luladenunciadonalavajato −1 −1 −1 −1

73 lulaedilmanacadeia −1 −1 −1 −1

74 lulagolpista −1 −1 −1 −1

75 lulaladrao −1 −1 −1 −1

76 lulalixomundial −1 −1 −1 −1

77 lulamente −1 −1 −1 −1

78 lulanacadeia −1 −1 −1 −1

79 lulanacadeiaja −1 −1 −1 −1

80 lulanuncamais −1 −1 −1 −1

81 lulapajaula −1 −1 −1 −1

82 lulapresoja −1 −1 −1 −1

83 lulareu −1 −1 −1 −1

84 lulavaipromoro −1 −1 −1 −1

85 lulavergonhanacional −1 −1 −1 −1

86 maranhaoempregadodopt −1 −1 −1 −1

87 mexeucommoromexeucomigo −1 −1 −1 −1

88 morobrasilteapoia −1 −1 −1 −1

89 morolidermundial −1 −1 −1 −1

90 moropresidente −1 −1 −1 −1

91 novaseleicoesnao −1 −1 −1 −1

92 oabdopt −1 −1 −1 −1

93 oabrepete92 −1 −1 −1 −1

94 obrigadampf −1 −1 −1 −1

95 obrigadompf −1 −1 −1 −1

96 ocupabh −1 −1 −1 −1

97 olimpiadassemdilma −1 −1 −1 −1

98 ouvocevaiouelafica −1 −1 −1 −1

99 passadilma −1 −1 −1 −1

100 prendehojemoro −1 −1 −1 −1

101 ptacabou −1 −1 −1 −1

Hashtag O1 O2 O3 O4

102 ptdesmoronando −1 −1 −1 −1

103 ptexit −1 −1 −1 −1

104 ptnuncamais −1 −1 −1 −1

105 ptraidoresdobrasil −1 −1 −1 −1

106 ptvergonhanacional −1 −1 −1 −1

107 quedadoplanalto −1 −1 −1 −1

108 quedaplanalto −1 −1 −1 −1

109 renunciadilma −1 −1 −1 −1

110 renunciedilma −1 −1 −1 −1

111 repudionomeacaolula −1 −1 −1 −1

112 senadovotesim −1 −1 −1 −1

113 setembrosemdilma −1 −1 −1 −1

114 simpeloimpeachment −1 −1 −1 −1

115 somosmoro −1 −1 −1 −1

116 somostodosjanaina −1 −1 −1 −1

117 somostodosmoro −1 −1 −1 −1

118 soumoro −1 −1 −1 −1

119 tchaumaldita −1 −1 −1 −1

120 tchaupt −1 −1 −1 −1

121 tchauquerida −1 −1 −1 −1

122 tchauqueridaday −1 −1 −1 −1

123 temermelhorquept −1 −1 −1 −1

124 todoapoioalavajato −1 −1 −1 −1

125 todoscontratoffoli −1 −1 −1 −1

126 todosnasruas31julho −1 −1 −1 −1

127 ultimopanelaco −1 −1 −1 −1

128 vaiadilma −1 −1 −1 −1

129 vaiterimpeachment −1 −1 −1 −1

130 vamostirarobrasildovermelho −1 −1 −1 −1

131 vazavacaloca −1 −1 −1 −1

132 vempelomoro −1 −1 −1 −1

133 vempradetencao −1 −1 −1 −1

134 vemprafiesp −1 −1 −1 −1

135 vemprarua13mar −1 −1 −1 −1

136 vemprarua13marco −1 −1 −1 −1

137 vemprarua17abril −1 −1 −1 −1

138 vemprarua31jul −1 −1 −1 −1

139 vemprarua31julho −1 −1 −1 −1

final classification: −1∗

1 04dezvemprarua −1 −1 −1 ×

2 13marco −1 × −1 −1

3 13marcoeuvou −1 −1 +1 −1

4 31juleuvou −1 −1 +1 −1

5 31julhoavantebrasil × −1 −1 −1

6 4dezeuvou × −1 −1 −1

7 avantepf −1 −1 −1 0

8 boratemer −1 −1 −1 0

9 brasilapoialavajato −1 −1 −1 ×

10 brasilnasruas −1 −1 −1 ×

11 brasilnasruas20nov −1 −1 −1 ×

12 crimeabandeirabr −1 −1 −1 +1

Hashtag O1 O2 O3 O4

13 deolhonostf −1 −1 −1 +1

14 dilmanuncamais −1 −1 +1 −1

15 felizaniversariomoro −1 −1 −1 ×

16 impeachj −1 × −1 −1

17 impeachmentdilma −1 0 −1 −1

18 juntospelalavajato −1 −1 −1 0

19 lavajatopatrimoniodopovo −1 −1 −1 ×

20 lewandowskigolpista −1 −1 −1 +1

21 lewandowskipetralha −1 −1 −1 0

22 liberadelacaojanot −1 −1 0 −1

23 lulaacabou −1 −1 −1 0

24 luladrao +1 −1 −1 −1

25 lulanapapuda −1 −1 −1 +1

26 lulapreso −1 −1 −1 0

27 mortadeladay +1 −1 −1 −1

28 naomexanalavajato −1 −1 −1 ×

29 nasruas15nov × −1 −1 −1

30 novaeleicaoehgolpe −1 −1 +1 −1

31 novogoverno −1 −1 −1 0

32 ocupasaopaulo −1 0 −1 −1

33 orgulhodapf −1 −1 −1 ×

34 petrolao × −1 −1 −1

35 propinocracia 0 −1 −1 −1

36 queremosdilmare −1 −1 −1 +1

37 renannacadeia 0 −1 −1 −1

38 somostodosdeltan −1 −1 −1 ×

39 somostodosvallisney −1 −1 −1 ×

40 stfretrocessonao −1 −1 −1 ×

41 tchaudilmavez −1 −1 −1 +1

42 temereouro −1 −1 −1 0

43 teoricorrupto −1 −1 −1 +1

44 teoridevolveolula +1 −1 −1 −1

45 vempraruabrasil 0 −1 −1 −1
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Table B.2: List of all the 200 hashtags classified as anti-impeachment leaning. For each hashtag, the opinion $8 of each volunteer 8 is reported.
Four choices were possible: B = {−1, 0, + 1, ×}.

Hashtag O1 O2 O3 O4

final classification: +1

1 180diasdegolpe +1 +1 +1 +1

2 54milhoesdedilmas +1 +1 +1 +1

3 acaradogolpe +1 +1 +1 +1

4 aeciogolpista +1 +1 +1 +1

5 agoraerua +1 +1 +1 +1

6 alutacomecou +1 +1 +1 +1

7 amarsemtemer +1 +1 +1 +1

8 anulamaranhao +1 +1 +1 +1

9 anulastf +1 +1 +1 +1

10 anulatudosupremo +1 +1 +1 +1

11 apoioalula +1 +1 +1 +1

12 avantetemerpracadeia +1 +1 +1 +1

13 baralhodogolpe +1 +1 +1 +1

14 barulhacoforatemer +1 +1 +1 +1

15 blogueiroscomdilma +1 +1 +1 +1

16 brasilcontraogolpe +1 +1 +1 +1

17 byedemocracyday +1 +1 +1 +1

18 cinegolpista +1 +1 +1 +1

19 comlulaporlula +1 +1 +1 +1

20 coupinbrazil +1 +1 +1 +1

21 culturapelademocracia +1 +1 +1 +1

22 cunhagolpista +1 +1 +1 +1

23 decidapelademocracia +1 +1 +1 +1

24 derrubargolpenasruas +1 +1 +1 +1

25 devolverenan +1 +1 +1 +1

26 dia31vaisermaior +1 +1 +1 +1

27 dilmacoracaovalente +1 +1 +1 +1

28 dilmaeinocente +1 +1 +1 +1

29 dilmafica +1 +1 +1 +1

30 dilmaficagolpesai +1 +1 +1 +1

31 dilmanatvbrasil +1 +1 +1 +1

32 dilmavolta +1 +1 +1 +1

33 diretasja +1 +1 +1 +1

34 ditaduratemer +1 +1 +1 +1

35 eduardocunhagolpista +1 +1 +1 +1

36 egolpe +1 +1 +1 +1

37 egolpesim +1 +1 +1 +1

38 elmundocondilma +1 +1 +1 +1

39 emdefesadademocracia +1 +1 +1 +1

40 entrouparaolixodahistoria +1 +1 +1 +1

41 esquentagrevegeral +1 +1 +1 +1

42 estamoscomlula +1 +1 +1 +1

43 estamostodoscomlula +1 +1 +1 +1

44 estoucomlula +1 +1 +1 +1

45 fairplayparadilma +1 +1 +1 +1

46 ficadilma +1 +1 +1 +1

47 foracoxinhas +1 +1 +1 +1

48 foragilmar +1 +1 +1 +1

49 foragolpista +1 +1 +1 +1

50 foragolpistas +1 +1 +1 +1

Hashtag O1 O2 O3 O4

51 foratemerficahaddad +1 +1 +1 +1

52 foratemergolpista +1 +1 +1 +1

53 foratemerladrao +1 +1 +1 +1

54 foratemerolimpico +1 +1 +1 +1

55 foratemerrio2016 +1 +1 +1 +1

56 forcadilma +1 +1 +1 +1

57 forcalula +1 +1 +1 +1

58 forcaquerida +1 +1 +1 +1

59 getouttemer +1 +1 +1 +1

60 globogolpista +1 +1 +1 +1

61 golpeaquinaopassa +1 +1 +1 +1

62 golpeday +1 +1 +1 +1

63 golpedeestado +1 +1 +1 +1

64 golpeemachista +1 +1 +1 +1

65 golpenao +1 +1 +1 +1

66 golpenuncamais +1 +1 +1 +1

67 golpismodamidia +1 +1 +1 +1

68 golpista +1 +1 +1 +1

69 golpistas +1 +1 +1 +1

70 golpistasday +1 +1 +1 +1

71 gritocontraogolpe +1 +1 +1 +1

72 gritodosexcluidos +1 +1 +1 +1

73 impeachmentsemcrimeegolpe +1 +1 +1 +1

74 jatemluta +1 +1 +1 +1

75 jucagolpista +1 +1 +1 +1

76 lulaestamoscomvoce +1 +1 +1 +1

77 lulaestamoscontigo +1 +1 +1 +1

78 lulaeterno +1 +1 +1 +1

79 lulaeuconfio +1 +1 +1 +1

80 lulaeudefendo +1 +1 +1 +1

81 lulaeurespeito +1 +1 +1 +1

82 lulafica +1 +1 +1 +1

83 lulaisworththefight +1 +1 +1 +1

84 lulalidermundial +1 +1 +1 +1

85 lulaministroja +1 +1 +1 +1

86 lulaperseguidopolitico +1 +1 +1 +1

87 lulapresidente +1 +1 +1 +1

88 lulario2016 +1 +1 +1 +1

89 lulavalealuta +1 +1 +1 +1

90 lulavolta +1 +1 +1 +1

91 lutapelademocracia +1 +1 +1 +1

92 lutarsempre +1 +1 +1 +1

93 lutopelademocracia +1 +1 +1 +1

94 marchadascoxinhas +1 +1 +1 +1

95 marchadoscorruptos +1 +1 +1 +1

96 marchadoscoxinhas +1 +1 +1 +1

97 marchadospatinhospamonhas +1 +1 +1 +1

98 mblgolpista +1 +1 +1 +1

99 mentiraenaglobo +1 +1 +1 +1

100 mexeucomlulamexeucomigo +1 +1 +1 +1

101 mobilizacaototal +1 +1 +1 +1

Hashtag O1 O2 O3 O4

102 moralistassemmoral +1 +1 +1 +1

103 moroamigodecunha +1 +1 +1 +1

104 moroexonerado +1 +1 +1 +1

105 moronacadeia +1 +1 +1 +1

106 mulherescontratemer +1 +1 +1 +1

107 naoaogolpe +1 +1 +1 +1

108 naovaitergolpe +1 +1 +1 +1

109 naovoupagaropacto +1 +1 +1 +1

110 ocupaminc +1 +1 +1 +1

111 ocupaolimpiada +1 +1 +1 +1

112 ocuparedeesgoto +1 +1 +1 +1

113 ocupasenado +1 +1 +1 +1

114 ocupatudo +1 +1 +1 +1

115 ocupatudocontraogolpe +1 +1 +1 +1

116 ogolpeefichasuja +1 +1 +1 +1

117 opovodecide +1 +1 +1 +1

118 opovoquerdemocracia +1 +1 +1 +1

119 parabenspresidentadilma +1 +1 +1 +1

120 pelademocracia +1 +1 +1 +1

121 pmdbgolpista +1 +1 +1 +1

122 povocomlula +1 +1 +1 +1

123 psdbteupassadotecondena +1 +1 +1 +1

124 queremcalaraune +1 +1 +1 +1

125 ralatemer +1 +1 +1 +1

126 reformanaorenunciasim +1 +1 +1 +1

127 renangolpista +1 +1 +1 +1

128 renunciatemer +1 +1 +1 +1

129 respeiteasurnas +1 +1 +1 +1

130 ripdemocracia +1 +1 +1 +1

131 semdemocraciasempaz +1 +1 +1 +1

132 senadovotenao +1 +1 +1 +1

133 somostodoslula +1 +1 +1 +1

134 somostodospt +1 +1 +1 +1

135 soscoupinbrazil +1 +1 +1 +1

136 soupelademocracia +1 +1 +1 +1

137 soupt +1 +1 +1 +1

138 standwhitlula +1 +1 +1 +1

139 standwithlula +1 +1 +1 +1

140 stopcoupinbrazil +1 +1 +1 +1

141 teimadilma +1 +1 +1 +1

142 temercaradepau +1 +1 +1 +1

143 temerecunha +1 +1 +1 +1

144 temereglobounidosnogolpe +1 +1 +1 +1

145 temergolpista +1 +1 +1 +1

146 temergolpistafrouxo +1 +1 +1 +1

147 temerjamais +1 +1 +1 +1

148 temerout +1 +1 +1 +1

149 tocomdilma +1 +1 +1 +1

150 tocomlula +1 +1 +1 +1

151 todoscomdilma +1 +1 +1 +1

152 todoscomlula +1 +1 +1 +1

Hashtag O1 O2 O3 O4

153 tonaruaforatemer +1 +1 +1 +1

154 vaiterforatemersim +1 +1 +1 +1

155 vaiterlula +1 +1 +1 +1

156 vaiterluta +1 +1 +1 +1

157 vamosbarrarosgolpistas +1 +1 +1 +1

158 vemprademocracia +1 +1 +1 +1

159 volta_querida_democracia +1 +1 +1 +1

160 voltadilma +1 +1 +1 +1

161 voltadilmapresidenta +1 +1 +1 +1

162 voltalula +1 +1 +1 +1

163 voltaquerida +1 +1 +1 +1

final classification: +1∗

1 anulateori +1 +1 +1 0

2 brasiljusto −1 +1 +1 +1

3 censuranuncamais +1 +1 × +1

4 coxinhaco −1 +1 +1 +1

5 cunhaetemer × +1 +1 +1

6 cunhanacadeia +1 +1 0 +1

7 cunhasnacadeia 0 +1 +1 +1

8 democraciaja × +1 +1 +1

9 desapegadolulastf +1 +1 −1 +1

10 desligaogolpe × +1 +1 +1

11 desligatv +1 × +1 +1

12 dilmanovamente +1 0 +1 +1

13 eleicaoja 0 +1 +1 +1

14 eleicoesja +1 0 +1 +1

15 ficalula −1 +1 +1 +1

16 ficaquerida +1 +1 +1 0

17 foraserra 0 +1 +1 +1

18 fueratemer +1 +1 0 +1

19 golpe +1 +1 × +1

20 grevegeral +1 × +1 +1

21 joaopaulo13comlula × +1 +1 +1

22 libertemzedirceu +1 × +1 +1

23 lula2018 +1 0 +1 +1

24 lulacasacivil +1 +1 +1 0

25 lulaladenovo +1 0 +1 +1

26 lularesiste −1 +1 +1 +1

27 lutareumdireito +1 +1 −1 +1

28 naotemarrego +1 × +1 +1

29 natalsemtemer 0 +1 +1 +1

30 nenhumdireitoamenos +1 +1 +1 0

31 ocupabrasilia +1 +1 −1 +1

32 renunciacunha 0 +1 +1 +1

33 stfacovardado +1 0 +1 +1

34 temersilveriodosreis +1 −1 +1 +1

35 traidoresdopovo +1 +1 −1 +1

36 vaitervaia +1 +1 −1 +1

37 vazatemer 0 +1 +1 +1
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Table B.3: List of all the 20 hashtags classified as neutral leaning (B = 0) and all the 39 hashtags classified as not related (B = ×). For each hashtag,
the opinion $8 of each volunteer 8 is reported. Four choices were possible: B = {−1, 0, + 1, ×}.

Hashtag O1 O2 O3 O4

final classification: 0

1 foracorruptos 0 0 0 0

2 impeachment 0 0 0 0

3 tchaucunha 0 0 0 0

final classification: 0∗

1 delatacunha 0 +1 0 0

2 dilma −1 0 0 0

3 dilmanosbt +1 0 0 0

4 dilmarousseff 0 0 0 −1

5 diretasja2018 0 0 −1 0

6 eduardocunha 0 0 × 0

7 ficamedina × 0 0 0

8 forabandidos 0 0 −1 0

9 foraminc 0 0 0 +1

10 forastf 0 0 0 −1

11 foratodosratos 0 0 × 0

12 janotgolpista 0 0 0 −1

13 seeufosseadilma −1 0 0 0

14 sessaodoimpeachment −1 0 0 0

15 stfvergonhanacional 0 0 0 ×

16 vemprarua 0 0 0 −1

17 votacaoimpeachment −1 0 0 0

Hashtag O1 O2 O3 O4

final classification: ×

1 16ago × × × ×

2 18marco × × × ×

3 brasilnaonu × × × ×

4 camara × × × ×

5 constituicao × × × ×

6 dia18 × × × ×

7 dia18_03 × × × ×

8 golacosdadilma × × × ×

9 justica × × × ×

10 listatripliceagu × × × ×

11 mandato × × × ×

12 moroaguarda × × × ×

13 mpf × × × ×

14 ocupabrazil × × × ×

15 senadores × × × ×

16 timepetrobras × × × ×

final classification: ×
∗

1 10medidassemgolpe × × × 0

2 31mar × × × +1

3 anistiacaixa2nao × × 0 ×

4 anistiarcaixa2egolpe × × 0 ×

Hashtag O1 O2 O3 O4

5 bolsonaro × × −1 ×

6 bolsonaro2018 × × −1 ×

7 bolsonaropresidente × × −1 ×

8 contraogolpeedia18 × +1 × ×

9 corrupcao 0 × × ×

10 cunha × × × 0

11 delcidiotemrazao × × × −1

12 deputados × × × 0

13 dilmacaradarenuncia × +1 × ×

14 eleicoes2016 × × 0 ×

15 listafechadanao × × 0 ×

16 martraira × × × −1

17 ocupario × × −1 ×

18 petrobras 0 × × ×

19 planalto × × × 0

20 politica +1 × × ×

21 presaledopovo +1 × × ×

22 senado +1 × × ×

23 stf × × × 0
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B.2 List of the 52 hashtags with divergent opinions

In Table B.4 we show the list of hashtags with divergent opinions of the four volunteers.

These hashtags were considered as neutral to reconstruct the 72-neutral network.

Table B.4: List of the 52 hashtags for which an agreement was not achieved. For each hashtag,
the opinion $8 of each volunteer 8 is reported. Four choices were possible: B = {−1, 0, + 1, ×}.
Hashtag O1 O2 O3 O4

final classification: 0?

1 2ainstanciacadeia × −1 −1 ×

2 aceleralavajatostf × × −1 −1

3 acordabrasil −1 0 −1 ×

4 adeuscunha × +1 0 +1

5 brasilcontrastf −1 +1 0 ×

6 comandantelula × 0 0 −1

7 cunhacaiu −1 0 +1 +1

8 desejoprotemer +1 −1 0 0

9 eavezdasmulheres × × +1 +1

10 fimforoprivilegiado 0 0 × ×

11 foracunha −1 +1 +1 0

12 forajuca 0 +1 +1 −1

13 foraladrao 0 −1 × +1

14 foraoab × × +1 +1

15 forapmdb 0 0 +1 +1

16 forarenan × 0 +1 +1

17 forarodrigomaia 0 −1 0 +1

18 foratemer +1 0 0 +1

19 foratodos 0 +1 0 ×

20 impeachmentbrazil −1 0 0 +1

21 impeachmentday −1 0 +1 0

22 impeachmentja × −1 −1 0

23 jucanacadeia +1 +1 0 0

24 lula +1 0 × 0

25 lulala −1 × −1 +1

26 lulaministro +1 0 0 +1

Hashtag O1 O2 O3 O4

27 lulanorecife +1 0 0 ×

28 mapadoimpeachment −1 0 −1 0

29 mastenhoconviccao × 0 +1 +1

30 micheltemer × 0 × 0

31 mudabrasil −1 0 × 0

32 ocupabrasil 0 +1 −1 0

33 ocupacopacabana × 0 +1 +1

34 ocupapaulista −1 +1 −1 0

35 ocuparj −1 × +1 ×

36 ocupasp −1 0 −1 ×

37 ocupastf +1 0 0 +1

38 olimpeachment +1 −1 −1 0

39 panelaco × × −1 +1

40 possedadesonra × +1 +1 0

41 renanpreso 0 × 0 ×

42 renanreu × −1 0 ×

43 renantemealavajato −1 −1 0 ×

44 renunciaja 0 −1 −1 +1

45 salvealavajato × −1 −1 ×

46 sergiomoro −1 0 −1 0

47 somostodosgolpistas −1 −1 +1 +1

48 souptpq × +1 +1 0

49 tchauquerido × +1 −1 ×

50 temer × 0 × 0

51 teorigolpista −1 × +1 +1

52 vergonhacongressobr × +1 +1 ×

B.3 Effects of the hashtag classification on the reconstructed network

Figure B.1 reproduces Fig. 6.5 for the activity frequency of tweets in the SCC of the

72-neutral network for different sentiments. As expected, we note that the fraction of tweets

containing neutral tweets increases as a natural consequence of the addition of 52 neutral

hashtags for the network reconstruction.

In Fig. B.2, we repeat the analysis of distributions of activity and burstiness to the 72-neutral

network, showing results almost indistinguishable from those of Fig. 6.6 for the 20-neutral
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network.
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Figure B.1: Activity frequency of tweets for the SCC of the 72-neutral network. The legend
indicates the colors corresponding to the activity for −1, 0 and +1 interactions.

In Fig. B.3 we repeat Fig. 6.8 for the 72-neutralnetwork, showing the distribution of political

position, activity and community structures. Results are very similar, except for the increase of

secondary anti-impeachment communities. The community analysis resulted in & = 0.435 and
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Figure B.2: Distributions of activity 0 and burstiness � (a,d) of senders, (b,e) receivers, and
(c,f) total, of interactions with sentiments −1, 0, +1 and all. The dashed curve in (f) is given by
�(�) = �/(1 + ��)(+1), with � = 0.05 and  = 0.25.

0.431 for the 20-neutral and 72-neutral networks, respectively. The community structures of

both networks are described in Table B.5.

The echo chambers effects in the structure of the 72-neutral network are similar to those

of 20-neutral network, as shown in Fig. B.4 for the correlation between the political position

of users with tweets received and of neighbors in the integrated network.

The comparison of results for the spreading capacity of users is done by using the SIS

dynamics with �̄ = 0.5 and � = 7 days for Fig. B.5(a), equivalent to the heat map of Fig. 6.13(e),

and �̄ = 0.2 and � = 7 days in Fig. B.5(b) corresponding to Fig. 6.14(a). Note that in addition

to the conclusions being the same of 20-neutral network, the greater spreading capacity for

pro-impeachment users is even clearer in Fig. B.5(b).
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Figure B.3: Figure 6.8 of the main text for the 72-neutral network. (a) Number of users as a
function of political position %. (b) Average activity as a function of %. Only users with activity
0 ≥ 10 in the SCC are considered for (a) and (b). (c) Visualization of the time-aggregated
representation of the PC network, formed by # = 39 525 users in the SCC. The size of vertices
increases (non-linearly) with their degree. Colors represent political position, as defined in the
main text, blue for pro-, red for anti-impeachment, and white for neutral average leaning of
users. (d) Community size and average political position of different communities identified
by the Louvain algorithm.

Table B.5: Community structure of the networks 20-neutral and 72-neutral, according to
the Louvain algorithm.Very small communities with only a few vertices are omitted due to the
resolution limit of the modularity optimization [216].

20-neutral 72-neutral

Size 〈%〉 Size 〈%〉
10 502 0.840 ± 0.437 12 570 0.598 ± 0.438

9937 −0.687 ± 0.428 11 821 −0.566 ± 0.436

4238 −0.097 ± 0.852 6489 −0.009 ± 0.654

3708 −0.011 ± 0.829 5531 −0.045 ± 0.698

2599 −0.529 ± 0.427 2711 −0.481 ± 0.393

170 −0.484 ± 0.781 254 −0.217 ± 0.764

52 −0.043 ± 0.884 23 −0.433 ± 0.592

37 −0.448 ± 0.696 19 −0.863 ± 0.217

26 −0.827 ± 0.450 9 −0.002 ± 0.623

23 0.998 ± 0.009

18 −0.520 ± 0.617

9 −0.459 ± 0.806

8 −0.811 ± 0.275
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Figure B.4: Figure 6.10 of the main text for the 72-neutral network. Contour maps for average
(a) political position of tweets received %IN, (b) sentiment of successors %NN and (c) predecessors
%NN

in,8 against the political position % of a user for the 20-neutral network. Colors represent the
density of users: the lighter the larger the number of users. Probability distribution of %, %NN

and %NN
in,8 are plotted in the axes. Only users with activity 0 ≥ 10 (corresponding to 17 923 users)

are considered.
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Figure B.5: Robustness of results for spreadability capacity in 72-neutral network. (a) Heat
map of the average spreading capacity 〈(〉 of users, as a function of their political position %
and activity 0. The transmission probability of the SIS dynamics is �̄ = 0.5 and � = 7 days.
(b) Average spreading capacity 〈((%)〉 (black curve, left axes), diversity 〈�(%)〉 (red curve, right
axes) and political position 〈�(%)〉 (bars, top panel) of the set of influence reached by users
with political position %. Transmission probability �̄ = 0.2 and � = 7 days. Only the 13 556
users with activity 0 ∈ [10,100] are considered. Results are averaged over 100 runs, error bars
represent the standard error.
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B.4 Results for SIS and SIR dynamics with different parameters

In Figs. B.6 and B.7, analyses of the dependence with the infection rate and healing times of

the average spreading capacity 〈(〉, diversity �, and political position � of the set of influence ℐ

are shown for SIS and SIR epidemic processes, respectively for parameters �̄ and � not covered

in the main text. We can see that despite expected quantitative differences due to the nature

of models, both dynamical processes exhibit similar behaviors which are also preserved as the

parameters are varied.
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Figure B.6: Average spreading capacity 〈(〉 (black, left axes), diversity � (red, right axes), and
political position � (top panel) of the set of influence ℐ, as a function of the political position %,
for SIS model with transmission probability (a)–(c) �̄ = 0.05, (d)–(f) �̄ = 0.10 and (g)-(i) �̄ = 0.50
for the temporal 20-neutral network. The healing times � are (a,d,g) 1 day, (b,e,h) 3 days and
(c,f,i) 7 days. Only users with activity 0 ∈ [10,100] were considered. Averages were performed
over 100 runs.
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Figure B.7: Average spreading capacity 〈(〉 (black, left axes), diversity � (red, right axes), and
political position � (top panel) of the set of influence ℐ, as a function of the political position %,
for SIR model with transmission probability (a)–(c) �̄ = 0.05, (d)–(f) �̄ = 0.10 and (g)-(i) �̄ = 0.50
for the temporal 20-neutral network. The healing times � are (a,d,g) 1 day, (b,e,h) 3 days and
(c,f,i) 7 days. Only users with activity 0 ∈ [10,100] were considered. Averages were performed
over 100 runs.
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B.5 Results for the Watts threshold model

To check the robustness of our results on different spreading models, we have considered

additionally a modification of the classic Watts threshold model of complex contagion [183]. In

this model, each individual is either in state ( or �, whose interpretation is akin to the one in

the SIR/SIS models. We have considered the absolute-threshold version of the Watts model on

temporal networks described in Ref. [187], in which each individual is endowed with a threshold

value Φ. For each interaction at a time C, an individual in state ( counts the total number of

contacts from infected vertices to him/her within a time window [C −�,C]. If this value is larger

than Φ, individual 8 flips to state �; otherwise it remains in the ( state. Transitions from � to (

are forbidden. Starting from a single individual in state �, a cascade of transitions to state � is

produced. In Fig. B.8 we show the results analogous to those for SIS and SIR models using the

absolute-threshold Watts model to compute spreading capacity and diversity as a function of

the political position %. As we can observe, all three models yield the same qualitative behavior.
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Figure B.8: Average spreading capacity 〈(〉 (black, left axes), diversity � (red, right axes), and
political position � (top panel) of the set of influence ℐ, as a function of the political position
%, for the absolute-threshold model on the 20-neutral network with (a) � = 2 days, Φ = 2,
(b) � = 3 days, Φ = 3 and (c) � = 7 days, Φ = 5. Only users with activity 0 ∈ [10,100] are
considered.
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Appendix C

Supplementary calculations for

Chapter 7

C.1 An upper bound limit of the leading eigenvalue of a matrix

The Gershgorin circle theorem [205] states that for a matrix � with elements 08 9 , all eigen-

values lie within at least one of the Gershgorin disks �(088 , '8), centered in 088 with radius '8

defined by

'8 =

∑
9≠8

|08 9 |. (C.1)

To prove this, let Λ8 be the 8-th eigenvalue of � and ®G8 = {G 9} the corresponding eigenvector

with elements G8 = 1 and |G 9 | ≤ 1 ∀ 9 ≠ 8. Since �®G8 = Λ8 ®G8 ,

∑
9

08 9G 9 = ΛG8 = Λ8 ,

∑
9≠8

08 9G 9 + 088G8 = Λ8 ,

=⇒ Λ8 − 088 =
∑
9≠8

08 9G 9 .

By the triangle inequality,

|Λ8 − 088 | =

������
∑
9≠8

08 9G 9

������ ≤
∑
9≠8

|08 9 | |G 9 | ≤
∑
9≠8

|08 9 | = '8 .
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For non-negative matrix, 08 9 ≥ 0. Thus,

−'8 ≤ Λ8 − 088 ≤ '8

−
∑
9≠8

|08 9 | = −
∑
9≠8

08 9 ≤ Λ8 − 088 ≤
∑
9≠8

|08 9 | =
∑
9≠8

08 9 ,

implying that

Λ8 ≤
∑
9

08 9 , (C.2)

in which we used
∑

9≠8 08 9 + 088 =
∑

8 08 9 . The leading eigenvalue will be inside of the circle with

the largest value of 088 + '8 .

C.2 Perturbation analysis of Eq. (7.40)

We proceed by making a perturbation analysis of the eigenvalues of the matrix " up to

second order on ?. After writing Eq. (7.40) as a polynomial in ?, we get Eq. (7.47). Since

&8 is also a function of ?, we must perform a Taylor expansion around ? = 0, knowing that

&8 |?=0 = =8 〈:〉8 . The first derivative of &8 is

d&8

d?

����
?=0

=

∑
9

〈:〉9
(
' 98 − �8 9

)
= 9 ,

and the second derivative evaluated in ? = 0 is

d2&8

d?2

����
?=0

= 0.

Let us define

A8 ≡
∑
9

(−' 98 + �8 9
)
= 9 〈:〉9 ,

so that
d

d?

(
1
&8

)����
?=0

=
A8

(=8 〈:〉8)2
,

and
d2

d?2

(
1
&8

)����
?=0

= 2
A2
8

(=8 〈:〉8)3
.
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Next, by keeping only terms up to order 2, we have

1
&8

=
1

=8 〈:〉8
+ ?

A8

(=8 〈:〉8)2
+ ?2 A2

8

(=8 〈:〉8)3
+ O(?3).

Substituting the last expression in Eq. (7.47) we get, after some algebra,

"8 9 ≈ "̃
(0)
8 9

+ ?"̃
(1)
8 9

+ ?2"̃
(2)
8 9
, (C.3)

where

"̃
(0)
8 9

= �8 9
〈:2〉8
〈:〉8

, (C.4a)

"̃
(1)
8 9

=

[
'8 9

= 9 〈:〉9
+

' 98

=8 〈:〉8
+

�8 9

=8 〈:〉8

(
A8

=8 〈:〉8
− 2

)]
= 9 〈:2〉9 , (C.4b)

"̃
(2)
8 9

=

[
�8 9

=8 〈:〉8

(
Ã8

=8 〈:〉8

)2

−
'8 9

= 9 〈:〉9

(
Ã 9

= 9 〈:〉9

)
−

' 98

=8 〈:〉8

(
Ã8

=8 〈:〉8

)
+

∑
;

'8;' 9;

=; 〈:〉;

]
= 9 〈:2〉9 , (C.4c)

and

Ã8 = − (A8 − =8 〈:〉8) =
∑
9≠8

' 98= 9 〈:〉9 .

From the static case, we know that there are Ω unperturbed eigenvalues Λ
(0)
8

= 〈:2〉8/〈:〉8 ,

for ? = 0, with normalized eigenvectors ®& 8 =
{
& 9

}
and & 9 = �8 9 ; see Eq. (7.42). Assuming that

the eigenvalues are not degenerate, the new eigenvalues will be given by [217]

Λ8 ≈ Λ
(0)
8

+ ?Λ
(1)
8

+ ?2
Λ

(2)
8
, (C.5)

where

Λ
(0)
8

=
〈:〉8
〈:2〉8

, (C.6a)

Λ
(1)
8

= ®& 8M̃(1)®& 8 , (C.6b)

Λ
(2)
8

=

∑
9≠8

(
®& 8M̃(1)®& 9

) (
®& 9M̃

(1)®& 8
)

Λ
(0)
8

−Λ
(0)
9

+ ®& 8M̃(2)®& 8 . (C.6c)
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Substituting Eq. (C.4b) in Eq. (C.6b), after some algebra we get the first correction to the

eigenvalue,
Λ

(1)
8

Λ
(0)
8

= '88 − 1 −
∑
9≠8

' 98

= 9 〈:〉9
=8 〈:〉8

. (C.7)

To get the second order correction, we substitute Eqs. (C.4b) and (C.4c) in Eq. (C.6c),

resulting in

Λ
(2)
8

Λ
(0)
8

= =8 〈:〉8



∑
9≠8

= 9 〈:2〉9
〈:〉8
〈:2〉8

−
〈:〉9
〈:2〉9

[
'8 9

= 9 〈:〉9
+

' 98

=8 〈:〉8

]2

+ 1

(=8 〈:〉8)3

(∑
;

';8=; 〈:〉;
)2

− 2'88

(=8 〈:〉8)2
∑
;

';8=; 〈:〉; +
∑
;

'2
8;

=; 〈:〉;



.

(C.8)

This expression is always positive, meaning that the leading eigenvalue has a minimum for

some value of ?∗. In Fig. C.1 we compare the perturbation analysis with numerical, exact and

lower bound estimate for the epidemic threshold. The agreement is remarkable close for ? ≪ 0

and increases with the level of heterogeneity.
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Figure C.1: Comparison of the numerical (points), exact (solid lines) and approximation by

Eq. (C.5) with
Λ

(1)
8

Λ
(0)
8

given by Eq. (C.8), and
Λ

(2)
8

Λ
(0)
8

expressed in Eq. (C.8). The metapopulation

network has two-patches in which the first has =8 = 105 individuals of sociability either 1 or (a)
:max = 20, (b) 50 or (c) 100, and the second patch has individuals with :2 = 〈:〉1 = 5.
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C.3 Exact evaluation of the epidemic threshold for a two-patches

metapopulation

In the two-patches metapopulation, '12 = '21 = 1. Applying this and considering a :-

independent movement, ?: = ?, in Eq. (7.40), we have

"88 = 〈:2〉8
[
(1 − ?)2 1

&8
+ ?2 1

& 9

]
=8 , (C.9)

"8 9 = 〈:2〉9
[
(1 − ?)?

(
1
&8

+ 1
& 9

)]
= 9 , (C.10)

where

&8 = 〈:〉8(1 − ?)=8 + ?〈:〉9= 9 (C.11)

for 8 ≠ 9. Using Eq. (7.39), we have to solve the following equation,

�̄&8 = �̄
∑
9

"8 9 = �̄"88&8 + �̄"8 9& 9 , (C.12)

that can be translated in the evaluation of the eigenvalue of a 2 × 2 matrix

" =




〈:2〉1

[
(1 − ?)2 1

&1
+ ?2 1

&2

]
=1 〈:2〉2

[
(1 − ?)?

(
1
&1

+ 1
&2

)]
=2

〈:2〉1

[
(1 − ?)?

(
1
&1

+ 1
&2

)]
=1 〈:2〉2

[
(1 − ?)2 1

&2
+ ?2 1

&1

]
=2




. (C.13)

In this case, the leading eigenvalue will be given by

Λmax =
−Tr " +

√
(Tr ")2 − 4 det "

2
, (C.14)

where Tr " is the trace of the matrix ", and det " its determinant. Assuming that 〈:〉1 = 〈:〉2

and 〈:2〉2 = 0〈:2〉1, after solving the previous equations in a computer algebra system such as
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Maxima [218], we get

Λmax(?)
Λ

(0)
1

=

√
(0 + 1)2(4?4 − 8?3) + 8(02 + 1)?2 − 4(0 + 1)2? + (0 − 1)2 + (0 + 1)(2?2 − 2? + 1)

2
,

(C.15)

with 0 ≡ 〈:2〉2/〈:2〉1 < 1.

C.4 Exact evaluation of the epidemic threshold for a star-like metapop-

ulation

In this case, we have to evaluate seven different terms:

• "ℎℎ : contact of two individuals resident in the hub;

• ";ℎ : contact of one resident of a leaf with another from the hub;

• "ℎ; : contact of one resident of the hub with another of a leaf;

• ";; : contact of two individuals resident in the same leaf;

• "; ,;+1: contact of one resident of a leaf with another from its adjacent leaf;

• "; ,;−1: contact of one resident of the adjacent leaf with one from the other leaf;

• ";= : contact of two residents of different and not adjacent leaves;

The mobility matrix elements '8 9 are expressed in Eqs. (7.13) to (7.15). Applying these

expressions in Eq. (7.40), we have

"ℎℎ = 〈:2〉ℎ
[
(1 − ?)2 1

&ℎ
+ ?2

�

1
&;

]
=ℎ (C.16a)

";ℎ = 〈:2〉ℎ
[
(1 − ?)?

(
1
�

1
&;

+ �
1
&ℎ

)
+ ?2 (1 − �)

�

1
&;

]
=ℎ (C.16b)

"ℎ; = 〈:2〉;
[
(1 − ?)?

(
�

1
&ℎ

+ 1
�

1
&;

)
+ ?2 (1 − �)

�

1
&;

]
=; (C.16c)

";; = 〈:2〉;
[
(1 − ?)2 1

&;
+ ?2 (1 − �)2

&;
+ ?2 �2

&ℎ

]
=; (C.16d)

"; ,;+1 = 〈:2〉;
[
(1 − ?)? (1 − �)

&;
+ ?2 �2

&ℎ

]
=; (C.16e)

"; ,;−1 = 〈:2〉;
[
(1 − ?)? (1 − �)

&;
+ ?2 �2

&ℎ

]
=; (C.16f)
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";= = 〈:2〉;
(
?2 �2

&ℎ

)
=; . (C.16g)

Again, by evaluating Eq. (7.39), we have, for the hub,

�̄&ℎ = �̄
∑
9

"ℎ 9 = �̄"ℎℎ&ℎ + ��̄"ℎ;&; , (C.17)

while for a leaf we have

�̄&; = �̄
∑
9

"; 9 = �̄";ℎ&ℎ + �̄";;&; + �̄"; ,;+1&; + �̄"; ,;−1&; + �̄(� − 3)";=&; , (C.18)

in which the factor 3 in the last term is since there are � − 3 other leaves not directly connected

to a single leaf (';= = 0). The previous expressions can be translated in an eigenvalue problem

to solve of the 2 × 2 matrix

" =


"ℎℎ �"ℎ;

";ℎ ";; + "; ,;+1 + "; ,;−1 + (� − 3)";=


, (C.19)

whose terms are defined in Eq. (C.16).

Like in the case for a two-patches metapopulation, the leading eigenvalue will be given by

Λmax =
−Tr " +

√
(Tr ")2 − 4 det "

2 , that was solved in the Maxima [218] software to get the

results shown in the main text.
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