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ABSTRACT 
 
 

TEIXEIRA, David Bruno de Sousa, D.Sc., Universidade Federal de Viçosa, March, 2023. 
Rainfall erosivity in Brazil. Adviser: Roberto Avelino Cecílio. Co-advisers: Elpídio Inácio 
Fernandes Filho, Gabrielle Ferreira Pires, and Michel Castro Moreira. 
 
 
The phenomenon known as rainfall erosivity (RE) expresses the ability of rainfall to cause soil 

erosion. Thus, the estimation of RE magnitudes is relevant for understanding how the erosive 

processes vary in time and space. Considering this, the present thesis explores the main aspects 

of RE in Brazil. In Chapter 1, an in-depth review of scientific literature on the RE assessment 

in Brazil is shown. It was found that the EI30 has been the most employed erosivity index, while 

the use of pluviographic rainfall data and regression equations are the main methods for 

obtaining erosivity values. Kriging is the most widespread technique for obtaining RE maps in 

Brazil. Furthermore, the Southeast region accounts for the largest number of erosivity studies, 

while the North has a major lack of erosivity information. The advancements over the last 

decade are characterized by the use of synthetic series of rainfall and remote sensing products 

to estimate erosivity, as well as the use of machine learning techniques for its interpolation. In 

Chapter 2, a large national database was used to assess the RE patterns in time and space over 

the Brazilian territory. The results show that the mean annual RE value is 5,620 MJ mm ha-1  

h-1 year-1, with considerable spatial variation over the country. The RE values are more 

equitably distributed throughout the year in the southern region, while in some spots of the 

northeastern region, it is irregularly concentrated in specific months. Further analyses revealed 

that the annual RE gravity center for Brazil is in the Goiás State and that it presents a north-

south migration pattern throughout the months. Complementarily, the erosivity density 

magnitudes allowed the identification of high-intensity rainfall spots. Additionally, the 

Brazilian territory was divided into eleven homogeneous regions regarding the RE patterns and 

for each defined region, a regression model was adjusted and validated. These models’ 

statistical metrics were considered satisfactory and, thus, can be used to estimate RE values for 

the whole country using monthly rainfall depths. In Chapter 3 machine learning techniques 

were applied to obtain an annual RE map for Brazil. According to the accuracy metrics 

analyzed, Random Forest (RF) is considered the model with the best prediction performance 

for mapping the annual RE. The covariates with higher importance for the predictions were the 

total annual rainfall, rainfall depth for August, and rainfall of the coldest quarter. Further 

analysis revealed that the northeastern of the country as well as the Serra do Mar mountains 



 
 

region are characterized as the areas with the highest uncertainties in the values mapped. The 

created map is considered an advancement regarding the availability of accurate RE values in 

the country. The present thesis shows the most complete panorama of the RE phenomenon in 

Brazil shown in the literature so far. Therefore, the values, maps, and analysis shown are 

relevant for improving the accuracy of soil loss estimates and for the establishment of soil 

conservation planning on a national scale. 

 

Keywords: Erosivity index. Universal Soil Loss Equation. Soil and water conservation. 

Erosivity density. Machine learning. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 
 

RESUMO 
 
 

TEIXEIRA, David Bruno de Sousa, D.Sc., Universidade Federal de Viçosa, março de 2023. 
Erosividade da chuva no Brasil. Orientador: Roberto Avelino Cecílio. Coorientadores: 
Elpídio Inácio Fernandes Filho, Gabrielle Ferreira Pires e Michel Castro Moreira. 
 
 
O fenômeno conhecido como erosividade das chuvas (RE) expressa a capacidade das 

precipitações em provocar a erosão do solo. Assim, a estimativa de magnitudes de RE é 

relevante para entender como os processos erosivos variam no tempo e no espaço. 

Considerando isso, a presente tese explora os principais aspectos da RE no Brasil. No Capítulo 

1, é apresentada uma revisão aprofundada da literatura científica sobre a avaliação da RE no 

Brasil. Verificou-se que o EI30 tem sido o índice de erosividade mais empregado, enquanto o 

uso de dados pluviográficos e de equações de regressão são os principais métodos para obtenção 

dos valores de erosividade. A krigagem é a técnica mais difundida para obtenção de mapas de 

RE no Brasil. Além disso, a região Sudeste concentra o maior número de estudos de 

erosividade, enquanto a região Norte apresenta grande carência de informações sobre 

erosividade. Os avanços na última década são caracterizados pelo uso de séries sintéticas de 

precipitação e produtos de sensoriamento remoto para estimar a erosividade, bem como o uso 

de técnicas de aprendizado de máquina para sua interpolação. No Capítulo 2, um grande banco 

de dados nacional foi utilizado para avaliar os padrões de RE no território brasileiro. Os 

resultados mostram que o valor médio anual de RE é 5.620 MJ mm ha-1 h-1 ano-1, com 

considerável variação espacial. Os valores de RE são distribuídos de forma mais equitativa ao 

longo do ano na região sul, enquanto em alguns pontos da região nordeste concentram-se de 

forma irregular em meses específicos. Análises posteriores revelaram que o centro de gravidade 

anual da RE para o Brasil está localizado no estado de Goiás e que este apresenta um padrão de 

migração latitudinal ao longo dos meses. Complementarmente, as magnitudes de densidade de 

erosividade permitiram a identificação de pontos de chuva de alta intensidade. Adicionalmente, 

o território brasileiro foi dividido em onze regiões homogêneas quanto aos padrões de RE e 

para cada região, um modelo de regressão foi ajustado e validado. No Capítulo 3, técnicas de 

aprendizado de máquina foram aplicadas para obter um mapa anual de RE para o Brasil. De 

acordo com as métricas de acurácia analisadas, o Random Fosrest (RF) é considerado o modelo 

com melhor desempenho de predição para mapear a RE anual. As covariáveis com maior 

importância para as predições foram a precipitação total anual, a precipitação de agosto e a 

precipitação do trimestre mais frio. Análises mais aprofundadas revelaram que o nordeste do 



 
 

país, assim como a região da Serra do Mar, caracterizam-se como as áreas com maiores 

incertezas nos valores mapeados. O mapa criado é considerado um avanço em relação à 

disponibilização de valores precisos de RE no país. A presente tese apresenta o panorama mais 

completo do fenômeno RE no Brasil apresentado na literatura até o momento. Portanto, os 

valores, mapas e análises apresentados são relevantes para melhorar a precisão das estimativas 

de perda de solo e para o estabelecimento de um planejamento para a conservação do solo em 

escala nacional. 

 

Palavras-chave: Índice de erosividade. Equação Universal de Perda de Solo. Conservação do 

solo e da água. Densidade de erosividade. Aprendizado de máquina. 
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GENERAL INTRODUCTION 

 

Water erosion causes environmental, economic, and social problems worldwide. 

Among its major impacts, it can be mentioned a decrease in agricultural yields and an increase 

in production costs (ALEWELL et al., 2020; CHALISE et al., 2020). In addition, water quality 

and availability are compromised due to pollution and sediment accumulation in the water 

sources. According to Borelli et al. (2020), soil erosion is projected to increase over the 21st 

century in many countries, including Brazil, due to climate change. Thus, high soil loss rates 

constitute a challenge regarding the promotion of current and future food security (WUEPPER; 

BORRELLI; FINGER, 2019).  

Due to the need for a methodology capable of assessing the factors that cause water 

erosion and estimating soil losses, predictive models such as the Universal Soil Loss Equation 

(USLE) and its revised version (RUSLE) (RENARD et al., 1997; WISCHMEIER; SMITH, 

1978) were developed. Among the components included in these models, the climatic factor, 

known as rainfall erosivity (RE), expresses the ability of rainfalls to cause soil erosion. As stated 

by Castro et al. (2022), rainfall, due to the direct impact of the drops and the generated runoff 

water, is the primary agent which causes erosion in the Brazilian soils, which evidences the 

need for accurate RE estimates for the country. 

For obtaining reliable RE values, historical series of rainfall data is necessary on a sub-

daily scale with a minimum length of 20 years of consistent and uninterrupted data (RENARD 

et al., 1997; WISCHMEIER; SMITH, 1978). However, the difficulty in acquiring data with 

large time length in Brazil, both in terms of quantity and quality, is characterized as a barrier to 

the availability of more accurate RE estimates. Considering this, many authors have used 

empirical models that correlate rainfall data with erosivity magnitudes to estimate RE (BRITO 

et al., 2021; CASTAGNA et al., 2022; MOREIRA et al., 2020; NEVES; DI LOLLO, 2022).  

Although the use of empirical models is characterized as an easy way to estimate RE, 

so far, a restricted number of models have been adjusted for Brazil (OLIVEIRA; WENDLAND; 

NEARING, 2012). This has led to its indistinct and generalized application, resulting in RE 

values with large deviations in their magnitude, as demonstrated by Oliveira et al. (2018). As 

an alternative, the use of weather generators that simulate, from daily rainfall data, sub-daily 

series of synthetic rainfall data, has been a feasible option to estimate RE values in Brazil as 

shown by Cecílio et al. (2013), Moreira et al. (2016), and Teixeira et al. (2022a). The 

effectiveness of using weather generators for this purpose was proven by Oliveira et al. (2018), 
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which constitutes an advancement in the methods for expanding RE estimates over the Brazilian 

territory. 

Regardless of the estimation method, the effective use of the RE estimates often 

depends on the availability of maps for this variable. In Brazil, RE maps have been widely used 

to obtain soil loss estimates at local (CUNHA et al., 2022; SILVA et al., 2016), State (LENSE 

et al., 2021; MEDEIROS et al., 2016), and regional (GOMES et al., 2019a) scales. This 

mapping process has usually been done using conventional interpolation methods, such as the 

use of deterministic (CASTAGNA et al., 2022; NEVES; DI LOLLO, 2022) and geostatistical 

(SOUZA et al., 2020b; TERASSI et al., 2020) techniques. In this context, the use of machine 

learning techniques appears as a promising alternative for obtaining RE maps with higher 

accuracy, as exemplified by Lee et al. (2021) and Souza et al. (2022). 

This thesis explores the main aspects of the rainfall erosivity in Brazil. The first section 

of this thesis contains a general introduction. In the sequence, three chapters are shown with 

their own abstract, introduction, material and methods, results and discussion, and conclusion 

sections. Finally, a general conclusion section followed by the references list is presented. In 

Chapter 1, an in-depth review of scientific literature on the RE assessment in Brazil is shown. 

In Chapter 2, a large national database was used to assess the RE patterns in time and space 

over the Brazilian territory. In Chapter 3, machine learning techniques were applied to obtain 

an annual RE map for Brazil. 
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CHAPTER 1: RECENT ADVANCEMENTS IN RAINFALL EROSIVITY 

ASSESSMENT IN BRAZIL: A REVIEW 

 

Abstract 

 

In this study, we report the results of an in-depth review of scientific literature on the assessment 

of rainfall erosivity in Brazil and published in peer-reviewed journals over the last three 

decades. In total, 123 articles regarding this topic in Brazil were published. These studies were 

analyzed and filtered into categories regarding the bibliographic information, methodology 

scope, and main results. It was found that the EI30 has been the most employed erosivity index 

in the country, while the use of pluviographic rainfall data and regression equations are the 

main methods for obtaining erosivity values. The magnitudes of annual rainfall erosivity 

reported for the Brazilian territory range from 59 to 26,891 MJ mm ha-1 h-1 year-1. The lowest 

values are found in the Northeast region and the highest in the North. Kriging is the most 

widespread technique for obtaining rainfall erosivity maps in Brazil. Furthermore, the Southeast 

region accounts for the largest number of erosivity studies, while the North has a major lack of 

erosivity information. The advancements over the last decade are characterized by the use of 

synthetic series of rainfall and remote sensing products to estimate erosivity, as well as the use 

of machine learning techniques for its interpolation. For the next years, an increase in the use 

of these methodologies is expected, as well as an intensification of the assessment of the future 

patterns of rainfall erosivity over the country. The present review updates the findings regarding 

the assessment of rainfall erosivity in Brazil and brings a wider overview of the erosivity studies 

in the country. The information here summarized contributes to the establishment of a 

conservationist planning of soil and water management on a national scale. Finally, the 

complete database with all information retrieved from the literature was made available. 

 

Keywords: Erosivity index. R-factor. Soil erosion. Universal Soil Loss Equation. Soil and 

water conservation. 
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1. Introduction 

 

Water erosion causes environmental, economic, and social problems worldwide  

(WUEPPER; BORRELLI; FINGER, 2020). Among its main impacts are the decrease in the 

potential yield of agricultural lands and the reduced quality and availability of water resources. 

Also, water erosion changes the chemical, physical and biological properties of the soil, 

reducing its fertility (DUAN et al., 2016; NOVARA et al., 2018) and compromising current 

and future food security (PANAGOS; BORRELLI; ROBINSON, 2020; WUEPPER; 

BORRELLI; FINGER, 2020). According to Sartori et al. (2019), water erosion is estimated to 

incur a global annual cost of eight billion US dollars along with a decline in agricultural and 

food production of 33.7 million tons. 

Considering the problems caused by water erosion processes, the quantification of soil 

losses has practical relevance for the adoption of soil management and conservation program. 

For this purpose, several models for estimating soil losses have been developed and improved. 

Among these models, the Universal Soil Loss Equation (USLE) and its revised version 

(RUSLE) (RENARD et al., 1997; WISCHMEIER; SMITH, 1978) are the biggest contributors 

to the advancements in quantifying erosion processes worldwide (BORRELLI et al., 2021). 

They are easier to use than other models, especially regarding the degree of flexibility and data 

accessibility (ALEWELL et al., 2019). Thus, these models are characterized as important 

conservationist tools to support decision-making. 

Included as a component of these models, the climatic factor, known as rainfall 

erosivity (or R-factor), expresses the ability of rainfall to cause soil erosion. Erosivity is 

represented by a numerical index and, as explained by Serio et al. (2019), is a function of the 

physical characteristics of the rain itself, such as its distribution, fall velocity, intensity, 

duration, frequency, and kinetic energy of the raindrops. Thus, since rainfall is the inducing 

agent of the phenomenon of water erosion, the estimation of the erosivity magnitude is relevant 

for understanding how the erosive processes vary in time and space. Also, this variable can be 

used to identify areas highly susceptible to erosion (MOSAVI et al., 2020; PANDEY et al., 

2021; SENANAYAKE; PRADHAN, 2022).  

Rainfall erosivity has been estimated in global (LIU et al., 2020b), continental 

(BALLABIO et al., 2017), national (PADULANO; RIANNA; SANTINI, 2021), regional 

(ZHU; XIONG; XIAO, 2021), State (SOUZA et al., 2022), and local (CARDOSO et al., 2020) 

scale. According to Panagos et al. (2017a), South America presents the highest annual erosivity 
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values. In addition, these same authors state that countries within tropical climate zone face the 

most expressive erosivity magnitudes of the globe. 

Inserted in this high erosivity context, Brazil has expanded its agricultural land areas 

and is responsible for the production of many commodities. Along with it, deforestation rates 

have increased over the last years (ARAÚJO et al., 2019; DIAS et al., 2016; SOUZA et al., 

2020a). Thus, quantifying erosivity can potentially contribute to identifying erosion hotspots in 

the country and minimize soil loss rates. 

 Despite the importance of research aimed at analyzing rainfall erosivity, only a few 

studies have been carried out to review erosivity values worldwide (NAZUHAN; RAHAMAN; 

OTHMAN, 2018; NEARING et al., 2017). This is also the case for Brazil, where only one 

paper was published for this purpose so far. This effort was carried out by Oliveira et al. (2012), 

with a review article whose goal was to verify the quality and representativeness of the research 

on erosivity in the country. Although the results and discussion presented by these authors have 

contributed to significant advancements in this theme, the number of studies published over the 

last decade highlights the need for a new and broader review that addresses the progress made 

in the assessment of rainfall erosivity over the Brazilian territory. 

Therefore, this study aimed to review studies on rainfall erosivity in Brazil and 

published in peer-reviewed journals over the last three decades. The specific objectives were to 

describe and analyze quantitatively and qualitatively the main methodologies for obtaining and 

mapping erosivity values for Brazil; to identify areas lacking studies; and to present the current 

and climate change projections values for rainfall erosivity in Brazil.    

 

2. Material and methods 

 

In this study, we report the results of an in-depth review of scientific peer-reviewed 

literature on the assessment of rainfall erosivity in Brazil published in journals between 1992 

and 2021. Data was collected from five distinct platforms: (1) Web of Science core collections 

(https://apps.webofknowledge.com); (2) Science Direct (http://www.sciencedirect.com); (3) 

Scopus (http://www.scopus.com); (4) Scientific Electronic Library Online – SciELO 

(https://scielo.org); and (5) Google Scholar (http://scholar.google.com). The key terms used for 

researching articles were “rainfall erosivity” and “Brazil” as well as their translations to 

Portuguese (“erosividade da chuva” and “Brasil”). Papers including any quantitative or 

qualitative method to assess rainfall erosivity in Brazil were selected and reviewed. 
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After reading the articles, they were analyzed and divided into categories to systematize 

the discussion of the results in the present study. Some categories included the paper’s 

bibliographic information (e.g. title, year of publication, authors, journal), others included the 

methodology scope (e.g. study area, method for estimating erosivity) and main results (e.g. 

mean annual erosivity values). The complete list of information retrieved from the papers is 

shown in Table 1. 

 

Table 1. List of information analyzed in the review process of the papers. 

Group  Entry Types of data 

Bibliography Title Open (alphanumeric) 
 Author(s) Open (alphanumeric) 
 Year of publication Open (numeric) 
 Journal Open (alphanumeric) 
 Language Open (alphanumeric) 

Study area Spatial scale Multiple choice 
 Geographic region Open (alphanumeric) 
 State Open (alphanumeric) 
 Municipality or basin Open (alphanumeric) 

Methodology Number of years of the database  Open (numeric) 
 Erosivity index used Open (alphanumeric) 
 Erosivity estimation method Open (alphanumeric) 

Modeling Did the study establish a regression equation? Open (alphanumeric) 
 Independent variable of the equation Open (alphanumeric) 
 Coefficient of determination (R²) of the equation Open (numeric) 

Erosivity values Mean annual EI30 values  Open (numeric) 

 Range of annual EI30 values Open (numeric) 

Mapping Did the study generate erosivity maps? Multiple choice 
 Mapping technique  Open (alphanumeric) 

Others Did the study classify the rainfall erosivity values?  Open (alphanumeric) 
 Did the study relate the erosivity values to soil loss? Multiple choice 

  Is the study presented in the review of Oliveira et al. (2012)? Multiple choice 

 

The spatial scale from the analyzed articles was discretized as (1) Local: studies within 

municipalities, small watersheds and considering specific rainfall gauges; (2) State: studies 

considering a whole state; (3) Regional: studies within interstate watersheds, biomes (IBGE, 

2019),  and for a specific geographic region of Brazil; and (4) National: studies considering the 

entire country. Also, to analyze the spatial distribution of the rainfall erosivity studies 

throughout the Brazilian territory, the municipality, state, and geographic region were identified 

for all papers (if applicable). 
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3. Results and discussion 

 

From 1992 to 2021, 123 articles related to the assessment of rainfall erosivity in Brazil 

were published, including the review article presented by Oliveira et al. (2012). We found that 

69 papers were published after the review of Oliveira et al. (2012), which evidences the increase 

of research on this theme over the last decade (Figure 1a). The fact that in the last nine years 

the number of published studies is higher than in the previous 21 years (1992-2012) highlights 

the importance of the present review and shows that this still is a highly researched topic. 

 

  

Figure 1. Number of published studies related to the assessment of rainfall erosivity in Brazil 

(a) per year and (b) per language. 

 

An important aspect to consider is that most of the published papers related to the 

assessment of rainfall erosivity in Brazil over the last three decades were written in Portuguese 

(Figure 1b). In this sense, a higher number of articles published in English may improve the 

contribution of the erosivity values found in Brazil to international studies, such as in those by 

Liu et al. (2020b), Panagos et al. (2017a), and Riquetti et al. (2020).  

Rainfall erosivity values are mainly used to estimate soil losses from models such as the 

Universal Soil Loss Equation (USLE) and its revised (RUSLE) version (RENARD et al., 1997; 

WISCHMEIER; SMITH, 1978). However, the relationship between rainfall erosivity and soil 

loss was analyzed in only 25 papers (about 20% of the total). This shows that the majority of 

the studies published for Brazil only obtained erosivity values but not related them to observed 

soil loss rates. 
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The correlation between measured soil loss and the estimated rainfall erosivity was 

established in studies for the Northeast (ALBUQUERQUE et al., 1998, 2002), Center-West 

(CARVALHO; HERNANI, 2001), Southeast (LOMBARDI NETO; MOLDENHAUER, 1992; 

MARQUES et al., 1997; SILVA et al., 2009), and South Brazil (BERTOL et al., 2007; SCHICK 

et al., 2014; SILVA et al., 2016). The coefficient of determination (R²) of the rainfall erosivity 

and soil loss correlations varied from 0.37 to 0.98, found, respectively, by Silva et al. (2016) 

and Silva et al. (2009). In addition, some of the reviewed studies estimated rainfall erosivity 

values and used them as input for soil loss models, such as for USLE (FALCÃO; DUARTE; 

DA SILVA VELOSO, 2020; GUIMARÃES et al., 2019; SIMPLÍCIO et al., 2021) and RUSLE 

(COLMAN et al., 2019; DURÃES; MELLO, 2016; RODRIGUES et al., 2017). 

Other aspects of the reviewed papers, such as main erosivity indexes, main methods for 

obtaining and mapping rainfall erosivity, current and projected erosivity values, the spatial 

distribution of rainfall erosivity studies, and erosivity products available for Brazil are discussed 

in the following subsections. A complete list of the reviewed articles in this study and a 

summary of the information retrieved from them are freely available for download at 

http://dx.doi.org/10.17632/hgd2whtx55.1. 

 

3.1. Erosivity indexes used in Brazil 

 

 The main erosivity indexes used to express the erosive potential of rainfall in Brazil 

were the EI30, KE>25, and KE>10. As discussed later, for specific studies, the modified 

Fournier index (MFI) and the erosivity density (ED) were also considered to represent the 

rainfall erosivity. Figure 2a shows that EI30 has been the most used erosivity index in the 

country. This index is present in 121 of the 123 reviewed papers and was used by Lombardi 

Neto and Moldenhauer (1992) in the first published study related to rainfall erosivity in Brazil 

analyzed in this paper (Figure 2b). 
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Figure 2. Number of published studies related to the assessment of rainfall erosivity in Brazil 

regarding the erosivity index used (a) in total and (b) per year. 

 

The erosivity index EI30, proposed by Wischmeier and Smith (1958), is the relationship 

between rainfall’s kinetic energy and maximum intensity for 30 minutes. To determine the EI30, 

it is necessary to identify all the rainfalls considered erosive in the data series. According to the 

criteria proposed by Wischmeier and Smith (1958) and Wischmeier (1959), and modified by 

Cabeda (1976), erosive rainfalls are the ones with 10 mm or more of total precipitation, or with 

less than 10 mm when the amount precipitated in 15 minutes is equal to or greater than 6 mm. 

For erosive rainfalls, the associated kinetic energy (KE) is calculated as a function of 

the rainfall intensity, from minute to minute, using Equation (1), as suggested by Wischmeier 

and Smith (1958) and readjusted to the International System of Units by Foster et al. (1981). 

Foster et al. (1981) state that the KE adopted when the rainfall intensity is higher than 76 mm 

h-1 corresponds to 0.283 MJ ha-1 mm-1. The KE associated with the rainfall of each day is 

calculated by adding the kinetic energies of each minute until the total duration of the rainfall. 

 

KE = 0.119 + 0.0873 log I (1) 

  

in which KE is the kinetic energy (MJ ha-1 mm-1); I is the intensity of the rainfall (mm h-1). 

 

Using the daily KE values, the rainfall erosivity index EI30, also daily, is determined 

through Equation (2), in MJ mm ha-1 h-1 day-1. The monthly EI30 is determined by adding daily 

erosivity values, as shown in Equation (3). The annual EI30 values, also known as the R-factor 
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of the USLE model, are the sum of the rainfall erosivity for each month, as shown in Equation 

(4).   

 

EI30 = KE . I30 (2) 

REm  =∑(EI30)j

n

j =1

 (3) 

REa or R-factor =∑(REm)
12

i =1

 (4) 

 

in which EI30 is the daily rainfall erosivity index in the day j (MJ mm ha-1 h-1 day-1); I30 is the 

maximum rainfall intensity for 30 consecutive minutes (mm h-1); n is the number of days in the 

month i; REm is the rainfall erosivity in the month i (MJ mm ha-1 h-1 month-1); REa or R-factor 

is the annual rainfall erosivity (MJ mm ha-1 h-1 year-1). 

 

As mentioned before, the EI30 is used to represent most of the erosivity values over 

Brazil. This index was used in all five geographic regions of the country (AVANZI et al., 2019; 

RAIMO et al., 2018; SOUZA et al., 2020b; TEIXEIRA et al., 2022a; WALTRICK et al., 2015), 

and was used to estimate erosivity on a national scale (CECÍLIO et al., 2021; OLIVEIRA et al., 

2018; TRINDADE et al., 2016).  

The index KE>25 (also known as KE>1), in MJ ha-1, was proposed by Hudson (1971) 

from studies on rainfall erosivity in Africa. As it was developed considering the typical 

conditions of African rainfalls, this index has been pointed out as the most suitable for regions 

with a tropical and subtropical climate, such as Brazil. The KE>25 is determined by the sum of 

the kinetic energy (Equation (1)) of rainfall segments whose intensity is greater than 1-inch h-1 

or 25 mm h-1. The KE>10 index is a variation of the KE>25 and is obtained considering rainfall 

segments whose intensity is greater than 10 mm h-1.

 In Brazil, both KE>25 and KE>10 have not yet been used to assess erosivity nationally, 

which is a gap to be filled. In local studies, Andrade et al. (2020a) and Andrade et al. (2020b) 

used the KE>25 index to estimate erosivity in the municipalities of Formosa and Aragarças, 

respectively, both in the state of Goiás. Carvalho et al. (2010), Cecílio et al. (2013), Moreira et 

al. (2008), and Moreira et al. (2016) used the KE>25 index to analyze the rainfall erosivity in 

the states of Rio de Janeiro, Espírito Santo, Minas Gerais, and Santa Catarina, respectively. 

Much less widespread, the KE>10 index was used only for the municipalities of Sete Lagoas 
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and Sumé, in the states of Minas Gerais and Pernambuco, respectively (ALBUQUERQUE et 

al., 1998; MARQUES et al., 1997). 

 Differently from the other reviewed papers, Back et al. (2019) studied the rainfall 

erosive potential for the entire South region of Brazil exclusively as a function of MFI. The 

authors introduced the term rainfall aggressiveness as an indication of the degree of rainfall 

erosivity, so this variable was also considered as an erosivity index in the present review. The 

MFI, obtained from Equation (5), relates the mean monthly rainfall and the mean annual rainfall 

(LOMBARDI NETO, 1977; LOMBARDI NETO; MOLDENHAUER, 1992) and, as pointed 

out by Oliveira et al. (2012), is widely used as an independent variable for obtaining erosivity 

estimation models in Brazil. 

 

MFIi=
(Ri)2

Ra

 (5) 

 

in which MFIi is the modified Fournier index for the month i; Ri is the mean monthly rainfall 

in the month i (mm); Ra is the mean annual rainfall (mm). 

 

Back et al. (2019) concluded that the rainfall aggressiveness calculated for South Brazil 

has different monthly patterns depending on the State (Santa Catarina, Paraná, and Rio Grande 

do Sul). Also, these authors state that the high aggressiveness of rainfalls may not coincide with 

high amounts of annual rainfall, evidence of the influence of rainfall seasonality on the high 

erosive potential of specific months. Thus, the rainfall aggressiveness index (MFI) can be an 

easy tool to help assess soil erosion in Brazil. 

Finally, ED was also considered as an index to infer the erosive potential of rainfalls in 

Brazil. ED is expressed by the ratio between monthly rainfall erosivity and monthly rainfall 

(FOSTER, 2008), and therefore shows the erosivity content per unit of rainfall, as shown in 

Equation (5).  

 

EDi = REi . Ri
-1 (5) 

 

in which EDi is the mean erosivity density in the month i (MJ ha-1 h-1); REi is the mean 

monthly rainfall erosivity in the month i (MJ mm ha-1 h-1 month-1). 
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The ED index concept was shown by Foster (2008) and was used in some studies in 

China (LI; YE, 2018; XU et al., 2019), Greece (PANAGOS et al., 2016; VANTAS; 

SIDIROPOULOS; LOUKAS, 2019), India (DASH; DAS; ADHIKARY, 2019; SINGH; 

SINGH, 2020), and South Korea (SHIN et al., 2019). In Brazil, this index was only estimated 

by Teixeira et al. (2022a) as a complement to the analysis of the EI30 values obtained for the 

state of São Paulo. According to these authors, the ED analysis made it possible to identify 

areas susceptible to the impacts of the most extreme rainfall events even in months with low 

EI30 magnitudes. This occurs once the high ED estimates indicate a greater occurrence of high-

intensity precipitation events (PANAGOS et al., 2016). 

 Although the KE>25, KE>10, MFI, and ED indexes have advanced the understanding 

of the impacts of rainfall on erosive processes, the literature that covers the theme of soil loss 

in Brazil is mostly composed of studies that used the EI30 erosivity index. This fact may be 

related, as highlighted by Back et al. (2018) and Back and Poleto (2018), to the good 

correlations between the EI30 and the soil loss found in studies carried out in Brazil 

(ALBUQUERQUE; CHAVES; VASQUES FILHO, 1994; CARVALHO et al., 2010; 

LOMBARDI NETO; MOLDENHAUER, 1992; SCHICK et al., 2014; SILVA et al., 2009). 

 Furthermore, the lack of rainfall erosivity maps obtained from the mentioned indexes 

on a national scale, makes it difficult to compare with other erosivity maps previously obtained 

for Brazil using the EI30 index, such as the maps proposed by Mello et al. (2013), Oliveira et al. 

(2015), Silva (2004) e Trindade et al. (2016). 

 

3.2. Methods for obtaining rainfall erosivity values in Brazil 

 

We found that the use of pluviographic rainfall data, regression equations, synthetic 

series (SS) of rainfall data, and MFI were the main methods applied for obtaining rainfall 

erosivity values in Brazil (Figure 3a). As discussed previously, MFI was used only by Back et 

al. (2019), who considered MFI as an index of the aggressiveness of rainfalls. According to 

Figure 3b, over the last three decades, pluviographic rainfall data and regression equations were 

the methods used in the majority of the reviewed studies. 
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Figure 3. Number of published studies related to the assessment of rainfall erosivity in Brazil 

according to the method for estimating the erosivity, (a) in total and (b) per year. 

 

The use of pluviographic rainfall data is the most recommended estimation method in 

literature and allows a more realistic characterization of rainfall erosivity (WISCHMEIER; 

SMITH, 1978). Historical series of rainfall data on a sub-daily scale with a minimum of 22 

years of consistent and uninterrupted data is required to obtain reliable erosivity values 

(WISCHMEIER, 1959). However, as stated by Montebeller et al. (2007) and Oliveira et al. 

(2018), the difficulty of acquiring data with a time horizon of this magnitude in the Brazilian 

territory is an obstacle to estimating erosivity more accurately. 

Despite this difficulty, pluviographic rainfall data was used for rainfall erosivity 

estimates in most of Brazil (ANDRADE et al., 2020b; BACK; ALBERTON; POLETO, 2018; 

MACHADO et al., 2017; PINHEIRO et al., 2018). Considering this, some exemples of 

databases with rainfall data in a sub-daily resolution available for Brazil that can be used for 

obtaining rainfall erosivity values are those presented by the National Water and Sanitation 

Agency – ANA (https://www.snirh.gov.br/hidroweb/), National Institute of Meteorology – 

INMET (https://bdmep.inmet.gov.br/), and the National Center for Monitoring and Natural 

Disaster Alerts – CEMADEN (http://www2.cemaden.gov.br/mapainterativo/). 

Authors such as Back et al. (2017), Valvassori and Back (2014), and Back (2018) 

obtained erosivity values using sub-daily series with 31, 33, and 45 years of data, respectively, 

well above the minimum recommended. On the other hand, studies from Guimarães et al. 

(2019), Montenegro et al. (2018), and Lima et al. (2013) used historical series with less than 5 

years of data, which constitutes a risk of not capturing the long-term patterns of the erosive 
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rainfalls. As explained by Nearing et al. (2017), the erosivity values obtained using short 

records have the potential to be biased by unusual wet or dry periods. 

Considering the low availability of pluviographic rainfall data, simplified methods for 

predicting rainfall erosivity using monthly and yearly data from rainfall gauges are the most 

widely used alternative for estimating erosivity in Brazil. Several regression equations to obtain 

erosivity values have been established, for the entire country, based on the relationship between 

this variable and MFI (OLIVEIRA; WENDLAND; NEARING, 2012). This index relates the 

mean monthly rainfall with the mean annual. These variables are available for most locations 

with good spatial and temporal coverage, allowing the establishment of estimation models with 

satisfactory accuracy. 

Given the good reliability and easy use of these equations to determine erosivity, 

several authors have established regression models for this purpose in Brazil. Based on the 

literature presented by Oliveira et al. (2012), most of the proposed equations used MFI to 

estimate erosivity. Other variables can also be used, such as the topographic aspects of altitude, 

latitude, and longitude, used as independent variables in the models presented by Avanzi et al. 

(2019), Mello et al. (2013), and Riquetti et al. (2020). 

Regression equations allow estimating erosivity values in several places where 

pluviographic rainfall records are not available. However, since these equations are empirical 

models, their use is limited to locations with climatic characteristics, especially rainfall, similar 

to those for which they were developed. As explained by Oliveira et al. (2018), their widespread 

use can lead to incorrect erosivity estimates. Examples of the inappropriate use of these 

equations can be seen in the studies proposed by Falcão et al. (2020), Sousa et al. (2019), and 

Souza et al. (2020b). Although these studies were developed for the states of Pernambuco, 

Ceará, and Alagoas, respectively, whose climate is semi-arid, the authors used the equation 

from Lombardi Neto and Moldenhauer (1992) for the municipality of Campinas, in the state of 

São Paulo, whose climate is humid subtropical. Thus, the use of the erosivity values obtained 

by the mentioned examples is probably not adequate and may imply inaccurate erosion rates.   

Silva (2004) divided the Brazilian territory into eight homogeneous regions in terms 

of total annual rainfall and identified regression equations to estimate erosivity for each one. 

This division was used to obtain erosivity values in some studies, such as those presented by 

Almeida et al. (2017), Brito et al. (2021), and Silva et al. (2020c). Despite this attempt to 

regionalize the equations, Silva (2004) simply defined an existing model to represent a region 

and did not establish a model considering the specific data of each region. Teixeira et al. (2022a) 

did this last procedure for the state of São Paulo. Differently from Silva (2004), these authors 
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firstly identified homogeneous regions concerning rainfall erosivity, and then obtained and 

validated models for each region, which is characterized as a good method for establishing 

regionalized estimation models. In addition, Mello et al. (2013) proposed to use the Thiessen 

polygon’s method as well as the precipitation concentration index (PCI) to identify a region to 

use a given erosivity model already established for Brazil. This procedure was also applied by 

Almagro et al. (2017). 

Another alternative method used to obtain erosivity estimates in Brazil has been the 

use of synthetic series of rainfall from climatic generators, as shown by Lobo et al. (2015), Yu 

(2002), and Zhang et al. (2008). From the association of real rainfall data series with random 

numbers produced by computational algorithms, these generators provide sequences of 

numbers that resemble real sub-daily rainfall data, which means that possible non-stationarity 

in the series is not captured. 

In this sense, the software ClimaBR, a stochastic weather generator (BAENA et al., 

2005; OLIVEIRA; ZANETTI; PRUSKI, 2005a, 2005b; ZANETTI et al., 2005), was developed 

for the Brazilian climatic conditions. Zanetti et al. (2005) validated the software regarding the 

number of rainy days and the total daily rainfall. The synthetic series generated by this software 

show information that characterizes the daily rainfall profile such as the daily amount and its 

duration, maximum instantaneous rainfall intensity, and its time of occurrence. 

The synthetic series generated by ClimaBR were used for estimating rainfall erosivity 

values by Cecílio et al. (2013), Moreira et al. (2009), and Teixeira et al. (2022a) for the states 

of Espírito Santo, Minas Gerais, and São Paulo, respectively, all in the Southeast region of 

Brazil. Oliveira et al. (2015) used the ClimaBR for determining erosivity values for the entire 

Brazilian territory. The use of the synthetic series generated by ClimaBR was validated for 

Brazil by Oliveira et al. (2018) and consists of a method with great potential to expand the 

understanding of the erosive dynamics of rainfall in the country. 

 

3.3. Spatial distribution of rainfall erosivity studies in Brazil 

 

In Brazil, most published papers studied rainfall erosivity at a local scale 

(municipalities, small watersheds, and specific rainfall gauges), as shown in Figure 4a. The 

amount of research to understand erosivity patterns throughout Brazil is still scarce (only ten 

studies), which makes it difficult to establish national guidelines for soil conservation planning. 
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Figure 4. Number of published studies related to the assessment of rainfall erosivity in Brazil 

per (a) spatial scale, (b) geographic region, and (c) State. 

 

Considering the five geographic regions in the country, the Southeast region accounts 

for most of the erosivity studies, around 43% of all Local, State, and Regional studies (Figures 

4b and 4c), something also pointed by Oliveira et al. (2012). On the other hand, the North and 

Center-West regions have the lowest number of studies. According to Dias et al. (2016), some 

of the areas in these two regions (Amazonia and Cerrado biomes agricultural frontiers) suffered 
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an increase in cropland and pastureland areas in recent years. Also, for the state of Mato Grosso 

(Center-West) an intensification of pasture and cattle ranching has been reported (GARRETT 

et al., 2018; GOLLNOW; LAKES, 2014). In this context, an increase in the studies on the 

erosive potential of rainfall in these two regions may highlight the need for the adoption of 

conservation practices to mitigate changes in land use. 

It is also important to point out that the reduced number of erosivity studies in the states 

of the North and Center-West regions can reflect the lower number of climatic monitoring 

stations in these regions than in others. Based on the inventory of the Brazilian National Water 

and Sanitation Agency (ANA), Silva et al. (2021) stated that the North and Center-West regions 

account for, respectively, only 7 and 8.6% of the Brazilian rainfall gauges, minimizing the 

amount and availability of data for hydrological studies.  As an alternative, the use of satellite 

data such as those presented by Brito et al. (2021) and Moreira et al. (2020) can spatially 

improve the understanding of the dynamics of rainfall erosivity in areas with low rainfall gauge 

data, despite the problem with the temporal resolution that will still persist.   

 

3.4. Rainfall erosivity values over Brazil 

 

Since EI30 was the most used erosivity index in the published rainfall erosivity studies 

in the country, the erosivity magnitudes discussed in this section refer only to this index. 

According to the results reported in the reviewed literature, considering values for a specific 

year, the magnitudes of annual rainfall erosivity over the Brazilian territory range from 59 to 

26,891 MJ mm ha-1 h-1 year-1, in the states of Pernambuco (SANTOS; MONTENEGRO, 2012) 

and Tocantins (AVANZI et al., 2019), respectively.  

The Northeast region has the lowest erosivity values, from 59 to 11,469 MJ mm ha-1 h-

1 year-1 (SANTOS; MONTENEGRO, 2012; SOUZA et al., 2020b). Oppositely, the highest 

erosivity values are in the North region, from 6,599 to 26,891 MJ mm ha-1 h-1 year-1  (AVANZI 

et al., 2019; VIOLA et al., 2014). Additionally, expressive erosivity values (higher than 15,000 

MJ mm ha-1 h-1 year-1) were also found in the states of Minas Gerais (OLIVEIRA et al., 2009, 

2014; SILVA et al., 2010a), Rio de Janeiro (CARVALHO et al., 2012; GONÇALVES et al., 

2006; MACHADO et al., 2013; MONTEBELLER et al., 2007), and São Paulo (SILVA et al., 

2010b; TEIXEIRA et al., 2022a), in the Southeast region; in the state of Mato Grosso 

(ALMEIDA et al., 2012), in the Center-West region; and in the state of Rio Grande do Sul 

(BAZZANO; ELTZ; CASSOL, 2007; CASSOL et al., 2008; HICKMANN et al., 2008; 

MAZURANA et al., 2009; PAULA et al., 2010), in the South region. 
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Many studies in Brazil classify the erosivity values in the following categories: Low 

(below 2,452 MJ mm ha-1 h-1 year-1), Moderate (higher than 2,452 and below 4,905 MJ mm ha-

1 h-1 year-1), Moderate-Strong (higher than 4,905 and below 7,357 MJ mm ha-1 h-1 year-1), 

Strong (higher than 7,357 and below 9,810 MJ mm ha-1 h-1 year-1), and Very strong (higher than 

9,810 MJ mm ha-1 h-1 year-1). Despite its popularity, no pattern is observed concerning the 

reference of the original study that proposed this classification for the country. The most cited 

authors for this purpose are Carvalho (1994), Carvalho (2008), and Santos (2008). 

According to this classification, the country is mostly classified with Moderate-Strong 

and Strong rainfall erosivity (Figure 5a). Considering the different Brazilian regions, the highest 

percentages of Low and Moderate values are reported for the Northeast region, while the North 

e Center-West regions have the highest percentages of papers that found Very strong erosivity 

values (Figure 5b). Despite this, annual erosivity higher than 7,357 MJ mm ha-1 h-1 year-1 

(Strong and Very strong categories) are found in all Brazilian territory which evidences the 

existence of several areas of water erosion susceptibility in the country. Therefore, an increase 

in the number of studies aiming to estimate local rainfall erosivity values may help identify 

areas at high erosion risk and support soil and water conservation plans. 

 

 

Figure 5. (a) Number of published studies per rainfall erosivity categories. (a) Quantity for the 

entire country and (b) percentage for each Brazilian region. 
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3.5. Mapping rainfall erosivity in Brazil 

 

According to the reviewed literature, about 42% of the published papers on rainfall 

erosivity in Brazil produced erosivity maps (Figure 6a). The most employed interpolation 

techniques were kriging, artificial neural networks (ANNs), and inverse distance weighting 

(IDW) (Figure 6b). As discussed later, a small number of studies used other methods such as 

satellite and climate models’ products. 

 

 

 

Figure 6. (a) Number of published studies on rainfall erosivity in Brazil that did or did not 

generate erosivity maps and (b) most employed mapping techniques. 

 

Kriging is the most widespread method for obtaining rainfall erosivity maps in Brazil. 

This method consists of geostatistical interpolation whose linear weights follow an unbiased 

constraint and the minimum square error condition. The resulting system of linear equations is 

solved to determine the estimator’s weights considering the stochastic dependence between the 

data sampled in space (VAROUCHAKIS, 2019). The spatial variation in kriging interpolation 

is quantified by a semivariogram, which consists of a scatter plot of semivariance versus the 

distance between the sampled points. 

In Brazil, kriging was first used for obtaining rainfall erosivity maps for the state of São 

Paulo (VIEIRA; LOMBARDI NETO, 1995). Then, this method was also employed to 

interpolate erosivity in many other studies in state scale, such as for Alagoas (SOUZA et al., 

2020b), Espírito Santo (MELLO et al., 2012; SAITO et al., 2009; SILVA et al., 2010c), Mato 

Grosso (RAIMO et al., 2018), Mato Grosso do Sul (OLIVEIRA et al., 2012), Minas Gerais 

(MELLO et al., 2007), Paraná (WALTRICK et al., 2015), Rio de Janeiro (MONTEBELLER et 
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al., 2007), Santa Catarina (BACK; POLETO, 2018), and Tocantins (AVANZI et al., 2019; 

VIOLA et al., 2014). Local studies also used kriging, but only for locations in southeastern 

Brazil (AQUINO et al., 2012; MELLO et al., 2015a, 2020; PONTES et al., 2017; SILVA et al., 

2010a; TERASSI et al., 2020). 

On a national scale, kriging was used by Mello et al. (2013) for obtaining an annual 

erosivity map. These authors used regression-kriging considering the geographical coordinates 

and altitude as predictive variables. Also for the entire Brazilian territory, Mello et al. (2015b) 

tested many interpolation techniques and concluded that the regression-kriging method 

provided the greatest prediction accuracy and was considered the most reliable for mapping 

annual rainfall erosivity in the country. Additionally, kriging also showed satisfactory 

performance for mapping the erosivity patterns in Brazil on a monthly time scale (TRINDADE 

et al., 2016). 

The IDW, another interpolation technique, is a deterministic method in which the value 

of the estimated variable in any position is calculated by the linear combination of values 

recorded by the n nearest neighbor points weighted by the inverse of their distance raised to a 

power (ATTORRE et al., 2007; CARUSO; QUARTA, 1998), as shown in Equation (6). In 

Brazil, this method was applied for mapping erosivity in the states of Paraíba (SILVA et al., 

2013, 2020c), Pernambuco (PINHEIRO et al., 2018), Rio de Janeiro (MACHADO et al., 2013), 

and São Paulo (TEIXEIRA et al., 2022a). 

 

Zi=

∑ (Zj

dij
 p)n

j=1∑ ( 1
dij

 p)n
j=1

 (6) 

 

in which Zi is the rainfall erosivity interpolated at the point i (MJ mm ha-1 h-1); dij is the distance 

between the points i and j; Zj is the rainfall erosivity calculated at the point j (MJ mm ha-1 h-1); 

p is the power used; n is the number of neighboring points considered for the interpolation. 

 

Differently from the results presented by Mello et al. (2015b), Oliveira et al. (2015) 

showed that the IDW performed better than the kriging technique to interpolate rainfall 

erosivity in Brazil. For this, Oliveira et al. (2015) considered erosivity values estimated using 

synthetic pluviographic series for 142 locations in the country. As stated by these authors, the 

good performance of IDW is an advantage in modeling erosivity, as it is a method that is well 
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suited to irregularly distributed data samples and is a fast and simple technique (it requires few 

decisions to be made about the model parameters). 

The use of machine learning algorithms, more specifically the technique named 

artificial neural networks (ANNs), is another method employed for mapping erosivity in Brazil. 

The ANNs are a set of computational elements, called artificial neurons. These neurons are 

layered and interconnected by weights to form a network and are adjusted as model training 

progresses. Although there are numerous variant parameters, in ANNs they can be summarized 

in terms of the characteristics of the activation function, the network architecture, and the 

training algorithm (KUBAT, 2021). In this way, ANNs provide a learning rule to modify their 

weights and neurons based on patterns in the input data to result in a specific output estimate. 

In Brazil, the use of ANNs to obtain rainfall erosivity maps is limited to the Center-

West, Southeast, and South regions. In summary, ANNs were developed for the states of Mato 

Grosso do Sul (SOBRINHO et al., 2011), Espírito Santo (CECÍLIO et al., 2013; MOREIRA et 

al., 2012), Minas Gerais (MOREIRA et al., 2008), Rio de Janeiro (CARVALHO et al., 2012), 

São Paulo (MOREIRA et al., 2006a, 2006b; SILVA et al., 2010b), and Rio Grande do Sul 

(MOREIRA et al., 2016). As discussed later, for most of these states, computational software 

was developed to obtain erosivity values using ANNs. 

Erosivity maps were obtained using ANNs specifically for the coastal region of the 

São Paulo state using latitude, longitude, and total rainfall as predictive variables (SILVA et 

al., 2010b). The results demonstrate the effectiveness of this methodology for the interpolation 

of annual rainfall erosivity. In this context, Moreira et al. (2006a) also used ANNs to map 

erosivity, but for the whole state of São Paulo. 

Cecílio et al. (2013), using rainfall erosivity values estimated from synthetic rainfall 

series, evaluated the performance of ANNs, IDW, and kriging techniques for the spatial 

interpolation of erosivity in the state of Espírito Santo. According to these authors, ANNs had 

the best values of the Willmott (1981) index. Also, for the Southeast region, Carvalho et al. 

(2012) used ANNs to map erosivity in the state of Rio de Janeiro. The results were satisfactory 

using latitude, longitude, and altitude as predictive covariates.  

For the Brazilian Center-West region, Sobrinho et al. (2011) developed an ANN 

capable of mapping with satisfactory accuracy the rainfall erosivity in any location in the state 

of Mato Grosso do Sul. Finally, for the southern region, Moreira et al. (2016) used ANNs for 

spatial interpolation of monthly and annual erosivity in the state of Rio Grande do Sul. Using 

data from 103 rainfall gauges, these authors obtained erosivity maps not only for the EI30 index 

but also for the KE>25. Although the use of the ANN method has intensified in recent years, 
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the use of other machine learning techniques to interpolate erosivity values in Brazil is still a 

gap to be filled. 

In addition to the previously discussed methods, other studies proposed to obtain maps 

using satellite products, such as those shown by Silva et al. (2020a) and Moreira et al. (2020), 

who employed images from the Tropical Rainfall Measuring Mission (TRMM), and those 

shown by Brito et al. (2021), who used data from the Climate Hazards Group Infrared 

Precipitation with Stations (CHIRPS) and Precipitation Estimation from Remotely Sensed 

Information using Artificial Neural Networks (PERSIANN) products. Spatial data from 

regionalized global climate models were employed to map projected erosivity patterns over the 

21st-century (ALMAGRO et al., 2017; COLMAN et al., 2019; RIQUETTI et al., 2020). As the 

use of these technology becomes more popular for mapping environmental and climatic 

variables, the use of satellite and climate models' products for mapping rainfall erosivity is 

expected to increase over the next years. 

 

3.6. Projected rainfall erosivity over Brazil 

 

Studies proposing to analyze future patterns of rainfall erosivity over the Brazilian 

territory are scarce. In total, only five papers were published with this objective for Brazil 

(ALMAGRO et al., 2017; COLMAN et al., 2019; MELLO et al., 2015a; RIQUETTI et al., 

2020; ROSA et al., 2016).  

The first attempt to estimate future erosivity values in the country was carried out by 

Mello et al. (2015a). These authors used the products of the HadCM3 model (Hadley Centre 

Coupled Global-Ocean Model) to estimate rainfall erosivity from 2011 to 2098 for the Grande 

River Basin (Southeastern Brazil). The future erosivity values considered an intermediary 

climate scenario (A1B) and were obtained by the MFI, which was calculated using the rainfall 

projected patterns from the statistical relationship between annual rainfall erosivity obtained by 

local rainfall gauges and the respective MFI. Mello et al. (2015a) evidenced a perspective of 

increasing the erosive potential of rainfalls in the studied area, with a significant increase in the 

MFI values for December and January. 

Also considering an intermediate climate change scenario (RCP 4.5), Rosa et al. (2016) 

projected the rainfall erosivity for the municipality of Rondon do Pará (Northern Brazil) from 

2016 to 2035. These authors used projected data from the HadGEM2 model (Hadley Centre 

Global Environment Model version 2) as input in the erosivity estimation equation established 

by Morais et al. (2006) and presented by Silva (2004). As result, a decrease in the annual rainfall 
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erosivity is projected. Although the results obtained by Rosa et al. (2016) contribute to 

advancing the understanding of how climate change can impact rainfall erosivity in the future, 

it is important to note that the empirical equation used to calculate future erosivity was 

established considering the stationarity of rainfalls. In addition, this equation was adjusted for 

a State in another region of the country and using obsolete data (before 1991). 

Almagro et al. (2017) projected rainfall erosivity values for the entire Brazilian territory 

from 2007 to 2099. For this, data from the HadGEM2 and MIROC5 (Model for 

Interdisciplinary Research on Climate version 5) models were used, considering the climate 

scenarios RCP4.5 and RCP8.5. These authors suggest that Northeastern and Southern Brazil 

will be the most affected regions due to the increasing rainfall erosivity over the century. On 

the other hand, a decrease in erosivity values is projected for the Southeastern, Central, and 

Northwestern parts of the country. The results presented by Almagro et al. (2017) seem to be 

useful for soil and water conservation planning, as evidenced by Colman et al. (2019), who 

used these projections to evaluate the potential effects of climate change in soil erosion for the 

Pantanal biome. 

Finally, Riquetti et al. (2020) used the projections from the HadGEM2, MIROC5, and 

CanESM2 (Second Generation Canadian Earth System Model) models to analyze the impact 

of climate change on the long-term average annual rainfall erosivity in South America 

considering the RCP8.5 climate scenario. The results obtained by these authors for Brazil are 

in agreement with several results shown by Almagro et al. (2017). Furthermore, Riquetti et al. 

(2020) point out a strong reduction trend in the annual erosivity values for the Amazon Forest 

throughout the century. 

 

3.7. Rainfall erosivity products available for Brazil 

 

In the reviewed literature, products are cited as tools for estimating rainfall erosivity 

values for Brazil. Some of the most popular ones are from the group of computational software 

called netErosividade, developed using ANNs (MOREIRA et al., 2006a, 2009). The softwares 

netErosividadeES (MOREIRA et al., 2012), netErosividadeMG (MOREIRA et al., 2008), 

netErosividadeRS (MOREIRA et al., 2016), and netErosividadeSP (MOREIRA et al., 2006b) 

were developed, respectively, for the states of Espírito Santo, Minas Gerais, Rio Grande do Sul, 

and São Paulo. By using them, it is possible, in a practical way, to obtain rainfall erosivity 

values for any location within the respective states. This group of software is freely available 
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online at the website of the Research Group in Water Resources of the Federal University of 

Viçosa (GPRH-UFV) (http://www.gprh.ufv.br/?area=softwares). 

Another tool used for estimating rainfall erosivity values over the Brazilian territory is 

the software Chuveros, developed by professor Elemar Antonino Cassol (Federal University of 

Rio Grande do Sul-UFRGS). This software was widely used in southern Brazil, as shown by 

Bazzano et al. (2007), Bazzano et al. (2010), Cassol et al. (2008), Cogo et al. (2006), Eltz et al. 

(2011), Hickmann et al. (2008), and Mazurana et al. (2009) for some municipalities of the Rio 

Grande do Sul state, and Schick et al. (2014) for Lages, in Santa Catarina state. Despite the 

large number of studies that used Chuveros, this software is not available for download online, 

limiting its use for future studies. 

Cardoso et al. (2020) developed the RainfallErosivityFactor package for the R software 

environment (R CORE TEAM, 2023) as a tool for the analysis of rainfall data and the 

calculation of erosivity values (https://cran.r-

project.org/web/packages/RainfallErosivityFactor/index.html). This package consists of a 

routine for loading and classifying large rainfall datasets into erosive or non-erosive events, and 

then using the erosive events to compute rainfall erosivity. The methodology proposed in this 

package was tested and validated for the municipality of Pirassununga, in São Paulo state, and 

according to the authors, erosivity values were calculated fast and accurately.  

Many papers have calculated erosivity values for Brazil, but most of them do not make 

the estimates available in online databases. In this context, the rainfall erosivity values database 

presented by Cecílio et al. (2021) for 141 locations in Brazil can contribute to soil conservation 

planning applications since they were estimated using the direct method considering 

pluviographic rainfall data. In addition, these authors also established regression models for 

obtaining erosivity for most of the locations studied. Thus, this dataset consists of a product 

with a high potential for use and it is freely available online on a monthly and yearly time scale 

(https://ojs.datainscience.com.br/index.php/lads/article/view/37/26).  

 

3.8. Advancements and prospects 

 

 Over the last decade, an increase in the number of erosivity studies was observed in 

Brazil. With this, some methodologies different from the usual ones are considered 

advancements in this study field as well as are expected to be more common in the next years. 

As mentioned before, despite the limitation of not capturing non-stationarity, the use of 

stochastic weather generators to obtain sub-daily data on rainfall has the potential to increase. 
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A validated weather generator that considers the specific aspects of the Brazilian rainfall 

patterns, the ClimaBR, as well as its free availability and ease of use, can enhance the access of 

rainfall erosivity values in the country. 

 Another methodological advancement has been the use of machine learning algorithms 

to estimate rainfall erosivity. In summary, for Brazil, its use has been limited to artificial neural 

networks. However, as the use of other machine learning techniques becomes more and more 

common (LEE et al., 2021, 2022), testing a larger group of algorithms is expected to increase. 

An example can be cited in the study presented by Souza et al. (2022) which analyzed the 

Random Forest, Cubist, Support Vector Machine, Earth, and Linear Model techniques, 

associated with topographic, climatic, and vegetation covariates for spatial prediction of rainfall 

erosivity in Southeastern Brazil. This approach was considered promising as it is a method 

capable of estimating erosivity in unsampled areas using information available from significant 

spatial covariates. 

A prospect is an increase in the use of remote sensing products to obtain erosivity 

estimates. As previously discussed, the use of these products for this purpose in Brazil is still 

limited to some studies, such as those presented by Brito et al. (2021), Moreira et al. (2020), 

and Silva et al. (2020a) over the last decade. Despite this, the use of remote sensing data 

products become more popular for estimating rainfall erosivity values around the world (CHEN 

et al., 2021; MELVILLE; WUDDIVIRA; SUTHERLAND, 2022), so an intensification in the 

employment of these technologies in Brazil is also probable. 

For the next years, an increase in the application of rainfall erosivity values different 

from the normal use in USLE/RUSLE models is also expected. As an example, it can be 

mentioned the use of daily erosivity as an indicator to identify areas more susceptible to natural 

disasters related to rainfall. The concept of rainfall erosivity is based on the kinetic energy of 

rainfall, rainfall intensity, and maximum rainfall intensity, so it is a climatic index that can be 

related to damages caused by erosion, landslides, and flooding. 

Considering this, Mello et al. (2020) propose the index named Rmaxday, which is defined 

as the maximum daily rainfall erosivity and is determined from the maximum daily rainfall. 

These authors calculated the Rmaxday for the Mantiqueira Range Region, a mountainous region 

in Southeastern Brazil, and found that Rmaxday > 2000 MJ ha−1 mm h−1 day−1 is a threshold 

associated with rainfall events that caused fatalities in the region. Also, the areas and months 

most vulnerable to natural disasters originating from heavy rainfalls were identified for the 

region using the proposed index. 
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Similarly, Alves et al. (2022) analyzed the daily erosivity values for a mountainous 

region of the Rio de Janeiro state. These authors evidenced that the use of the daily estimates 

proved to be a promising indicator of rainfall disasters, and is considered more effective than 

those normally used that are only based on the quantity (mm) and/or intensity (mm h−1) of the 

rainfalls. Thus, Alves et al. (2022) assessed the daily rainfall erosivity as an early warning index 

for natural disasters. Also for the Rio de Janeiro (municipality), Terassi et al. (2020) found that 

the sectorial classification of greater and reduced risk areas to the erosive potential of rainfalls 

in the city is essential in socioenvironmental evaluations and for the prediction of human, social 

and economic losses. This fact shows that obtaining erosivity values can also be useful not only 

for rural locations but also for urban areas, especially those located in mountainous regions. 

 

4. Conclusion 

 

This review updated the findings regarding the assessment of rainfall erosivity in Brazil, 

especially over the last decade, when an increase in the amount of research on this topic was 

observed. The EI30 has been the most employed erosivity index in the country. Pluviographic 

rainfall data and regression equations are the main methods for obtaining erosivity values. 

Additionally, the use of synthetic series of rainfall for this purpose has expanded and has great 

potential for improving the availability of erosivity data in Brazil. 

The magnitudes of annual rainfall erosivity reported in the literature for Brazil range 

from 59 to 26,891 MJ mm ha-1 h-1 year-1. The lowest erosivity values are found in the Northeast 

region and the highest in the North. In Brazil, most published papers assessed erosivity at a 

local scale, which minimizes the advances in the establishment of soil conservation planning 

on a national scale. Considering the five geographic regions in the country, the Southeast 

accounts for the largest number of erosivity studies, while the North constitutes the region with 

a major lack of erosivity information. 

Kriging is the most widespread technique for obtaining rainfall erosivity maps in Brazil. 

The use ANNs have also substantial importance for mapping erosivity in the country. Through 

this technique, there was the development of software to obtain erosivity values for some 

Brazilian States. Despite this, the use of other machine learning techniques for the interpolation 

of erosivity in Brazil is still a gap to be filled and its use can enable more accurate erosivity 

maps. 

The assessment of the future patterns of rainfall erosivity over the Brazilian territory is 

still scarce. An increase in the erosivity magnitudes is expected for Northeastern and Southern 
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Brazil, while a decrease is projected for the Southeastern, Central, and Northwestern parts of 

the country. Throughout the century, a strong reduction trend in the annual erosivity values for 

the Amazon Forest is also expected. For future studies, the use of updated climate and land-use 

scenarios is recommended as well as the quantification of uncertainties to support decision-

making on a national scale. 

In total, 123 articles on the assessment of rainfall erosivity in Brazil were published. 

Considering this, the present review complements the review article presented by Oliveira et 

al. (2012) and brings a wider overview of the erosive dynamics of rainfalls in the country. The 

information summarized in this paper contributes to understanding erosivity patterns over the 

Brazilian territory and is relevant for subsidizing the establishment of a conservationist soil and 

water management. 

 

Data availability 

 

The data produced in this study is freely available online. A complete list of the reviewed 

articles and a summary of the information retrieved from them is available for download at 

http://dx.doi.org/10.17632/hgd2whtx55.1. 
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CHAPTER 2: ASSESSMENT, REGIONALIZATION, AND MODELING RAINFALL 

EROSIVITY OVER BRAZIL: FINDINGS FROM A LARGE NATIONAL DATABASE 

 

Abstract 

 

In this study, we used a large national database to assess the rainfall erosivity (RE) patterns in 

time and space over the Brazilian territory. Thereby, RE and erosivity density (ED) values were 

obtained for 5,166 rainfall gauges. Also, the concentration of the RE throughout the year and 

the RE’s gravity center locations were analyzed. Finally, homogeneous regions regarding RE 

values were delimited and estimative regression models were established. The results show that 

Brazil's mean annual RE value is 5,620 MJ mm ha-1 h-1 year-1, with considerable spatial 

variation over the country. The highest RE magnitudes were found for the north region, while 

the northeast region shows the lowest values. Regarding the RE’s distribution throughout the 

year, in the southern region of Brazil, it is more equitable, while in some spots of the 

northeastern region, it is irregularly concentrated in specific months. Further analyses revealed 

that for most of the months, the RE’s gravity centers for Brazil are in the Goiás State and that 

they present a north-south migration pattern throughout the year. Complementarily, the ED 

magnitudes allowed the identification of high-intensity rainfall spots. Additionally, the 

Brazilian territory was divided into eleven homogeneous regions regarding the RE patterns and 

for each defined region, a regression model was established and validated. These models’ 

statistical metrics were considered satisfactory and, thus, can be used to estimate RE values for 

the whole country using monthly rainfall depths. Finally, all the database produced is available 

for download. The results here discussed show the most complete panorama of the RE 

phenomenon in Brazil present in the literature so far. Therefore, the values and maps shown in 

this study are relevant for improving the accuracy of soil loss estimates and for the 

establishment of soil and water conservation planning on a national scale. 

 

Keywords: Erosivity index. R-factor. Soil erosion. Universal Soil Loss Equation. Soil and 

water conservation. 
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1. Introduction 

 

Rainfall erosivity (RE) is defined as the potential capacity to cause soil erosion. It is a 

parameter of great importance for soil and water conservation planning. This variable is 

included in the main soil loss prediction models, such as the Universal Soil Loss Equation 

(USLE) and its revised version (RUSLE) (RENARD et al., 1997; WISCHMEIER; SMITH, 

1978). Its assessment, in time and space, is the basis for detecting the effects of climate on long-

term erosion rates in a region. As demonstrated by Jia et al. (2022) and Shi et al. (2021), high 

RE values are strongly linked to high soil erosion rates. Thus, the estimation of this variable on 

a national scale may help to identify areas with great erosion potential (CHALISE; KUMAR; 

KRISTIANSEN, 2019; LIU et al., 2020a).  

RE has been assessed all over the world (LIU et al., 2020b; PANAGOS et al., 2022). In 

Brazil, the estimation of RE values was first reported in the literature by Lombardi Neto et al. 

(1992), for the municipality of Campinas, in São Paulo state. Since then, many studies with this 

purpose have been developed, mostly on a local scale (TEIXEIRA et al., 2022b). Some national 

estimates of RE values were done for Brazil, such as those presented by Cecílio et al. (2021), 

Oliveira et al. (2018), and Trindade et al. (2016). Although the results presented in these papers 

constitute an advance regarding the availability of RE magnitudes for the country, these studies 

considered a limited database, especially regarding the continental dimension of Brazil. 

Consequently, the use of large databases for obtaining RE values for the entire country is a gap 

to be filled. 

The erosivity density (ED) is defined as the erosivity content per rainfall unit and can 

express the variations in the rainfall intensity of a particular gauge (FOSTER, 2008). The ED 

concept is relatively new and was used to complement the assessment of RE in some studies in 

Austria (JOHANNSEN et al., 2022), China (ZHU; XIONG; XIAO, 2021), Greece (VANTAS; 

SIDIROPOULOS; LOUKAS, 2019), India (DAS; JAIN; GUPTA, 2022), Italy (DIODATO et 

al., 2021), and South Korea (SHIN et al., 2019). In Brazil, this variable was only estimated by 

Teixeira et al. (2022a), for the São Paulo state. These authors state that ED analysis can identify 

areas susceptible to the impacts of the most extreme rainfall events even in months with low 

RE magnitudes. As a result, obtaining ED values on a national scale could be useful for 

establishing more efficient soil conservationist planning in Brazil. 

In the last few years, some indexes were used to complement the assessment of RE (DI 

LENA; CURCI; VERGNI, 2021). Among them, concentration indexes aiming to analyze the 

distribution of the RE magnitudes throughout the year were applied in China (HUANG et al., 
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2019; ZHU; XIONG; XIAO, 2021) and Italy (DI LENA; CURCI; VERGNI, 2021). As shown 

by Zhu et al. (2021), these indexes can help to identify regions with strong irregular distribution 

of RE values. Furthermore, some studies employed the gravity center model concept to assess 

how the RE phenomenon occurs in a location (GUO et al., 2019; ZHU; XIONG; XIAO, 2021). 

Therefore, the consideration of concentration indexes and the definition of gravity centers have 

the potential to improve the understanding of the RE patterns over the Brazilian territory. 

As explained by Teixeira et al. (2022b), using regression models to estimate RE values 

has been the most employed alternative to the lack of sub-daily rainfall data in Brazil. These 

models are considered easy to use since they usually require only rainfall depths data, however, 

due to the unavailability of these equations for the entire country many studies have used them 

inappropriately (e.g. Falcão et al. (2020) and Sousa et al. (2019)). To overcome this problem, 

Teixeira et al. (2022a) suggest that regionalized models can be helpful, and proposed 

homogeneous regions regarding RE values for the state of São Paulo, as well as validated 

regression models for each of them. Thus, considering that the amount of erosivity models for 

Brazil is still scarce, a regionalized approach may improve the availability of RE estimates in 

the country. 

This paper aims to expand the availability of RE values in Brazil as well as to assess its 

patterns in time and space, using a large national database. The specific objectives of this study 

were: i) to estimate and analyze RE values for 5,166 rainfall gauges over the Brazilian territory; 

ii) to calculate ED values for each gauge analyzed; iii) to assess the distribution of the RE 

throughout the year using erosivity concentration indexes; iv) to locate the gravity centers for 

RE; v) to delimitate homogeneous regions regarding RE; vi) to establish models to estimate RE 

for each defined region. 

 

2. Material and methods 

 

Figure 1 shows the flowchart of the methodological steps adopted in the present study 

which is better described in the following sections. 
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Figure 1. Flowchart of the methodological steps adopted in the present study. RECI and RESI 

mean, respectively, rainfall erosivity concentration index and rainfall erosivity seasonality 

index. PCA and HCA denote, respectively, principal component analysis and hierarchical 

cluster analysis. R2 means coefficient of determination. 

 

2.1. Study area and database 

 

Covering about 8,511,000 km2, the Brazilian territory occupies 47.3% of South 

America, and has altitudes ranging from zero, in most coastal areas, to 2,800 m, in the region 

of the Guianas Plateau, north of the state of Amazonas at the border with Venezuela. As shown 

in Figure 2a, Brazilian altitudes range mostly from 200 to  

800 m.  
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Figure 2. (a) Location of Brazil in South America and its altitude variation (SRTM-DEM 30-

m resolution). (b) Köppen (1936)’s climate classification presented by Alvares et al. (2013). (c) 

Spatial distribution of the normal annual rainfall 1981-2010 (INMET, 2022) and location of the 

rainfall gauges considered in this study. (d) Land use and cover provided by the MapBiomas 

Project (2021). (e) Histogram of the number of years presented in the series of the gauges 

considered per region. 
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  Brazil has an expressive climate variability (Figure 2b), among which the tropical 

subtypes (Af, Am, As, and Aw) stand out, as shown by Alvares et al. (2013). In the northeast 

region, the semi-arid climate (Bsh) is more representative, while the subtropical humid climate 

subtypes (Cfa, Cfb, Csa, Csb, Cwa, and Cwb) stand out in the south and southeast. Regarding 

annual rainfall, it ranges from 380 to 4,000 mm (ALVARES et al., 2013; INMET, 2022). 

Annual rainfall above 2,000 mm is observed mostly in northern Brazil, while annual totals 

below 1,000 mm occur in the central strip of the northeast region (Figure 2c). 

Concerning land use and cover, forest and pasture areas predominate over the Brazilian 

territory (Figure 2d). They occupy about 59.7 and 18.2% of the country's total area, respectively 

(MAPBIOMAS PROJECT, 2021). Agricultural areas correspond to 6.5% of Brazil, in which 

soybean, corn, sugarcane, and cotton stand out due to their economic importance (BRASIL, 

2022). Regarding other uses and covers, areas with non-forest natural formations stand out, 

covering 6.6% of the country. 

Daily historical series of rainfall data measured at 5,166 rainfall gauges (Figure 2c) were 

used for the present study. These data were obtained from the Hidroweb portal 

(http://www.snirh.gov.br/hidroweb/serieshistoricas). As shown in Figure 2e, the minimum time 

length of the series used was defined as 20 years of data for the Northeast, Southeast, and South 

regions. For the North and Center-West regions, the minimum time length was defined as 10 

years, since the availability of rainfall gauges is still scarce (SILVA, 2021). Finally, the mean 

time length considering all rainfall gauges was 40.5 years. 

 

2.2. Rainfall erosivity estimation 

 

On ClimaBR stochastic weather generator (BAENA et al., 2005; OLIVEIRA; 

ZANETTI; PRUSKI, 2005a, 2005b; ZANETTI et al., 2005), version 2.0, the measured daily 

data from each rainfall gauge was individually inserted. ClimaBR generates synthetic series of 

pluviographic data on a sub-daily scale. The use of the synthetic series generated by ClimaBR 

for estimating RE values was proposed and validated by Oliveira et al. (2018) for the entire 

Brazilian territory. This software was developed considering specifically the climatic 

conditions of Brazil and was validated regarding the number of rainy days and the total daily 

precipitation by Zanetti et al. (2005).  

The synthetic series were generated to contain a total of 100 years in length, as presented 

by Teixeira et al. (2022a). These series show information that characterizes the daily rainfall 
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profile such as the daily amount and its duration, the maximum instantaneous precipitation 

intensity, and its time of occurrence. 

From the synthetic series of pluviographic data obtained for each rainfall gauge, RE was 

estimated based on the criteria proposed by Wischmeier and Smith (1958) and Wischmeier 

(1959), and modified by Cabeda (1976). For the pluviographic series, the rainfall events that 

were considered erosive were identified day by day. Erosive rainfall is considered as rainfall 

events with 10 mm or more of total volume, or with a total of less than 10 mm when the amount 

precipitated in 15 minutes is equal to or greater than 6 mm. 

Once identified the erosive rainfalls, the kinetic energy (KE) associated with them was 

calculated as a function of the rainfall intensity, from minute to minute, using Equation (1), 

suggested by Wischmeier and Smith (1958) and readjusted to the International System of Units 

by Foster et al. (1981). These authors state that the KE corresponds to 0.283 MJ ha–1 mm–1 

when the rainfall intensity is higher than 76 mm h–1. The KE associated with the rainfall of each 

day was calculated by adding the kinetic energies of each minute until the total duration of the 

rainfall. 

 

KE = 0.119 + 0.0873 log I (1) 

 

in which KE is the kinetic energy (MJ ha-1 mm-1); I is the intensity of the rainfall  

(mm h-1). 

 

To represent the erosivity of rainfalls, the EI30 erosivity index was used, as proposed by 

Wischmeier and Smith (1958). The daily EI30
 was calculated by the product of the kinetic 

energy of each rainfall of the day and the maximum intensity of precipitation that occurred in 

30 minutes (I30), as shown in Equation (2). 

 

(EI30)j = KE . I30 (2) 

 

in which (EI30)j is the rainfall erosivity index in day j (MJ mm ha-1 h-1 day-1); I30 is the maximum 

rainfall intensity for 30 consecutive minutes (mm h-1). 

 

The RE on the monthly scale was determined by the sum of the daily EI30 values as 

shown in Equation (3). Next, the annual RE values were obtained from the sum of the RE for 

each month, as shown in Equation (4). Finally, the long-term mean values of monthly and 
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annual RE were obtained for each rainfall gauge from the average of the values considering all 

years of the generated series (100 years). 

 

REm =∑(EI30)j

n

j =1

 (3) 

REa = ∑ (REm)
12

m = 1

 (4) 

 

in which REm is the rainfall erosivity in the month m (MJ mm ha-1 h-1 month-1); n is the number 

of days in the month m; REa is the annual rainfall erosivity (MJ mm ha-1 h-1 year-1).  

 

2.3. Rainfall erosivity concentration 

 

 To characterize the non-uniformity of the RE distribution throughout the year, we used 

the rainfall erosivity concentration index (RECI) and the rainfall erosivity seasonality index 

(RESI), as shown respectively in Equations (6) and (7).  

 

 RECI =
∑ REm

̅̅ ̅̅ ̅̅ 212
m =1

(∑ REm
̅̅ ̅̅ ̅̅12

m =1 )²
 × 100  (6) 

 RESI =
1

REa
̅̅ ̅̅ ̅  ∑ | REm

̅̅ ̅̅ ̅̅ −  REa
̅̅ ̅̅ ̅  
12

 |
12

m =1

 (7) 

 

in which REm
̅̅ ̅̅ ̅̅   is the mean monthly rainfall erosivity in the month m (MJ mm ha-1 h-1 month-1); 

REa
̅̅ ̅̅ ̅ is the mean annual rainfall erosivity (MJ mm ha-1 h-1 year-1). 

 

The RECI (DI LENA; CURCI; VERGNI, 2021; ZHU; XIONG; XIAO, 2021) is an 

adaptation of the rainfall concentration index proposed by Oliver (1980). Theoretically, this 

index ranges from 8.3 for equal monthly increments (uniform distribution) to 100 for extreme 

monthly distribution (strongly irregular distribution). Similarly, the RESI (DI LENA; CURCI; 

VERGNI, 2021) was adapted from the rainfall seasonality index proposed by Walsh and Lawler 

(1981) to represent the RE distribution within a year in the present study. This index can in 

theory vary from zero (if all the months have equal amounts) to 1.83 (if all the amount occurs 
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in a single month). The description of the qualitative classification for the RECI and RESI 

values is shown in Table 1. 

 

Table 1. Qualitative classification for the RECI and RESI indexes. 

Index Class Description 

RECI <10 Uniform distribution 

 10–15 Moderate distribution 

 15–20 Irregular distribution 

 >20 Strongly irregular distribution 

RESI ≤0.19 Very equable 

 0.20–0.39 Equable but with a definite wetter (erosive) season 

 0.40–0.59 Rather seasonal with a short drier (non-erosive) season 

 0.60–0.79 Seasonal 

 0.80–0.99 Markedly seasonal with a long drier (non-erosive) season 

 1.00–1.19 Most precipitation (erosivity) in 3 months 

 ≥1.20 Extreme seasonality, with almost all precipitation (erosivity) in 1–2 months 

The description between parenthesis represents the adaptation of the original interpretation proposed by Oliver 

(1980) and Walsh and Lawler (1981), to the rainfall erosivity context. 

 

2.4. Rainfall erosivity gravity center model  

 

The concept of gravity center derives from the field of physics and refers to the point at 

which the force of gravity is exerted equally on each part of an object (GUO et al., 2019). In 

the present study, this object is considered as the entire Brazilian territory. The spatial variation 

characteristics of a gravity center can reflect the degrees of variation and trends of a 

geographical phenomenon. Considering this, the gravity center concept was employed to 

analyze the RE phenomenon in some studies, such as the ones from Guo et al. (2019) and Zhu 

et al. (2021). Here, the gravity center of the RE values on monthly, seasonal, and annual scales 

were calculated using Equations (8) and (9) to characterize the spatial distribution of this 

phenomenon in different time scales. 

 

 X =
∑ Xg

n
g =1  REg

̅̅ ̅̅ ̅∑ REg
̅̅ ̅̅ ̅n

g =1

   (8) 

 Y =
∑ Yg

n
g =1  REg

̅̅ ̅̅ ̅∑ REg
̅̅ ̅̅ ̅n

g =1

 (9) 

 

in which X and Y are, respectively, the longitude and latitude of the gravity center on the 

monthly, seasonal, and annual scale (decimal degrees); Xg and Yg are, respectively, the 
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longitude and latitude of the rainfall gauge g (decimal degrees);  REg
̅̅ ̅̅ ̅  is the mean rainfall 

erosivity in the rainfall gauge g (MJ mm ha-1 h-1 time unit-1); n is the number of rainfall gauges 

considered (total of 5,166 gauges). 

 

2.5. Erosivity density estimation 

 

To expresses the erosivity content per unit of rainfall, the variable erosivity density (ED) 

was calculated by the ratio between mean monthly RE and mean monthly total rainfall 

(FOSTER, 2008), as shown in Equation (5). High ED values suggest that rainfall is 

characterized by high-intensity events of short duration in a specific period (PANAGOS et al., 

2015).  

 

EDi = REi . Ri
-1 (5) 

 

in which EDi is the mean erosivity density in the month i (MJ ha-1 h-1); Ri is the mean monthly 

rainfall depth in the month i (mm); REi is the mean monthly rainfall erosivity in the month i 

(MJ mm ha-1 h-1 month-1). 

 

2.6. Establishing regionalized models to estimate rainfall erosivity  

 

In summary, to establish regionalized models to estimate RE in Brazil, three steps were 

followed: 1) the obtention of new variables from the initial dataset using principal component 

analysis (PCA); 2) the definition of homogeneous regions regarding RE using hierarchical 

clustering analysis (HCA); 3) the adjustment of regression models for each defined region based 

on the correlation between RE and rainfall depths. These procedures are explained in detail in 

the following subsections. This methodology was partially used by Teixeira et al. (2022a) to 

establish RE regionalized models for the São Paulo state, in southeastern Brazil. 

 

2.6.1. Dataset obtention  

 

For the initial dataset, the mean monthly and annual RE values and mean monthly and 

annual rainfall depths were used, totaling 26 variables for each rainfall gauge. These variables 

were standardized regarding their scale using Equation (6). This procedure was applied to 

eliminate interferences in the results due to the different magnitudes of the data.  
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Xn’= 
Xn −  mean(X)

SD(X)
 (6) 

 

in which Xn’ is the standardized value of Xn; Xn is a value observed in an array of values for a 

given variable X; mean(X) is the mean value of the variable X; SD(X) is the standard deviation 

of the variable X. 

 

Using the standardized variables, the PCA was performed to obtain a new set of 

variables from the contribution of the initial variables. As explained by Hair et al. (2009) and 

Kassambara (2017), PCA is a statistical procedure used to extract relevant information from a 

multivariate database using orthogonal transformation to convert a set of correlated 

observations into linearly uncorrelated variables, called principal components (PCs). This 

conversion is conducted such that the first PC explains the largest portion of the variability of 

the data, and each of the next PCs explains less variability than the previous one.  

Considering this, only PCs with an eigenvalue greater than the unity (>1.0) were 

considered for selection. This criterion is based on the fact that any component must explain a 

variability higher than that presented by a single standardized variable (BERTOSSI et al., 2013; 

HAIR; BLACK; SANT’ANNA, 2009). Thus, each PC selected consisted of a new variable 

obtained from the contribution of the initial variables. Therefore, this new dataset presented a 

greater explanatory power concerning the total variability of the initial data since the firsts PCs 

retain the majority of the data information (DEMŠAR et al., 2013).  

These analyses were performed in the R software version 4.0.2 (R CORE TEAM, 2023), 

using the FactoMineR (LÊ; JOSSE; HUSSON, 2008) and factoextra (KASSAMBARA; 

MUNDT, 2017) packages. 

 

2.6.2. Definition of homogeneous regions 

 

The similarity between the RE patterns observed in the 5,166 rainfall gauges was 

assessed through clustering analysis. For this, HCA was employed considering the dataset 

composed of the PCs generated by PCA. Additionally, the latitude and longitude values of each 

rainfall gauge were considered for grouping. In the HCA, Euclidean distance was used as a 

measure of the similarity, and Ward’s method (WARD JR, 1963) was used as an agglomerative 
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hierarchical technique, according to Dehghan et al. (2018), Terassi and Galvani (2017), and 

Rodriguez et al. (2016). The HCA was performed using the Stat (BOLAR, 2019) and 

Dendextend (GALILI, 2020) packages in the R software environment. 

As a result of these procedures, each rainfall gauge was classified as belonging to a 

homogeneous region (cluster). Subsequently, the influence area of each rainfall gauge was 

obtained using the Thiessen polygons’ method to generate maps with the spatial distribution of 

each homogeneous region defined, as performed by Shirin and Thomas (2016). 

 

2.6.3. Establishment of the estimation models 

 

For each defined region, regression models to estimate RE values were established. So, 

only the data of the rainfall gauges inserted within the respective region was considered for the 

model’s adjustment.  

For this, two variables were tested as explanatory variables in the equations: the rainfall 

depth (R) and the modified Fournier index (MFI) (LOMBARDI NETO, 1977; LOMBARDI 

NETO; MOLDENHAUER, 1992). The MFI, obtained from Equation (7), relates the mean 

monthly rainfall and the mean annual rainfall and, as pointed out by Oliveira et al. (2012), is 

widely used as an independent variable for obtaining erosivity estimation models in Brazil. 

 

MFIi=
(Ri)2

Ra

 (7) 

 

in which MFIi is the modified Fournier index for the month i; Ri is the mean monthly rainfall 

in the month i (mm); Ra is the mean annual rainfall (mm). 

 

Furthermore, two model types were adjusted: the linear and the power model, as shown 

in Equations (8) and (9).  

 

REm = α + β(Rm)  or  REm = α + β(MFIm)   (8) 

REm = α(Rm)β  or  REm = α(MFIm)β (9) 

 

in which REm is the rainfall erosivity in the month m (MJ mm ha-1 h-1 month-1); Rm is the rainfall 

depth in the month m (mm); MFIm is the modified Fournier index in the month m; α and β are 

the regression coefficients that describe the relationship between REm and Rm or MFIm. 
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The coefficient of determination (R2) of the models’ adjustment was used as criteria to 

stop the homogeneous regions’ subdivisions. The HCA was employed to obtain clusters that 

the rainfall gauges within it have an adjustment’s R2 between the RE and the explanatory 

variables equal to or greater than 0.7. Thus, if a cluster (region) presented a model with an R2 

value equal to or greater than 0.7, the model was considered satisfactory, otherwise (R2 lower 

than 0.7) the cluster was subdivided and a new model was adjusted. This process was repeated 

until all regions had a model considered satisfactory.  

The R2 values were analyzed for two datasets: the training and the validation dataset. 

For this, the rainfall gauges within each homogenous region were divided, randomly, in which 

80% of the gauges were used for training the model, and 20% were used for its validation. 

Considering the combination of the two explanatory variables (R and MFI) and the two model 

types (linear and power) tested, the chosen model for each region was the one with the higher 

R2 value. 

 Finally, the monthly and annual RE values estimated (Ei) by the models established for 

each region were compared to the observed RE values (Oi), estimated using the synthetic sub-

daily data (section 2.2). For this comparison, the statistical evaluators used were: the mean 

absolute error; the mean absolute percentage error; the root mean square error; and Willmott's 

agreement index (WILLMOTT, 1981), as shown respectively in Equations (10) to (13). Also, 

a percentage error (Equation (14)) map was produced for the estimated annual RE values. 

 

 MAE =
∑ (|Oi - Ei|)n

i=1

n
 (10) 

MAPE =
∑ (|Oi - Ei|

Oi
)n

i=1

n
 100 (11) 

 RMSE =√∑ (Ei - Oi)² n
i=1

n
 (12) 

d = 1 - [ ∑ (Ei - Oi)2n
i=1∑ (|Ei - Ōi| + |Oi - Ōi|)2n

i=1

] (13) 

 PE = (Oi - Ei

Oi

) 100 (14) 
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in which MAE is the mean absolute error (MJ mm ha-1 h-1 time unit-1); MAPE is the mean 

absolute percentage error (%); RMSE is the root mean square error (MJ mm ha-1 h-1 time unit-

1); d is Willmott's agreement index (dimensionless); PE is the percentage error (%); Oi is the 

monthly or annual RE value estimated from the synthetic sub-daily rainfall series (MJ mm ha-

1 h-1 time unit-1); Ei is the monthly or annual RE value estimated using the models established 

for each homogeneous region (MJ mm ha-1 h-1 time unit-1); n is the number of observations. 

 

3. Results and discussion 

 

3.1 Rainfall erosivity values 

 

The annual and monthly RE values obtained in the present study for each of the 5,166 

rainfall gauges used are available for download at http://dx.doi.org/10.17632/hzxfvvmr6p.1 and 

are useful for checking RE values for a specific location or region of Brazil.  

Considering the entire Brazilian territory, a mean annual RE value of 5,620 MJ mm ha-

1 h-1 year-1 was observed (Table 2). The annual values ranged from 252 to 23,916 MJ mm ha-1 

h-1 year-1, with a coefficient of variation (CV) of 52.5%, which expresses the large variation of 

the annual RE values over the country (Figure 3a). Also, the minimum and maximum values 

found in the present study, expanded the range of annual RE values for Brazil found in national 

studies, such as those found by Cecílio et al. (2021) with a minimum value of 338 MJ mm ha-1 

h-1 year-1, and by Mello et al. (2013) with a maximum value of 23,400 MJ mm ha-1 h-1 year-1. 

The obtention of values that were not previously found in the literature is probably due to the 

larger number of rainfall gauges analyzed. In previous studies on a national scale, the number 

of gauges considered was limited from only 141 (CECÍLIO et al., 2021) to 1,600 (SILVA, 

2004) gauges. 
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Table 2. Descriptive statistics of annual and monthly RE and ED values for Brazil expressed respectively in MJ mm ha-1 h-1 time unit-1 and MJ ha-

1 h-1. 

Variable Statistics Annual Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec. 

RE Mean 5620 820 762 766 538 368 213 167 138 222 394 536 698 

 SD 2950 498 437 433 353 276 181 157 128 182 282 363 456 

 Min. 252 1 5 16 14 0 0 0 0 0 0 0 0 

 Max. 23916 3260 3469 4402 4050 4256 2488 2543 2496 3563 2581 2464 3204 

 Range 23664 3260 3464 4387 4036 4256 2488 2543 2496 3563 2581 2464 3204 

 Median 6027 887 771 675 388 259 127 77 72 165 404 525 682 

 CV (%) 52.5 60.7 57.3 56.5 65.5 75 85.3 93.8 93.1 82.1 71.7 67.7 65.4 

ED Mean 4.1 4.4 4.6 4.5 4.2 3.7 3.1 2.8 2.8 3.0 3.7 4.1 4.3 

 SD 1.9 2.0 2.0 2.0 2.0 1.9 1.9 1.8 1.8 1.8 2.0 2.1 1.9 

 Min. 0.9 0.5 0.5 0.8 0.7 0.3 0 0 0 0 0 0 0 

 Max. 9.7 12.4 12.0 11.1 10.4 11.2 10.9 12.3 12.7 11.3 12.0 13.4 11.4 

 Range 8.8 11.9 11.5 10.3 9.6 10.9 10.9 12.3 12.7 11.3 12.0 13.4 11.4 

 Median 4.6 5.2 5.4 5.2 4.6 3.9 3.0 2.8 2.8 3.2 3.9 4.6 4.8 

 CV (%) 45.7 44.1 43.4 45.4 47.4 52.1 60.2 64.9 64.0 59.1 54.1 50.3 45.4 

SD stands for standard deviation and CV stands for coefficient of variation. 
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Figure 3. (a) Point distribution of the annual RE values for Brazil and (b) its classification 

according to Carvalho (2008). 

 

As shown in Figure 3a, the highest annual RE values are in north and center-west 

regions, where magnitudes above 12,000 MJ mm ha-1 h-1 year-1 are common. On the other hand, 

the northeast region has the lowest RE values, around 2,000 MJ mm ha-1 h-1 year-1 or less. 

According to the classification proposed by Carvalho (2008) and presented by Oliveira et al. 

(2012), most of the analyzed rainfall gauges (35.1%) have RE values considered “Moderate-

Strong” (Figure 3b). Gauges inserted in this category are mostly in the southeastern and 

southern regions of Brazil. Considering this same classification method, Silva (2004) did not 

identify any area in the country with annual RE values considered “Low”, but for the present 

study, this category represents 28.2% of the analyzed data. This can be explained by the greater 

number of gauges considered for the northeast region in the present study when compared to 

Silva (2004). 

Considering the different climate types over the Brazilian territory, the tropical subtypes 

Af (without dry season) and Am (monsoon) had the most expressive average magnitudes 

(Figure 4a). The mean values found, around 10,000 MJ mm ha-1 h-1 year-1, are superior to those 

presented by Panagos et al. (2017a) for areas with these same climates. The Af and Am 

subtypes, which are characterized by the absence of months without rainfall (ALVARES et al., 

2013), could increase the chances of erosive rainfall occurrence. On the other hand, the lowest 

mean values in the present study were found for the semiarid climate (Bsh), whose annual 
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rainfall depths are usually below 800 mm. Finally, for most of the other climatic subtypes in 

Brazil (Aw, Cfa, Cfb, Cwa, and Cwb) the mean annual RE values varied around 7,000 MJ mm 

ha-1 h-1 year-1. 

 

 
Figure 4. Annual RE values per (a) climate according to the climatic classification of Köppen 

(1936) carried out by Alvares et al. (2013), (b) biome (IBGE, 2019), and (c) hydrographic 

region (IBGE, 2021), for Brazil. 

 

In the Amazon biome, which mostly corresponds to the Amazon hydrographic region, 

the annual RE can reach values over 20,000 MJ mm ha-1 h-1 year-1 (Figures 4b and 4c), classified 
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as “Very Strong” RE values. Such magnitudes are also found in the Atlantic Forest biome as 

well as in Paraná, South Atlantic, and West-Northeast Atlantic hydrographic regions. For the 

Amazon and Pantanal biomes, the studies from Silva et al. (2020b) and Machado et al. (2014), 

respectively, found annual RE maximum values superior to the ones found in the present paper. 

Differently, Castagna et al. (2022) analyzed the RE values for the Cerrado biome and the 

magnitudes corroborate the ones found in the present paper. Studies like this are important to 

soil conservationist programs since the Cerrado biome has most of the Brazilian agricultural 

production (GOMES et al., 2019a; SPERA, 2017). 

As shown in Figure 5, considering Pearson’s correlation coefficient (r) between the 

annual RE values found for all rainfall gauges, and the altitudes and latitudes, a very slight 

correlation was found (-0.06 and 0.21, respectively). However, a closer relationship between 

the longitudes and annual RE values was evidenced, with an r = 0.70. Thus, a direct relation to 

these variables was found, which shows that the more continental (far from the coast) the 

rainfall gauge is, the higher the RE magnitudes. This was also found by Silva (2004) and 

Oliveira et al. (2012). Furthermore, the annual erosivity values are strongly correlated to the 

annual rainfall depths (r = 0.91). The correlation between the annual RE values and the 

variables altitude, latitude, longitude, and rainfall depth were considered significant at the 0.001 

level. 
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Figure 5. Correlogram presenting Pearson’s correlation coefficient (r) between the variables 

altitude (m), latitude (degrees south), longitude (degrees west), annual RE (MJ mm ha-1 h-1 year-

1), annual rainfall depth (R, mm), annual ED (MJ ha-1 h-1), RECI (dimensionless), and RESI 

(dimensionless), as well as their scatter and density distribution plots, for the entire country and 

the north (N), northeast (NE), center-west (CW), southeast (SE), and south (S) regions. 

Significant correlation was found if p-value < 0.001 (***), < 0.01 (**), < 0.05 (*), and < 0.10 

(.). 

 

 The mean monthly RE values over the Brazilian territory range from 138 to 820 MJ mm 

ha-1 h-1 month-1 respectively in August and January (Table 2). The months with the highest 

maximum values range from March to May when magnitudes can be over 4,000 MJ mm ha-1 
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h-1 month-1. Furthermore, RE values significantly reduce from June, whose the highest 

magnitudes are 41.5% lower than the maximum recorded in the previous month. 

From June to August, it is observed the highest contrast in the monthly RE values over 

the country (CV higher than 85%). As shown in Figure 6, it can be explained by the low 

erosivity values (245 MJ mm ha-1 h-1 month-1) in most of the gauges, while in the Amazonas, 

Amapá, Pará, and Roraima states as well as in the northeastern coast and the states of the south 

region, values higher than 490 MJ mm ha-1 h-1 month-1 are found.  

 

v

 

Figure 6. Point distribution of the monthly RE values for Brazil. 
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Null erosivity values were found in at least one of the gauges analyzed from May to 

December. Two spots with monthly erosivity equal to zero were observed in the northeast 

region of Brazil (black dots in Figure 6). The first is mainly at the central strip of this region 

(southern Piauí, western Bahia, and northern Minas Gerais states) from June to August. The 

second can be observed mainly in the Ceará state from September to November. Also, for most 

of the northeast region, especially in the Brazilian semiarid region, the RE values remain below 

245 MJ mm ha-1 h-1 month-1 throughout the year. 

Regarding the spatial dynamics of the highest RE values, magnitudes over 981 MJ mm 

ha-1 h-1 month-1 are found in northwestern Brazil in all months. From January to May, the north 

region of the Ceará, Maranhão, and Piauí states is considered another high erosivity spot. In 

these states, rainfall is greatly influenced by the Intertropical Convergence Zone (ITCZ), which 

is responsible for high rainfall volumes, especially in March and April (OLIVA, 2019; SILVA; 

GALVÍNCIO; COSTA, 2017). This happens due to ITCZ being at its southernmost position 

from the Equator in these months. The ITCZ also influences the formation of Easterly Wave 

Disturbances (EWD), which occur on the coast of northeastern Brazil during the austral autumn 

and winter seasons (Figure 6). This atmospheric system is important from an erosive 

perspective since it is associated with high-intensity rainfall events as shown by Alves et al. 

(2013), Machado et al. (2012), Neves et al. (2016), and Santos et al. (2012). 

Another atmospheric system of great relevance, the South Atlantic Convergence Zone 

(SACZ), is responsible for increasing the monthly RE values over the northwest-southeast 

(NW-SE) direction of the country. For the center-west and southeast regions of Brazil, the 

precipitation climatology presents the SACZ, which operates during the austral summer and 

follows the annual rainfall cycle as one of the most important components (ALVARENGA, 

2012; NIELSEN et al., 2016). As shown in Figure 6, the SACZ accounts for RE magnitudes 

higher the 981 MJ mm ha-1 h-1 month-1 from November to March, especially in the states of 

Mato Grosso, Goiás, São Paulo, Minas Gerais, Rio de Janeiro, and Espírito Santo. The SACZ 

is a band of nebulosity that may cause intense or persistent rainfall and, as shown by Aguiar 

and Cataldi (2021), its occurrence is closely related to records of natural hazards. 

The erosivity patterns in southern Brazil are characterized by magnitudes over 245 MJ 

mm ha-1 h-1 month-1 for all months. In this region, the presence of cold fronts and Mesoscale 

Convective Complexes are the main sources of rainfall (DURKEE; MOTE; SHEPHERD, 2009; 

MORAES et al., 2020; NERY; CARFAN, 2014). As shown in Figure 7, the uniformity of the 

monthly RE values throughout the year is shown in both of the indexes used to assess the 

concentration of the erosivity, the RECI and the RESI. These indexes show that for southern 
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Brazil the RE occurs equitably in the months. As demonstrated for the municipality of 

Montenegro, in the eastern portion of the Rio Grande do Sul state (Figure 7c). The low CV, 

considering the monthly values (14.8%), shows small variations of RE magnitudes throughout 

the year (RECI = 8.50 and RESI = 0.11). 

 

 

Figure 7. Classification for the (a) RECI and (b) RESI indexes over the Brazilian territory. (c) 

Monthly distribution of the RE values for Maraújo-CE, Buenópolis-MG, Rancharia-SP, and 

Montenegro-RS, including the coefficient of variation (CV). 
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Overall, the RECI and RESI values and their classification agreed for the entire country 

(Figures 7a and 7b) and had a strong correlation (r = 0.96, Figure 6). The use of these indexes 

identified that the western Ceará and central Rio Grande do Norte states are areas in Brazil 

where RE is mostly irregularly distributed. Also, for most of the northeastern region of the 

country, where the annual RE values are considered “Low” (Figure 3b), the RECI and RESI 

values classify the erosivity as “irregular” or “markedly seasonal”, which shows that despite 

the low magnitudes, the RE is concentrated in individual months. These results are relevant 

since they can be used to direct soil and water conservationist practices for specific months of 

the year, increasing the efficiency of the conservation programs. It is also important to highlight 

that the RE distribution for the municipalities in Figure 7c is not representative of the 

distribution for all gauges in the same RECI or RESI category. Thus, the months in which the 

highest RE magnitudes are concentrated should be identified for each location. 

 As mentioned before, southern Brazil has the most uniform RE distribution throughout 

the year. For this region, the analysis of the RESI and RECI demonstrates that the central strip 

of the Paraná, Santa Catarina, and Rio Grande do Sul states have very equitable distribution. In 

this case, despite the RECI and RESI values corroborating each other, the use of the RESI gave 

more detailed results. Thus, the authors recommend a joint analysis of both of these indexes. 

Finally, we also highlight that the RECI and RESI indexes were never calculated for the 

Brazilian territory before and constitute an advance in the assessment of RE values in the 

country. 

The gravity center for the annual RE values in Brazil is in the municipality of 

Hidrolândia, in Goiás state (Figure 8). This means that considering all of the gauges used, this 

municipality represents the location where the spatial phenomenon of RE is equally distributed 

throughout the country. The gravity center here presented was obtained using long-term mean 

RE values, however, as shown by Guo et al. (2019) and Zhu et al. (2021), gravity center 

locations can be used to assess the evolution of the distribution of RE values in different periods 

(e.g., over the years). The authors emphasize that, obviously, the RE gravity centers here 

presented are influenced by the irregular distribution of the rainfall gauges analyzed. However, 

these results constitute a novelty since this methodology had never been used to assess the 

spatial dynamics of erosivity in the country. 
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Figure 8. Gravity center location of monthly, seasonal, and annual RE. Federal District (DF) 

and Brazilian states: Goiás (GO), Minas Gerais (MG), Mato Grosso (MT), Mato Grosso do Sul 

(MS), São Paulo (SP), and Tocantins (TO). Seasons: December-January-February (DJF), 

March-April-May (MAM), June-July-August (JJA), and September-October-November 

(SON). 

 

The results of seasonal and monthly RE gravity centers evidence a latitudinal path 

variation (north-south migration) of the erosivity, despite the slight correlation between 

latitudes and annual RE magnitudes (r = 0.21, Figure 5). From April onwards a southward 

migration is observed, while a return towards the north is observed after September. This 

variation may be related to the South American Monsoon System (SAMS) dynamics during the 

summer (DJF) that increases rainfall magnitudes in southeastern Brazil (CARVALHO; 

CAVALCANTI, 2016). From the northernmost and westernmost gravity center (April) to the 

southernmost and easternmost (September), a distance of approximately 800 km (planar 

straight line) is observed. Furthermore, for most of the months and seasons, the RE gravity 

center is within the Goiás state. 

 

3.2. Erosivity density values 

 

The annual ED ranged from 0.9 to 9.7 MJ ha-1 h-1, with a mean value of  

4.1 MJ ha-1 h-1 (Table 2). As shown in Figure 9a, most of the gauges analyzed have annual ED 

values considered “Low” and “Very low” (84.6% in total) according to the ED classification 
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proposed by Dash et al. (2019). These values (< 6 MJ ha-1 h-1) characterize ED for most of 

northeastern, southeastern, and southern Brazil. ED values considered “Moderate” were mostly 

found for the north and center-west regions, while magnitudes considered “High” (> 6 and ≤ 

15 MJ ha-1 h-1) were found only for two of the 5,166 gauges analyzed, the municipalities of 

Mirador-MA and Manicoré-AM. Finally, Dash et al. (2019) state that ED values considered 

“Very high” are higher than 15 MJ ha-1 h-1. However, magnitudes like this were not found in 

the Brazilian territory.  
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Figure 9. (a) Annual ED classified according to Dash et al. (2019). (b) Monthly distribution of 

the RE, ED, and rainfall depth values. (c) Spatial distribution of the lower and higher monthly 

ED magnitudes, represented respectively by the 5th and 95th percentiles. 

 

As shown in Figure 5, a strong correlation was found between the annual ED and RE 

values (r = 0.86). This correlation was expected since ED is obtained by the ratio of RE and 

rainfall depth values. However, only a moderate correlation of 0.65 was found between annual 

ED and rainfall depth values. Additionally, the ED had a weak correlation with the altitude (r 
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= -0.06), latitude (r = 0.22), RECI (r = -0.30), and RESI (r = -0.26) values, similar to the RE 

variable. Finally, compared to the annual RE (CV of 52.5%), the annual ED values showed less 

spatial variation (CV of 45.7%). 

In summary, the monthly ED values followed the seasonal patterns presented by the 

monthly RE and rainfall depth (Figure 9b). The mean monthly ED magnitudes were higher for 

February and March, and lower for July and August. The highest maximum ED was in 

November (13.4 MJ ha-1 h-1, Table 2). However, ED magnitudes higher than 10 MJ ha-1 h-1, 

considered by Dash et al. (2019) as “High” ED values, are observed for at least one gauge 

analyzed in all months, which evidence the existence of high-intensity precipitation spots in 

Brazil in all year long. 

As shown in Figure 9c, the highest monthly ED values are mostly concentrated in the 

north and center-west regions of Brazil. Additionally, some high ED spots are found for all 

regions. Some examples are the western Rio Grande do Sul state from January to March, the 

coast of the São Paulo and Rio de Janeiro states from December to April (due to the orographic 

effect of the Serra do Mar mountains, as explain Luiz-Silva and Oscar-Júnior (2022)), and the 

northern Ceará, Maranhão, and Piauí states for most of the months (due to the ICTZ influence 

on the local rainfall patterns, as previously discussed). As explained by Zhu et al. (2021), a high 

ED value indicates a high rainfall intensity and a strong soil erosion potential over a short 

period. Thus, the identification of the mentioned spots can be useful for finding areas most 

susceptible to water erosion and may contribute to a better implementation of soil conservation 

practices. Finally, as expected, the lowest ED values found for Brazil are in the northeast region, 

mainly in the central strip of this region from January to August, as well as for the states of 

Ceará, Rio Grande do Norte, Paraíba, and Pernambuco for October and November.  

Results of ED magnitudes are relatively new for the soil erosion scientific literature, and 

were only obtained for China (LI; YE, 2018; XU et al., 2019; ZHU; XIONG; XIAO, 2021), 

Greece (PANAGOS et al., 2016; VANTAS; SIDIROPOULOS; LOUKAS, 2019), India 

(BAGWAN, 2020; DASH; DAS; ADHIKARY, 2019; SINGH; SINGH, 2020), Indonesia 

(SUPRIYONO et al., 2021), Italy (DIODATO et al., 2021), South Korea (SHIN et al., 2019), 

as well as the entire Europe (BALLABIO et al., 2017; PANAGOS et al., 2015). For Brazil, ED 

values estimation was limited to the Tocantins-Araguaia basin (SANTOS et al., 2022) and the 

São Paulo state (TEIXEIRA et al., 2022a). Therefore, the ED results here presented constitutes 

a novelty and fill the gap of ED values for most of the Brazilian territory.  

As shown by Dash et al. (2019), the ED variable constitutes a relevant perspective of 

the erosive potential of rainfalls and can be used to identify floods, erosion, and landslide-prone 
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areas. Therefore, the authors recommend a joint analysis of the ED maps here presented (Figure 

9) with those for RE (Figures 3 and 6), RECI, and RESI (Figure 7), which may contribute to a 

more accurate soil conservation planning for the country. 

 

3.3. Regionalized models to estimate rainfall erosivity 

 

 The joint application of the multivariate statistical techniques PCA and HCA divided 

the Brazilian territory into eleven homogeneous regions (HRs) regarding the RE patterns, as 

presented in Figure 10a. As shown in Figure 10b, Regions 1, 2, and 3 have the highest RE 

values, while the lowest are found for Regions 5, 7, and 8. For each defined region, a regression 

model to estimate RE values was adjusted (Table 3). For most of the HRs, the rainfall depth 

(R) was considered the best explanatory variable, while the MFI is the best predictive variable 

only for Region 9. For all regions, R2 higher than 0.7 was found for both the training and 

validation datasets. 
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Figure 10. (a) Homogeneous regions regarding the RE for Brazil, as well as the (b) annual and 

(c) mean monthly RE values for each region. 
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Table 3. Established rainfall erosivity estimation models for each homogeneous region (HR), 

and their respective accuracy annual metrics. MAE and RMSE values are expressed in MJ mm 

ha-1 h-1 year-1. REi, Ri, and MFIi stand for rainfall erosivity, rainfall depth, and modified Fournier 

index, respectively, for the month i. 

HR Fitted model Training Validation All dataset     

    R2 R2 MAE MAPE (%) RMSE d 

Region 1 REi = 4.1233(Ri)1.0818 0.953 0.955 1002.52 7.87 1346 0.963 

Region 2 REi = 4.1374(Ri)1.0755 0.973 0.977 1546.38 13.39 1955.4 0.884 

Region 3 REi = 4.4688(Ri)1.0778 0.981 0.986 524.41 5.43 708.84 0.981 

Region 4 REi = 6.7578(Ri) - 31.927 0.979 0.976 353.09 6.60 501.35 0.983 

Region 5 REi = 1.3571(Ri) - 2.7382 0.983 0.984 46.73 4.82 63.65 0.985 

Region 6 REi = 1.4386(Ri)1.1776 0.828 0.826 488.69 19.56 649.18 0.956 

Region 7 REi = 1.4015(Ri) - 5.2407 0.980 0.983 51.34 5.30 71.62 0.980 

Region 8 REi = 0.6605(Ri)1.1418 0.933 0.939 59.91 9.91 72.06 0.959 

Region 9 REi = 31.946(MFIi)1.0581 0.784 0.853 584.71 16.49 1018.6 0.913 

Region 10 REi = 5.7928(Ri) - 89.449 0.927 0.923 597.41 13.46 933.29 0.930 

Region 11 REi = 0.48(Ri)1.4473 0.783 0.770 588.93 8.45 787.64 0.940 

 

 As mentioned before, northeastern Brazil has the lowest RE values. Also, it is the most 

subdivided area in the country (Regions 4 to 9), which means that the HCA technique was 

sensitive enough to differentiate these regions regarding the monthly values despite their low 

magnitudes (Fig 10c). This occurs since the percentage differences between adjacent regions’ 

RE values are high even with the small differences in the magnitudes. Furthermore, the authors 

highlight that Region 4, which has the highest RE and ED values for the Brazilian northeastern 

region (Figures 3, 6, 9a, and 9c) and is highly influenced by the ITCZ dynamics, presents an 

interesting border pattern. This region showed RE magnitudes similar to Region 2 (neighbor on 

the left) for the first half of the year, while for the second half, it was similar to Region 5 

(neighbor on the right), hence requiring its own estimation model. 

 Considering both the training and validation datasets, R2 values higher than 0.90 were 

obtained for most regions, except Regions 6, 9, and 11. This means that for most regions the 

monthly rainfall depths explain more than 90% of the RE variance. Complementarily, the 

values obtained for the d index were above 0.80 for all regions. For this index, the closer to 1 

the d value is, the greater the agreement between the predicted and the observed values 

(WILLMOTT, 1981). This agreement can also be evidenced in the scatter plots between the 

observed monthly RE values and the predicted by the models for each HR, presented in Figure 

11. In these plots, the dots and the regression line are mainly close to the 1:1 line. Also, the r 

and R2 values are higher than 0.7. Therefore, we consider the established models for all HRs 

satisfactory. 
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Figure 11. Scatter plots between the observed monthly RE values and the predicted by the 

models established for each homogeneous region. 

 



76 
 

 

 As shown in Figure 12, the annual RE values predicted by the established models 

presented percentage errors below 10% for most of the rainfall gauges over Brazil. However, 

spots with underestimates higher than 50% were observed mainly in the eastern part of Region 

10. Underestimates higher than 10% were also found in northern Region 2, in the coastal area 

of Regions 10 and 11, and at the border of these two regions. On the other hand, the northern 

part of Region 6 concentrated the gauges with higher overestimates in the country. This region 

also shows the highest MAPE values (about 19%), which makes this region one of those with 

the greatest uncertainty in predictions by the established models. Other overestimated spots are 

found in the western part of Regions 10 and 11. 

 

 

Figure 12. Percentage error map for the annual RE values predicted by the models established 

for each homogeneous region. n expresses the number of rainfall gauges in each percentage 

error interval. 
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Despite the uncertainty in the RE estimates for specific areas over the Brazilian territory 

using the established models, the equations here presented are an advance regarding the 

availability of regression models with this purpose. As stated by Teixeira et al. (2022b), the 

lack of models to obtain RE values for the entire country leads to the inadequate use of these 

empiric equations in regions where they were not developed. Also, the inequality in the number 

of studies in the different Brazilian states results in areas with few or no models while others 

have many estimation models. As mentioned before, in areas without models, equations 

developed for other regions have been used (e.g. the studies by Falcão et al. (2020) and Sousa 

et al. (2019)). On the other hand, for regions with greater availability of models, there may be 

a misunderstanding about choosing the best model to be used. Thus, regionalized models can 

solve these problems. 

An attempt to obtain RE regionalized models for Brazil was done by Silva (2004). 

However, this study is limited to identifying a region to use a given erosivity model already 

established for Brazil so this author did not develop new models considering the RE patterns of 

each region. Also, Mello et al. (2013) proposed multivariate models for the entire country. 

Although these models consider only the latitude, longitude, and altitude values to estimate RE, 

many of them are adjusted considering more than eight regression coefficients, which makes 

its use difficult. Therefore, the regionalized models proposed in the present study can be 

considered an important tool for improving the availability of RE values over the Brazilian 

territory since they require only monthly rainfall depths to be used. 

Finally, to ease the use of the models here proposed, the identification of the HR from 

each analyzed rainfall gauge and the spatial delimitation of the eleven homogenous regions 

defined for Brazil are available for download, respectively, at 

http://dx.doi.org/10.17632/hzxfvvmr6p.1 and http://dx.doi.org/10.17632/dwgzpztcb7.1. 

  

4. Conclusion 

 

In this study, we update the findings regarding the assessment of RE values in Brazil, 

using a large national database. For this, RE and ED values were obtained for 5,166 rainfall 

gauges. Also, the concentration of the RE throughout the year was analyzed using the RECI 

and RESI index, and the RE's gravity center locations on the monthly, seasonal, and annual 

scales were defined. Finally, homogeneous regions regarding RE values were delimited and 

estimative regression models were established for each region. 

The annual RE values found for Brazil range from 252 to 23,916 MJ mm ha-1 h-1 year-
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1, magnitudes never found in national studies before. The mean annual value was 5,620 MJ mm 

ha-1 h-1 year-1, with high spatial variation over the country. The highest RE magnitudes were 

found for the north region, while the northeast region concentrates the lowest values. In 

addition, a strong correlation between annual erosivity values and annual rainfall depths was 

evidenced, while the altitudes and latitudes presented a very slight correlation with the annual 

RE magnitudes. Throughout the year, the RE patterns show a migration of the high erosivity 

spots through the different regions of the country. Considering this, the monthly RE values and 

maps presented in this study are relevant for improving the accuracy of soil loss estimates since 

they show a panorama of the RE phenomenon in the country. 

The RECI and RESI indexes corroborated each other and evidenced that the southern 

region of Brazil has the most regular distribution of the RE values throughout the year. On the 

other hand, in western Ceará and central Rio Grande do Norte states the RE is mostly 

concentrated and, thus, requires caution for the months with higher RE magnitudes. 

Complementarily, the RE gravity center analyses showed a latitudinal path variation (north-

south migration) of the erosivity throughout the year. Additionally, for most of the months, the 

RE gravity center of Brazil is in the Goiás state. 

The ED magnitudes obtained for the country allowed the identification of high-intensity 

rainfall spots in Brazil all year long. Despite this, most of the gauges analyzed have annual ED 

values considered “Low” and “Very low”. In summary, the monthly ED values followed the 

seasonal patterns presented by the monthly RE and rainfall depth. Considering this, the ED 

magnitudes here presented fill the gap of ED estimates for the Brazilian territory and due to its 

relationship with high-intensity rainfall events can help understand the RE impacts on soil loss. 

Therefore, we encourage the consideration of these results by scientists, policymakers, and 

society in general, since they can be useful for finding areas highly susceptible to water erosion 

in the country. 

The application of multivariate statistical techniques resulted in the division of the 

Brazilian territory into eleven homogeneous regions regarding the RE patterns. For each 

defined region, a regionalized regression model was established, and their performance is 

considered satisfactory for all regions. Thus, the models here presented constitute an 

advancement regarding the possibility of estimating RE magnitudes for the entire country since 

they can be used for predicting values for a specific location or period. Furthermore, the 

adjusted models can be considered easy to use, since only monthly rainfall depths are required 

for the estimation, so they are important tools for improving the availability of RE values in 

Brazil. 
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Moreover, we highlight that all the data produced by this study is available for 

download. This database includes RE and ED values on monthly, seasonal, and annual scales, 

as well as the RECI and RESI values for the 5,166 rainfall gauges analyzed. Also, it was 

specified which regionalized model should be used based on the homogeneous region each 

gauge is. 

For future studies, we suggest the production of maps containing the spatial distribution 

of RE values for the entire country using the values here presented. For this, we encourage the 

use of techniques not widely used for mapping RE in Brazil so far, such as those based on 

machine learning. These maps have the potential to improve the understanding of the RE 

patterns in time and space, which may enhance planning soil and water management and 

conservation practices. 

 

Data availability 

 

The vectorial data produced in this study is freely available online. The spatial database 

containing the RE, ED, RECI, and RESI values for the 5,166 rainfall gauges are available for 

download at http://dx.doi.org/10.17632/hzxfvvmr6p.1. The spatial delimitation of the eleven 

homogenous regions regarding RE defined for Brazil is available for download at 

http://dx.doi.org/10.17632/dwgzpztcb7.1. 
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CHAPTER 3: GRIDDED MAP OF ANNUAL RAINFALL EROSIVITY FOR BRAZIL: 

A MACHINE LEARNING APPROACH 

 

Abstract 

 

In this study, a gridded annual map of rainfall erosivity (RE) was created for Brazil using 

machine learning techniques. For this, long-term mean RE values obtained from synthetic series 

of pluviographic data for 5,166 rainfall gauges over the Brazilian territory were used. In total, 

93 covariates regarding climatic and terrain aspects were used as auxiliary variables for the 

predictions. For obtaining the map, four algorithms were tested in this study: linear model (LM), 

Weighted k-Nearest Neighbors (KKNN), Random Forest (RF), and Support Vector Machine 

Radial Sigma (SVM). The best subset of covariates was selected by removing variables with 

little variance, excluding correlated variables, and eliminating the less important ones. The 

training and test process was repeated 100 times. Results showed that all applied models 

statistically deferred from each other in predicting annual RE values. According to the accuracy 

metrics analyzed, RF is considered the model with the best prediction performance. The annual 

RE map generated ranges from 633 to 14,288 MJ mm ha-1 h-1 year -1. In addition to the total 

annual rainfall, the other covariates with higher importance for the predictions were the rainfall 

depth for August and rainfall of the coldest quarter, which evidence the relevance of the months 

with lower rainfall amounts in the annual RE mapping. Further analysis revealed that the 

northeastern of the country as well as the Serra do Mar mountains region are characterized as 

the areas with the highest uncertainties in the values mapped. Finally, the RF model presented 

satisfactory precision for the obtention of a grided annual RE map for Brazil resolution grid 

(resolution of ~1 km2). This map is considered an advancement regarding the availability of 

accurate RE values for the entire Brazilian territory and can be used for improving the soil loss 

assessment in the country. 

 

Keywords: Erosivity index. Linear model. Nearest neighbors. Random forest. Support vector 

machine.  
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1. Introduction 

 

Inserted in the main soil loss prediction models, such as the Universal Soil Loss 

Equation (USLE) and its revised version (RUSLE) (RENARD et al., 1997; WISCHMEIER; 

SMITH, 1978), the rainfall erosivity (RE) is a parameter of great importance for soil and water 

conservation planning. The RE is defined as the potential capacity to cause soil erosion by 

rainfalls and can be useful to identify areas highly susceptible to erosion (MOSAVI et al., 2020; 

PANDEY et al., 2021; SENANAYAKE; PRADHAN, 2022), as well as to help policymakers 

planning and implementing erosion mitigation measures to avoid land degradation (GUDURU; 

JILO, 2023; WUEPPER; BORRELLI; FINGER, 2019).  

The obtention of RE maps is helpful in quantifying accurate soil erosion rates 

(DISSANAYAKE; MORIMOTO; RANAGALAGE, 2019; STEFANIDIS et al., 2021). 

Considering this and other applications, RE maps have been created in different spatial scales 

throughout the world. Some examples are those presented by Panagos et al. (2017a, 2022) and 

Liu et al. (2020b) on a global scale, and those presented by Kim et al. (2020) and Zhu et al. 

(2021), respectively on national and regional scales. Independent of the spatial scale, RE maps 

are important for areas with large agricultural land and production (ŠARAPATKA; BEDNÁŘ, 

2022), such as the Brazilian territory. This country has also faced an increase in deforestation 

rates over the last years (ARAÚJO et al., 2019; DIAS et al., 2016; SOUZA et al., 2020a), which 

increases the exposure of soils to rainfall impacts. 

In Brazil, the RE maps are useful for assessing soil loss in many states (LENSE et al., 

2021; MEDEIROS et al., 2016) as well as for the conservationist management of several water 

basins (CUNHA et al., 2022; SILVA et al., 2016). RE maps on a national scale were also 

developed, such as those shown by Silva (2004) and Mello et al. (2013). Despite these maps’ 

availability, most of them were created using data from empirical models that were not 

developed for the regions they are applied (ANJOS et al., 2020; SOUSA; PAULA, 2019; 

SOUZA et al., 2020b). In addition, many of the maps for the country were generated using 

relatively sparse spatial data (low number of gauge stations) (OLIVEIRA et al., 2015; 

TRINDADE et al., 2016) as well as considering short time length records (less than 10 years of 

data) (CARVALHO et al., 2012; NEVES; DI LOLLO, 2022; SILVA et al., 2010a). These 

products may not represent accurately the erosivity dynamic of rainfalls. Therefore, using a 

large national database for obtaining RE maps for Brazil is still a gap to be filled. 

As shown by Teixeira et al. (2022b), among the methods used for mapping the RE over 

the Brazilian territory, kriging is the most popular. In addition, the use of the inverse distance 
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weighting technique also contributed to the availability of RE maps in the country. Recently, 

studies have employed machine learning techniques to obtain RE maps (LEE et al., 2021, 2022; 

VANTAS; SIDIROPOULOS; LOUKAS, 2019). The use of these algorithms is considered a 

promising alternative for obtaining spatially interpolated maps, especially due to their 

predictive accuracy (DA SILVA JÚNIOR et al., 2019; KARIMI et al., 2020; SEKULIĆ et al., 

2020). Another advantage of these techniques is the possibility of using a large set of covariates 

in the spatial modeling, which according to Souza et al. (2022) represents a methodological 

gain. 

For many years, the use of machine learning techniques for mapping RE in Brazil was 

limited to the employment of artificial neural networks, that were developed for some states 

such as Espírito Santo (CECÍLIO et al., 2013), Minas Gerais (MOREIRA et al., 2009), Rio de 

Janeiro (CARVALHO et al., 2012), and São Paulo (MOREIRA et al., 2006a). The use of other 

models, such as random forest and support vector machines, was only assessed by Souza et al. 

(2022) for the state of Minas Gerais, which produced monthly and annual RE maps with good 

spatial resolution. Considering this, the use of different machine learning techniques shows 

great potential for obtaining RE maps that present good reliability, increasing the availability 

of estimates for this variable on a national scale. 

This study aims to generate an annual RE gridded map for the Brazilian territory using 

machine learning techniques. The specific objectives of this study were: i) to define the best set 

of prediction covariates; ii) to identify the best model for obtaining the RE map; and iii) to 

create an annual map of RE for Brazil. 

 

2. Material and methods 

 

Figure 1 shows the flowchart of the methodological steps adopted in the present study 

which are better described in the following sections. 
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Figure 1. Flowchart of the methodological steps adopted in the present study. RFE means 

recursive feature elimination. LM, KKNN, RF, and SVM denote, respectively, Linear Model, 

Weighted k-Nearest Neighbors, Random Forest, and Support Vector Machine Radial Sigma. 

LCCC, MAE, RMSE, R2, SD, and CV means Lin’s concordance correlation coefficient, mean 

absolute error, root mean square error, coefficient of determination, standard deviation, and 

coefficient of variation. 
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2.1 Study area 

 

The Brazilian territory covers about 8,511,000 km2 and has altitudes ranging from zero 

to 2,800 m (Figure 2a). In addition, Brazil has an expressive climate variability (Figure 2b), 

among which the tropical subtypes (Af, Am, As, and Aw) stand out (ALVARES et al., 2013). 

In the northeast region, the semi-arid climate (Bsh) is more representative, while the subtropical 

humid climate subtypes (Cfa, Cfb, Csa, Csb, Cwa, and Cwb) stand out in the south and 

southeast. Regarding rainfall patterns, it annually ranges from 380 to 4,000 mm (ALVARES et 

al., 2013; INMET, 2022), as shown in Figure 2c. 

 

 

Figure 2. (a) Altitude variation in Brazil (WorldClim-DEM 30 arc-second resolution). (b) 

Köppen (1936)’s climate classification presented by Alvares et al. (2013). (c) Spatial 

distribution of the normal annual rainfall 1981-2010 (INMET, 2022) and location of the rainfall 

gauges considered as database in this study.  

 

2.2 Erosivity database 

 

The values of annual RE used for training the models were those presented in the 

Chapter 2 of this thesis. The RE magnitudes were estimated for 5,166 rainfall gauges over the 
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Brazilian territory (Figure 2c). For this, synthetic series of pluviographic data on a sub-daily 

scale were generated using the ClimaBR stochastic weather generator (BAENA et al., 2005; 

OLIVEIRA; ZANETTI; PRUSKI, 2005a, 2005b; ZANETTI et al., 2005), based on the 

measured daily data from each gauge (see Chapter 2).  

From the rainfall synthetic series, RE was estimated based on the criteria proposed by 

Wischmeier and Smith (1958) and Wischmeier (1959), and modified by Cabeda (1976). 

Therefore, the rainfalls considered erosive were identified and the kinetic energy associated 

with them was calculated as a function of the rainfall intensity. Then, the EI30 erosivity index 

was applied, as proposed by Wischmeier and Smith (1958). The daily EI30
 was calculated by 

the product of the kinetic energy of each rainfall of the day and the maximum intensity of 

precipitation that occurred in 30 minutes (I30), as shown in Equation (1). 

 

(EI30)j = KE . I30 (1) 

 

in which (EI30)j is the rainfall erosivity index in the day j (MJ mm ha-1 h-1 day-1); KE is the 

kinetic energy (MJ ha-1 mm-1); I30 is the maximum rainfall intensity for 30 consecutive minutes 

(mm h-1). 

 

The RE on a monthly scale was obtained by summing the daily EI30 values and the 

annual RE values were obtained from the sum of the RE for each month. Finally, the average 

of the values considering all years of the data was calculated. Therefore, the RE values 

considered in the present study consist of long-term mean values of annual RE values obtained 

for each rainfall gauge, that is, the R-factor for USLE and RUSLE.   

 

2.3 Prediction covariates database 

 

In this study, two spatial databases were used as sets of covariates for predicting the 

annual RE map. The first one is composed of climatic variables, while the second one by terrain 

variables. 

The climatic dataset was composed by 57 covariates (Table 1) based on rainfall 

precipitation and temperature, available at the WorldClim Data Portal (FICK; HIJMANS, 

2017). This database was generated using information from satellites and weather stations, 

obtaining spatially interpolated climate variables, on a global scale, with high spatial resolution. 

In this study, the average historical climate data was used (1970 to 2000) at a 30 arc-second 
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resolution grid (~1 km2). These data were also applied in other spatial studies as covariates to 

the spatial prediction of rainfall erosivity, as show Panagos et al. (2016, 2017b), Riquetti et al. 

(2020), and Souza et al. (2022). 

 

Table 1. Climatic covariates considered for the spatial prediction of the annual RE in Brazil. 

Covariate Nº of covariates Abbreviation 

Monthly rainfall precipitation  12 Prec1 to Prec12 

Monthly minimum temperature  12 Tmin1 to Tmin12 

Accumulated minimum temperature (sum of the 12 months) 1 TminAcc 

Monthly maximum temperature  12 Tmax1 to Tmax12 

Accumulated maximum temperature (sum of the 12 months) 1 TmaxAcc 

Annual mean temperature 1 Bio1 

Mean diurnal range (mean of monthly (max temp - min temp)) 1 Bio2 

Isothermality (Bio2/Bio7) (×100) 1 Bio3 

Temperature seasonality (standard deviation ×100) 1 Bio4 

Max temperature of warmest month 1 Bio5 

Min temperature of coldest month 1 Bio6 

Temperature annual range (Bio5-Bio6) 1 Bio7 

Mean temperature of wettest quarter 1 Bio8 

Mean temperature of driest quarter 1 Bio9 

Mean temperature of warmest quarter 1 Bio10 

Mean temperature of coldest quarter 1 Bio11 

Annual rainfall precipitation (sum of the 12 months) 1 Bio12 

Precipitation of wettest month 1 Bio13 

Precipitation of driest month 1 Bio14 

Precipitation seasonality (coefficient of variation) 1 Bio15 

Precipitation of wettest quarter 1 Bio16 

Precipitation of driest quarter 1 Bio17 

Precipitation of warmest quarter 1 Bio18 

Precipitation of coldest quarter 1 Bio19 

Total 57  

 

 The terrain dataset was formed by 36 covariates derived from the digital elevation model 

available at the WorldClim Data Portal with the same spatial resolution that the climatic dataset 

variables. These terrain covariates represent different topoghraphic attributes and were obtained 

using the packages RSAGA (BRENNING, 2008), raster (HIJMANS, 2023), and rgrass7 

(BIVAND, 2017), in the R software environment (R CORE TEAM, 2023). In Table 2 are 

presented the terrain covariates used in this study, which were also employed by Mello et al. 

(2022), Sena et al. (2021), Siqueira et al. (2023), and Souza et al. (2021, 2022). 
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Table 2. Terrain covariates considered for the spatial prediction of the annual RE in Brazil. 

Covariate Description Abbreviation 

Digital elevation model Represents the elevation in each cell DEM 

Aspect Slope orientation ASP 

Convergence index 
Convergence/divergence index concerning 
runoff 

CI 

Cross sectional curvature 
Measures the curvature perpendicular to the 
downslope direction 

CSC 

Diurnal anisotropic heating 
Measures the relation between the aspect and 
the slope angle 

DAH 

Easterness The property of being to the east E 

Flow line curvature 
Represents the projection of a gradient line to 
a horizontal plane 

FLC 

General curvature 
The combination of both plan and profile 
curvatures 

GC 

Hill Demonstrates the hills  H 

Hill index 
Simulation of diffusive hillslope evolution 
using an Alternating-Direction-Implicit 
(ADI) method 

HI 

Longitudinal curvature 
Measures the curvature in the downslope 
Direction 

LC 

Mass balance index 
Balance index between erosion and 
deposition 

MBI 

Maximal curvature Maximum curvature in local normal section MAXC 

Mid-slope position 
Represents the distance from the top to the 
valley, ranging from 0 to 1 

MSP 

Minimal curvature Minimum curvature for local normal section MINC 

Multiresolution index of ridge top flatness Indicates flat positions in high altitude areas MRRTF 

Multiresolution index of valley bottom flatness Indicates flat surfaces at bottom of valley MRVBF 

Normalized height 
Vertical distance between base and ridge of 
normalized slope 

NH 

Northerness The property of being to the north N 

Plan curvature 
Described as the curvature of the 
hypothetical contour line passing through a 
specific cell 

PLANC 

Profile curvature 
Describes surface curvature in the direction 
of the steepest incline 

PROC 

Real surface area The actual calculation of cell area RSA 

Slope Represents local angular slope S 

Slope height 
The vertical distance between base and ridge 
of slope 

SH 

Standardized height 
The vertical distance between base and the 
standardized slope index 

STANH 

Surface specific points 
Indicates differences between specific 
surface shift points 

SSP 

Tangencial curvature 
Measured in the normal plane in a direction 
perpendicular to the gradient 

TANC 

Terrain ruggedness index 
Quantitative index of topography 
heterogeneity 

TRI 
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Terrain surface convexity 
The ratio of the number of cells that have 
positive curvature to the number of all valid 
cells within a specified search radius 

TSC 

Terrain surface texture Splits surface texture into 8, 12, or 16 classes TST 

Topographic position index 
Difference between a point elevation with 
surrounding elevation 

TPI 

Topographic wetness index 
Describes the tendency of each cell to 
accumulate water as a function of relief 

TWI 

Total curvature General measure of surface curvature TC 

Valley depth 
Calculation of vertical distance at drainage 
base level 

VD 

Valley index 
Calculation of the fuzzy valley index using 
the top-hat approach 

VI 

Vector ruggedness measure Measures the variation in terrain roughness VRM 

Total  36 

 

2.4 Prediction models  

 

 For predicting the annual RE map, four algorithms were tested in this study: linear 

model (LM), Weighted k-Nearest Neighbors (KKNN), Random Forest (RF), and Support 

Vector Machine Radial Sigma (SVM). These methods were chosen to evaluate the prediction 

based on algorithms with different learning approaches (Table 3). The implementation of these 

algorithms was carried out in an R environment (R CORE TEAM, 2023), using the packages 

base (R CORE TEAM, 2023), kknn (SCHLIEP; HECHENBICHLER; LIZEE, 2022), 

randomForest (BREIMAN; CUTLER, 2022), and kernlab (KARATZOGLOU; SMOLA; 

HORNIK, 2023). 

 

Table 3. Machine learning models used, their learning approaches, and R packages for 

application. 

Model  Learning approach R package 

LM Linear model - base 

KNN Weighted k-Nearest Neighbors  Similarity-based learning kknn 

RF Random Forest Information-based learning randomForest 

SVM Support Vector Machine Radial Sigma Error-based learning kernlab 

 

The k-Nearest Neighbors (KNN) model is a non-parametric learning algorithm that 

predicts values based on k neighboring records. As hyperparameters, there is basically the 

definition of the number k of nearest neighbors that will compose the neighborhood of the new 

observation and the choice of the distance measure responsible for identifying the k 

observations of the training set closest to the new observation (KUBAT, 2021; LANTZ, 2019). 
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As recommended by Kuhn and Johnson (2013), all predictors were centered and scaled prior to 

performing KNN to avoid potential bias. For the present study, the Weighted KNN (KKNN) 

(HECHENBICHLER; SCHLIEP, 2004) was used. The idea is to weigh the contribution of each 

of the k neighbors according to their distance to the point of prediction. So, the closer the 

neighbor, the more important it is. The KKNN algorithm differs from other KNN algorithms 

because it uses kernel functions to weigh the neighbors according to their Minkowski distances. 

Methods based on decision trees, such as RF (BREIMAN, 2001), constitute an 

alternative for building predictive models when the relationship between predictors and the 

response of interest is non-linear and complex. In RF, there is a combination of prediction made 

by multiple decision trees, in which each tree depends on the values of a vector of predictors in 

the randomly sampled training set. As hyperparameters, three have to be defined: the number 

of trees in the forest (ntree), the minimum number of data points in each terminal node 

(nodesize), and the number of features tried at each node (mtry). As an estimator of the final 

response in each tree RF uses the average of the tree’s predictions, which reduces its variance 

(TYRALIS; PAPACHARALAMPOUS; LANGOUSIS, 2019). 

The SVM comprises a set of supervised learning techniques proposed by Cortes and 

Vapnik (1995). In the SVM, a hyperplane that allows the greatest possible margin between 

classes is used, leading to a higher probability of generalization. The estimation by SVM allows 

infinite results, and good performance depends on the adequate configuration of the 

hyperparameters. Among the main optimization parameters of the model, the penalty (cost) that 

controls the trade-off between margin and training errors, and the kernel width (sigma) that 

controls the degree of non-linearity of the model, have a great influence on the prediction 

results. 

 

2.5 Selection of the prediction covariates  

 

 To select the best set of covariates for each model aiming to predict the annual RE map, 

three steps were carried out: removing variables with little variance, excluding correlated 

variables, and eliminating the less important ones. As explain Kuhn and Johnson (2013), this 

selection is advantageous since the excessive number of variables is time consuming and 

computationally expensive. For these three procedures functions from caret package (KUHN 

et al., 2020) were performed. 

First, covariates with variance near zero were removed from the total dataset. This 

procedure was applied to eliminate the variables with little or no spatial variability across the 
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Brazilian territory. For this, the function nearZeroVar was employed. According to Kuhn et al. 

(2020), this function identifies covariates that have one unique value or that have both of the 

following characteristics: they have very few unique values relative to the number of samples 

and the ratio of the frequency of the most common value to the frequency of the second most 

common value is large. This procedure was also applied by Mello et al. (2022). 

Second, the findCorrelation function was performed. This function quantifies and 

analyzes the correlation between all possible pairs of prediction covariates to avoid redundance  

(KUHN et al., 2020). In this study, the pair of covariates with more than 95% of Spearman’s 

correlation was identified, and the covariate that presented the highest correlation with the other 

ones was removed. If two covariates are highly correlated, this implies that they are measuring 

the same information. Thus, removing one should not compromise the performance of the 

model and might lead to a more parsimonious and interpretable model (KUHN; JOHNSON, 

2013). This procedure was also applied by Ferreira et al. (2021) and Reis et al. (2021). 

Third, the recursive feature elimination (RFE) also from caret package (KUHN et al., 

2020) was performed. This function implements a backward selection of covariates based on 

covariate importance ranking. The covariates are ranked and the less important ones are 

sequentially eliminated. The goal is to find the best subset of covariates to produce an accurate 

model. This procedure was also applied by Dias et al. (2021) and Gomes et al. (2019b). 

The RFE was performed on the total set of covariates that were not eliminated by the 

second procedure (findCorrelation function) so that 21 subsets of covariates were tested for 

selection. These tested subsets consisted of 5, 6, 7, …, 20, 25, 30, 40, and 50 covariates, as well 

as the total dataset left. The RFE was run using the cross-validation method with 10 folds, 

considering the internal optimization parameters for each tested algorithm. The internal 

parameters (hyperparameters) are internal characteristics intrinsic to each algorithm, which can 

be modified to improve the training results. The parameters of the models used are described 

by Kuhn (2019) in the caret package manual available at 

https://topepo.github.io/caret/available-models.html. As metric criteria for this selection, we 

used the Lin’s concordance correlation coefficient (LCCC), as shown in Equation (2), which 

evaluates the agreement between the observed and predicted values (LIN, 1989).  

The LCCC varies between −1 and 1 and, as explained by Khaledian and Miller (2020), 

it assesses both the precision and accuracy of the prediction. Precision refers to the spread of 

points around the regression line (correlation coefficient) for the estimated versus observed 

values. Accuracy refers to the correspondence between that regression line and the perfect line 

(1:1 line). LCCC can also be considered a more appropriate evaluator compared to the 
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coefficient of determination (R2, Equation (3)) since it captures bias in the model prediction 

(KHALEDIAN; MILLER, 2020).  

 

LCCC =  
2 p Oi Ei 

σ2Oi + σ2Ei + (Oi
̅̅ ̅ - Ei̅)

2 (2) 

R2 =  
[∑(Ei - Ei̅) × (Oi - Oi

̅̅ ̅) ]2[∑(Ei - Ei̅)2] × [∑(Oi - Oi
̅̅ ̅)2] (3) 

 

in which LCCC is the Lin’s concordance correlation coefficient; R2 is the coefficient of 

determination; Oi and Ei are, respectively, the observed and estimated RE values (MJ mm ha-1 

h-1 year -1); p is the Pearson correlation coefficient between the observed and estimated values; 

the σ2Oi and σ2Ei are, respectively, the variances of the observed and estimated values; Oi
̅̅ ̅  and 

Ei̅  are, respectively, the means of the observed and estimated values. 

 

2.6 Training, test, and selection of the models 

 

 To select the most accurate model, we predicted annual RE values applying each model 

separately using their own optimal subset of covariates. For this, data were randomly split into 

75% for training and 25% for the test.  

 The training of the models was performed with the covariates selection followed by the 

optimization of the hyperparameters. For this, we also used repeated cross-validation (10-folds 

and 3 repetitions) to optimize the model considering the training dataset. The statistical 

indicator used as a criteria for this optimization was the LCCC. It is worth to mention that, 

among the adopted models, only the KKNN, RF, and SVM models present hyperparameters. 

Besides LCCC, the performance of the models was also assessed by the R2, the mean absolute 

error (MAE, Equation (4)), and the root mean square error (RMSE, Equation (5)).  

 

MAE =
∑ (|Oi - Ei|)n

i=1

n
 (4) 

 RMSE =√∑ (Ei - Oi)² n
i=1

n
 (5) 
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in which MAE is the mean absolute error (MJ mm ha-1 h-1 year-1); RMSE is the root mean square 

error (MJ mm ha-1 h-1 year -1); Oi is the observed annual RE value (MJ mm ha-1 h-1 year -1); Ei 

is the estimated annual RE value (MJ mm ha-1 h-1 year -1); n is the number of observations. 

 

 The test process was performed for each model separately. This procedure was based 

on the insertion of the selected covariates into the adjusted model, considering only the test 

dataset. This step allowed the obtaining of the estimated and observed pairs of values from 

which the statistical metrics were calculated. Despite the detailed description of each 

methodological step being explained separately, the training and test processes were performed 

subsequently, iteratively, and simultaneously. For each model, this methodology (covariate 

selection, training, and test process) was repeated 100 times. As shown by Kuhn and Johnson 

(2013), the process of several repetitions is important since the different groups of training and 

test datasets can lead to different accuracy results.   

Taking all models tested into account (LM, RF, KKNN, and SVM), the one considered 

with the best performance was chosen, that is, the model with higher LCCC and R2 values, as 

well as lower MAE and RMSE values, for the test subset. Finally, Kruskal-Wallis’s test 

(KRUSKAL; WALLIS, 1952) followed by Dunn’s post-hoc test (DUNN, 1961) was applied to 

identify statistical differences between the models’ performance. While Kruskal-Wallis’ test 

evidence the occurrence of statistical differences between groups (machine learning models), 

Dunn’s test compares pair-to-pair to identify which groups are similar and which are different 

from each other. For these tests, the level of significance was 5%. This procedure was also done 

by Souza et al. (2022). 

 

2.7 Final map prediction and uncertainity analysis 

 

 The final annual RE map was created as a mean of the 100 maps (runs) generated by the 

model that presented the best prediction performance. In addition, to evidence the prediction 

uncertainties in the map created, maps with the standard deviation (SD) and coefficient of 

variation (CV % = standard deviation/mean) considering the 100 runs were also created 

(GOMES et al., 2019b; SIQUEIRA et al., 2023). Thus, a qualitative evaluation of the spatial 

patterns of uncertainty regarding the annual RE prediction across Brazil was made. 
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3. Results and discussion 

 

3.1 Elimination of covariates 

  

 The preprocessing steps for selecting the best set of covariates for the prediction of 

annual RE maps eliminated seven covariates that presented variance near zero (Table 4), all of 

them related to terrain aspects. In addition, 35 covariates (Table 5) presented more than 95% of 

Spearman’s correlation with other covariates, and so,  were also eliminated from the prediction 

process. The covariates left from the total set were considered for the RFE process during the 

models’ training. 

 

Table 4. Covariates that presented variance near zero, and that were eliminated from the 

prediction process. 

Covariates eliminated 

1. FLC 2. TC 3. H 4. HI 5. S 6. TPI 7. VI 

 

Table 5. Covariates that presented more than 95% of Spearman’s correlation with other 

covariates, and that were eliminated from the prediction process. 

Covariates eliminated 

1. Bio1 8. TmaxAcc 15. Tmax10 22. Tmax12 29. TRI 

2. Bio11 9. Tmin8 16. Tmin12 23. Tmin1 30. RSA 

3. Tmin10 10. Tmin5 17. Tmax6 24. Tmax1 31. Prec7 

4. Tmin9 11. Bio10 18. Tmax5 25. Tmax3 32. Bio16 

5. TminAcc 12. Bio6 19. Tmax7 26. MDE 33. MBI 

6. Tmin11 13. Tmin7 20. Tmin3 27. Bio14 34. PROC 

7. Tmin4 14. Tmax11 21. Tmax9 28. Bio17 35. TANC 

 

3.2 Performance of the models  

  

 According to the statistical metrics obtained for the models’ training and test (Table 6), 

the RF algorithm was considered the model with the best performance (higher LCCC and R2 

values, as well as lower MAE and RMSE values for the test subset) for predicting the annual 

RE map for Brazil.  
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Table 6. Models’ training and test statistical metrics obtained for the prediction of the annual 

RE map for Brazil. The best metrics are shown in bold. 

Model Training    Test    

 LCCC R2 MAE RMSE LCCC R2 MAE RMSE 

LM 0.893 0.808 1164.3 1619.2 0.892 0.802 1209.9 1667.1 

KKNN 0.931 0.872 815.9 1319.4 0.931 0.869 823.1 1351.1 

RF 0.938 0.886 774.5 1248.7 0.942 0.890 767.9 1238.8 

SVM 0.932 0.873 838.2 1314.9 0.933 0.874 847.5 1328.5 

 

 Despite the better results of the RF algorithm, the other models also presented 

satisfactory metrics. This can be evidenced in Figure 3, which compares the prediction errors 

(MAE and RMSE) obtained by using the analyzed models instead of simply using the mean 

value of all observations for the rainfall gauges selected in the test subset (Null Model). Thus, 

the use of the tested models leads to accuracy gains while predicting the annual RE map for 

Brazil. 

 

 

Figure 3. Comparison of the MAE and RMSE values obtained by the analyzed models and 

those by the Null Model (values obtained considering the mean value of all observations of the 

rainfall gauges selected). The values refer to the test subset. 
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 Even with the satisfactory results for all tested models, significant differences regarding 

the statistical metrics obtained was found (Figure 4). The Kruskal-Wallis’ and Dunn’s tests 

evidenced that all algorithms statistically differed from each other and that using the RF model 

is the most suitable option for obtaining a better annual RE map for Brazil (better statistical 

performance). Figure 4 also evidences that the use of the RF promoted not only higher accuracy 

(better metrics) but also higher precision in the prediction processes since the estimated values 

vary less from each other over the multiple runs. Therefore, the RF model was used to obtain 

the annual RE map for Brazil. 

 

Figure 4. LCCC values for the predictions by the analyzed models, considering the test subset. 

The different letters following the mean values correspond to statistical difference occurrence. 

 

3.3 Rainfall erosivity map  

 

 The annual RE map predicted by the RF model is shown in Figure 5a. According to this 

map, annual RE values range from 633 to 14,288 MJ mm ha-1 h-1 year -1 over the Brazilian 

territory. These values differ from those for punctual annual RE values shown in the Chapter 2 

of this thesis (252 to 23,916 MJ mm ha-1 h-1 year -1), which evidences difficulty in predicting 
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the most extreme values in the series by the selected model. This may be related to the RF’s 

inability to extrapolate predictions beyond the range of data considered for its training 

(ESTEBAN et al., 2019; HASHIMOTO et al., 2019). In addition, the decrease in the range of 

RE values mapped compared to the punctual estimates was also observed by Trindade et al. 

(2016). 

 

 

Figure 5. (a) Mean annual RE map predicted by the RF model for Brazil. Maps of (b) standard 

deviation (SD) and (c) coefficient of variation (CV) of the annual RE maps. These maps were 

created considering the 100 runs of the RF model’s test. 

 

 The highest annual RE magnitudes are found for the northern region as well as the São 

Paulo State coast. As discussed in Chapter 2, the lowest annual RE values are concentrated in 

northeastern Brazil. Compared to the other annual RE maps available for Brazil (Table 7), the 

minimum RE magnitude obtained in the present study was inferior to the observed in most of 

the previous maps. Oppositely, the maximum RE value presented by the map here proposed 

was inferior to all other available maps. Despite this, the map here presented was created using 

more than three times the number of rainfall gauges considered in the other studies, which 

represents the greater reliability in the predicted values on the map shown by the present study. 
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Table 7. Annual RE range shown in the present study and in the previous ones, as well as the 

mapping technique used and the number of rainfall gauges considered for mapping. 

Reference Annual RE range Mapping technique Number of gauges 
Present study 633 to 14,288 Random Forest 5,166 
Silva (2004) 3,116 to 20,035 Not mentioned 1,600 
Oliveira et al. (2012) 1,672 to 22,452 Kriging 80 
Mello et al. (2013) 2,216 to 23,187 Kriging 928 
Oliveira et al. (2015) 468 to 20,000 Inverse Distance Weighted 142 
Trindade et al. (2016) 1,782 to 16,583 Kriging 1,521 

 

 For obtaining the annual RE map, the RFE process considered 25 covariates as those 

with more importance in the prediction (Figure 6). Figure 6 evidences the number of times that 

the covariates are included in the five (Top5, red bars) and ten (Top10, blue bars) most 

important ones, considering the 100 models’ runs. The three most important were, respectively, 

the rainfall depth for August (Prec8), the rainfall of the coldest quarter (Bio19), and the total 

annual rainfall (Bio12). Disregarding the obvious relationship between annual rainfall totals 

(Bio12) and annual RE mapping, the best climatic predictors are related to the absence of 

rainfalls. Prec8 and Bio19 occur in the winter season when the lowest rainfall depths are 

observed for Brazil. Therefore, the spatial differences between the rainfall patterns that occur 

in this season present more relevance for improving the annual RE map accuracy. 
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Figure 6. Number of times that the covariates selected by the RFE process are included in the 

five (Top5, red bars) and ten (Top10, blue bars) most important ones for predicting the annual 

RE map, considering the 100 RF model’s runs. 

 

 In general, the terrain characteristics play a significant role in the rainfall occurrence in 

Brazil (FERREIRA; REBOITA, 2022; NADEEM et al., 2022). Despite this, for obtaining the 

annual RE map here presented only the multiresolution index of ridge top flatness (MRRTF), 

multiresolution index of valley bottom flatness (MRVBF), standardized height (STANH), and 

vector ruggedness measure (VRM) were considered as important covariates in the prediction 

process. 

 

3.4 Uncertainity maps 

 

 In Figures 5b and Figure 5c are shown, respectively, the maps of SD and CV regarding 

the annual RE values for Brazil. As expected, higher SD values were observed for areas with 

the highest annual RE values. Despite this, the maximum SD values are found for the coast of 

the southeastern region, while the maximum annual RE values were observed for the extreme 
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northwestern region of the country (Figure 5a). These high SD values may be related to the 

orographic effect of the Serra do Mar mountains on the coast of southeastern Brazil. The terrain 

characteristics in this area are complex and highly influence rainfall occurrence (LUIZ-SILVA; 

OSCAR-JÚNIOR, 2022). 

The SD analysis only shows the variability in the magnitudes of the annual RE 

throughout the model's runs. To overcome this limitation, the CV expresses this variation as a 

percentage and is not influenced by the RE magnitudes. Thus, the CV is more adequate for 

evidencing the uncertainties in the predictions.  

In general, the CV values for the annual RE map are considered low (maximum of 

13.7%) which evidence the satisfactory precision of the RF to map this variable for Brazil. The 

highest uncertainties are located in the northeastern of the country where also are found the 

lowest RE magnitudes. In addition, high CV values were found for the Serra do Mar mountains 

which characterizes this region not only as one of the most susceptible to high RE magnitudes 

but also with the lowest precision in the values mapped. This evidence the need for deeper 

investigations regarding the RE patterns in this area. 

 

4. Conclusion 

 

In this study, a gridded annual RE map was created for Brazil using machine learning 

techniques. For this, the best subset of covariates was selected for training and testing the 

models, and the uncertainity of the final map was assessed.  

The LM, KKNN, RF, and SVM models deferred statistically from each other in 

predicting annual RE values. Among these models, RF showed the best predictive performance, 

generating a map with RE magnitudes ranging from 633 to 14,288 MJ mm ha-1 h-1 year -1. In 

addition to the total annual rainfall, the other covariates with higher importance for the 

predictions were the rainfall depth for August and rainfall of the coldest quarter, which evidence 

the relevance of the months with lower rainfall amounts in the annual RE mapping.  

Finally, analyses revealed that the areas with the highest uncertainties in the values 

mapped are the northeastern of the country as well as the Serra do Mar mountains region in the 

southeastern part of the country. Despite this, the RF model presented satisfactory precision for 

the obtention of a grided annual RE map for Brazil. The created map is considered an 

advancement regarding the availability of RE values for the entire Brazilian territory and can 

be used as R-factor data in the USLE and RUSLE models for predicting soil loss in Brazil. 
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GENERAL CONCLUSION 

 

The assessment of RE in Brazil increased over the last decade, which demonstrates a 

demand from the scientific community and society in general to the obtaining reliable soil loss 

estimates. For calculating RE values, pluviographic rainfall data and regression equations are 

the main used methods, while the use of synthetic series of rainfall is a promising alternative 

for this purpose. In Brazil, the erosivity of rainfalls is mainly represented by the EI30 index. In 

addition, a disparity in the spatial distribution of erosivity studies is observed, with a 

concentration of these studies in the southeast region. 

The use of a large national database made possible the obtention of long-term mean RE 

values never described in the literature before for Brazil, ranging from 252 to 23,916 MJ mm 

ha-1 h-1 year-1. Due to the continental scale of the Brazilian territory, a great spatial variation of 

the RE values was observed, with a mean annual value of 5,620 MJ mm ha-1 h-1 year-1. 

Complementing the RE assessment, the ED magnitudes were introduced to the entire country 

and allowed the identification of high-intensity rainfall spots in Brazil all year long, which can 

contribute to the understanding of the RE impacts on soil loss. 

Another novelty to the RE assessment in the country, the RECI and RESI indexes 

evidenced that in western Ceará and central Rio Grande do Norte states the RE occurs mostly 

concentrated in specific months while the southern region of the country has the most regular 

distribution of the RE values throughout the year. In addition, the RE gravity center analyses 

showed a latitudinal path variation (north-south migration) of the erosivity throughout the 

months and that the annual RE gravity center of Brazil is within the Goiás state. These results 

constitute an advancement in the RE studies of the country and have the potential to improve 

the understanding of the spatial RE patterns. 

A division of the Brazilian territory into homogeneous regions regarding RE was here 

presented. The applied methodology defined eleven regions with different patterns concerning 

the monthly RE magnitudes. In addition, regionalized regression models with good estimation 

accuracy were adjusted and validated for each region. These established models solve the 

common problem of the unavailability of RE estimation models for the entire country which 

used to lead to a generalization of some models to many regions and to incorrect RE estimates. 

Another advantage of using the proposed models is that they only require monthly rainfall 

depths for the predictions, so they are important tools for improving the availability of RE 

values in Brazil. 

Among the machine learning models tested, RF showed the best predictive performance 
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for the obtention of a gridded annual RE map, and constitutes an alternative approach to the use 

of traditional interpolation methods for mapping RE in Brazil. For this prediction, the covariates 

with higher importance were the total annual rainfall, as well as the rainfall depth for August 

and rainfall of the coldest quarter, which evidence the relevance of the months with lower 

rainfall amounts in the annual RE mapping.  

Further analyses revealed that northeastern Brazil as well as the Serra do Mar mountains 

region in the southeastern part of the country are the areas with the highest uncertainties in the 

map here presented. Despite this, the RF model presented satisfactory precision for the 

obtention of a grided annual RE map for Brazil. This map improves the understanding of the 

RE spatial patterns and can be used as R-factor data in the USLE and RUSLE models, which 

may enhance planning soil and water management and conservation in the country. 

 For future studies, a reconstruction of the past RE values using the regionalized models 

here proposed may contribute to the identification of different RE patterns over the years as 

well as to the assessment of non-stationarity and increasing or decreasing trends. Another 

recommendation is the assessment of the machine learning algorithms tested here to the 

obtention of monthly RE maps, as well as for creating the first map of ED for the entire Brazilian 

territory. Also, the use of covariate datasets different from those here presented is suggested, 

which can help map RE with greater accuracy. Finally, the results presented in this thesis 

highlight the need for further studies in areas that remain with lack of RE information, such as 

the north and center-west regions of the country, as well as for areas in which the RE has notably 

high magnitudes, such as the Serra do Mar region in the southeast of Brazil. 
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