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“It is a capital mistake to theorize before one has data.” 

(Sir Arthur Conan Doyle) 
 



RESUMO 
 

SOUSA, Ithalo Coelho de, D.Sc., Universidade Federal de Viçosa, maio de 2022. 
Inteligência computacional e aprendizado estatístico aplicados ao Coffea canephora. 
Orientador: Moysés Nascimento. Coorientadores: Ana Carolina Campana Nascimento, 
Camila Ferreira Azevedo, Cosme Damião Cruz e Isabela de Castro Sant’anna 

 

A predição genômica no melhoramento de café tem mostrado um grande potencial na 

capacidade preditiva (CP), da predição dos valores genômicos, ganhos genéticos e redução no 

tempo do ciclo de seleção. Várias metodologias são utilizadas para predizer o mérito genético 

dos indivíduos, porém algumas metodologias necessitam da informação a priori de efeitos de 

dominância e epistático, uma vez que seus efeitos devem ser inseridos no modelo utilizado. 

Redes Neurais Artificias (RNA) possuem a vantagem de não precisar inserir a priori os efeitos 

de dominância e epistático, permitindo lidar com diferentes tipos de efeitos não aditivos, sem 

a necessidade de saber a prior se tais efeitos existem ou não na população estudada. Apesar 

desta vantagem, a capacidade de estimar parâmetros genéricos através das RNA ainda são 

limitadas. No presente projeto de pesquisa, duas questões foram formuladas. A primeira 

questão se trata da possibilidade de estimar parâmetros genéticos utilizando RNA e a segunda 

questão da possibilidade em reduzir a densidade de painéis de marcadores sem que haja 

redução na CP. Para responder estas perguntas, foi desenvolvido dois artigos. No primeiro 

artigo, o objetivo foi estimar a herdabilidade e os efeitos dos marcadores por meio de RNA 

para duas características morfológicas de interesse agronômico de café canéfora (produção e 

resistência à ferrugem) com arquitetura genética aditiva-dominante e comparar com os 

resultados obtidos por meio do Genomic Best Linear Unbiased Prediction (GBLUP). No 

segundo artigo, o objetivo foi avaliar o equilíbrio entre a densidade dos painéis de marcadores 

utilizada e a CP obtida para oito características agronômicas de café canéfora utilizando 

algoritmos de Machine Learning (bagging e Random Forest). Os dados forma comparados 

com os resultados obtidos pela metodologia BLASSO (Bayesian Least Absolute Shrinkage 

and Selection Operator). O conjunto de dados, utilizado em ambos artigos, consiste em 165 

plantas de café da espécie Coffea canephora (café canéfora) genotipados com 14.387 

marcadores SNP (Single Nucleotide Polymorphisms), após o controle de qualidade. No 

primeiro artigo, as duas características fenotípicas avaliadas foram, resistência à ferrugem e 

produtividade. No segundo artigo, os dados fenotípicos consistem em vigor vegetativo, 

resistência à ferrugem, incidência de cercosporiose, tempo de maturação do fruto, tamanho do 

fruto, altura da planta, diâmetro da projeção da copa e produção. No primeiro artigo, a 



dimensionalidade dos dados foi reduzida utilizando o bagging e em seguida avaliou-se 64.000 

redes neurais para cada característica. Foi selecionada a RNA que obteve a maior CP para, 

para através das informações obtidas por esta RNA se estimar a herdabilidade, obtendo 

resultados compatíveis com os encontrados na literatura. No segundo artigo, foram utilizados 

12 densidade de painéis de marcadores diferentes para avaliar a relação entre a densidade do 

painel de marcador e a CP. É observado que à medida que o número de marcadores aumenta 

dentro de um intervalo de 25 até 500/1000 marcadores, a CP também aumenta, no entanto 

acima dessa quantidade de marcadores, quanto maior for o número de marcadores utilizados 

menor é a CP obtida. No geral, a CP possui menores valores quando utilizado todos os 

marcadores. Os resultados indicam que a redução da densidade até um certo nível no painel 

de marcadores pode melhorar a seleção de indivíduos com um menor custo. Diante do 

exposto, os métodos de computational intelligence provam ser ferramentas poderosas para 

predição de valores genéticos, estimação de parâmetros genéticos e seleção de marcadores. 

 

Palavras-chave: GBLUP. BLASSO. BAGGING. Random forest. GEBV. Marker effect. 

Heritability. 

  



ABSTRACT 
 

SOUSA, Ithalo Coelho de, D.Sc., Universidade Federal de Viçosa, May 2022. 
Computational intelligence and statistical learning applied to Coffea canephora. Adviser: 
Moysés Nasciemtno. Co-advisers: Ana Carolina Campana Nascimento, Camila Ferreira 
Azevedo, Cosme Damião Cruz and Isabela de Castro Sant’anna. 

 

Genomic prediction in Coffee breeding has shown good potential in predictive ability (PA), 

genetic gains and reduction of the selection cycle time. Many methodologies are used to 

predict the genetic merit, but some of them require priori assumptions that may increase the 

complexity of the model. Artificial neural network (ANN) has advantage to not require priori 

assumptions about the relationships between inputs and the output allowing great flexibility to 

handle different types of complex non-additive effects, such as dominance and epistasis. 

Despite this advantage, the biological interpretability of ANNs is still limited. In the 

elaboration of this research project, two basic questions were formulated. The first question, is 

it possible to estimate genetic parameters using ANNs? The second, is it possible to reduce 

the panel marker size with no penalty in predictive ability? For this, the analyzes were divided 

into two articles. In the first article, the aim was to estimate the heritability and markers 

effects for two traits in Coffea canephora using an additive-dominance architecture ANN and 

to compare it with genomic best linear unbiased prediction (GBLUP). In the second article, 

the aim was to evaluate the trade-off between density marker panels size and the PA for eight 

agronomic traits in Coffea canephora using machine learning (bagging and random forest) 

algorithms and comparing them with BLASSO (Bayesian Least Absolute Shrinkage and 

Selection Operator) method. For both article, the data set consisted of 165 genotypes of 

Coffea canephora genotyped for 14,387 snp markers, after quality control analysis. For the 

first article the phenotypic data used was rust (Rus) and yield (Y). For the second article the 

phenotypic data is composed by vegetative vigor (Vig), rust (Rus) and cercosporiose 

incidence (Cer), fruit maturation time (Mat), fruit size (FS), plant height (PH), diameter of the 

canopy projection (DC) and yield (Y). In the first article we reduced the dimensionality of the 

data using bagging decision tree and then run 64,000 neural networks for each trait selecting 

the best architecture based on predictive ability for estimating the heritability, obtained results 

compatibles with those in literature. In the second article, 12 different density market panels 

were used to evaluate the effect of dimensionality reduction in PA. The common trend 

observed in the analysis shows an increase of the PA as the number of markers decreases, 

having a peak in most of the cases when used between 500 and 1,000 markers. In general, the 



worst results were obtained when used the full SNP panel density. The results of the second 

article indicate that the reduction of the number of markers can improve the selection of 

individuals at a lower cost. Computational Intelligence methods prove to be powerful tools for 

predicting genetic values, to estimate genetic parameters and to select markers.  

 

Keywords: GBLUP. BLASSO. BAGGING. Random forest. GEBV. Marker effect. 

Heritability.  

  



SUMÁRIO 
 

1. GENERAL INTRODUCTION ..............................................................................................................13 

REFERENCES ...........................................................................................................................................14 

2. RESEARCH PAPER 1: Marker effects and heritability estimates using additive-dominance 

genomic architectures via artificial neural networks in Coffea canephora ...........................................16 

2.1. Abstract ......................................................................................................................................17 

2.2. Introduction ...............................................................................................................................17 

2.3. Material and Methods................................................................................................................19 

2.3.1. Phenotypic data .....................................................................................................................19 

2.3.2. SNP genotyping ......................................................................................................................19 

2.3.3. Phenotypic data analysis ........................................................................................................20 

2.3.4. Genomic analyses ...................................................................................................................20 

2.3.4.1. Genomic BLUP (GBLUP) ......................................................................................................20 

The additive dominance model for the REML/GBLUP (restricted maximum likelihood/genomic linear 
unbiased predictor) method is given by: ................................................................................................20 

2.3.4.2. Artificial Neural Network ....................................................................................................22 

2.4. Results ........................................................................................................................................24 

2.5. Discussion ...................................................................................................................................30 

2.6. Conclusions ................................................................................................................................31 

References ..............................................................................................................................................31 

2.7. Supporting information ..............................................................................................................36 

3. ARTIGO 2: The trade-off between density marker panels size and predictive ability of genomic 

prediction for agronomic traits in Coffea canephora.............................................................................37 

3.1. Abstract ......................................................................................................................................37 

3.2. Introduction ...............................................................................................................................38 

3.3. Materials and Methods ..............................................................................................................38 

3.3.1. Genotypes ..............................................................................................................................38 

3.3.2. Phenotypic evaluations ..........................................................................................................39 

3.3.3. Phenotypic data .....................................................................................................................39 

3.3.4. SNPs Markers .........................................................................................................................40 

3.3.5. Marker selection and Genomic Prediction.............................................................................40 

3.3.6. Bayesian Generalized Linear Regression ................................................................................41 

3.3.7. Regression tree.......................................................................................................................42 

3.3.8. Training and Validation Sets ...................................................................................................43 

3.3.9. Concordance analysis .............................................................................................................43 

3.3.10. Computational Aspects ..........................................................................................................43 



3.4. Results ........................................................................................................................................44 

3.4.1. Trait Summary ........................................................................................................................44 

3.4.2. Reduced SNP Panel Densities Improve the Prediction Ability of the traits ...........................44 

3.4.3. Comparison among methodologies .......................................................................................47 

3.5. Discussion ...................................................................................................................................48 

3.6. Conclusions ................................................................................................................................49 

References ..............................................................................................................................................50 

3.7. Supporting Information ..............................................................................................................53 

4. GENERAL CONCLUSION ..................................................................................................................58 

 

  



13 
 

 
 

1. GENERAL INTRODUCTION 
 

Coffee is the world’s favorite drink, the most important commercial crop-plant, and 

the second most valuable international commodity after oil (KEWSCIENCE, 2022). Brazil is 

an important player worldwide in the production of coffee, being responsible in 2021/2022 for 

product 56,300 thousand 60-kilogram bags (35,000 Arabica and 21,300 Robusta) which 

corresponds to 33,62% of the world production (USDA, 2021). 

Coffee production has been increasing with time. The worldwide coffee production 

increased by 77.04% from 1990/1991 to 2019/2020, and the Brazilian coffee production 

increased by 113.34% in the same period (INTERNATIONAL COFFEE ORGANIZATION, 

2022). One way to help the goal of increasing food production is through plant breeding.  

Plant breeding started when the humans stopped to be nomadic, and began 

domesticate plants which were selected based in visual analysis without any scientific 

methodology (LUIS CARLOS S BUENO; ANTÔNIO NAZARENO GUIMARÃES 

MENDES; SAMUEL PEREIRA DE CARVALHO, 2006). With the development of science, 

the plant breeding began to use plant crossing to create variability and select the best 

individuals for crossing again in the news cycle. However, the gain selection decreases as 

long as more cycles are done.  

To improve the genetic gain, (MEUWISSEN; HAYES; GODDARD, 2001) proposed 

using genomic information at the DNA level for selecting the best individuals. It is done 

through molecular markers for predicting the genomic estimated breeding value (GEBV) and 

is known as Genomic Wide Selection (GWS). The high-throughput genotyping and the 

development of Single Nucleotide Polymorphism (SNP) markers helped GWS evolve 

(BERNARDO; YU, 2007). 

GWS has some advantages as to reduces the number of individuals that need to be 

phenotyped in the selection cycle (FUGERAY-SCARBEL et al., 2021), and accelerates the 

breeding process (DE SOUSA et al., 2020), however GWS emerged out of a desire to exploit 

high density panel (MEUWISSEN; HAYES; GODDARD, 2001), and a consequence of it is 

that more predictors effects, (p), need to be estimated than the number, (n), of available 

observations (LORENZ et al., 2011). 

Due the predictor be bigger than the number of observations, is not possible to 

estimate the marker effects using least square methodology, besides problems as 

multicollinearity and high dimensionality. Some methodologies are used to overcome 
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problems caused by multicollinearity and high dimensionality, e.g., to model the marker 

effects as random effects, use reduced-dimension regression methods (Partial least regression, 

principal component regression), but the accuracy gets lower.(SOLBERG et al., 2009) 

Computational Intelligence methodologies have been used for predicting GEBV with 

efficient results (DE SOUSA et al., 2020), but the biological interpretability from marker 

effects and genetic parameters are limited to the best of our knowledge and has been 

criticized.(GLÓRIA et al., 2016), estimated marker effects and heritability using a Bayesian 

regularized artificial neural network but considering only additive effects. 

A problem with genotyping is the cost be prohibitive for many species due the high 

density marker panel used (HAPP et al., 2019; SENTHILVEL et al., 2019; TSAIRIDOU et 

al., 2020). A strategy to reduce the number of markers is to select a subset of markers that can 

be done with stepwise regression or machine learning algorithms. 

Due to all exposed before, this work aims to estimate marker effects and heritability 

using Artificial Neural Network considering additive-dominance effects and comparing the 

results with those obtained by GBLUP. To reduce the costs with genotyping we used bagging 

and Random Forest to select markers aiming to keep a good predictive ability and comparing 

the results with those obtained by BLASSO. To all aims above, we used a Coffea canephora 

data set. 
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2.1. Abstract 

Many methodologies are used to predict the genetic merit in animals and plants, but 

some of them require priori assumptions that may increase the complexity of the model. 

Artificial neural network (ANN) has advantage to not require priori assumptions about the 

relationships between inputs and the output allowing great flexibility to handle different types 

of complex non-additive effects, such as dominance and epistasis. Despite this advantage, the 

biological interpretability of ANNs is still limited. The aim of this research was to estimate 

the heritability and markers effects for two traits in Coffea canephora using an additive-

dominance architecture ANN and to compare it with genomic best linear unbiased prediction 

(GBLUP). The data used consists of 51 clones of C. canephora varietal Conilon, 32 of 

varietal group Robusta and 82 intervarietal hybrids. From this, 165 phenotyped individuals 

were genotyped for 14,387 SNPs. Due to the high computational cost of ANNs, we used 

bagging decision tree to reduce the dimensionality of the data, selecting the markers that 

accumulated 70% of the total importance. An ANN with three hidden layers was run, each 

varying from 1 to 40 neurons summing 64,000 neural networks. The network architectures 

with the best predictive ability were selected. The best architectures were composed by 4, 15, 

and 33 neurons in the first, second and third hidden layers, respectively, for yield, and by 13, 

20, and 24 neurons, respectively for rust resistance. The predictive ability was greater when 

using ANN with three hidden layers than using one hidden layer and GBLUP, with 0.72 and 

0.88 for yield and coffee leaf rust resistance, respectively. The concordance rate (CR) of the 

10% larger markers effects among the methods varied between 10% and 13.8%, for additive 

effects and between 5.4% and 11.9% for dominance effects. The narrow-sense (ℎ𝑎2) and 

dominance-only (ℎ𝑑2) heritability estimates were 0.25 and 0.06, respectively, for yield, and 

0.67 and 0.03, respectively for rust resistance. The ANN was able to estimate the heritabilities 

from an additive-dominance genomic architectures and the ANN with three hidden layers 

obtained best predictive ability when compared with those obtained from GBLUP and ANN 

with one hidden layer. 

 

2.2. Introduction 

The interest in semi- and non-parametric statistical methods for genome-enabled 

prediction is increasing [1]. Methodologies based on computational intelligence, as Artificial 

Neural Networks (ANN), has been successfully used to predict the genetic merit in animals 
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[2,3] and plants [4,5]. ANN is a methodology inspired by the biological behavior of human 

brain. ANN comprises layers divided into units called neurons. Each neuron’s output is 

expressed as the sum of inputs to a neuron, regulating specific weights for the predictor 

variables through linear and nonlinear activation functions [1,6]. ANN have been applied for 

genomic prediction of complex traits in some crops as maize, eucalypt [7], soybean [8] and 

wheat [9].This approach does not require making a priori assumptions about the relationships 

between inputs (SNP markers) and the output (phenotypic observations). The non-priori 

assumptions allow for great flexibility to handle different types of complex non-additive 

effects, such as dominance and epistasis [1,10,11]. 

Despite this advantage, reports about the biological interpretation from the marker 

effects and genetic parameter (i.e., heritability) estimates are limited to the best of our 

knowledge. Glória et al,  [1] using simulated data, aimed to evaluate Bayesian regularized 

ANNs' predictive performance and exploit SNP effects and heritability estimates. Considering 

only additive effects, the authors observed that based on the predictive ability and estimates of 

the heritabilities, the best ANN presented similar results to those obtained by Ridge 

Regression BLUP (RR_BLUP) and Bayesian Lasso (BLASSO).  

For some species, for example, maize, eucalyptus, cotton, rice, pinus, and coffee ([12–

17]), where there is commercial interest in hybrids and heterosis, the contribution of 

dominance presents high importance [16]. Coffee is globally one of the most important export 

crops and is a part of the economy in more than 50 countries in Latin America, Africa, and 

Asia. Besides the yield, traits associated with resistance to coffee rust are important in the 

selection in coffee, since the coffee production can be reduced in the presence of this disease 

[18]. Therefore, the identification of cultivars having resistance for diseases can improve the 

productivity of the culture. Despite its relevance, the effective selection of new cultivars 

depends on the ability to consider genomic models, which correctly represent complex traits 

with additive and dominance effects. Therefore, methods considering dominance effects, 

different numbers of layers, and neurons to exploit SNP effects and heritability can bring new 

insights for genomic selection in coffee. 

Against this background, we aimed to exploit SNP effects and heritability from 

additive-dominance genomic model by ANN of traits associated with the yield and coffee leaf 

rust resistance, in Coffea cenephora. In addition, we predicted the individual genetic merits of 
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the traits (yield and coffee leaf rust resistance) using ANN, and compared the predictive 

ability obtained for ANN and GBLUP for predicting genetic merit. 

 

2.3. Material and Methods 

2.3.1. Phenotypic data 

The used population consisted of 51 clones of C. canephora varietal group Conilon, 

32 varietal group Robusta and 82 intervarietal hybrids. These hybrids were originated from 

crosses between five Conilon genotypes (males) and five Robusta (females), obtained in a 

partial diallel model [19]. The Conilon genetic material was obtained from the Capixaba 

Institute for Research, Technical Assistance, and Rural Extension (INCAPER, Vitória, ES, 

Brazil). The Robusta material was obtained from the Tropical Agronomic Research and 

Teaching Center (CATIE, Cartago, Turrialba, Costa Rica). This population composes the 

breeding program of the Agricultural Research Company of Minas Gerais (Epamig, Belo 

Horizonte, MG, Brazil) in partnership with the Federal University of Viçosa (UFV, Viçosa, 

Minas Gerais, Brazil) and the Brazilian Agricultural Research Company - Café (Embrapa 

Café, Oratório, Minas Gerais, Brazil). 

Individuals were phenotyped for two traits, coffee leaf rust resistance and yield, for 

three years (2014 to 2016). Coffee leaf rust resistance (Hemileia vastatrix) was evaluated 

using a 5-point scale (1 = fully resistant, 5 = highly susceptible). The yield per coffee plant 

was evaluated by harvesting all fruits present in a genotype and measuring the total volume of 

freshly harvested coffee liters. 

 

2.3.2. SNP genotyping 

DNA samples of 165 young and fully expanded leaves coffee were genotyped using 

the methodology described by Diniz et al. [20]. The concentration of DNA was verified in 

NanoDrop 2000, and its quality was evaluated in 1% agarose gel. The sample’s DNA 

concentration was standardized and sent to Rapid Genomics (Florida, Orlando, USA) for 

identification of SNP molecular markers. The data was genotyped using the Capture Seq 

methodologie [21], totalizing 14,387 markers. 

Marker genotypes were coded according to the effects assumed. For additive effects, 

homozygous markers containing only alleles with minor frequency, the value is 0. For 

heterozygous markers, the value is 1, and for homozygous markers containing only alleles 
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with major frequency, the value is 2. For dominant codification, we used 0 for homozygous 

marker and 1 for heterozygous marker. 

 

2.3.3. Phenotypic data analysis 

Prior to genomic analyses, the phenotypic data of both traits were independently 

adjusted for systematic effects using Selegen REML/BLUP software [22] according to the 

following statistical model: 𝑦 = 𝑋𝑢 + 𝑇𝑐 + 𝑊𝑓 + 𝑍𝑚 + 𝑄𝑠 + 𝑆𝑏 + 𝑒                                    (1) 

where 𝑦 is the observed phenotype; 𝛍 is the effect of the overall mean in each evaluation year 

(assumed as fixed effect) added to the general mean; 𝐜 is the dominance effect of combination 

between the parents Conilon and Robusta (assumed as random effect and distributed as 𝑁~𝐼𝜎𝑐2); 𝐟 is the additive effect of combination of the parent Robusta (assumed as random 

effect and distributed as 𝑁~𝐴𝜎𝑓2); 𝒎 is the additive effect of combination of the parent 

Conilon (assumed as random effect and distributed as 𝑁~𝐴𝜎𝑚2 ); 𝒔 is the effect of permanent 

environment of individuals (assumed as random effect and distributed as 𝑁~𝐼𝜎𝑠2); 𝒃 is the 

effect of permanent environment of blocks (assumed as random effect and distributed as 𝑁~𝐼𝜎𝑏2); 𝒆 is the residuals (assumed as random effect and distributed as 𝑁~𝐼𝜎𝑒2); and X, T, 

W, Z, Q ,and S are the design matrices for the effects of 𝜇, 𝑐, 𝑓, 𝑚, 𝑠, and, 𝑏, respectivaly. 

From this, adjusted phenotypes (Y*) were calculated as the sum of the estimates of random 

effects c, f, and m, and the residual, and used for subsequent genomic analyses that were 

carried out in R [23]. 

 

2.3.4. Genomic analyses 

2.3.4.1. Genomic BLUP (GBLUP) 

The additive dominance model for the REML/GBLUP (restricted maximum 

likelihood/genomic linear unbiased predictor) method is given by: 

𝒀∗ = 𝑿𝒃 + 𝒁𝝁𝒂 + 𝒁𝝁𝒅 + 𝒆,                                                (2) 

where Y* is the vector of adjusted phenotypic observations obtained in Eq. (1), b is the vector 

of fixed effects, 𝝁𝒂 is the vector of random of additive marker effects, 𝝁𝒅 is the vector of 
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random of dominance marker effects, e refers to the vector of random errors; and X, Z, are the 

design matrix. The variance structure is given by: 

[𝜇𝑎𝜇𝑑𝑒 ] ~𝑁 ([000] , [𝑮𝒂𝜎𝜇𝑎2 0 00 𝑮𝒅𝜎𝜇𝑑2 00 0 𝑰𝜎𝑒2]) 

where Ga and Gd are the genomic relationship matrices for the additive and dominance effects, 

respectively, and I is the identity matrix. 

An equivalent model [24] at the marker level is given by  

𝒀∗  =  𝑿𝒃 +  𝒁𝑼𝒎𝑎  +  𝒁𝑺𝒎𝒅 +  𝒆,                                     (3) 

where: 𝝁𝒂 = U𝐦𝐚; Var(U𝐦𝐚) = UIσma2 U’= UU’σma2 ; 𝝁𝒅 = 𝑺𝒎𝒅; Var(S𝒎𝒅) =SI𝜎𝑚𝑑2 S’= 

SS’𝜎𝑚𝑎2 ; X is the design matrix for the vector b and Z is the design matrix for the vectors 

additive (ma) and dominance (𝐦𝐝) marker genetic effects. The variance components 

associated to these effects are 𝜎𝑚𝑎2 and 𝜎𝑚𝑑2 , respectively. The quantity 𝐦𝐚 in one locus is the 

allele substitution effect and is given by 𝑚𝑎 = α𝑖 = 𝒶𝑖 +  (𝑞𝑖  − 𝑝𝑖 )𝑑𝑖, where 𝑝𝑖  and 𝑞𝑖   are 

allelic frequencies and 𝒶𝑖 and d𝑖  are the genotypic values for one homozygote and 

heterozygote, respectively, at locus i. In turn, the quantity 𝑚𝑑 can be directly defined as 𝑚𝑑𝑖 = 𝑑𝑖. The matrices U and S are defined based on the values 0, 1 and 2 for the number of one of 

the alleles at the ith marker locus in a diploid individual.  The correct parameterization of U 

and S is as follows, according to the marker genotypes at a locus m. 

 𝑼 = { 𝑀𝑀: 2 − 2𝑝 → 2𝑞 𝑀𝑚: 1 − 2𝑝 → 𝑞 − 𝑝𝑚𝑚: 0 − 2𝑝 → −2𝑝  

𝑺 = {𝑀𝑀: 0 → −2𝑞2 𝑀𝑚: 1 → 2𝑝𝑞𝑚𝑚: 0 → −2𝑝2  

The covariance matrix for the additive effects is given by 𝑮𝒂𝜎𝑎2 = 𝑉𝑎𝑟(𝑈𝑚𝑎) = 𝑈𝑈′𝜎𝑚𝑎2 , which leads to: 𝑮𝒂 = 𝑼𝑼′ (𝜎𝑚𝑎2 / 𝜎𝑎2) = 𝑼𝑼′ ∑ [2𝑝𝑖(1 − 𝑝𝑖)]𝑛𝑖=1⁄⁄ , as 𝜎𝑎2 = ∑ [2𝑝𝑖(1 − 𝑝𝑖)]𝜎𝑚𝑎2𝑛𝑖=1 . The covariance matrix for the dominance effects is given by 𝑮𝒅 = 
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𝑉𝑎𝑟(𝑺𝒎𝒅) 𝑺𝑺′𝜎𝑚𝑑2 . Thus, 𝑮𝒅𝜎𝑑2 = 𝑺𝑺′ (𝜎𝑚𝑑2 / 𝜎𝑑2) = 𝑺𝑺′ ∑ [2𝑝𝑖(1 − 𝑝𝑖)]𝑛𝑖=1⁄⁄  as 𝜎𝑑2  =∑ [2𝑝𝑖(1 − 𝑝𝑖)]𝜎𝑚𝑑2𝑛𝑖=1 .  The additive (i.e., narrow-sense) heritability was calculated as ℎ̂𝛼2 = �̂�𝛼2/(�̂�𝛼2 + �̂�𝑑2 + �̂�𝑒2) and the dominant heritability as ℎ̂𝑑2 =  �̂�𝑑2/(�̂�𝛼2 + �̂�𝑑2 + �̂�𝑒2). The 

additive-dominance GBLUP method was fitted using GenomicLand software [25] via REML 

through mixed model equations.  

 

2.3.4.2. Artificial Neural Network 

The ANN is composed by a combination of neurons in a single or multiple layers. A 

vector of real values enters as input in each neuron, with the values 0, 1 and 2, which are 

computed the weighted average of these values followed by a transformation, then the output 

of neurons can be directly fed as input into other neurons in the next layer [26]. 

One of the most common families of architectures for connecting neurons into a 

network is the feed-forward, which can have multiple layers [27]. This architecture is 

composed by an input layer (IL), 𝑗 = 1, 2, … , 𝐽 hidden layers (HL), and an output layer (OL). 

The IL is composed by 𝑛𝑖𝑙 neurons corresponding to the number of markers, the HL are 

composed by 𝑛1, 𝑛2, … , 𝑛𝑗 neurons respectively, and the OL is composed by 𝑛𝑜𝑙 neurons 

representing the output values of the application. In this architecture every neuron of the layer 𝑗 is connected only to the neurons of the layer j+1 producing matrixes of weights 𝑾𝒊, where 

the output is generated by a linear combination of the last HL. 

As we can see in Fig 1, the output of the neurons in the first HL (HL1) is given by  𝑎𝑖[1] = 𝑓(∑ 𝑤1𝑡[1]𝑥𝑡𝑖 + 𝑏1)𝑃𝑡=1 , in the second HL (HL2), the outputs of the neurons is given by a 

linear combination of the outputs from HL1: 𝑎𝑖[2] = 𝑔(∑ 𝑤1𝑡[2]𝑎𝑡[1] + 𝑏2)𝑛1𝑡=1 . The third HL 

(HL3) output is obtained using the same thoughts we use to obtain those from HL2. Finally, 

the outputs from the OL is obtained by 𝑦𝑖 = 𝑧(∑ 𝑤1𝑡[4]𝑎𝑡[3] + 𝑏4)𝑛3𝑡=1 =  𝑦𝑖 =𝑧(∑ 𝑤1𝑡[4]ℎ (∑ 𝑤1𝑡[3]𝑎𝑡[2] + 𝑏3)𝑛2𝑡=1 + 𝑏4)𝑛3𝑡=1 =  𝑧(∑ 𝑤1𝑡[4]ℎ (∑ 𝑤1𝑡[3]𝑔 (∑ 𝑤1𝑡[2]𝑎𝑡[1] +𝑛1𝑡=1𝑛2𝑡=1𝑛3𝑡=1𝑏2) + 𝑏3) + 𝑏4) =    𝑧(∑ 𝑤1𝑡[4]ℎ (∑ 𝑤1𝑡[3]𝑔 (∑ 𝑤1𝑡[2]𝑓(∑ 𝑤1𝑡[1]𝑥𝑡𝑖 + 𝑏1)𝑃𝑡=1 + 𝑏2)𝑛1𝑡=1 +𝑛2𝑡=1𝑛3𝑡=1𝑏3) + 𝑏4). 
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Fig 1. Multilayer perceptron architecture. Feed forward neural network architecture with 
three hidden layers. 

 

Once an ANN demands high computational processing, it is necessary the use of 

methodologies to reduce the dimensionality of the data [28]. The reduction of the markers was 

made by bagging decision tree. This procedure is an ensemble methodology consisting of 

training many decision trees built using a random part of the same original data. The variables 

that, on average, reduces more the residual sum of squares (RSS) are classified as the most 

important variables. We selected the variables that accumulated 70% of the total importance 

and used them in the ANN. The network structure considers 1,302 markers as input for 

resistance to coffee leaf and 1,086 markers as inputs for yield, three hidden layers, and the 

output that predicts traits. The ANNs architecture uses the backpropagation as a learning 

algorithm [29] and the logistic function as activation function. The three hidden layers varied 

from 1 to 40 neurons, and the architecture was chosen according to the best predictive ability. 

To estimate the heritability and SNP effects, the relative importance (RI) of markers 

were obtained. Olden et al. [30] proposed a methodology that uses all the connection weights 
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even when the ANN has multiple hidden layers to obtain the RI. To calculate the vector of RI 

of all markers, the connection weights matrices were multiplied. Considering 𝑾[𝒊−𝟏] as the 

matrix of estimated weights connecting the (𝑗 − 1)𝑡ℎ layer to the 𝑗𝑡ℎ layer where 𝑗 is the 

number of layers of the ANN, the RI is obtained multiplying 𝑾[𝒋] ∗ 𝑾[𝟐] ∗ … 𝑾[𝒋−𝟏]. To 

estimate the additive and dominant SNP effect vectors (𝜷𝒂 𝑎𝑛𝑑 𝜷𝒅) using RI, a linear 

approximation adapted from [31] was used. The estimators are given by �̂� =𝒁𝑴′(𝑴𝒁𝑴′)−𝟏�̂� changing only the codification of the matrix 𝑴 to obtain the additive or 

dominant effect, 𝒁 is a diagonal matrix composed by the RI values, the matrix 𝑴 is the matrix 

of markers and �̂� is the genomic estimated breeding values (GEBV) from ANN. 

To estimate heritabilities, the additive and dominant variance (𝜎𝛼2 𝑎𝑛𝑑 𝜎𝑑2) were 

estimated using β̂𝛼 and β̂𝑑 in the following equations: �̂�𝛼2 =  ∑ 2𝑝𝑗(1 − 𝑝𝑗)�̂�𝛼𝑗2𝑃𝑗=1  and �̂�𝑑2 = ∑ (2𝑝𝑗(1 − 𝑝𝑗))2 �̂�𝑑𝑗2𝑃𝑗=1 . The residual variance (𝜎𝑒2) was estimated through the difference of 

the real phenotype and GEBV, thus �̂�𝑒2 = 𝑉𝑎𝑟(�̂�) , being �̂� = 𝒚 − �̂�.  

 

2.4. Results 

The input layer (IL) was composed of a genotype matrix X with 165 rows (plants) and 

1302 columns (markers) for coffee leaf rust resistance. For yield, the matrix was made up of 

165 rows and 1086 markers. The markers were selected using bagging. After reducing 

dimensionality, 64,000 neural networks were performed, with each hidden layer ranging from 

1 to 40 neurons, and the ANN was chosen based on the best predictive ability. For yield, the 

best ANN has 4, 15, and 33 neurons for the first, second, and third hidden layers, respectively. 

For coffee leaf rust resistance, the best ANN has 13, 20, and 24 neurons for the first, second, 

and third hidden layers, respectively. In Figure 2, we can observe the map of each trait with 

the effects (in absolute terms) of each marker estimated by the ANNs cited above.  
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Fig 2. Manhattan plot.  A, Manhattan plot showing the effects (in absolute terms) of each 
marker for coffee leaf rust resistance according to the chromosome position. B, Manhattan 
plot showing the effects (in absolute terms) of each marker for yield according to the 
chromosome position. 

The predictive ability mean was calculated (Fig 3) by fixing the number of neurons in 

one HL and varying the number of neurons in the other. The data showed that in Fig 3, the 

predictive ability is more affected when we change the number of neurons in the first hidden 

layer. In the second and the third hidden layers, the average predictive ability does not change 

significantly as we change the number of neurons.  
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Fig 3. Average predictive capacity of the neural networks according to the numbers of 
neurons in each hidden layer. A, B, and C are the average predictive capacity when varying 
the number of neurons in the first, second, and third hidden layers, respectively, for coffee 
leaf rust resistance in coffee Canephora. D, E, and F are the predictive capacity overage when 
varying the number of neurons in the first, second, and third hidden layers, respectively, for 
yield in coffee Canephora. 

The chosen ANNs were compared with GBLUP and with the simplest ANN 

containing one hidden layer with one neuron and the logistic function as activation function 

according to predictive ability. The most complex ANNs showed a better predictive ability, 

0.72 and 0.88 for yield and coffee leaf rust resistance, respectively, indicating that the traits 

are complex. The ANNs with a single HL with one neuron showed the worse predictive 

ability, 0.18 and 0.57 for yield and coffee leaf rust resistance, respectively (Fig 4). The ANNs 

has the ability to capture non-additive effects as dominance and espistasis [1,10,32]. It occurs 

because the interactions between the markers are implicit in the neuron´s outputs. 
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Fig 4. Estimated predictive ability. Yield’s estimated predictive ability and coffee leaf rust 
resistance’s estimated predictive ability according to artificial neural network with 1 and 3 
hidden layers and Genomic BLUP (GBLUP). 

For both traits, the additive and dominance heritabilities captured by ANN with 3HL 

(ANN/3HL) were similar to those obtained by GBLUP (Table 1). The ANN with 1HL 

(ANN/1HL) showed only additive heritability from coffee leaf rust resistance was similar to 

the other methodologies.  

Table 1. Estimates of additive and dominance heritabilities.  

  Yield Rust resistance 
  ANN/1HL  ANN/3HL  GBLUP ANN/1HL ANN/3HL  GBLUP  𝒉𝒂𝟐 0.07 0.25 0.26 0.55 0.67 0.55 𝒉𝒅𝟐  0.02 0.06 0.05 0.45 0.30 0.22 
ANN/1HL, an artificial neural network with one hidden layers; ANN/3HL, an artificial neural network with 
three hidden layer; GBLUP, genomic best linear unbiased predictor; ℎ𝑎2 , additive heritability; ℎ𝑑2 , dominance 
heritability. 

The marker effects were estimated using linear approximation [31] based on the 

method of Olden et al. [30] for ANN. For GBLUP, the marker effects were estimated through 

a fitted regression model. The absolute values of marker effects from the yield trait are plotted 

in Fig 5. For this trait, ANN/3HL obtained bigger values than other methodologies evaluated.  
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Fig 5. Additive and dominance markers effects for yield in coffee canephora. 1086 
markers effects for yield in coffee Canephora. A, B and C are the additive markers effects 
estimated by a neural network with three hidden layers, a neural network with one hidden 
layer, and GBLUP, respectively. D, E, and F are the dominance markers effects estimated by 
a neural network with three hidden layers, a neural network with one hidden layer, and 
GBLUP, respectively. 

The absolute values of marker effects from the coffee leaf rust resistance trait are in 

Fig 6. For this trait, ANN/1HL obtained bigger values than other methodologies evaluated. In 

both traits, there is not a strong pattern when comparing the important markers among the 

methodologies. 
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Fig 6. Additive and dominance markers effects for coffee leaf rust resistance in coffee 
canephora. 1302 markers effects for coffee leaf rust resistance in coffee Canephora. A, B and 
C are the additive markers effects estimated by neural network with three hidden layers, 
neural network with one hidden layer, and GBLUP, respectively. D, E, and F are the 
dominance markers effects estimated by neural network with three hidden layers, neural 
network with one hidden layer, and GBLUP, respectively. 

Looking at the top 10% larger marker effects in each methodology (Table 2), the 

concordance rate (CR) among additive marker effects was bigger than dominance marker 

effects. For the yield trait, the CR between ANN/1HL and GBLUP for additive marker effects 

was bigger (0.14), and between GBLUP and ANN/1HL for dominance, marker effects were 

the lowest (0.06). For rust resistance, the biggest CR was between ANN/1HL and GBLUP for 

the additive marker (0.12), the lowest CR was between GBLUP and ANN/1HL for dominance 

marker effects (0.05). 

Table 2. Concordance of top 10% bigger marker effect among methodologies, in upper 
triangular matrix refers to additive marker effects, in lower triangular matrix refers to 
dominance marker effects.  

Methodologies 
Yield Rust Resistance 

ANN/3HL ANN/1HL GBLUP ANN/3HL ANN/1HL GBLUP 
ANN/3HL 109 12 13 130 13 15 
ANN/1HL 13 109 15 14 130 16 
GBLUP 8 6 109 11 7 130 
ANN/3HL, Artificial neural network with three hidden layers; ANN/1HL, Artificial neural network with one 
hidden layer; GBLUP, Genomic Best Linear Unbiased Prediction. 
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2.5. Discussion 

The use of ANN for predicting the individual genetic merit of plants considering yield 

and coffee leaf rust resistance in Coffea canephora was efficient. The ANN/3HL presented 

higher values of predictive ability compared with those obtained by GBLUP, a result also 

obtained by Glória et al. [1], Waldmann [33] and Maldonado [7]. Indeed, the better result was 

expected since the ANN allows to estimate the functional relationships between the variables 

using nonlinear functions [34]. Thus, the ANN allows great flexibility to handle different types 

of complex non-additive effects such as dominance and epistasis [35]. The interactions 

between inputs (SNPs genotypes) and between inputs and the output (phenotypic 

observations) are naturally modelling from the data. In other words, differently than the 

traditional methods proposed for genomic selection [11,36], ANN does not require a priori 

assumptions about the model relationships allowing to infer the trait architecture directly from 

the data set [1,11,37]. 

The heritability estimated by ANN/3HL for yield (ℎ𝑎2= 0.25; ℎ𝑑2  = 0.06 ) and coffee 

leaf rust resistance (ℎ𝑎2  = 0.67; ℎ𝑑2  = 0.31) were similar to those obtained by GBLUP (yield - ℎ𝑎2  = 0.26; ℎ𝑑2  = 0.05 ; coffee leaf rust resistance - ℎ𝑎2  = 0.55; ℎ𝑑2  = 0.22 ). In addition, these 

estimates were consistent with those reported in the literature. The heritability estimate for 

yield was within the range of estimates for coffee (0.15 – 0.79[38]). For coffee leaf rust 

resistance, the estimate was close to that reported by Alkimin et al.[38] (0.37). 

Glória et al [1] considering only additive effects showed that it is possible to obtain 

estimates from heritabilities through fitting an ANN composes by one layer, one neuron, and 

identity activation function. However, for some species, for example maize [39,40], eucalyptus 

[41,42], cotton [43,44], rice [45,46], pinus [47,48] and coffee [49,50], where there is commercial 

interest in hybrids, the contribution of dominance presents importance. In fact, an ANN 

composed by one layer, one neuron, and identity activation function can seem like multiple 

regression. Differently from [1], the ANN/3HL fitted in this work presents more than one 

hidden layer, and the activation function is not the identity. Nevertheless, the ANN/3HL was 

able to obtain heritability estimates similar to those obtained by GBLUP. Therefore, besides 

increasing the predictive ability, the ANN/3HL allows to access the marker effects and 

consequently the heritability estimate. 
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A different pattern in marker effects was obtained in the two traits (Figs 5 and 6). A 

bigger dominance markers effects were observed for yield when compared with the additive 

marker effect. In comparison, the additive marker effects were bigger than dominance for 

coffee leaf rust resistance. This can be explained due yield be a polygenic trait and coffee leaf 

rust resistance oligogenic.  According to Cruz [51], when the trait is polygenic, and there is 

none or fewer dominance, the phenotype distribution becomes symmetric and starts to obtain 

asymmetry as the dominance starts to increase. Observing the histogram of both traits (S1 

Fig), we see that yield has symmetry distribution and coffee leaf rust resistance an asymmetry 

distribution. 

An issue related to using an ANN approach is the computational cost [52]. Once it is 

necessary to choose the best network topology, the ANN fitting requires a high computational 

cost. The ANN/3HL was 409.36 and 1331.49 times slower than GBLUP for yield and coffee 

leaf rust resistance, respectively. Some approaches can be used to minimize the computational 

cost. For example, it is possible to reduce the number of inputs of an ANN using some 

reduction dimensionality methods [53].  Other approaches to select markers used in this work 

are based on machine learning [54]. Sousa et al. [55] used bagging to select the most important 

markers. However, since, in general, the number of markers is huge in genomic selection 

problems, the use of a methodology to reduce the computational cost cannot be effective. 

 

2.6. Conclusions 

The Artificial Neural Network was able to access the marker effects and heritability 

estimates from additive-dominance genomic architectures by neural networks in Coffea 

canephora. In addition, considering the estimates of predictive ability, ANN/3HL presented 

better results compared with those obtained from GBLUP and ANN/1HL. 

References 

 

1.  Glória LS, Cruz CD, Vieira RAM, de Resende MDV, Lopes PS, de Siqueira OHGBD, et al. Accessing 

marker effects and heritability estimates from genome prediction by Bayesian regularized neural 

networks. Livestock Science. 2016;191: 91–96. doi:10.1016/j.livsci.2016.07.015 

2.  Ehret A, Hochstuhl D, Gianola D, Thaller G. Application of neural networks with back-propagation to 

genome-enabled prediction of complex traits in Holstein-Friesian and German Fleckvieh cattle. 

Genetics Selection Evolution. 2015;47: 22. doi:10.1186/s12711-015-0097-5 



32 
 

 
 

3.  Abdollahi-Arpanahi R, Gianola D, Peñagaricano F. Deep learning versus parametric and ensemble 

methods for genomic prediction of complex phenotypes. Genetics Selection Evolution. 2020;52: 1–
15. doi:10.1186/s12711-020-00531-z 

4.  González-Camacho JM, Crossa J, Pérez-Rodríguez P, Ornella L, Gianola D. Genome-enabled prediction 

using probabilistic neural network classifiers. BMC Genomics. 2016;17: 1–16. doi:10.1186/s12864-

016-2553-1 

5.  Khaki S, Wang L. Crop Yield Prediction Using Deep Neural Networks. 2019; 139–147. 

doi:10.1007/978-3-030-30967-1_13 

6.  Crossa J, Pérez-Rodríguez P, Cuevas J, Montesinos-López O, Jarquín D, de los Campos G, et al. 

Genomic Selection in Plant Breeding: Methods, Models, and Perspectives. Trends in Plant Science. 

Elsevier Ltd; 2017. pp. 961–975. doi:10.1016/j.tplants.2017.08.011 

7.  Maldonado C, Mora-Poblete F, Contreras-Soto RI, Ahmar S, Chen JT, do Amaral Júnior AT, et al. 

Genome-Wide Prediction of Complex Traits in Two Outcrossing Plant Species Through Deep Learning 

and Bayesian Regularized Neural Network. Frontiers in Plant Science. 2020;11: 1808. 

doi:10.3389/FPLS.2020.593897/BIBTEX 

8.  Liu Y, Wang D, He F, Wang J, Joshi T, Xu D. Phenotype Prediction and Genome-Wide Association 

Study Using Deep Convolutional Neural Network of Soybean. Frontiers in Genetics. 2019;10: 1091. 

doi:10.3389/FGENE.2019.01091/BIBTEX 

9.  Gianola D, Okut H, Weigel KA, Rosa GJM. Predicting complex quantitative traits with Bayesian neural 

networks: A case study with Jersey cows and wheat. BMC Genetics. 2011;12: 1–14. 

doi:10.1186/1471-2156-12-87/FIGURES/5 

10.  Felipe VPS, Okut H, Gianola D, Silva MA, Rosa GJM. Effect of genotype imputation on genome-

enabled prediction of complex traits: An empirical study with mice data. BMC Genetics. 2014;15: 1–
10. doi:10.1186/s12863-014-0149-9 

11.  Howard R, Carriquiry AL, Beavis WD. Parametric and nonparametric statistical methods for genomic 

selection of traits with additive and epistatic genetic architectures. G3: Genes, Genomes, Genetics. 

2014;4: 1027–1046. doi:10.1534/g3.114.010298 

12.  Liu R, Wang B, Guo W, Qin Y, Wang L, Zhang Y, et al. Quantitative trait loci mapping for yield and its 

components by using two immortalized populations of a heterotic hybrid in Gossypium hirsutum L. 

Molecular Breeding. 2012;29: 297–311. doi:10.1007/s11032-011-9547-0 

13.  Technow F, Riedelsheimer C, Schrag TA, Melchinger AE. Genomic prediction of hybrid performance in 

maize with models incorporating dominance and population specific marker effects. Theoretical and 

Applied Genetics. 2012;125: 1181–1194. doi:10.1007/s00122-012-1905-8 

14.  Denis M, Bouvet JM. Efficiency of genomic selection with models including dominance effect in the 

context of Eucalyptus breeding. Tree Genetics and Genomes. 2013;9: 37–51. doi:10.1007/s11295-

012-0528-1 

15.  Liang Q, Shang L, Wang Y, Hua J. Partial dominance, overdominance and epistasis as the genetic basis 

of heterosis in Upland cotton (Gossypium hirsutum L.). PLoS ONE. 2015;10. 

doi:10.1371/journal.pone.0143548 



33 
 

 
 

16.  De Almeida Filho JE, Guimarães JFR, E Silva FF, De Resende MDV, Muñoz P, Kirst M, et al. The 

contribution of dominance to phenotype prediction in a pine breeding and simulated population. 

Heredity (Edinb). 2016;117: 33–41. doi:10.1038/hdy.2016.23 

17.  Sousa TV, Caixeta ET, Alkimim ER, Oliveira ACB, Pereira AA, Sakiyama NS, et al. Early Selection 

Enabled by the Implementation of Genomic Selection in Coffea arabica Breeding. Frontiers in Plant 

Science. 2019;9: 1934. doi:10.3389/fpls.2018.01934 

18.  Alkimim ER, Caixeta ET, Sousa TV, Pereira AA, de Oliveira ACB, Zambolim L, et al. Marker-assisted 

selection provides arabica coffee with genes from other Coffea species targeting on multiple 

resistance to rust and coffee berry disease. Molecular Breeding. 2017;37: 6. doi:10.1007/s11032-016-

0609-1 

19.  Alkimim ER, Caixeta ET, Sousa TV, Da Silva FL, Sakiyama NS, Zambolim L. High-throughput targeted 

genotyping using next-generation sequencing applied in Coffea canephora breeding. Euphytica. 

2018;214: 1–18. doi:10.1007/s10681-018-2126-2 

20.  Diniz LEC, Sakiyama NS, Lashermes P, Caixeta ET, Oliveira ACB, Zambolim EM, et al. Analysis of AFLP 

markers associated to the Mex-1 resistance locus in Icatu progenies. Crop Breeding and Applied 

Biotechnology. 2005;5: 387–393.  

21.  Ruas Alkimim Eveline Teixeira Caixeta Tiago Vieira Sousa Felipe Lopes da Silva Ney Sussumu Sakiyama 

Laércio Zambolim E. High-throughput targeted genotyping using next-generation sequencing applied 

in Coffea canephora breeding. doi:10.1007/s10681-018-2126-2 

22.  Resende MDV de. Software Selegen-REML/BLUP: a useful tool for plant breeding. Crop Breeding and 

Applied Biotechnology. 2016;16: 330–339. doi:10.1590/1984- 70332016v16n4a49 

23.  R Core Team. R: A language and environment for statistical computing. Vienna, Austria; 2019.  

24.  Habier D, Fernando RL, Dekkers JCM. The impact of genetic relationship information on genome-

assisted breeding values. Genetics. 2007;177: 2389–2397. doi:10.1534/genetics.107.081190 

25.  Azevedo CF, Nascimento M, Fontes VC, E Silva FF, De Resende MDV, Cruz CD. Genomicland: Software 

for genome-wide association studies and genomic prediction. Acta Scientiarum - Agronomy. 2019;41. 

doi:10.4025/actasciagron.v41i1.45361 

26.  Zou J, Huss M, Abid A, Mohammadi P, Torkamani A, Telenti A. A primer on deep learning in 

genomics. Nature Genetics. 2019;51: 12–18. doi:10.1038/s41588-018-0295-5 

27.  Silva IN da, Spatti DH, Flauzino RA. Redes Neurais Artificiais para engenharia e ciências aplicadas. São 

Paulo: Artliber; 2010.  

28.  Verleysen M, Francois D, Simon G, Wertz V. On the effects of dimensionality on data analysis with 

neural networks. In: Mira J, Álvarez JR, editors. Artificial Neural Nets Problem Solving Methods. 

Berlin, Heidelberg: Springer Berlin Heidelberg; 2003. pp. 105–112.  

29.  Rumelhart DE, Hinton GE, Williams RJ. Learning representations by back-propagating errors. Nature. 

1986;323: 533–536. doi:10.1038/323533a0 

30.  Olden JD, Joy MK, Death RG. An accurate comparison of methods for quantifying variable importance 

in artificial neural networks using simulated data. Ecological Modelling. 2004;178: 389–397. 

doi:10.1016/j.ecolmodel.2004.03.013 



34 
 

 
 

31.  Wang H, Misztal I, Aguilar I, Legarra A, Muir WM. Genome-wide association mapping including 

phenotypes from relatives without genotypes. Genetics Research. 2012;94: 73–83. 

doi:10.1017/S0016672312000274 

32.  Howard R, Carriquiry AL, Beavis WD. Parametric and nonparametric statistical methods for genomic 

selection of traits with additive and epistatic genetic architectures. G3: Genes, Genomes, Genetics. 

2014;4: 1027–1046. doi:10.1534/g3.114.010298 

33.  Waldmann P. Approximate Bayesian neural networks in genomic prediction. Genetics Selection 

Evolution. 2018;50: 70. doi:10.1186/s12711-018-0439-1 

34.  Montesinos-López OA, Montesinos-López A, Pérez-Rodríguez P, Barrón-López JA, Martini JWR, 

Fajardo-Flores SB, et al. A review of deep learning applications for genomic selection. BMC Genomics. 

2021;22: 1–23. doi:10.1186/S12864-020-07319-X/TABLES/5 

35.  Sant’Anna I de C, Silva GN, Nascimento M, Cruz CD, Sant’Anna I de C, Silva GN, et al. Subset selection 

of markers for the genome-enabled prediction of genetic values using radial basis function neural 

networks. Acta Scientiarum Agronomy. 2020;43: e46307. doi:10.4025/actasciagron.v43i1.46307 

36.  Long N, Gianola D, Rosa GJM, Weigel KA. Marker-assisted prediction of non-additive genetic values. 

Genetica. 2011;139: 843–854. doi:10.1007/s10709-011-9588-7 

37.  Sant’Anna I de C, Nascimento M, Silva GN, Cruz CD, Azevedo CF, Gloria LS, et al. GENOME-ENABLED 

PREDICTION OF  GENETIC VALUES FOR USING RADIAL BASIS  FUNCTION NEURAL NETWORKS. 

Functional Plant Breeding Journal. 2020;1.  

38.  Alkimim ER, Caixeta ET, Sousa TV, Resende MDV, da Silva FL, Sakiyama NS, et al. Selective efficiency 

of genome-wide selection in Coffea canephora breeding. Tree Genetics and Genomes. 2020;16: 1–
11. doi:10.1007/s11295-020-01433-3 

39.  Ferrão LF V., Marinho CD, Munoz PR, Resende Jr MFR. Improvement of predictive ability in maize 

hybrids by including dominance effects and marker × environment models. Crop Science. 2020;60: 

666–677. doi:10.1002/csc2.20096 

40.  Ramstein GP, Larsson SJ, Cook JP, Edwards JW, Ersoz ES, Flint-Garcia S, et al. Dominance effects and 

functional enrichments improve prediction of agronomic traits in hybrid maize. Genetics. 2020;215: 

215–230. doi:10.1534/genetics.120.303025 

41.  Resende RT, Resende MDV, Silva FF, Azevedo CF, Takahashi EK, Silva-Junior OB, et al. Assessing the 

expected response to genomic selection of individuals and families in Eucalyptus breeding with an 

additive-dominant model. Heredity (Edinb). 2017;119: 245–255. doi:10.1038/hdy.2017.37 

42.  Tan B, Grattapaglia D, Wu HX, Ingvarsson PK. Genomic relationships reveal significant dominance 

effects for growth in hybrid Eucalyptus. Plant Science. 2018;267: 84–93. 

doi:10.1016/j.plantsci.2017.11.011 

43.  Shang L, Liang Q, Wang Y, Zhao Y, Wang K, Hua J. Epistasis together with partial dominance, over-

dominance and QTL by environment interactions contribute to yield heterosis in upland cotton. 

Theoretical and Applied Genetics. 2016;129: 1429–1446. doi:10.1007/s00122-016-2714-2 



35 
 

 
 

44.  Ma L, Wang Y, Ijaz B, Hua J. Cumulative and different genetic effects contributed to yield heterosis 

using maternal and paternal backcross populations in Upland cotton. Scientific Reports. 2019;9: 

3984. doi:10.1038/s41598-019-40611-9 

45.  Lin T, Zhou C, Chen G, Yu J, Wu W, Ge Y, et al. Heterosis-associated genes confer high yield in super 

hybrid rice. Theoretical and Applied Genetics. 2020;133: 3287–3297. doi:10.1007/s00122-020-03669-

y 

46.  Chen L, Bian J, Shi S, Yu J, Khanzada H, Wassan GM, et al. Genetic analysis for the grain number 

heterosis of a super-hybrid rice WFYT025 combination using RNA-Seq. Rice. 2018;11: 1–13. 

doi:10.1186/s12284-018-0229-y 

47.  Juranović-Cindrić I, Zeiner M, Starčević A, Liber Z, Rusak G, Idžojtić M, et al. Influence of F1 
hybridization on the metal uptake behaviour of pine trees (Pinus nigra x Pinus thunbergiana; Pinus 

thunbergiana x Pinus nigra). Journal of Trace Elements in Medicine and Biology. 2018;48: 190–195. 

doi:10.1016/j.jtemb.2018.04.009 

48.  de Almeida Filho JE, Guimarães JFR, e Silva FF, de Resende MD V, Muñoz P, Kirst M, et al. The 

contribution of dominance to phenotype prediction in a pine breeding and simulated population. 

Heredity (Edinb). 2016;117: 33–41. doi:10.1038/hdy.2016.23 

49.  Geneti D. Progress of Coffee (Coffea arabica L) Hybridization Development Study in Ethiopia: A 

Review. 2019;92. doi:10.7176/FSQM/92-03 

50.  Geneti D. Review on Heterosis and Combining Ability Study for Yield and Morphological Characters of 

Coffee (Coffea arabica L) in Ethiopia. 2019;9. doi:10.7176/JEES/9-12-03 

51.  Cruz CD. Princípios de Genética Quantitativa. 1st ed. UFV, editor. Viçosa; 2005.  

52.  de Sousa IC, Nascimento M, Silva GN, Nascimento ACC, Cruz CD, Silva FFE, et al. Genomic prediction 

of leaf rust resistance to arabica coffee using machine learning algorithms. Scientia Agricola. 2020;78: 

1–8. doi:10.1590/1678-992x-2020-0021 

53.  Azevedo C, Nascimento M, Silva F, Resende M, Lopes P, Guimarães S, et al. Comparison of 

dimensionality reduction methods to predict genomic breeding values for carcass traits in pigs. 

Genetics and Molecular Research. 2015;14: 12217–12227. doi:10.4238/2015.October.9.10 

54.  Hastie T, Tibshirani R, Friedman J. The Elements of Statistical Learning: Data Mining, Inference, and 

Prediction. 2ed ed. New York: Springer; 2009.  

55.  de Sousa IC, Nascimento M, Silva GN, Nascimento ACC, Cruz CD, Silva FFE, et al. Genomic prediction 

of leaf rust resistance to arabica coffee using machine learning algorithms. Scientia Agricola. 2020;78. 

doi:10.1590/1678-992x-2020-0021 

  

  



36 
 

 
 

2.7. Supporting information 

S1 Fig. Histogram. Histogram of yield and rust resistance. 
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3. ARTIGO 2: The trade-off between density marker panels size and 
predictive ability of genomic prediction for agronomic traits in Coffea 

canephora 

 

PlosOne: Under Review 

3.1. Abstract 

Genomic prediction in Coffee breeding has shown good potential in predictive ability 

(PA), genetic gains, and reduction of the breeding cycle time. It is known that the cost of 

genotyping was prohibitive for many species, and their value is associated with the density 

markers panel used. Knowing which density marker panel to use is an information that may 

reduce the genotyping cost and improve the PA. This study, aimed to evaluate the trade-off 

between density marker panels size and the PA for eight agronomic traits in Coffea canephora 

using machine learning (bagging and random forest) algorithms and comparing them with 

BLASSO (Bayesian Least Absolute Shrinkage and Selection Operator) method. This data 

consisted of 165 genotypes of Coffea canephora genotyped for 14,387 SNP. The phenotypic 

data is composed of vegetative vigor (Vig), rust (Rus) and cercosporiose incidence (Cer), fruit 

maturation time (Mat), fruit size (FS), plant height (PH), diameter of the canopy projection 

(DC) and yield (Y). To evaluate the effect of the dimensionality reduction in the PA, twelve 

different density marker panels were used. In the analysis is observed that as the number of 

markers increase from 25 to 500/1000 markers, the PA increases, however, above 500/1000 

markers as the number of markers increases the PA decrease. In general, the PA have lower 

values when used the full SNP panel density. Comparing the bigger and the lower PA for each 

trait, some had an improvement around of 100% (PH: 0.35-0.77; Cer: 0.40-0.84; DC: 0.39-

0.82; Rus: 0.39-0.83, Vig: 0.40-0.77), the other presented an improvement more than 340% 

(Mat: 0.12-0.60; Y: 0.14-0.61; FS: 0.07-0.60). The current study results indicate that the 

reduction of the number of markers until 500/1000 markers can improve the selection of 

individuals at a lower cost.  
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3.2. Introduction 

Genome-wide selection (GWS) was developed by Meuwissen et al. [1] and is currently 

used in animal and plant breeding programs [2–7]. One of its most important advantages is 

shorter generation intervals because selection candidates can be tested earlier in life [8].  

However, one of the limitations is the cost to genotype many individuals with high density 

SNP (HD-SNPs) array platforms, which can be, in practice, prohibitively expensive for 

routine application for most breeding programs. To overcome this problem, to exploit a low-

density SNP (LD-SNPs) panel may be a solution, reducing the genotyping costs.  

Some approaches reducing a HD-SNPs panel has been used, [9] selected the subsets of 

SNPs randomly in two ways: i) selected random SNPs within each chromosome, keeping the 

proportionality of the number of the SNPs according to the length of each linkage group; ii) 

selected random SNPs across the whole genome. Habier et al. [10] and Ogawa et al. [11] 

studied subsets with markers evenly-spaced across the genome. These studies cited above 

using LD-SNPs did not obtain better results than HD-SNPs. However, Li et al. [12] used 

machine learning methods to select the SNPs for genomic prediction in beef cattle and 

obtained similar results to HD-SNPs.  

Although a LD-SNPs panel may be an option to reduce costs, the optimal SNP density to 

use may vary depending on the species and trait of interest [9]. In this study, we used Coffea 

canephora due to its economic relevance worldwide, being responsible for approximately 

40% of the world’s coffee production [13].  

This study aimed to evaluate the trade-off between density marker panel size and the 

predictive ability (PA) using machine learning (bagging and random forest) algorithms. The 

results were compared with those provided by the BLASSO (Bayesian Least Absolute 

Shrinkage and Selection Operator) method, for eight traits of C. canephora. 

 

3.3. Materials and Methods 
3.3.1. Genotypes  

In this work, 165 genotypes of C. canephora under breeding program waz analyzed. The 

population consisted of 51 and 32 clones of the Conilon and Robusta varietal groups, 

respectively, and 82 intervarietal hybrids. These hybrids were originated from artificial 
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crosses between five genotypes of the Conilon group (male parents) and five genotypes of the 

Robusta group (female parents), evaluated in the interpopulational partial diallel. 

The genetic material was obtained from the Instituto Capixaba de Pesquisa, Assistência 

Técnica e Extensão Rural (Incaper), and the Robusta material was obtained from the Centro 

Agronómico Tropical de Investigación y Enseñanza (CATIE). This population composes the 

breeding program of the Empresa de Pesquisa Agropecuária de Minas Gerais (Epamig), in 

partnership with the Universidade Federal de Viçosa (UFV) and the Empresa Brasileira de 

Pesquisa Agropecuária—Café (Embrapa Café), located in Oratórios/MG and Viçosa/MG.  

 

3.3.2. Phenotypic evaluations 
Evaluations were performed as described in Alkimin et al. [14] for eight traits during three 

consecutive years (2014-2016). The traits evaluated were: vegetative vigor (Vig), field 

evaluation of rust incidence (Rus), cercosporiosis incidence (Cer), fruit maturation time 

(Mat), fruit size (FS), plant height (PH), diameter of the canopy projection (DC), and yield in 

liters per plant (Y). 

 

3.3.3. Phenotypic data 

The used model was: 𝒚 = 𝑿𝝁 + 𝒁𝒂 + 𝑾𝒄 + 𝑸𝒔 + 𝑺𝒃 + 𝒆, 

where 𝑦 is the data vector; 𝜇 is the vector of year-mean effects (assumed as fixed) added to 

the overall mean; 𝑐 is the vector of specific combining ability effects between the Conilon and 

Robusta parents (assumed as random and distributed as 𝑁(0, 𝐼𝜎𝑐2); a is the vector of additive 

genetic effects of individuals (assumed as random and distributed as 𝑁(0, 𝐴𝜎𝑎2); 𝑠 is the 

vector of permanent effects of individuals (assumed as random and distributed as 𝑁(0, 𝐼𝜎𝑠2); 𝑏 

is the vector of permanent environment effects of blocks (assumed as random and distributed 

as 𝑁(0, 𝐼𝜎𝑏2); and 𝑒 is the residual vector (assumed as random and distributed as 𝑁(0, 𝐼𝜎𝑒2). 

All the effects were assumed as uncorrelated. Uppercase represents the incidence matrices for 

these effects. The phenotypes were corrected for environmental effects of years and blocks 

using the Selegen REML/BLUP software [15], given by 𝑦∗ = 𝑦 − 𝑋�̂� − 𝑆�̂� and are called 

deregressed phenotypes, which enter in the genomic analyses [3,16]. 
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3.3.4. SNPs Markers  
The DNA extraction, identification and quality analysis of SNP markers were performed 

by Alkimim et al. [14]. The original data was reduced from 18111 SNP markers to 14387 

markers considering MAF (minor allele frequency) of 0.05 and call rate of 0.90. The additive 

codification was used, for marker corresponding to homozygote with lower allele frequency 

we attribute 0, for heterozygous marker the value is 1, and for homozygote marker with 

bigger allele frequency we attribute 2. 

 

3.3.5. Marker selection and Genomic Prediction 

BLASSO, random forest (RF), and bagging were applied to obtain the markers importance 

for the posterior use in prediction using lower density panel markers. The most important 

markers are those that have a higher influence on the studied trait, being used all individuals 

in the construction of the models to select such markers with greater precision. In BLASSO, 

the markers with the highest regression coefficients in absolute values were defined as the 

most important markers. In bagging and RF, we assumed as the important markers those that 

in mean influenced more in the reduction of the sum of the square of residuals. We choose 12 

density panels size (25, 200, 500, 1000, 1500, 2000, 4000, 6000, 8000, 10000, 12000, 14387 

markers) always choosing the most important markers according to each methodology.  
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To evaluate the dimensionality reduction in the predictive ability (PA) (𝜌𝑌,�̂�) of the 

genomic selection were used 108 different scenarios strategies for each trait. These scenarios 

are the combination of 3 steps: 1st - to choose the methodology to select the markers (Blasso, 

bagging, or RF); 2nd – to choose the density panel size (25, 200, 500, 1000, 1500, 2000, 4000, 

6000, 8000, 10000, 12000, 14387); 3th – to predict the PA (Blasso, bagging or RF), totaling 

108 scenarios. (Fig 1). 

Fig 1. Steps to construct the 108 scenarios. The three steps used to obtain all the 108 
scenarios. 

3.3.6. Bayesian Generalized Linear Regression 
The genomic prediction method used was the Bayesian Least Absolute Shrinkage and 

Selection Operator [17] was also used for the prediction of GEBV (Genomic Estimated 

Breeding Values). The model is given by: 𝒚 =  𝟏𝝁 + 𝑿𝜷 + 𝒆 

where 𝒚 is the vector of phenotypes with dimension 𝑁 × 1 where N is the number of 

individuals, 1 is a vector of the same dimension as 𝑦 with all elements equal to 1, 𝜇 the 

intercept, 𝛽 is the vector of additive genetic effects of markers with dimension 𝑛 × 1 with 𝑛 

being the number of markers, 𝑋 is the incidence matrix of the additive effects of the markers 
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and 𝑒 (𝑁 × 1) is the error vector of the model, with 𝑒~𝑁(0, 𝐼𝜎𝑒2) being 𝜎𝑒2 the error variance 

and 𝐼 is the identity matrix. 

The data distribution is denoted by 𝑦|𝜇, 𝛽, 𝜎𝑒2 ~𝑁(1𝜇 + 𝑋𝛽, 𝐼𝜎𝑒2) and the prior 

distributions are: 𝜇~𝑁(0,108) 𝜎𝑒2~𝑣𝑒𝑆𝑒2𝜒−2  𝛽|𝜏𝛽𝑗2 𝜎𝑒2~𝑁(0, 𝐼𝜏𝛽𝑗2 𝜎𝑒2) 

𝜏𝛽𝑗2 ~𝐸𝑥𝑝 ( 𝜆22 ) 

𝜆2~𝐺𝑎𝑚𝑚𝑎(𝑟, 𝑠). 

where 𝑣𝑒𝑆𝑒2𝜒−2  represents the scaled inverse chi-squared distribution with the 

hyperparameters 𝑣𝑒 and 𝑆𝑒2, 𝐸𝑥𝑝 and 𝐺𝑎𝑚𝑚𝑎 represents, respectively, exponential and 

gamma distribution. 

For inference about the posterior distribution of the estimated effects of SNPs, 

600,000 iterations were used for the Markov Chain Monte Carlo (MCMC) algorithms, of 

which 20,000 were discarded (burn-in) to guarantee the heating of the chain and selection of 

one in 150 iterations (thin). Convergence analysis was performed using the criterion proposed 

by Geweke [18]. 

 

3.3.7. Regression tree 

To construct a regression tree, the objective is to obtain regions R1, R2, ..., RM that 

minimize the residual sum of squares-RSS given by [19]: 

∑ ∑ (𝑦𝑖 − �̂�𝑅𝑗)2
𝑖∈𝑅𝑗

𝐽
𝑗=1  

where �̂�𝑅𝑗 represents the mean response for the training observations in the 𝑗𝑡ℎ region. The 

RSS decreases according to the tree growth that occurs through recursive binary splitting. To 

increase the predictive performance of the model were used bootstrap aggregation (bagging) 

and random forest. 
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The bootstrap aggregation (bagging) consists of obtaining B samples with replacement 

(size equal to N) from the data set, obtaining B models (𝑓1(𝑥), 𝑓2(𝑥),..., 𝑓𝐵(𝑥)) that will be 

used as individual classifiers. A new individual will be predicted as the mean of the B 

individual predictions. The random forest (RF) follows the same idea of the bagging, 

changing just the number of predictive variables (m<p) used in each split. According to [19], 

RF results in the process of “decorrelating” the generated trees, improving them even more, 

the PA. 

 

3.3.8. Training and Validation Sets 

To estimate the PA the 5-fold cross-validation was used, dividing the data set into two 

parts: training set and validation set. We used the individuals from validation set to build the 

models and the individuals from validation set to estimate the PA, for each one of the 5 folds. 

For each fold, the training set was kept with the same individuals to model all methodologies, 

being these composed by 80% of each class (132 observations), taken at random, the 20% (33 

observations) left were used in the validation set. In the literature, the percentages used in the 

training set vary between 60 and 90% as seen in [20] and [21]. 

 

3.3.9. Concordance analysis 

We use the Cohen’s Kappa coefficient proposed by Cohen [22] to analyze the 

agreement between the methodologies in identifying markers (using the 12 groups defined 

above). The coefficient of Cohen’s Kappa is given by: 𝑘𝑎𝑝𝑝𝑎 =  𝑁𝐴𝑂 − 𝑁𝐴𝐸𝐶𝑁𝑂𝐴 − 𝑁𝐴𝐸𝐶 

where NAO number of agreement observed, NAEC the number of agreements 

expected by chance and NOA number of observations analyzed [23]. 

Pearson's correlation [24] was used to check the pattern between the kappa’s 

coefficient obtained among the methodologies and the number of markers. 

 

3.3.10. Computational Aspects 

Data analysis was performed on a computer with 3.40GHz core i7 processor and 

16GB of RAM and was used the software R 3.6.1 [25]. The BGLR function, belonging to the 
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BGLR package [26], was used to estimate the Bayesian generalized models. The 

randomForest function belonging to the randomForest package was used to construct the 

model of the bagging and the Random Forest [27].  

 

3.4. Results 

3.4.1. Trait Summary 

The estimated genomic heritability and standard deviation (ℎ𝑎2 ± 𝑠𝑑) values varied 

from 0.15 ± 0.04 to 0.53 ± 0.03, for Y and DC, respectively. For disease resistance, two traits 

was analyzes, Rus and Cer, with the heritability of 0.37 ± 0.04 and 0.43 ± 0.04, respectively. 

For FS, Mat, PH and Vig the genomic heritabilities were 0.21± 0.19, 0.21± 0.19, 0.36 ± 0.04 

and 0.43± 0.04, respectively. The mean of the traits were 6.02, 1.59, 2.08, 2.09, 2.16, 162.66, 

144.54 and, 7.39 for Vig, Rus, Cer, Mat, FS, PH, DC and, Y, respectively [14]. 

 

3.4.2. Reduced SNP Panel Densities Improve the Prediction Ability of the traits  

The predictive ability (PA) of genomic prediction was evaluated using five-fold cross-

validation (training set 80%, validation set 20%) for 12 different panels’ sizes. The markers’ 

importance was obtained in each methodology and was used to evaluate the PA. For each 

trait, the PA was analyzed in all 108 scenarios. The common trend across the different traits 

and scenarios is observed by plotting the heat map (Figure 2) and shows that as the number of 

markers increase from 25 to 500/1000 markers, the PA increases, however, above 500/1000 

markers as the number of markers increases the PA decrease. In general, the PA have lower 

values when used the full SNP panel density. 
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Fig 2. Heatmap. Heatmap of predictive ability considering all the 108 scenarios, created by 
the combination among three methodologies to select markers (in bold) with the same three 
methodologies to predict (no bold) the breeding value (in the top of X-axis) and 12 panel 
markers size (Y-axis). BL, Bayesian LASSO; BAG, Bagging; RF, Random Forest; A, Plant 
heigh; B, Cercosporiose incidence; C, Diameter of the canopy projection; D, Rust incidence; 
E, Fruit maturation time; F, Yield in liters per plant; G, Vegetative vigor; H, Fruit size. 
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In Figure 3, we selected the combination of methodologies that was used to select and 

to predict the PA that obtained the best results in general (BLASSO to select and to predict), 

using this combination the PA was calculated for each density marker panels. The density 

marker panel with the higher PA was choose for each trait, these PA values were considered 

as the based value and then was calculated the proportion of other PA values obtained in other 

panel markers densities. When the value plotted is equal to 1, it means that in this density 

panel size, the PA was higher. The average of these proportions increases from 25 markers 

(0.645) to 1000 markers (0.993), then it starts to decrease until full SNP panel density (0.701). 

 

Fig 3. Proportion of predictive ability (PA) achieved with low-density panels. The 
proportion of PA achieved by each SNP density was calculated by dividing the PA at that 
density by the best PA of each trait, resulting the proportion being equal 1 in the best panel 
density. PH, Plant heigh; Cer, Cercosporiose incidence; DC, Diameter of the canopy 
projection; Rus, Rust incidence; Mat, Fruit maturation time; Y, Yield in liters per plant; Vig, 
Vegetative vigor; FS, Fruit size. 
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3.4.3. Comparison among methodologies 

The best scenario varied according to the traits. For the traits PH, Cer, DC, Rus the 

best scenario was using BLASSO to select the markers and to obtain the PA with 500 

markers. For the trait Vig, the best scenario was using BLASSO to select and to obtain the 

PA, however using 1000 markers. For the traits Mat, Y, and FS the best scenario was using 

the bagging to select the markers, and using RF to obtain the PA, with 1000 markers for all 

these traits. The worse scenario also varied according to the traits. For the Cer, DC, Rus and 

Vig the worst scenario was obtained when using bagging to select the markers, and using 

BLASSO to obtain the PA and used the full SNP panel size density (14387 markers). In the 

PH, Mat and FS traits, the worst scenario was using RF to select the markers, BLASSO to 

obtain the PA and 12000, 6000, 10000 markers, respectively. For Y, the worst scenario was 

selecting the markers through RF methodology, predicting using bagging and using 8000 

markers.  

A great breadth of PA was observed when compared the worse and best scenarios 

within the traits, some had an improvement around of 100% (PH: 0.35-0.77; Cer: 0.40-0.84; 

DC: 0.39-0.82; Rus: 0.39-0.83, Vig: 0.40-0.77), the other presented an improvement more 

than 340% (Mat: 0.12-0.60; Y: 0.14-0.61; FS: 0.07-0.60) (Sup Table 1).  

When comparing the techniques among them two by two is observed that bagging and 

Random Forest are the methodologies that have a better agreement, obtaining in most cases an 

almost perfect agreement (𝐾𝑎𝑝𝑝𝑎 = 1). When comparing BLASSO with RF and with 

bagging, the agreement is considered poor and slight from 25 to 4000 markers. When 

considering all three methodologies together, the agreement among them is considered poor 

and slight from 25 to 6000 markers. 

 The correlation is considered “strong” when its absolute value is between 0.60 and 

0.79 and “very strong” when its absolute value is between 0.80 and 1.00 [29]. The correlation 

obtained by the kappa’s coefficient coming from the agreement of bagging and RF and the 

number of markers, it is considered “strong” (0.71 to 0.78). Even the Kappa’s coefficient 

from bagging and RF being the better, the correlations with the number of markers were the 

worse due to the concave behavior of the kappa’s coefficient. All the other combinations 

presented a “very strong” correlation with the number of markers (0.93 to 1.00) (Sup Table 

2).  
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For most of the traits the BLASSO with 500 markers was the best methodology to 

obtain the PA. We simulated the construction of a reduced SNP chip with the 500 most 

important markers for each trait, summing 3081 markers in total, once some markers appear 

among the most important markers for more than one trait. We compared the PA obtained 

when used all 3081 markers cited above with those obtained when using only the 500 most 

important markers for each trait. For all traits, we can see (Table 1) that using only the 500 

most important markers for each trait the PA obtain higher values than using all the 3081 

markers, the PA value reduced from 37% (Cer and DC) to 89% (Y). 

Table 1. Predictive ability for eight traits of coffee canephora. 

Traits PH Cer DC Rus Mat Y FS Vig 

PA_500 0.77 0.84 0.82 0.83 0.41 0.55 0.37 0.73 

PA_All 0.33 0.53 0.52 0.42 0.10 0.06 0.06 0.36 
PH, Plant heigh; Cer, Cercosporiose incidence; DC, Diameter of the canopy projection; Rus, Rust incidence; 
Mat, Fruit maturation time; Y, Yield in liters per plant; FS, Fruit size; Vig, Vegetative vigor; PA_500, predictive 
ability using 500 markers, selected and predicted by BLASSO; PA_All, predictive ability using all markers, 
predicted by BLASSO. 

  

3.5. Discussion 
Genomic selection in Coffee breeding has showing good potential according to the PA, 

genetic gains and the reduction of the selection cycle time [30,31]. It is known that the cost of 

genotyping was prohibitive for many species [32–34], and their value is associated with the 

density markers panel used. To know what density marker panel to use is an information that 

may reduce the genotyping cost and still improve the PA. In this study, we used different 

scenarios and traits aiming to reduce the number of SNP markers and to evaluate the impacts 

caused by this reduction in PA. The results were consistent across the different traits, 

indicating that using between 500 and 1000 selected SNPs markers for each trait would be 

sufficient to obtain the best PA results, suggesting the use of reduced SNP panel density with 

selected markers for C. canephora studies. 

Even considering different architecture from eight traits, the results were uniform. The 

heritability and the traits being categorical or continuous, does not show to be important for 

the performance of LD-SNPs panels, once the PA trends were consistent across the traits. 

What can explain this is the fact of having many SNPs explaining small effects, so the 

accuracy with which these effects are estimated are low [35]. 
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The use of a high-density chip is not always a good strategy for selecting individuals, 

once we saw that the higher PA values were obtained using 500/1000 markers depending on 

the trait. However, to select the SNPs to use in the LD SNP chip, it is necessary to know 

which are the traits of interest. In this study, we reduced from 14387 to 3081 SNPS, covering 

all the eights traits studied, causing the cost reduction to genotype this species. According to 

Habier et al. [10], the use of smaller panels with SNPs can be used for genomic selection, but 

require separate SNPs for each trait, which was observed in this study. We have evaluated the 

two ways to use the reduced SNP chip for predicting the GEBV, realizing that using all the 

markers from complete reduced SNP chip for predicting one trait is not the best to do, once 

the best results were obtained by using only the 500 markers for each trait. 

For this data set, BLASSO appears to be the best option. In general, this methodology 

demonstrated to be better for obtaining the PA, when compared with RF and bagging. The 

Kappa’s concordance to select the markers, between BLASSO and the other methodologies 

had in general a slight agreement, except for disease resistance traits that had a fair agreement. 

The PA obtained through the reduced SNP panel density, showed to have a better 

performance than the full SNP panel density for Coffea canephora. When comparing the 

results obtained by GBLUP and full SNP panel density [14], with BLASSO and 500 markers, 

we had an increase from 41.38% to 87.80% on PA for the traits Vig, Rus, Cer, PH and DC. 

For Mat, FS and Y. The PA obtained by Alkimim et al. [14] were on average -0.03, 0.00 and -

0.02 while using BLASSO were 40.84%, 54.79% and 37.21%, respectively. 

It is expected to have similar results between RF and bagging due they be an ensemble 

model of decision tree [36]. Despite RF and bagging does not present better results than 

BLASSO, they still have better results when compared with those using GBLUP with full 

SNP panel density presented [14].  

 

3.6. Conclusions 

  The results of the current study indicate that BLASSO must be used to select markers 

and to predict PA. The SNPs panels using between 500 and 1000 SNPs markers has better 

predictive ability than using full SNP panel density for the eight traits evaluated in this study 

of Coffea canephora. 
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3.7. Supporting Information 

S1 Table. Predictive ability. Predictive ability obtained in 108 scenarios, considering three methodologies to select marker and to predict the 
breeding value, and 12 density panels size. 

PH Cer 

Number of 
markers 

BL BAG RF BL BAG RF 

BL BAG RF BL BAG RF BL BAG RF BL BAG RF BL BAG RF BL BAG RF 

25 0.53 0.55 0.56 0.52 0.64 0.63 0.65 0.63 0.65 0.72 0.71 0.73 0.59 0.73 0.65 0.71 0.73 0.75 

200 0.69 0.59 0.61 0.58 0.69 0.63 0.73 0.69 0.69 0.82 0.73 0.76 0.62 0.76 0.64 0.76 0.76 0.78 

500 0.77 0.60 0.62 0.57 0.66 0.61 0.72 0.65 0.67 0.84 0.71 0.73 0.62 0.72 0.63 0.78 0.71 0.75 

1000 0.76 0.58 0.59 0.56 0.62 0.61 0.73 0.62 0.63 0.83 0.70 0.72 0.59 0.70 0.62 0.77 0.70 0.72 

1500 0.73 0.57 0.58 0.54 0.61 0.60 0.72 0.59 0.61 0.82 0.69 0.71 0.58 0.68 0.61 0.74 0.68 0.70 

2000 0.72 0.56 0.58 0.52 0.59 0.60 0.68 0.58 0.60 0.81 0.67 0.69 0.56 0.67 0.59 0.72 0.67 0.69 

4000 0.66 0.54 0.54 0.49 0.54 0.57 0.59 0.54 0.56 0.77 0.66 0.68 0.52 0.65 0.59 0.67 0.65 0.67 

6000 0.59 0.53 0.54 0.47 0.52 0.56 0.48 0.51 0.52 0.73 0.64 0.66 0.48 0.64 0.57 0.62 0.64 0.66 

8000 0.53 0.52 0.53 0.48 0.51 0.55 0.41 0.50 0.51 0.69 0.64 0.65 0.42 0.63 0.56 0.59 0.62 0.65 

10000 0.49 0.50 0.50 0.42 0.50 0.55 0.40 0.49 0.50 0.65 0.62 0.64 0.44 0.62 0.55 0.58 0.63 0.63 

12000 0.43 0.48 0.50 0.42 0.49 0.54 0.35 0.49 0.50 0.61 0.62 0.64 0.43 0.61 0.53 0.57 0.62 0.63 

14387 0.39 0.48 0.49 0.40 0.49 0.54 0.39 0.48 0.49 0.56 0.61 0.62 0.40 0.61 0.54 0.56 0.61 0.62 

DC Rus 

Number of 
markers 

BL BAG RF BL BAG RF 

BL BAG RF BL BAG RF BL BAG RF BL BAG RF BL BAG RF BL BAG RF 

25 0.68 0.67 0.70 0.60 0.76 0.60 0.69 0.75 0.76 0.54 0.58 0.60 0.54 0.68 0.56 0.56 0.65 0.67 

200 0.76 0.71 0.74 0.68 0.77 0.69 0.76 0.76 0.78 0.80 0.68 0.69 0.55 0.70 0.62 0.71 0.69 0.71 

500 0.82 0.71 0.72 0.67 0.74 0.66 0.78 0.74 0.77 0.83 0.65 0.66 0.55 0.68 0.61 0.75 0.67 0.69 
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1000 0.81 0.70 0.71 0.61 0.71 0.63 0.76 0.71 0.74 0.82 0.64 0.65 0.53 0.64 0.59 0.74 0.63 0.66 

1500 0.78 0.70 0.71 0.60 0.70 0.62 0.76 0.70 0.72 0.83 0.63 0.64 0.51 0.62 0.60 0.73 0.62 0.65 

2000 0.78 0.70 0.71 0.58 0.69 0.61 0.74 0.68 0.71 0.81 0.62 0.64 0.52 0.61 0.59 0.72 0.61 0.63 

4000 0.76 0.69 0.70 0.49 0.66 0.58 0.67 0.66 0.68 0.78 0.60 0.61 0.48 0.58 0.59 0.64 0.58 0.60 

6000 0.70 0.65 0.66 0.47 0.66 0.56 0.62 0.64 0.67 0.72 0.58 0.59 0.44 0.57 0.56 0.57 0.57 0.59 

8000 0.65 0.64 0.66 0.44 0.64 0.55 0.60 0.64 0.66 0.67 0.56 0.58 0.42 0.56 0.54 0.52 0.55 0.58 

10000 0.64 0.64 0.65 0.43 0.64 0.55 0.56 0.64 0.65 0.61 0.56 0.57 0.43 0.55 0.55 0.47 0.55 0.56 

12000 0.56 0.64 0.66 0.42 0.64 0.53 0.55 0.64 0.65 0.53 0.54 0.56 0.44 0.55 0.55 0.47 0.55 0.56 

14387 0.54 0.63 0.65 0.39 0.63 0.54 0.53 0.63 0.65 0.45 0.54 0.55 0.39 0.54 0.54 0.44 0.54 0.55 

Mat Y 

Number of 
markers 

BL BAG RF BL BAG RF 

BL BAG RF BL BAG RF BL BAG RF BL BAG RF BL BAG RF BL BAG RF 

25 0.39 0.17 0.21 0.15 0.40 0.18 0.35 0.40 0.41 0.49 0.34 0.33 0.26 0.27 0.43 0.20 0.25 0.23 

200 0.40 0.26 0.23 0.26 0.17 0.52 0.14 0.22 0.26 0.51 0.34 0.36 0.48 0.32 0.59 0.37 0.31 0.36 

500 0.41 0.20 0.23 0.43 0.14 0.60 0.21 0.16 0.17 0.55 0.30 0.31 0.53 0.26 0.60 0.39 0.26 0.30 

1000 0.41 0.21 0.23 0.48 0.15 0.60 0.23 0.16 0.16 0.49 0.32 0.29 0.48 0.20 0.61 0.35 0.21 0.24 

1500 0.33 0.19 0.21 0.48 0.15 0.60 0.17 0.16 0.15 0.51 0.26 0.27 0.50 0.19 0.59 0.32 0.19 0.21 

2000 0.38 0.17 0.18 0.51 0.15 0.60 0.21 0.17 0.16 0.48 0.25 0.24 0.48 0.18 0.58 0.31 0.18 0.20 

4000 0.34 0.17 0.19 0.44 0.15 0.57 0.16 0.17 0.16 0.39 0.20 0.21 0.45 0.16 0.56 0.17 0.16 0.17 

6000 0.37 0.16 0.16 0.45 0.15 0.57 0.12 0.15 0.17 0.34 0.18 0.19 0.45 0.15 0.55 0.18 0.14 0.16 

8000 0.24 0.15 0.16 0.45 0.15 0.55 0.14 0.14 0.16 0.29 0.17 0.18 0.41 0.16 0.55 0.15 0.14 0.16 

10000 0.23 0.15 0.15 0.42 0.15 0.54 0.15 0.16 0.15 0.20 0.16 0.15 0.39 0.15 0.55 0.19 0.15 0.16 

12000 0.16 0.14 0.15 0.41 0.13 0.54 0.16 0.15 0.15 0.21 0.15 0.16 0.41 0.16 0.55 0.20 0.15 0.15 

14387 0.12 0.13 0.14 0.40 0.14 0.53 0.16 0.14 0.15 0.20 0.15 0.15 0.41 0.16 0.54 0.19 0.15 0.14 

Vig FS 
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Number of 
markers 

BL BAG RF BL BAG RF 

BL BAG RF BL BAG RF BL BAG RF BL BAG RF BL BAG RF BL BAG RF 

25 0.65 0.62 0.64 0.63 0.69 0.71 0.62 0.70 0.71 0.39 0.40 0.35 0.13 0.36 0.18 0.26 0.32 0.38 

200 0.76 0.63 0.66 0.69 0.68 0.72 0.67 0.69 0.71 0.39 0.16 0.18 0.30 0.18 0.52 0.18 0.22 0.31 

500 0.73 0.64 0.65 0.71 0.65 0.69 0.65 0.65 0.68 0.37 0.16 0.13 0.45 0.15 0.58 0.17 0.18 0.20 

1000 0.77 0.61 0.63 0.69 0.62 0.66 0.64 0.63 0.65 0.37 0.18 0.16 0.49 0.15 0.60 0.13 0.14 0.16 

1500 0.75 0.61 0.63 0.65 0.59 0.64 0.60 0.61 0.63 0.42 0.19 0.16 0.48 0.14 0.57 0.11 0.16 0.19 

2000 0.74 0.61 0.62 0.64 0.60 0.62 0.58 0.60 0.61 0.37 0.16 0.17 0.50 0.15 0.57 0.11 0.17 0.18 

4000 0.69 0.58 0.59 0.55 0.56 0.59 0.52 0.57 0.59 0.28 0.15 0.15 0.46 0.15 0.57 0.15 0.15 0.17 

6000 0.63 0.57 0.59 0.51 0.54 0.57 0.52 0.56 0.57 0.25 0.16 0.18 0.46 0.15 0.56 0.13 0.13 0.17 

8000 0.57 0.56 0.57 0.45 0.53 0.55 0.43 0.53 0.56 0.24 0.15 0.18 0.47 0.16 0.55 0.13 0.16 0.17 

10000 0.49 0.54 0.55 0.45 0.53 0.55 0.45 0.54 0.55 0.16 0.16 0.15 0.43 0.15 0.54 0.07 0.13 0.16 

12000 0.48 0.53 0.54 0.44 0.53 0.54 0.43 0.53 0.54 0.15 0.12 0.17 0.42 0.14 0.54 0.14 0.14 0.17 

14387 0.44 0.52 0.54 0.40 0.53 0.54 0.41 0.52 0.53 0.16 0.14 0.17 0.39 0.13 0.54 0.16 0.13 0.16 

BL, Bayesian LASSO; BAG, Bagging; RF, Random Forest; PH, Plant heigh; Cer, Cercosporiose incidence; DC, Diameter of the canopy 
projection; Rus, Rust incidence; Mat, Fruit maturation time; Y, Yield in liters per plant; Vig, Vegetative vigor; FS, Fruit size. 

 

S2 Table. Kappa concordance and correlation.  Kappa’s coefficient among methodologies across many numbers of markers and the 
correlation between Kappa’s coefficient and number of markers. 

Traits Methodologies 
Number of markers Correlation 

25 200 500 1000 1500 2000 4000 6000 8000 10000 12000 14387  

Vig 

Bag_RF 0.76 0.72 0.62 0.54 0.51 0.51 0.55 0.61 0.70 0.78 0.87 1.00 0.74 

RF_BL 0.04 0.07 0.13 0.18 0.23 0.27 0.36 0.48 0.59 0.71 0.84 1.00 1.00 

BAG_BL 0.00 0.06 0.14 0.19 0.22 0.25 0.36 0.47 0.59 0.72 0.84 1.00 0.99 

RF_BAG_BL 0.00 0.04 0.10 0.12 0.14 0.16 0.22 0.31 0.43 0.57 0.74 1.00 0.98 
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Rus 

Bag_RF 0.80 0.62 0.61 0.54 0.53 0.53 0.56 0.62 0.70 0.78 0.87 1.00 0.77 

RF_BL 0.36 0.27 0.33 0.36 0.37 0.38 0.44 0.53 0.62 0.72 0.84 1.00 0.99 

BAG_BL 0.36 0.30 0.32 0.33 0.35 0.36 0.43 0.52 0.62 0.72 0.84 1.00 0.99 

RF_BAG_BL 0.36 0.23 0.24 0.24 0.24 0.25 0.29 0.36 0.46 0.58 0.74 1.00 0.93 

Cer 

Bag_RF 0.84 0.66 0.57 0.53 0.50 0.50 0.52 0.61 0.69 0.78 0.87 1.00 0.71 

RF_BL 0.20 0.30 0.28 0.31 0.32 0.34 0.42 0.50 0.60 0.72 0.84 1.00 0.99 

BAG_BL 0.20 0.25 0.28 0.30 0.33 0.33 0.40 0.49 0.60 0.72 0.84 1.00 0.99 

RF_BAG_BL 0.16 0.22 0.20 0.21 0.21 0.21 0.26 0.33 0.44 0.58 0.74 1.00 0.96 

Mat 

Bag_RF 0.92 0.24 0.28 0.47 0.51 0.52 0.57 0.63 0.71 0.79 0.87 1.00 0.72 

RF_BL 0.04 0.07 0.11 0.12 0.14 0.17 0.32 0.45 0.59 0.71 0.84 1.00 1.00 

BAG_BL 0.04 0.05 0.07 0.10 0.14 0.18 0.32 0.46 0.59 0.71 0.84 1.00 1.00 

RF_BAG_BL 0.04 0.03 0.04 0.06 0.07 0.09 0.19 0.29 0.42 0.56 0.73 1.00 0.99 

FS 

Bag_RF 0.84 0.20 0.35 0.55 0.57 0.56 0.56 0.63 0.70 0.78 0.87 1.00 0.75 

RF_BL 0.04 0.02 0.08 0.12 0.15 0.18 0.33 0.45 0.59 0.71 0.84 1.00 1.00 

BAG_BL 0.08 0.06 0.08 0.11 0.14 0.17 0.32 0.45 0.59 0.71 0.84 1.00 1.00 

RF_BAG_BL 0.04 0.02 0.04 0.06 0.07 0.09 0.19 0.29 0.42 0.56 0.74 1.00 0.99 

PH 

Bag_RF 0.84 0.61 0.54 0.52 0.52 0.52 0.56 0.61 0.69 0.78 0.87 1.00 0.75 

RF_BL 0.04 0.10 0.15 0.22 0.25 0.27 0.37 0.48 0.58 0.70 0.84 1.00 0.99 

BAG_BL 0.04 0.11 0.14 0.20 0.24 0.27 0.36 0.48 0.59 0.71 0.84 1.00 1.00 

RF_BAG_BL 0.04 0.06 0.09 0.13 0.15 0.17 0.23 0.32 0.42 0.56 0.74 1.00 0.98 

DC 

Bag_RF 0.76 0.67 0.55 0.50 0.49 0.49 0.53 0.61 0.69 0.78 0.87 1.00 0.78 

RF_BL 0.04 0.10 0.14 0.18 0.22 0.25 0.36 0.46 0.59 0.71 0.84 1.00 1.00 

BAG_BL 0.04 0.11 0.13 0.17 0.21 0.25 0.37 0.47 0.59 0.71 0.84 1.00 1.00 

RF_BAG_BL 0.04 0.09 0.08 0.11 0.13 0.14 0.22 0.30 0.43 0.57 0.74 1.00 0.98 

Y Bag_RF 0.84 0.64 0.63 0.54 0.54 0.55 0.57 0.63 0.70 0.78 0.87 1.00 0.73 
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RF_BL 0.00 0.08 0.12 0.16 0.20 0.23 0.34 0.46 0.58 0.70 0.84 1.00 1.00 

BAG_BL 0.00 0.10 0.12 0.15 0.19 0.24 0.35 0.47 0.59 0.71 0.84 1.00 1.00 

RF_BAG_BL 0.00 0.06 0.09 0.10 0.12 0.14 0.22 0.31 0.42 0.56 0.73 1.00 0.98 

BL, Bayesian LASSO; BAG, Bagging; RF, Random Forest; PH, Plant heigh; Cer, Cercosporiose incidence; DC, Diameter of the canopy 
projection; Rus, Rust incidence; Mat, Fruit maturation time; Y, Yield in liters per plant; Vig, Vegetative vigor; FS, Fruit size. 
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4. GENERAL CONCLUSION 

 

There is not a methodology that will be better than all others, it depends of 

data’s complexity, but computational intelligence and machine learning 

methodologies have shown great potential in genomic analysis, predicting genomic 

estimated breeding values, and estimating markers effects and heritability, besides of 

select markers for reducing the density of markers panel and improving the predictive 

ability. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 


