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ABSTRACT 

 
 
Silva, Cleuber Raimundo, D.Sc., Universidade Federal de Viçosa, February, 
2017. Thermodynamic characterization of two pilot spray dryers and 
evaluation of the effect of high molecular weight compounds on traditional 
and lactose-free dairy mixes.  Advisor: Antônio Fernandes de Carvalho. Co-
advisors: Ítalo Tuler Perrone and Pierre Schuck. 
 

The objective of this work is to develop a mathematical model that allows for 

thermodynamically evaluating of spray dryers through mass/energy balance, to 

elaborate products from mixing of the milk and whey and to evaluate the effect of 

compounds with high molecular weight in the physicochemical properties and 

drying characteristics of traditional and lactose-free dairy mixes. For the 

thermodynamic characterization, it has been utilized spray dryers with atomizer 

pressure nozzle (evaporation capacity: 1 kg of water/h) and with atomizer disc 

(evaporation capacity: 20 kg of water/h). For elaboration of the dairy mix, there 

have been used lactic bases (lactose containing and non-lactose containing 

bases), elaborated from different proportions of milk and whey, maltodextrin, 

inulin and soluble corn fiber. The mathematical model has been validated for the 

evaluation of mass and energy losses and allowed to compare the efficiency 

between spray dryers with different designs. The increase in whey content in 

dairy mix and, especially, the application of the lactose hydrolysis reduced both 

the quality of the powders (color, glass transition temperature, hygroscopy, etc) 

and drying properties (stickiness, caking and increased energy expenditure for 

water evaporation). The addition of the compounds with high molecular weight 

had a positive effect on the physicochemical properties and the drying of the 

powders, being maltodextrin the most efficient compound. 
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RESUMO 

 
 
Silva, Cleuber Raimundo, D.Sc., Universidade Federal de Viçosa, fevereiro de 
2017. Caracterização termodinâmica de dois spray dryers pilotos e 
avaliação do efeito de compostos de alta massa molar em misturas lácteas 
tradicionais e deslactosada s. Orientador: Antônio Fernandes de Carvalho. 
Coorientadores: Ítalo Tuler Perrone e Pierre Schuck. 
 

O objetivo deste trabalho foi desenvolver um modelo matemático que permita 

avaliar termodinamicamente equipamentos de secagem, por meio de balanço de 

massa e energia, elaborar diferentes compostos lácteos a partir da mistura de 

leite/soro, e avaliar o efeito de compostos de alta massa molar nas propriedades 

físico-químicas e de secabilidade de compostos lácteos tradicionais e sem 

lactose. Para a caracterização termodinâmica foi utilizado um spray dryer com 

atomizador de bico de pressão com capacidade de evaporação de 1 kg de 

água/hora (SD1) e um spray dryer com atomizador de disco, (com capacidade 

de secagem de 20 kg de água/hora (SD2). Para a elaboração dos compostos 

lácteos, foram utilizadas bases lácteas, deslactosadas ou não, elaboradas a 

partir de diferentes proporções de leite e soro, além de maltodextrinas 10 e 20 

DE, inulina e fibra solúvel de milho. O modelo matemático foi válido para 

avaliação de perdas de massa e energia e permitiu comparar a eficiência entre 

secadores por aspersão com diferentes desenhos. O aumento no teor de soro 

nos compostos lácteos e principalmente a aplicação do processo de hidrólise da 

lactose reduziram tanto a qualidade dos pós (cor, temperatura de transição vítrea, 

higroscopicidade, etc..), quanto sua secabilidade (ocorrência de adesão, 

empedramento e maior gasto energético para evaporação da água). A adição 

dos compostos de alta massa molar apresentou efeito positivo sobre as 

propriedades físico-químicas e de secabilidade dos pós, sendo a maltodextrina, 

o composto mais eficiente. 
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GENERAL INTRODUCTION 

 

Spray drying allows the rapid dehydration of aqueous systems without 

having to apply high heat treatment hence it becomes the recommended 

technique for the drying of thermosensitive materials [1]. 

Although it is the most cost-effective drying technique applied in the dairy 

industry, spray drying demands high amounts of energy to promote water 

evaporation from food [2, 3], making it necessary for the development of methods 

and technologies to reduce the costs on the drying process itself. An interesting 

way to evaluate the process consists of determining the efficiency of the 

equipment from a mass/energy balance [4, 5]. This efficiency is dependent on the 

layout of the spray dryer, as well as on the characteristics of the processed 

product. 

Among several dehydrated dairy products, there is the milk, which from 

the nutritional point of view, is considered one of the most complete foods, once 

it contains a high content of proteins, vitamins, minerals and an important source 

of calcium. World milk production totaled 802 million tons in 2014 and, in the 

same year, the milk production in Brazil was  35 million tons [6, 7]. 

Besides milk, whey has gained prominence in the dairy market and 

especially in the dehydrated products sector.  This product represents about 80 

to 90% of the total volume of milk used during cheese making [8]. Whey has been 

considered a costly by-product in the dairy industry, but due to its high nutritional 

value and to environmental consciousness, it has been treated as an important 

raw material. 
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The world production of whey has been of approximately 186 million tons 

in liquid form and 3 million tons in the dry form [6, 9]. 

Whey powder is a hygroscopic product with high tendency to absorb water 

from the air. This results in the agglomeration of particles and/or the adhesion of 

them inside the equipment during and after the drying process. These 

phenomena are known as stickiness and caking, respectively, and occur mainly 

due to the presence of whey lactose in the amorphous state [10–13]. 

The food dehydration by spray drying occurs very quickly not allowing the 

reorganization of the molecules in the amorphous state. This causes the molecule 

to remain in the gummy state, which is highly hygroscopic [14, 15]. The change 

from glassy to gummy is known as glass transition and occurs at a temperature 

called glass transition temperature (Tg), which is specific for each product and 

influenced by the composition and the water content in the final powder product 

[16, 17]. 

An alternative to minimize the stickiness and the caking is the previous 

crystallization of the lactose before drying. This strategy reduces the amorphous 

lactose content and avoids the occurrence of the cited drawbacks [18–20]. 

Controlled crystallization is unnecessary in free-lactose dairy products, 

since this sugar content is low and the risk of spontaneous crystallization is 

minimal. These products serve a wide range of lactose intolerant consumers who 

are characterized as unable or parcially unable to hydrolyze lactose in the small 

intestine [21]. 

The hydrolysis of lactose forms two reducing sugars (galactose and 

glucose) with low molecular weight that, when compared to lactose, present 

higher hygroscopy, higher reactivity (Maillard reaction) and lower glass transition 
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temperature (Tg). These factors make the lactose-free products more difficult to 

dry and more prone to suffer stickiness and caking [22–24]. 

In order to improve the drying process and the final characteristics of the 

powder, the addition of compounds with high molecular weight has been a 

promising approach since carrier agents, encapsulants, body and texture 

improvers can increase the Tg of the food and reduce the occurrence of stickiness 

and caking [1, 11, 25, 26]. The addition of food substances to milk promotes 

changes in the physico-chemical properties and its drying. Under current 

Brazilian legislation, products produced from mixture of milk and other 

substances (dairy or non-dairy food) must contain at least 51% of dairy 

ingredients in the final product [27]. 

The objective of this work was to develop a mathematical model that allows 

for a thermodynamically evaluating of spray dryers, through mass and energy 

balance, to elaborate different products from mixing of the milk and whey and to 

evaluate the effect of compounds of high molecular weight in the physicochemical 

properties and the drying characteristics of traditional and lactose-free dairy 

mixes.  
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1.BIBLIOGRAPHIC REVIEW 

 

1.1 Spray drying 

 

Drying is one of the oldest methods of preservation which has among other 

advantages: to reduce the moisture and water activity of food, to increase the 

microbiological stability of products, to avoid the risk of chemical and biological 

degradation; and to reduce the storage and transportation costs [28]. 

In the manufacturing of dairy products some techniques can be applied 

such as freeze drying, roller drying and spray drying. Freeze drying has as 

advantages the recovery of volatiles and maintenance of the nutritional properties 

of products, however it does demand a high energy consumption (5000 to 10000 

KWh·t-1 of removed water) and high costs of maintenance [29]. However, drum 

drying  has a better energy efficiency (300 to 1000 KWh·t-1 of removed water) 

easy operation and maintainance [2]. On the other hand, some products, such as 

those rich in sugars may be damaged due to direct contact with the heating 

surface [30]. 

In dairy plants, spray drying is more widely applied because it presents 

better energy expenditure ratio when compared to freeze drying (up to 10 times 

lesser) and, differenly from drum drying, it does not show excessive heating of 

the product [28, 31]. 

Spray drying is a unitary operation in which a concentrated liquid (variable 

percentage of solids  according to the product) is atomized and put in contact with 
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a hot air flow also known as drying air. The characteristics of this product 

(temperature, viscosity and feed rate) together with the parameters used in the 

drying process (inlet air temperature, absolute air humity) determine the size of 

the powder particles, which may be varying from 10 μm to 3 mm [28]. The spray 

dried product is characterized as an amorphous liquid with high viscosity (η > 

1014 Pa.s) and, in this state, the liquid has a relative viscosity similar to a solid. 

Therefore, the final product is more commonly referred to as powder [32]. 

The design of the spray dryer as well as the type of atomizer are directly 

related to the final quality of the powder. The main types of atomizers and their 

respective characteristics are shown in table 1. 

 

Table 1 - Characteristics of atomization systems 

Type of atomizer Advantages Disadvantages 

Centrifugal atomizer or 

atomizing disk 

Flexibility, high flow, 

possibility to work with 

high viscosity products 

High investment and 

maintenance cost, increase 

the amount of occluded air 

and decrease the density of 

the powder 

Pressure nozzle 

Reduced amount of 

occluded air, higher  

powder density, better 

fluidity of the powder, 

Elevated maintenance cost 

of the high pressure pump, 

wear of the parts that make 

up the nozzles (especially 

when working with lactose 
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low investment in the 

nozzle 

crystals), limitations on the 

viscosity and solids content 

of the product to be 

atomized 

Two fluid nozzle 

Suitable for sensitive 

products and high 

pressures 

Increase the amount of 

occluded air and decrease of 

the dust density 

Source: [33]; [34]; [35]. 

 

Despite the advantages, spray drying is one of the most costly unit 

operations of the dairy industry (1000 to 2000 Kwh·t-1 removed water) and, the 

main reason for this, is the need to provide latent heat of evaporation to remove 

water or other solvent [2, 3]. Thus, improvments in the operation of spray dryer 

must be performed in order to reduce the cost of production and improve the 

quality of milk powder [28].  

According to [4], it is indispensable to know the energy consumption of the 

equipment and that this consumption is the key parameter in the evaluation of 

the efficiency of the spray dryer. The way to assess it can be by calculating the 

energy specific consumption (ESC in kg·kg-1), which is defined as the amount of 

energy required to evaporate one kilogram of water. Another way to evaluate the 

efficiency of the process is to know the mass and energy losses of the equipment, 

the energy expenditure necessary to produce one kilogram of powder, or to 

evaluate the final cost of the product [5, 29]. 
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In order to perform the dehydration of the food, it is important to effectively 

apply the steps that come prior to drying, such as membrane concentration and 

vacuum concentration in multiple stages, the choice of these techniques being 

dependent on the properties of the product to be subject to spray drying [29]. 

These techniques are responsible for significantly reducing energy costs in 

obtaining the powder, since the application of membrane may be up to 450 times 

lesser than in spray dryer (dependent on the kind of membrane) and vaccum 

evaporation up to 20 times [36–38]. 

Dairy products are considered thermally sensitive and their functional and 

nutritional properties can be negatively influenced by the processes applied in the 

evaporation of water [39]. In Brazil, professionals in the dairy sector obtained 

knowledge on drying from an empirical way, without a scientific basis involved in 

the process. Drying of milk is already well established by companies, however, 

the production of its derivatives and new products in general indicate the need 

for evaluation and modification of the process as well as greater control of the 

drying parameters. These actions aim to produce a good quality product, increase 

yield and reduce energy expenditure. 

 

1.2 Milk 

 

Globally, on the market, the demand for dairy products is constant 

throughout the year, causing surplus in times of high productivity to be sold at a 

lower price. As a result  the excess of the raw material does not allows the 
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productive growth for  rural properties [40]. An alternative to generate greater 

profitability to it is the transformation of the product to its dehydrated form. 

Milk is defined as the product of complete and uninterrupted milking, under 

hygienic conditions, of healthy, well fed and rested cows [41]. Milk nutritional 

quality as well as its derivatives is widely known, what makes it very important for 

human nutrition. 

Milk is considered to be one of the most complete foods because it has a 

high content of proteins, vitamins and minerals as well as being an important 

source of calcium. This food is widely marketed and consumed by populations 

worldwide and is especially recommended for children and for the elderly [42, 

43]. 

From a physico-chemical point of view, milk can be described as a colloidal 

system made up of proteins, or even a solution of lactose, soluble protein, 

minerals, vitamins and other components. In addition, the milk can be understood 

as an emulsion consisting of a dispersed phase (fat) and a continuous aqueous 

phase (whey) [44].  

Brazil was the fifth largest producer of milk in the world in 2014, with a 

production of approximately 37.1 million tons, representing an increase of 5.1 % 

in production, compared to  2013 [6, 45]. Its processing and its transformation 

into derivatives (dairy) have been for ages alternatives to increase its shelf life. 

Among these alternatives is the drying process, which aims to increase the 

stability of the product. 
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1.3 Whey 

 

Whey is another product that has gained interest in the world’s dairy 

market, and yet until the mid-1990s was considered to be in some respects an 

undesirable by-product of the dairy industry. It is defined as the aqueous portion 

of milk, which separates from the clot during the manufacture of cheese or casein 

[6, 46, 47]. 

Whey is an opaque and greenish-yellow liquid containing about 55 % (w/w) 

of the solids and 80 to 90 % (w/w) of the milk volume used in the cheese making 

[8]. 

In the past, whey was considered an onerous by-product and was 

dispersed over the fields or used for animal feed. Due to the enforcement of 

stricter environmental laws, high nutritional quality of whey components (proteins, 

lactose, etc.) and the development of fractionation techniques, whey has been 

best used as an ingredient or an ingredient precursor [48]. 

Worldwide whey production amounted to about 186 million tonnes in net 

form or 12 million tonnes of solids [9].  

Two types of whey are distinguished according to the procedure used for 

the separation of the curd: sweet whey derived from the enzymatic coagulation 

of milk (pH 6.3 - 6.6) and acid whey coming from the acidic coagulation of milk 

for the manufacture of casein or cheeses, such as Cottage, Creamy cheese, etc 

(pH 4.3 - 4.6) [46]. 



Chapter 1 - Bibliographic review 

 

 

11 

 

Serum proteins are also known for high nutritional value and applications 

in food products, such as β-lactoglobulin (β-Lg), α-lactalbumin (α-La) and bovine 

serum albumin (BSA) [49]. These proteins are commonly used in the food 

industry as ingredients, which have functional properties due to their high 

solubility, water absorption, gelation and emulsifying capacities [50–52]. 

Serum proteins also have nutritional functionality. They stand out for 

having in the structure, essential amino acids and bioactive peptides that confer 

several health benefits. Among other benefits, they help control muscle mass, 

reduce body fat, improve the intake process, act as insulin, reduce infection, 

healing, improve learning and reduce aging [53–55].  

Several alternatives of use can be applied to whey by industries, including 

the preparation of whey powder. The main unit operations involved in the 

production are membrane separation, vacuum evaporation, crystallization and 

spray drying. Because it is a product which is difficult to dry (due to the presence 

of lactose in the amorphous phase), the crystallization process of this sugar, prior 

to the drying process is indicated, because it is related to the reduction of energy 

expenditure, quality and increase of final product yield, once this operation aims 

to decrease the problems of stickiness and caking [18, 56]. 

 

1.4 Dairy mixes 

 

In the dehydrated dairy market, there is a range of products that have 

gained commercial attention. They have been referred to as milk powder 
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analogues, or as a formulation, or as dairy mixes as is the case of Brazil. These 

products are usually made from the mixture of milk and other food substances 

and can be consumed directly or used as food ingredient applications [27, 57, 

58]. 

The proportion of each component in the food depends on the desired 

characteristics in the final product, the legislation of each country and the specific 

requirement of consumers.  

In Brazil, dairy mixes are defined as a powder product resulting from the 

mixing of milk and dairy product(s) and; or food substance(s) suitable for feeding 

through a technologically appropriate process. Dairy ingredients must represent 

at least 51% of the total ingredients of the product [27].  

Dairy mixes can basically be divided into three types: Infant formulas, 

which are those intended for children of different ages; the enriched mixes 

(products added with some health-promoting substance), which are intended for 

consumers with specific ingestion needs; and there are low-cost dairy mixes, 

which aim to serve a public of lower purchasing power and who are looking for a 

cheaper product. Some exemples of these products are present in the figure 1. 

Several companies operating in Brazil are producers of these dairy mixes, 

such as Alibra, Aurora, Danone, Itambé, Nestlé, Piracanjuba, Rofran Foods e 

Tangará [60–67]. 

The production of dairy mixes in which occur  addition of whey to milk is a 

challenge for industry since the presence of whey may negatively influence the 

behavior of the product during drying and storage process due to the presence 
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of lactose in the amorphous form, which infers to the product increase in its 

hygroscopy capacity, increase of mass losses and energy expenditure, in 

addition to reducing the glass transition temperature [22, 68, 69]. 

 

 

Figure 1 - Dairy mixes with different formulations 
1- infant formula for children in breastfeeding ( DHA and AA added); 2- infant 
formula for children from 10 months ( DHS and prebiotics added); 3- dairy mix 
containing maltodextrin enriched with iron and vitamins A, C and D; 4- Lactose-
free dairy mix (added with vitamins and minerals). Source: [59–62] 

 

1.5 Glass Transition 

 

Most foods with reduced moisture content are in the amorphous or partially 

amorphous state. The amorphous matrix may exist as a highly viscous glassy 

structure or as a more liquid gummy structure [16].  

The material in glassy state is in the metastable zone characterized by an 

unstable equilibrium region which can be permanently altered due to slightest 

disturbance [70, 71]. This alteration (from the glassy to the gummy state) is called 

glass transition and occurs at a determined temperature known as the glass 

transition temperature (Tg) [16, 72]. 
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The Tg is specific to each product and is influenced by its composition and, 

mainly, by moisture content. Water acts as a plasticizer material increasing the 

intermolecular space or free volume, decreasing the local viscosity and 

increasing the mobility of molecules [73, 74]. 

The changes that occur in the product, due to Tg, can result in the 

phenomenon of stickness, collapse and crystallization during food processing 

and storage. These phenomena are described as dependent on time-

temperature and on humidity [25, 75–77]. 

In a given product, the lower the Tg, the more likely it is to be subject to the 

phenomena of stickiness and caking that are directly associated with the 

tendency of some materials to agglomerate and, or to adhere when in contact 

with a surface [23, 24]. 

Stickiness often occurs in foods rich in sugars with low molecular weight, 

which, in the glassy state, are generally very hygroscopic and have low glass 

transition temperatures [11, 12].  

For several reasons, it is essential that the sugar remain in the glassy state 

during handling and storage (Tg above room temperature) because the molecular 

mobility of the material in this state is extremely low [78, 79].  

In the production of dehydrated dairy products, evaporation of water during 

spray drying is so rapid that, despite saturation, lactose can not crystallize, 

remaining therefore in the final product as amorphous lactose thus favoring the 

occurrence of problems during and after drying [80, 81]. 
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To avoid stickiness and caking lactose must be pre-crystallized as α-

lactose monohydrate, a non-hygroscopic form of lactose or may be added 

products with high molecular weight. Both actions are able to improve some 

properties of the powders such as hygroscopy, the final yield and to increase the  

glass transition temperature of the food [11, 19, 20, 82].  

 

 

Figure 2 - Change from glassy to crystalline state through glass transition 
where the product is in the gum form. T = system temperature and Tg = glass 
transition temperature. 

 

1.6 Lactose Crystallization  

 

Lactose is a disaccharide consisting of one molecule of galactose and one 

of glucose linked together by a β-1,4 glycosidic bond and represents 70 % (w/w) 

of whey solids. Its presence contributes to the nutritional value of milk and dairy 
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products and can affect the texture of certain frozen or concentrated products for 

being involved in changes in color, taste and texture of food [83].  

Lactose has a low degree of sweetness compared to other sugars. A 

sucrose solution at 1, 5, 10 and 20 % (w/w) has the same sweetening power as 

a lactose solution at 3.5, 15, 30 and 33 % (w/w), respectively [2]. When in solution, 

it presents itself under two forms of diverse characteristics, alpha and beta in 

figure 3.  

 

 

Figure 3 - Chemical structure of lactose isomers

 
 

From a technological point of view, what differs α-lactose from β-lactose is 

the distinct solubilities: where α-lactose and β-lactose show solubilities of 7 g/100 

g and 50 g/100 g of solution, both at 15°C, respectively. This property is an 

important factor in the crystallization of lactose as far as milk or whey 

concentration goes, the alpha isomer is the first to reach the saturation condition 

[84].  
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After saturation, an imbalance occurs between the proportions of α- and 

β-lactose favoring the mutarrotation phenomenon. During this phenomenon, part 

of β-lactose is converted into α-lactose or vice versa, in order to restore the mutar-

rotate balance between them [85]. 

Lactose can be found in the amorphous or crystalline state, the latter being 

characterized by its greater stability both for processing and shelf life [10, 86]. 

Crystal is one of the forms of space arrangement of an extremely regular 

substance, and this regularity at the molecular level gives rise to the polyhedral 

structure characteristic of each crystal. The size, shape and homogeneity of 

crystals are important in the technological aspect [87].  

The crystallization process can be divided into three stages. The first 

phase is the generation of the motive force, which occurs due to supersaturation 

obtained by evaporation of the solvent or cooling of the system. The second step 

of the crystallization process is nucleation. This can occur occasionally as a result 

of the random association of solute molecules due to the chaotic movement of 

the solution. The third and final phase occurs due to the growth of the crystals. 

The increase in particle size (crystal) is related to two steps, the diffusion in which 

the solute migrates from the solution towards the interface of an adsorption layer, 

and the  coupling of the molecules to the crystalline reticulum, in a  First-rate 

reaction [88].  

The crystallization is directly related to the final quality of this sugar-rich 

product like condensaded milk and whey powder.  In spray drying, for example, 

the lactose molecule tends to change phase during the drying and storage 
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process. As the evaporation of the water is fast, it does not give time for the 

molecule to be ordered, therefore, the product is subject to problems of stickiness 

and caking, that can occur during the processing and/or storage [14, 15]. 

One way to avoid these problems consists of reducing to the maximum the 

amount of lactose in its amorphous phase by controlling the crystallization 

process. By performing the controlled crystallization before the dehydration 

process drying properties can be improved and consequently reducing the 

problems already mentioned [18–20]. 

 

1.7 Maltodextrin 

 

Another alternative that has been used to improve the drying process is 

the addition of  high molecular weight compounds, being  maltodextrin the most 

utilized for this purpose [89]. 

Maltrodextrins are products derived from the hydrolysis of starch, formed 

by linear amylose and branched chain amylopectins. They are considered to be 

D-glucose polymers, linked by α- (1,4) and α- (1,6) and are defined according to 

their degree of hydrolysis (DE = Dextrose equivalent). DE indicates the 

percentage of reducing sugars present in the maltodextrin estimated as dextrose 

based on dry matter [90, 91]. According to [92], maltodextrins have DE < 20, 

because above this value, the product is considered to be a syrup of solids or 

dextrose. 
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Maltdextrin is marketed in the form of a white powder or concentrated 

solutions being cheaper than other hydrocolloids added in food. Compared to 

native starches, it is more soluble in water and has a pleasant taste and a soft 

sensation in the mouth [93]. 

Maltodextrin performs multiple functions, in the texture, formation of films 

and in the improvement of the taste of foods. It is also used as an anti-oxidant, 

helper in the dispersion and solubility of powders, inhibitor of lactose 

crystallization by increasing of solids content and reducer of Maillard reaction [26, 

94–96]. 

Maltodextrins are high molecular weight compounds and their presence in 

foods helps in the improvement of the drying process since the food 

hygroscopicity is reduced while the glass transition temperature is increased. It 

implies in the reduction of stickiness and caking problems that may occur during 

and after the drying process. Several studies have shown the beneficial effect of 

the addition of maltodextrins on the increase of Tg and on the improvement of 

drying process [11, 97–100].  

 

1.8 Inulin 

 

The addition of soluble fibers to foods has also been carried out in order 

to improve its nutritional and technological properties.Inulin that is a type of 

fructooligosaccharide (FOS) formed by fructose monomers containing a glucose 

unit at the endof chain linked by β-2-1 glycosidic bonds [101, 102]. 
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Inulin has a high degree of polymerization (number of monomers in the 

chain) compared to other fructooligosaccharides and can contain up to 60 

monomers [103] being considered an unconventional sugar and classified as 

food ingredient [104–106]. 

Inulin is naturally distributed in several foods of a balanced diet (garlic, 

banana, onion, etc.), however its amount in these foods is not significant enough 

to promote beneficial effects to health [107]. 

Commercially, this fiber has mainly been obtained from chicory (Cichorium 

intybus), Dahlia (Dahlia pinuata) and Jerusalem artichoke (Helianthus tuberosus) 

[102]. After extraction and drying, inulin appears as a white powder with a neutral 

taste and odor and can be added to foods without greatly modifying the viscosity, 

appearance and flavor [108]. 

Fibers are substances not digestible by the enzymes of the human 

organism, being classified as a prebiotic food since they serve as substrate to the 

microorganisms present in the large intestine [109]. Some health benefits have 

been reported as for the consumption of inulin, such as blood cholesterol reducer, 

glycemic index regulator, and anti-carcinogenic agent [110–112].  

The relationship between food and health has been widely studied favoring 

the increase of commercial interest in this niche market (functional foods) [113, 

114]. 

Not always the food consumed naturally contains the minimum amount of 

fibers to be ingested, which makes it interesting for the addition of these 

compounds as a food ingredient to reach the beneficial effects [107]. 
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From the technological aspect, inulin has been used to replace sugar or 

fat, with the advantage that it does not result in caloric increase and alteration of 

taste [115].  

Inulin has a positive effect on the texture of the food and when it is found 

in high concentrations presents gelation properties which reduces the process of 

syneresis in dairy products, the water activity and the phenomenon of 

crystallization in some types of products [116]. 

Since inulin is a high molecular weight compound and has high glass 

transition temperature, it can positively influence the drying of the food by 

reducing  problems during the process. However, there are no reports studies 

evaluating the effect of the addition of fibers on the Tg and on the drying properties 

of foods. 

 

1.9 Soluble corn fiber 

 

Soluble fibers obtained by the partial hydrolysis of maize are also added 

to foods and consists of the mixture of α-1,4; α -1,6 and α-1,3 linked by glycosidic 

bonds [117]. 

As inulin, these substances have been reported as promoting health 

benefits and improving the technological properties of foods. The intake of soluble 

corn fibers can reduce the appetite by increasing the sensation of satiety; to acts 

in reducing the speed of the glicemic and insulinemic response to the stimuli 

based on carbohydrates [118, 119]. 
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The fibers are directly related to the process of digestion and transport of 

food in the body and the increase of its consumption has been stimulated for the 

prevention and treatment of constipation and hemorrhoids. Supplementation with 

corn fiber in the diet, together with a controlled diet, is able to reduce the serum 

total cholesterol (TC), total triacylglycerol (Tg) and very low density lipoprotein 

cholesterol (VLDL-C) in the bodies of men with hypercholesterolemia [120]. 

These fibers were also tested in rat feeding and showed a significant effect on 

the reduction of plasma and liver cholesterol concentrations [121]. 

Solubles fibers are fermentables and, when ingested, reduce fecal 

putrefactive compounds, increase the fecal volume and increase the 

concentration of bifidobacterias, reducing intestinal discomfort [122]. 

In the technological point of view, soluble fibers have good appearance 

when used in different products and have good stability to heat, pH and 

processing stresses. They may exhibit different characteristics when it comes to 

the gelling ability and influence on viscosity. In this way, the choice of fiber type 

will depend on the characteristics desired in the final product [123]. The soluble 

fibers can present different weight molecular, according to their origin and the 

form of obtaining. The high molecular weights have the characteristic to replace 

the fat in food, improve its texture and increase the Tg of produtcs [11, 82]. 

Despite the great demand for different types of dairy mixes and severals 

the references made to the compounds of high molecular weight as drying 

process improvers, studies are still scarce with soluble fibers, which made it 
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interesting to evaluate the use of these substances in traditional and free-lactose 

products. 
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CHAPTER 2 

THERMODYNAMIC CHARACTERIZATION OF SINGLE-STAGE 

SPRAY DRYERS: MASS AND ENERGY BALANCES FOR MILK DRYING 

 

Abstract 

Spray drying requires high amount of energy for the preparation of dairy products. 

Even so, the wide majority of Brazilian industries do not know the efficiency of 

their equipment, as well as the final energy cost of production. In order to provide 

scientific material to these companies and the academic environment. This work 

aimed to create a mathematical model that allows to know the thermodynamic 

efficiency of spray dryers, through mass and energy balance. For this, the drying 

of whole milk in two different pilot single stage equipment was evaluated. 
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ABSTRACT 

 

Spray drying is an efficient unit operation applied in food drying that 

demands a high amount of energy compared to vacuum evaporation and 

membrane filtration. The objective of this work was to present a mathematical 

model-like basis for the construction of mass and energy balances. For this 

purpose, milk drying in two lab-scale single spray dryers with different evaporative 

capacities have been used as examples. The values of the absolute humidity, the 

mass and energy losses, the ESC (energetic specific consumption) and the 
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efficiency of the process were obtained by calculations developed in this work. 

The mathematical model was valid for the evaluation of mass and energy losses, 

and it allowed us to compare the efficiencies of spray dryers with different designs. 

From this model, it is possible to compare different drying process and dryers. 

Keywords : Mathematical modeling, mass and energy balances, energy 

consumption, spray drying. 

 

1.INTRODUCTION 

 

In 2014, the global milk production was 802 million tons, with an increase 

of 3.3% compared to the production in 2013 [6]. Since milk is perishable, the 

surplus production is designated for the fabrication of dehydrated dairy products 

in order to improve its conservation over time. However, in 2014, approximately 

50 million tons of milk were designated for the production of whole milk powder 

[6]. 

In freeze drying the energy consumption is from 5000 to 10000 KWh·t-1 of 

removed water and in drum drying is from 300 to 1000 KWh. t-1 of removed water 

[2, 29, 30]. Although there are advantages to both techniques, spray drying is still 

the most used in the dairy industry for milk powder production. The energetic 

consumption of spray drying is approximately ten-fold lower than that of freeze 

drying, and contrary to the drum drying technique, the product does not reach 

high temperatures during water evaporation [28, 31]. 
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In spray drying, milk is pulverized in droplets inside a drying tower where 

the product comes in contact with heated air. Due to an increase in the surface 

contact between the milk and the air, water is evaporated quickly without 

excessive heat treatment, during this operation [124]. Thus, milk powder with low 

water activity (aw= 0.18 to 0.22) is formed without excessive losses of the 

nutritional and sensorial characteristics of milk [125]. 

Although spray drying is largely applied to the manufacturing of dried dairy 

products on an industrial scale, the energy consumption of this technique is still 

considerable (1000 to 2000 Kwh·t-1 removed water) [2]. Thus, the appropriate 

operation of spray dryer should be performed in order to reduce the cost of 

production and improve the quality of milk powder [33, 58, 124, 126]. 

Sustainability issues and reduction of energy costs are the next challenge for the 

dairy industry [127, 128]. 

The final cost of the milk powder formulas is associated with the losses 

(mass and energy) that occur during the drying process [129]. The mass losses 

are related to the adherence of milk particles on the internal surface of the drying 

tower or to transport of the particles by the air flow. In this study the thermal 

energy losses can be estimated as the sum of dissipated energy through the 

equipment surface and the energy not used in the conversion of water to vapor. 

The mass and energy balance is a mathematical tool that allows the 

evaluation of the mass and the energy losses in the process of spray dryer 

dehydration. In addition, this tool makes possible the estimation of the production 

cost, the comparison of the efficiency of different equipment and the 
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determination of the amount of energy necessary to evaporate 1 kg of water from 

the product. The application of the mathematical tool in dairy industry ensures the 

better control of the dairy powders technology [130, 131]. 

In this paper, we present a mathematical basis for construction of the mass 

and the energy balance for the milk drying process using single-stage spray dryer 

equipment. It aims to create a protocol that will work as a support for industries 

that plan to evaluate the production efficiency of their spray dryers. For this, we 

will use as an example the milk drying in two lab-scale spray dryers with different 

evaporative capacities. 

 

2.MATERIAL AND METHODS 

 

The experiments were performed using two lab-scale single-stage spray 

dryers. Table 1 summarizes the principal characteristics of each equipment. 

 

Table 1 - Characteristics of spray dryers 

Spray dryer Atomizer Evaporative capacity 
(kg water·h -1) 

Superficial area 
(m2) Model Fabricator 

SD1 
Pressure 
nozzle 

1 0.51 MSD 1.0 
Labmaq, 

Brazil 

SD2 Rotating 
disc 

20 7.54 Minor 
Production 

Niro 
Atomizer, 

GEA, 
Germany 
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The relative humidities and temperatures were measured as presented in 

the scheme (Figures 1, 2 and 3) using a thermohygrometer (Rotronic, Hydropalm). 

The air velocity measurements were performed using an anemometer (Air 

Velocity Transducers, model TSI Alnor 84455) whose catheter was introduced in 

5 different positions of the section of straight cylindrical ducts [35]. 

 

 

Figure 1 - Scheme of single stage spray dryers. SD1: Labmaq, Brazil; SD2: Niro 
Atomizer, GEA, Germany 
 

 

 

  



Chapter 2 - Thermodynamic characterization of single-stage spray dryers: mass and energy 

balances for milk drying 

 

 

30 

 

2.1 Validation of mathematical models and evaluation of optimal efficiency 

of operation of spray dryers 

 

2.1.1 Evaporation of water  

 

Water heated at 40°C was injected into SD1 or SD2 where it was 

evaporated in the presence of heated inlet air at 165 ± 5°C. 

 

 

Figure 2 - Scheme of mass and energy balance calculations applied to water 
drying 

 

The flow rate of the water was adjusted in order to maintain the outlet air 

temperature at approximately 90 ± 3°C. The process was executed with three 

repetitions on different days. 
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2.1.2 Drying of milk 

 

Concentrated whole milk (40% dry material) at 40°C was injected into SD1 

or SD2 where it was dehydrated with inlet air at 165 ± 5°C. 

 

 

Figure 3 - Scheme of mass and energy balance calculations applied to milk 
drying 
 

The flow rate of milk was adjusted in order to maintain the outlet air 

temperature at approximately 95 ± 3°C to SD1 and 90 ± 3°C to SD2. A ll 

experiments were carried out with three repetitions on different days. 
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3.RESULTS AND DISCUSSION 

 

3.1 Balance of mass-energy using water evaporation as reference 

 

3.1.1 Mass balance for water evaporation: validation of the mathematical model 

 

To create a mathematical model for the evaporation process in spray 

dryers, the simpler condition will be tested. Before promoting the drying of dairy 

products, simple water evaporation will be performed. This means that in the 

equipment inlet, water will be injected, and only vapor will be recovered in the 

outlet of the spray dryers. 

During the process of water evaporation, all water entering the equipment 

is assumed be converted to vapor, i.e., no mass loss occurs. Thus, the mass 

balance under this condition has a finality to verify the accuracy of the 

mathematical equations and ensure that the measurements with the 

thermohygrometer and anemometer (temperature, relative humidity and air 

velocity) are consistent. 

The first step of mass balance consists of calculating the flow rate of humid 

air (Fh,air; kg air·h-1), which is similar in both the input and the output of the 

equipment. However, this parameter is preferably calculated from the outlet data 

since in some spray dryers, the air can enter by small slots or holes close to the 

atomizer, thus resulting in underestimation of the data. 
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Fh,air is calculated from the air velocity measured by an anemometer in the 

outlet (Va,out; m·h-1), the area of the transversal section of outlet tubing (Aout; m2) 

and the air density (ρ; kg·m-3): ܨℎ,�௜௥ = ��,௢௨௧�௢௨௧� eq. 1 

 

where ρ is assumed be constant and equal to 1.0 kg·m-3.   

The second step consists of determining the mass of water contained in 

the air (Mwa,out; kg·h-1). Mwa,out can be estimated from the absolute humidity of the 

outlet air (AHout; kg water·kg dry air-1) and the flow rate of humid air (eq. 2) [132]. ���,௢௨௧ = ℎ,�௜௥��௢௨௧ሺͳܨ + ��௢௨௧ሻ−ଵ      eq. 2  

 

The dry air flow rate (Fd,air; kg·h-1) is calculated by subtraction of the flow 

rate of humid air and the water mass contained in the outlet air. By combining 

equations 1 and 2, Fd,air  can be written as: ܨௗ,�௜௥  =    ℎ,�௜௥ – ���,௢௨௧ܨ
ௗ,�௜௥ܨ       = ��,௢௨௧�௢௨௧�ሺͳ + ��௢௨௧ሻ−ଵ eq. 3 

 

The mass of water presented in the inlet air (Mwa,in; kg·h-1) is the product 

of Fd,air and the absolute humidity of inlet air (AHin, kg water·kg dry air-1): ��,௜௡ = ௗ,�௜௥��௜௡ ��,௜௡ܨ  =  ��௜௡��,௢௨௧�௢௨௧�ሺͳ + ��௢௨௧ሻ−ଵ eq. 4 

 



Chapter 2 - Thermodynamic characterization of single-stage spray dryers: mass and energy 

balances for milk drying 

 

 

34 

 

The total water mass entering the equipment (Mtw,in; kg·h-1) is calculated 

by addition of the water injected into spray dryer (Mw,inj; kg·h-1) and the amount of 

water carried from the inlet air (Mwa,in; kg·h-1): �௧�,௜௡ = ��,௜௡௝ + ���,௜௡    �௧�,௜௡ = ��,௜௡௝ + [��௜௡��,௢௨௧�௢௨௧�ሺͳ + ��௢௨௧ሻ−ଵ ] eq. 5 

 

In the outlet, all water mass evaporated is eliminated by air in the vapor 

form. The total mass of evaporated water (Mtw,out; kg·h-1) is determined by 

combination of equations 1 and 2: �௧�,௢௨௧ = ��,௢௨௧ = ௗ,�௜௥��௢௨௧ eq. 6 �௧�,௢௨௧ܨ  =  ��,௢௨௧�௢௨௧���௢௨௧ሺͳ + ��௢௨௧ሻ−ଵ   eq. 7 

 

The final step for mass balance (Δmass; kg·h-1) is performed by subtracting 

the total of the water exiting the spray dryer (Mtw,out; eq. 7) and the water total 

mass entering the equipment (Mtw,in; eq. 5), thus:  Δ௠�௦௦  = �௧�,௢௨௧ − �௧�,௜௡      eq. 8 

 

Using the mathematical treatment presented above, the mass balance 

(Δmass = 0) is according to the theoretical assumption for water evaporation. In 

other words, the mathematical model, as well as the measurements carried out 

with the anemometer and the thermohygrometer, were consistent with the reality 

of the drying procedure. In our case, the mass balance was equal to zero, but 
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some variations can be found due to errors in measurements and numeric 

rounding. 

Table 2 shows the parameters measured in the spray dryers during the 

water evaporation and the mass balance of process. 

 

Table 2 - Inlet and outlet parameters used in mass balance for water 

evaporation 

Equipment 

Inlet parameters Outlet parameters  

AHin* 

(kg water·kg dry air
-1) 

Mwater,inj* 

(kg·h-1) 

Mtotal water,in 

(kg·h-1) 

Aout 

(m2) 

AHout* 

(kg water·kg dry air
-1) 

Vair,out* 

(m·h-1) 

Mtotal water,out 

(kg·h-1) 

Δmass 

(kg·h-1) 

SD1 1.63 x 10-2 
  

 

8.30 x 10-1 1.69 x 100 9.62 x 10-4 3.20 x 10-2 5.65 x 104 1.69 x 100 0.00 

SD2 1.34 x 10-2 7.68 x 100 1.27 x 101 7.24 x 10-3 3.39 x 10-2 5.35 x 104 1.27 x 101 0.00 

* Measurement performed in triplicate with standard variation inferior to 5 %. 

 

3.1.2 Energy balance for water evaporation 

 

Since the water is in a completely free state, meaning that it is not linked 

to any substrate, the energy balance has a finality, permitting the determination 

of the minimal energy consumed by each equipment. This approach allows a 

comparison of the energetic performance of spray dryers with different 

evaporative capacities and designs without the interference of the properties of a 

food matrix. In food, the water may be linked or partially linked to the main food 

components. This water does not act as a solvent; rather, it presents resistance 
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to mechanical strength in addition to low molecular mobility and different dielectric 

properties of free water, thus making the drying process more difficult [133]. 

In addition to mass balance, in the energy balance, the calculation can be 

divided into energy entering and leaving the spray dryer.  

The total inlet energy (εt,in; kJ·h-1) is calculated by the addition of the energy 

of the hot inlet air (εa,in; kJ.h-1) and the energy of water entering the drying tower 

(εw,in; kJ·h-1): �௧,௜௡ =  ��,௜௡  + ��,௜௡     eq. 9 

 

The energy of the hot air inlet (εa,in) is given by multiplication between the 

air enthalpy (Ea,in; kJ·kg-1) and the flow rate of the air (from eq.3):  

 ��,௜௡ = ௗ,�௜௥ܨ௜௡,�ܧ    eq. 10 

 

where Ea,in is calculated from the temperature (Ta,in) and the absolute humidity 

(AHin) of the inlet air: ܧ�,௜௡ = �ܶ,௜௡ሺͳ.Ͳͳ + ͳ.ͺͻ��௜௡ሻ + ʹͷͲͲ��௜௡  eq. 11 

 

By substituting equations 3 and 11 into 10, the εa,in can be rewritten as:  ��,௜௡ = [ �ܶ,௜௡ሺͳ.Ͳͳ + ͳ.ͺͻ��௜௡ሻ + ʹͷͲͲ��௜௡]  [��,௢௨௧�௢௨௧�ሺͳ + ��௢௨௧ሻ−ଵ] 
eq. 12  
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The second term of equation 9, i.e., the energy of water entering into the 

drying tower (εw,in), is determined from the product of flow rate of water injected 

into spray dryer (Mw,inj; kg·h-1), specific heat (Cpw= 4.18 kJ·°C -1·kg-1) and its 

temperature (Tw,inj): 

 �௧,௜௡ = ��,௜௡௝�௣� �ܶ,௜௡௝    eq. 13  

 

By substitution of equations 12 and 13 into equation 9, the total energy 

entering the system can be understood as:  �௧,௜௡ = [ �ܶ,௜௡ሺͳ.Ͳͳ + ͳ.ͺͻ��௜௡ + ʹͷͲͲ��௜௡]  [��,௢௨௧�௢௨௧�ሺͳ + ��௢௨௧ሻ−ଵ] + ��,௜௡௝�௣� �ܶ,௜௡௝     eq. 14 

 

The total outlet energy (εt,out; kJ·h-1) is deduced analogously to that 

demonstrated for εt,in using the outlet data. Therefore, εt,out can be written as:  �௧,௢௨௧  =  ��,௢௨௧ + ��,௢௨௧  �௧,௢௨௧ = [T�,௢௨௧ሺͳ.Ͳͳ + ͳ.ͺͻ��௢௨௧ሻ +  ʹͷͲͲ��௢௨௧]  [��,௢௨௧�௢௨௧�ሺͳ +��௢௨௧ሻ−ଵ] + �௧�,௢௨௧�݌�T�,௢௨௧     eq. 15 

 

where Mtw,out (kg·h-1) denotes the mass of water in the vapor form. 

Substituting equation 6 into 15 yields: �௧,௢௨௧  = [��,௢௨௧�௢௨௧�ሺͳ + ��௢௨௧ሻ−ଵ]  [ �ܶ,௢௨௧ሺͳ.Ͳͳ + ͳ.ͺͻ��௢௨௧ሻ + ��௢௨௧ሺʹͷͲ  T�,௢௨௧ሻ]   eq. 16�݌� +
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From the inlet (εt,in; eq.14) and outlet (εt,out; eq.16) data, it is possible to 

determine the energy loss (εloss; in percentage): 

�௟௢௦௦  = (ͳ − �೟,೚ೠ೟ �೟,೔೙ ) x ͳͲͲ      eq. 17 

 

This parameter allows evaluation of the amount of energy that is dissipated 

from spray dryer or simply wasted during drying process. Another parameter that 

allows comparison of the drying efficiency of different equipment is the energetic 

specific consumption (ESC; kJ·kg-1 evaporated water), which is defined as the 

amount of energy necessary to evaporate 1 kg of water [5]: ܵܧ� =  �௧,௜௡�௧�,௢௨௧  
= �ܵܧ  �೟,೔೙[௏�,೚ೠ೟஺೚ೠ೟�஺�೚ೠ೟ሺଵ+஺�೚ೠ೟ሻ−1]   eq. 18 

 

The energetic efficiency of the process (εef) can be estimated by division 

of the ESC value (eq. 17) by the latent heat of vaporization of water (Lw = 2337.46 

kJ·kg-1): �௘௙  = ாௌ஼௅�   eq. 19 

This allows an estimation of how much more energy was expended in 

relation to the theoretical value (Lw). The higher the value of εef is, the lower is the 

efficiency of the drying process. 
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All parameters necessary to calculate the energetic loss (εloss), the 

energetic specific consumption (ESC) and the energetic efficiency of the process 

(εef) are displayed in Tables 2 and 3 for SD1 and SD2. 

 

Table 3 - Energetic balance for water evaporation 

 Inlet data Outlet data  

Equipment 
T°Cair,in* 

(°C) 

T°Cwater,inj*         

(°C) 

εtotal,in 

(kJ·h-1) 

T°Cair,out* 

(°C) 

εtotal,out 

(kJ·h-1) 

εloss 

(%) 

ESC 

(kJ·kg-1) 
εefficiency 

SD1 1.63 x 102 4.00 x 101 1.12 x 104 9.12 x 101 9.89 x 103 12.24 6.70 x 103 2.87 

SD2 1.70 x 102 4.00 x 101 7.98 x 104 8.82 x 101 7.51 x 104 8.76 5.93 x 103 2.55 

* Measurement performed in triplicate with standard variation inferior to 5 %. 

 

The heat balance shows a difference between inputs and outputs (εloss) of 

approximately 12% and 9% for SD1 and SD2, respectively. This difference is 

related the heat loss from not insolated parts of equipment and probable errors 

of calculation and measurements. Although SD2 shows a superficial area (7.54 

m2) larger than SD1 (0.51 m2), the non-insolated parts of each equipment present 

100% and 20%, respectively. Additionally, SD2 shows the best value for ESC 

and εef, indicating greater use of energy by this equipment. 

The equipment (SD1 and SD2) presented high energy loss compared to 

industrial spray dryers, which present losses between 3 and 5% [29]. In addition 

to the heat isolation capacity, the size of equipment may influence the energy 

loss and the efficiency [5]. 
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3.2 Milk drying 

 

In the previous section, the mathematical model and the measurements 

performed using an anemometer and a thermohygrometer were validated by 

mass balance. Furthermore, the ideal energetic operation of the spray dryers was 

evaluated using an energetic balance for water evaporation. 

In this section, the mathematical approach used for water evaporation in 

spray dryer will be used for balance of mass and energy for milk drying. 

 

3.2.1 Mass balance for milk drying 

 

The total content of solids entering into drying tower (Mts,in; kg·h-1) is given 

by multiplication between the flow rate of concentrated milk (Fm,inj; kg·h-1) and its 

total solids (TSm, kg solid·kg concentrated milk-1): �௧௦,௜௡ =  ௠,௜௡௝TS௠    eq. 20ܨ 

 

In the outlet, the amount of solids after drying (Mts,out; kg·h-1) is calculated 

from the amount of powder milk recovered (Mp; kg), its total solids (TSp; kg solid·kg 

concentrated milk-1) and the total time of the drying process (t; h): �௧௦,௢௨௧ = ቀ ெ೛TS೛௧ ቁ   eq. 21 
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The mass balance is calculated as the difference between the amount of 

solids recovered after drying (Mts,out; eq. 21) and the mass of solids injected into 

equipment (Mts,in; eq.20): Δ௠�௦௦  = �௧௦,௢௨௧  −  �௧௦,௜௡ Δ௠�௦௦ = ቀெ೛்ௌ೛ ௧  ቁ  ௠௜௟௞,௜௡௝TS௠   eq. 22ܨ −

 

In an ideal drying process, all solids entering into system should be 

recovered after drying; however, in milk drying, a considerable part of the powder 

is lost in the air flow or adhered to the drying tower. The mass of milk powder lost 

(Mloss, in percentage) can be calculated as  

�௟௢௦௦ = (ͳ − ெ೟ೞ,೚ೠ೟ ெ೟ೞ,೔೙ ) ͳͲͲ       eq. 23  

 

Substituting equations 21 and 22 into 23, yields:  

�௟௢௦௦ = ( ଵ− ெ೛TS೛௧ி೘,೔೙ೕTS೘) ͳͲͲ      eq. 24 

 

The negative sign of Δmass indicates that part of the milk solids were lost 

during drying. Another relevant factor for mass loss is the dissipation of powder 

together with the outlet air, and this loss increases based on how much finer the 

powder is. Lab-scale equipment produces finer particles then industrial 

equipment, and the spray dryers utilized in this experiment are compounds with 
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a unique stage drying that increases the formation of these fine powders and 

consequently their loss [134, 135].  

Table 4 shows the inlet and outlet data necessary to calculate the loss of 

mass for milk drying. 

  

Table 4 - Mass balance for milk drying 

 Inlet data Outlet data   

Equipment 
Fmilk,inj* 

(kg·h-1) 

DEmilk * 

(kg·kg-1) 

Mpowder* 

(kg) 

DEpowder* 

(kg·kg-1) 

t*  

(h) 

Δmass 

(kg) 

Mloss 

(%) 

SD1 1.24 x100 3.83 x 10-1 2.92 x 10-1 9.55 x10-1 6.67 x10-1 - 0.06 12 

SD2 1.83 x101 3.83 x 10-1 1.46 x100 9.56 x10-1 2.73 x10-1 - 1.90 26 

      * Measurement performed in triplicate with standard variation inferior to 5 %. 

 

3.2.2 Energy balance for milk drying 

 

The energy balance for milk drying is very similar to that shown for water 

evaporation and it was previously described [136–138]. However, instead of the 

parameters for water, the data for concentrated milk will be used. Using equation 

14 as a base, the energy entering during the drying process can be rewritten as:  �௧,௜௡  =  [Ta,inሺͳ.Ͳͳ + ͳ.ͺͻ��௜௡ሻ + ʹͷͲͲ��௜௡]  [��,௢௨௧�௢௨௧�ሺͳ + ��௢௨௧ሻ−ଵ] ௠݌�௠,௜௡௝ܨ + ௠ܶ,௜௡௝        eq. 25 

 

where Cpm corresponds to the specific heat of milk in kJ·kg-1 and Tm,inj  is the 

temperature of concentrated milk in °C. 
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Cpm is estimated by follow relation [29]: �݌௠  = ሺͳ − Ͳ.ͷ͸ܶܵ௠ሻͶ.ͳͺ͸    eq. 26 

 

where Cpm corresponds to the specific heat of milk in kJ·kg-1, the equation 1- 0.56 

x TSm refers the mean specific heat of the milk solids components, which is 

established as 44% of the specific heat of water (4.186) and TSm is the dry mass 

of the milk. 

 

Substituting equation 26 into 25 yields: �௧,௜௡ =  [Ta,inሺͳ.Ͳͳ + ͳ.ͺͻ��௜௡ሻ + ʹͷͲͲ��௜௡]  [��,௢௨௧�௢௨௧�ሺͳ + ��௢௨௧ሻ−ଵ] +[ሺͳ −  Ͳ.ͷ͸ܶܵ௠ሻͶ.ͳͺ͸]ܨ௠,௜௡௝ ௠ܶ,௜௡௝       eq. 27 

 

The outlet energy (εout; kJ·h-1) can be calculated from equation 15 by 

adapting the parameters for milk powder: �௧,௢௨௧ =  [T�,௢௨௧ሺͳ.Ͳͳ + ͳ.ͺͻ��௢௨௧ሻ + ʹͷͲͲ��௢௨௧]  [��,௢௨௧�௢௨௧�ሺͳ +��௢௨௧ሻ−ଵ] + [ ெ೛௧ �݌௣(T�,௢௨௧ − ʹͲ)]    eq. 28 

 

where Mp and Cpp correspond to the rate of powder production in kg·h-1 and the 

specific heat of the powder (kJ·kg-1·°C -1), respectively. Note that the temperature 

of powder in the outlet of equipment was estimated as the temperature of outlet 

air (Ta,out) subtracted from 20°C. The temperature of the particle during spray 
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drying is between the outlet air temperature and the wet-bulb temperature of the 

outlet air, which means 10 to 20°C below the outlet air temperature [39, 139] . 

Replacing Cpp in equation 28 by its correspondent relation (eq. 26) yields: �௧,௢௨௧ = [T�,௢௨௧ሺͳ.Ͳͳ + ͳ.ͺͻ��௢௨௧ሻ + ʹͷͲͲ��௢௨௧]  [��,௢௨௧�௢௨௧�ሺͳ +��௢௨௧ሻ−ଵ] + [ሺͳ −  Ͳ.ͷ͸ܶܵ௣ሻͶ.ͳͺ͸] ெ௣௧ ሺT�,௢௨௧ − ʹͲሻ    eq. 29 

The energy loss (εloss), energetic specific consumption for milk (ESC) and 

energetic efficiency of process (εef) are also calculated for drying milk from 

equations 17, 18 and 19, respectively. 

For spray dryers SD1 and SD2, the energetic losses (εloss) were 

approximately 1.1 and 1.2 times higher than the energetic losses for water 

evaporation (see table 3). These differences between milk drying and ideal drying 

(water evaporation) are directly related to powder mass lost during the process 

and the larger energy necessary to evaporate the water from food [89, 133]. 

Tables 4 and 5 list the parameters needed to calculate the energy balance 

for milk drying.  
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Table 5 - Energetic balance for milk drying 

 Inlet data Outlet data 

Equipment 
Ta,in* 

(°C) 

AHin* 

(kg water·kg dry air
-1) 

Tm,inj* 

(°C) 

εt,in 

 (kJ·h-1) 

Va,out* 

(°C)  

Aout 

(m2) 

AHout* 

(kg water·kg dry air
-1) 

Ta,out* 

(°C) 

εt,out  

(kJ·h-1) 

SD1 1.62 x 102 1.59 x 10-2 4.0 x 101 1.11 x 104 5.65 x 104 9.62 x 10-4 3.07 x 10-2 9.76 x 101 9.68 x 103 

SD2 1.70 x 102 1.36 x 10-2 3.9 x 101 9.82 x 104 6.55 x 104 7.24 x 10-3 3.80 x 10-2 8.84 x 101 9.04 x 104 

 

 

 

 

* Measurement performed in triplicate with standard variation inferior to 5 %.  

 

 

Equipment 
εloss 

(%) 

ESC 

(kJ·kg-1) 
εef  

SD1 13.89 1.52 x 104 6.55  

SD2 10.72 9.19 x 103 3.93  
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4.CONCLUSION 

 

The mathematical model was valid for evaluation of the mass and energy 

losses, and it allowed a comparison of the efficiency between spray dryers with 

different designs. Using this model, it is possible to compare different drying 

process and dryers. Spray dryer SD2 showed higher energy efficiency than SD1. 

Application of this protocol of calculus to industrial processes should measure the 

air flow rate, area of transversal section of outlet air tubing, air velocity, absolute 

humidity of the air (inlet and outlet), temperature (water or milk, inlet and outlet 

air) and mass (water or milk, powder).  
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CHAPTER 3 

CHARACTERIZATION OF DAIRY MIX POWDERS WITH MALTODEXTRIN 

AND INULIN PRODUCED BY SPRAY DRYING  

 

Abstract 

Since the previous chapter it was demontrated a mathematical model for 

evaluation of energy efficiency of spray dryers with different designs. Taking into 

account that the drying process of milk is well established. This work had the 

objective to develop powder products to from the mixture of different proportions 

of milk and whey, in one of the spray dryers thermodynamically evaluated in 

chapter 2. Besides knowing the equipment efficiency, this new approach will 

assess the actual performance in terms of product quality. Thus, this work will 

evaluate the drying of dairy mixes containing or not high molecular weight 

compounds and will be evidenced the effect of these compounds over the 

physicochemical and drying properties of the dairy mixes. 
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ABSTRACT 

 

Dairy mix powders are mixtures of milk and whey subject to spray drying 

under regulation in many countries. In this work, dairy mix powders were 

manufactured from a combination of dairy bases (concentrated milk and whey) 

with or without maltodextrin and inulin. The effect of the formulation on the 

characteristics and drying properties of the products were evaluated. Higher 
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whey concentrations reduced the proportion of protein and fat in the mixes, 

increased the carbohydrate concentration, decreased the mean hydrodynamic 

diameter of particles during the rehydration of powders in water, promoted greater 

particle agglomeration during drying, increased the browning saturation index 

and induced changes in the Raman spectrum profile with respect to the spectral 

contribution of lactose. The addition of maltodextrin and inulin reduced the 

powder agglomeration, increased the average hydrodynamic diameter of 

particles during rehydration in water, increased the theoretical glass transition 

temperature, reduced the browning of products and exhibted strong spectral 

contributions to Raman.  

Keywords: spray drying; glass transition; size distribution of particles; whey; 

microscopy 

 

1.INTRODUCTION 

 

Dairy mix powders are defined as products of the mixture of milk with 

product(s), dairy food substance(s) or non-dairy product(s) or both, which are 

suitable for human consumption via a technologically appropriate process. Our 

objective is to determine the effect of the composition on the physico-chemical 

properties of dairy mix powders to provide a scientific basis to industries that are 

interested in developing dehydrated products from the mixture of milk and whey. 

Various formulations of dairy mix powders from concentrated milk, concentrated 

whey, inulin and maltodextrin were produced, and the drying characteristics, color, 

composition and microstructure of the powders were assessed. 
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2.MATERIAL AND METHODS  

 

Nine different treatments were performed in duplicate (n = 2). Three 

formulations were used, which contained only milk concentrate and whey 

concentrate (dairy bases) in different proportions: 75/25 (A), 50/50 (B) and 25/75 

(C). In other formulations, maltodextrin (A', B' and C') or inulin (A”, B” and C”) 

were added (Table 1). 

 

Table 1 - Formulations of the treatments (n=2) 

Treatments * 

Dairy bases 

Maltodextrin Inulin Concentrated 
milk 

Concentrated 
whey 

A 75 25 - - 
A’ 60 20 20 - 
A’’ 60 20 - 20 
B 50 50 - - 
B’ 40 40 20 - 
B’’ 40 40 - 20 
C 25 75 - - 
C’ 20 60 20 - 
C’’ 20 60 - 20 

*For all treatments the dairy bases were prepared keeping the same ratio of concentrated 
milk and concentrated whey respectively 75% and 25% (A), 50% and 50% (B); 25% and 
75% (C). A’, B’ e C’: addition of maltodextrin. A’’, B’’ e C’’: addition of inulin. 
 

2.1 Preparation of dairy mixes 

 
Whole milk concentrate was obtained from the complete reconstitution of 

milk powder (25°C) to 40% total solids (TS). Maltodextrin 10 DE (Ingred ion) and 

inulin (Beneo) were used. The partially demineralized pre-concentrate whey 

(supplied by Porto Alegre dairy plant, Ponte Nova - MG) contained 36% soluble 
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solids and were concentrated to 55% TS in a vacuum evaporator (Treu®). The 

whey concentrate was subjected to lactose crystallization in an open double-

jacketed pan (Inoxul®), provided with a central stirrer. The soluble solids (° Brix)  

were determined in a digital refractometer (Biobrix® 2 WAJ-D model), and the 

percentage of crystallization was determined using equation 1 [140]. % ݊݋�ݐ�����ݐݏ�ݎ� ݂݋ =  ሺ஻ଵ−஻ଶሻ ௑ 95଴଴ ௑ ଵ଴଴௅ ௑ ்ௌ ௑ ሺ95−஻ଶሻ   eq. 1 

where B1 = initial soluble solids content (° Brix time zero); B2 = final s oluble solids 

content (° Brix after crystallization); L =% lactose in the total solids; TS = % of 

total solids. After the percentage of crystallization reached 50% (mean 52.1% ± 

1.6), the whey was divided into fractions according to Table 1 and added to the 

other ingredients. All treatments were subject to two-stage homogenization at 

200 bar (Technohomo, Tecnolab model). Drying was performed in a single-stage 

spray dryer on a pressure nozzle spray system with a diameter of 1 μm (Labmaq, 

MSD 1.0 model), a water evaporation capacity of 1 kg·h-1, 30 L·min-1 compressed 

air flow, and 2.0 m3·min-1 blower air flow. The drying parameters were set at 170 

± 5°C for the inlet air temperature and 90 ± 5°C for the outlet air temperature.  

 

2.2 Physico-chemical analyzes 

 

The concentrations of total solids (TS), protein, ash, carbohydrates and 

lipids of the samples were analyzed. The TS concentration was determined by 

the gravimetric technique in an oven at 105°C. The total protein and ash conten t 

were determined using Micro-Kjeldahl method and the gravimetric method, 

respectively, to evaluate the weight loss of the material, which was incinerated in 
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a muffle furnace at 550°C. These analyses were performed according to [14 1]. 

The fat content was determined using Gerber method [142], and the carbohydrate 

content was determined from the difference between total solids and the protein, 

lipid and ash content. The water activity (aw) was measured using Aqualab 

(Decagon 3TE, Decagon Devices Inc., USA). 

 

2.3 Evaluation of the microstructure 

 

The morphology and agglomeration characteristics of the powders were 

evaluated without prior preparation using the Scanning Electron Microscope 

2500x (Hitachi TM 3000, Hitachi Ltd., Tokyo, Japan). The size distribution of the 

particles during rehydration was obtained using the laser diffraction analyzer 

Beckman Coulter LS 13 320 (Beckman Coulter, Miami, FL, USA), which was 

coupled to the liquid analysis module (Aqueous Liquid Module, Beckman Coulter, 

Miami, FL, USA). Sufficient amounts of samples to generate turbidity readings 

were added to the liquid analysis module tank, which contained water at 25°C. 

The samples were slowly added to prevent the formation of agglomerates. The 

rehydration process in the equipment was supervised for 15 min (data collection 

interval of 3 minutes) to ensure complete rehydration, which was determined by 

the stabilization of the particle size distribution. Data were collected in the region 

of 0.04-2000 μm in 90 seconds. The refractive indices of 1.332 and 1.57 were 

used for the dispersing medium (water) and particles (casein micelles), 

respectively, according to [143] and are represented by % of volume occupied by 

the particles depending on their size. 
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2.4 Calculated glass transition temperature ( Tg) 

 

The glass transition temperatures were calculated from the extended 

equation of [144], which enables us to calculate the Tg values of systems with 

more than two components [145]. This equation was used by several authors 

[132, 146, 147]. ܶ݃ = ௐଵ∆஼௣ଵ்௚ଵ+ௐଶ∆஼௣ଶ்௚ଶ+ௐଷ∆஼௣ଷ்௚ଷௐଵ∆஼௣ଵ+ௐଶ∆஼௣ଶ+ௐଷ∆஼௣ଷ   eq. 2 

where Tg is the glass transition temperature (ºC) of the component; ΔCp is the 

change in heat capacity of each component in the glass transition (J·kg-1·°C -1); 

W is the mass fraction (m·m-1) of the component in the mix. 

For the calculation, the following values of Tg and ΔCp were used: lactose Tg 

98°C, ΔCp 0,38 J·kg–1·°C –1 [148]; casein Tg 132°C, ΔCp 0,26 J·kg–1·°C –1  [69]; 

whey proteins Tg 127°C, ΔCp 0,09 J·kg–1·°C –1 [69, 147, 149]; maltodextrin Tg 

142°C, ΔCp 0,30 J·kg–1·°C –1 [129, 150]; inulin Tg 120°C, ΔCp 0,65 J·kg–1·°C –1  

[151].  

 

2.5 Color Analysis 

 

The Mobile Colorimeter CR-10, L* a* b* system, luminosity, hue and 

saturation were used to calculate C, M, and ΔE. C and h are the saturation index 

and hue angle, respectively. ΔE is the total or overall difference between the 

products. 
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2.6 Raman spectra 

 

The Raman spectra were obtained using an RFS 100 FT-Raman 

spectrometer (Bruker), which was equipped with a germanium detector, liquid 

nitrogen for cooling, an excitation line at 1064 nm, and Nd: YAG laser at 500 mW 

maximum. The conditions were electronically adjustable for each type of sample 

to be studied. In this work, the output power was set at 60 mW. This power level 

was selected to obtain the strongest Raman signal without overheating nor 

degrading the samples. The measurements were obtained at 4 cm-1 resolution in 

the spectral range of 3500-50 cm-1 with 512 accumulations every 15 minutes. The 

Opus 6.0 software (Bruker Optik Ettlingen, Germany) was used. 

 

2.7 Statistical Analyses 

 

The Complete Randomized Design (CRD) was used with 9 treatments and 

2 replications (Table 1). The Analysis of Variance and Tukey's test were 

conducted for multiple comparisons of the means at 5% significance level. The 

Linear Correlation Analysis was applied except for the calculated values. The 

SAS software (SAS Institute Inc., 2008) version 9.1 was used. 
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3.RESULTS AND DISCUSSION 

 

3.1 Physico-chemical characterization and microstructure of dairy mix 

powders 

 

There was no significant difference (p> 0.05) for the total solids (TS), which 

indicates that the differences in compositions of the products are not related to 

the moisture content, and there is regularity during drying. There is a significant 

difference (p <0.05) in the protein, fat, and carbohydrate contents of 9.7-21.2 

g·100 g-1, 3.0-19.2 g·100 g-1 and 53.1-79.9 g·100 g-1, respectively. Mixes that 

contained only milk and whey in the formulation (A, B and C) had different protein, 

fat and carbohydrate contents (P <0.05). A decrease in amount of milk in the milk 

and whey mixture resulted in lower protein/fat content and greater carbohydrate 

content. Table 2 shows that the dairy mixes with maltodextrin and inulin (A', A'', 

B', B’’, C' and C'') showed a reduction in protein and fat and an increased 

concentration of carbohydrate compared with the respective reference 

treatments in the proportion milk/whey of the dairy basis (A, B and C). 
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Table 2 - Composition of the dairy mix powders (n=2*) 

  
TS CS3 WP3 A TL1 LC LS 

Tg4 
(ºC) 

Tg5 
(ºC) 

aw AS 

A 98.3±0.2a 13 8 5.8±0.0ab 52.1 6.5 45.6 104.4 72 0.13±0.01bc 2.277 

B 96,7±0.9ª 8,1 10 6.1 ± 0.3ª 60.8 15.2 45.6 102.8 44.9 0.21± 0.02a 0.639 

C 97.1±0.1a 4 10,4 5.6±0.2ab 70.9 26.6 44.3 101.3 46 0.19±0.03a 0.553 

A' 97.8±0.5a 8,5 5,1 4.0±0.4ab 34.5 4.3 30.2 120.1 81.5 0.13±0.02bc 5.516 

B' 97,8±0.1a 5,5 6,7 4.5±0.5ab 41.8 10.5 31.4 118.8 79.4 0.16±0.02ab 9.017 

C' 97.7±0.5a 2,7 7 4.5±1.5ab 48.2 18.1 30.1 118.5 75.4 0.18±0.03ab 8.385 

A" 97.8±0.3a 8,6 5,1 4.1±0.2ab 38.3 4.8 33.5 113.4 87.7 0.12±0.03c 5.553 

B" 97.8±0.3a 5,4 6,7 3.3±0.1b 42.6 10.7 32 113.0 85.7 0.11±0.01c 7.128 

C" 97.4±1.0a 3 7,9 3.6±0.1b 48.7 18.3 30.4 112.8 79.7 0.12±0.01bc 8.650 

A represents dairy bases prepared by 75% of concentrated milk and 25% 
concentrated whey; B prepared by 50% of concentrated milk and 50% 
concentrated whey; and C prepared by 25% of concentrated milk and 75% 
concentrated whey. A’, B’ and C’: addition of maltodextrin. A’’, B’’ and C’’: addition 
of inulin., TS = total solids (g·100g-1), A = ash (g·100g-1) TL = total lactose 
amount, LC = lactose in crystal form is the crystallized lactose in the concentrated 
whey, LS = lactose in solution is the amount of non-crystalized lactose in 
concentrated whey, Cs = casein, WP = whey protein, Tg =  Glass transition 
temperature, aw = water activity, SA = average size distribution (% volume) of the 
dairy mix powders after rehydration(µm), 1Determied by difference, 2Determined 
by mass balance, 3determined by considering 80% of the milk protein is casein 
and 90% of the whey proteins are whey proteins. 4 considering aw = 0, 5 

determined considering the moisture of the products. Same letters do not differ 
significantly by Tukey test (p <0.05). 

 

The final composition of the products in relation to the primary source of 

the present solid constituents is shown in 7. 
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Figure 1 - Final composition according to the source of solids 
For all treatments the dairy bases were prepared keeping the same ratio of 
concentrated milk and concentrated whey respectively 75% and 25% (A), 50% 
and 50% (B); 25% and 75% (C). A’, B’ e C’: addition of maltodextrin. A’’, B’’ e C’’: 
addition of inulin.  
D90 = represents the hydrodynamic diameter in which 90% of the particles has 
lesser size 
 

The microstructure evaluation of the products using scanning electron 

microscopy is shown in Figure 2. Comparing images A, B and C, we observe an 

increase in agglomeration (A <B <C) with the increase in amount of whey in the 

mix formulation. 

The products with added maltodextrin and inulin (A', A'', B', B’’, C' and C'') 

had lower incidence of particle agglomeration. According to [11], maltodextrin is 

a low hygroscopic product by nature, and adding it to food induces a less 

hygroscopic property.  
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Figure 2 - Images of the dairy mix powders (2.500x) showing the agglomeration 
of the particles 
For all treatments the dairy bases were prepared keeping the same ratio of 
concentrated milk and concentrated whey respectively 75% and 25% (A), 50% 
and 50% (B); 25% and 75% (C). A’, B’ e C’: addition of maltodextrin. A’’, B’’ e C’’: 
addition of inulin. 

 

During the initial phases of the rehydration, different particle size 

distributions were obtained as shown in Figure 3, and the data are summarized 

in Table 3. 

Figure 3 shows the distribution of the volume percentage occupied by the 

particles according to their hydrodynamic diameters. Typically, the distribution of 

particle size in fluid milk shows two populations: casein micelles (150-200 nm) 

and fat globules (5 µm). All samples showed a population of particles centered at 

20 μm 20 μm 20 μm 

20 μm 20 μm 20 μm 

20 μm 20 μm 20 μm 

A A’ A’’ 

B B’ B’’ 

C C’ C’’ 
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approximately 200 nm, which could correspond to the casein micelles such as in 

fluid milk. 

The intensity of this population decreased in all maltodextrin- (A', B' and 

C') and inulin-added treatments (A", B" and C") in comparison with their 

references (A, B and C). Thus, these ingredients strongly interact with the milk 

constituents and hinder the dispersion of caseins. In addition, the increase in 

whey proportion in the formulation directly affects the particle size. The obtained 

D90 values were 7.401, 1.425 and 1.304 micrometers for A, B and C, respectively, 

as shown in Table 3. In addition to the population centered at 200 nm, the 

samples exhibited other peaks at 0.5-60 micrometers. 

All other samples with inulin (A", B" and C") showed a large population in 

the region of 6 microns, which features the behavior of this ingredient. Similarly, 

the three products with maltodextrin (A', B' and C') showed highly populated 

particle areas with maximum sizes of 17-20 micrometers. 

Considering the described rehydration process in two steps by [143], 

different morphologies of the powder particles in Figure 3 can explain the different 

observed hydration capacities. These authors described the rehydration process 

of MPC (Milk Protein Concentrate) powder in two simultaneous steps: the rupture 

of particle agglomerates into individual particles and the release of particulate 

matter into the aqueous phase [143]. 
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Figure 3 - Size distributions of the particles after rehydration 
Figure A1 represents dairy bases prepared by 75% of concentrated milk and 25% concentrated whey; B1 prepared by 50% of concentrated 
milk and 50% concentrated whey; and C1 prepared by 25% of concentrated milk and 75% concentrated whey. Where (n) = no addition of 
maltodextrin or inulin, (ο) = addition of 20% of maltodextrin, (Δ) = addition of 20% of inulin. 
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Table 3 - Size distribution (% volume) of the dairy mix powders after rehydration 

Treatments1 
Average  

(μm) 
Standard deviation 

(μm) 
Particle size (μm)  

D902 

A 2.277 3.374 7.401 

A’ 5.516 6.549 16.68 

A” 5.553 5.806 10.00 

B 0.639 0.632 1.425 

B’ 9.017 10.16 22.64 

B” 7.128 6.282 15.10 

C 0.553 0.500 1.304 

C’ 8.385 10.59 26.14 

C” 8.650 8.389 18.90 
1 For all treatments the dairy bases were prepared keeping the same ratio of 
concentrated milk and concentrated whey respectively 75% and 25% (A), 50% 
and 50% (B); 25% and 75% (C). A’, B’ e C’: addition of maltodextrin. A’’, B’’ e C’’: 
addition of inulin. 
2 D90 represents the hydrodynamic diameter in which 90% of the particles has 
lesser size.  

 

3.2 Evaluation of color 

 

The color parameters are shown in Table 4. This system enables the 

specification of color perceptions in terms of a three-dimensional space. The axial 

component L* is the luminosity and ranges from 0 (black) to 100 (white), a* (blue 

to yellow) and b* (green to red) [152]. The attributes of a* and b* show specific 

values in the plan. However, to better understand and analyze the results, the 

values should be replaced by vectorial forms (C and h) that represent the 

saturation index and hue angle, respectively [153].  

The results of 9 treatments in Table 4 show that the color parameters L*, 

a*, b* and C showed significant differences (p <0.05) according to the dairy mix 

formulations, which were not noticed for parameter h (p> 0.05). Evaluating 

parameter L* for products A, B and C (mixes without drying agents, maltodextrin 
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and inulin), we observed that product C (product with a lower milk concentration) 

had the highest brightness value of 54.4 ± 2.6. Milk is a white translucent liquid 

[154, 155]. The replacement of milk for whey in dairy mixes reduces the level of 

these components and may reduce its whiteness and increases its luminosity 

[156–158].  

For a* of A, B and C, the samples became red, whereas mix C showed a 

value of 10.2 ± 0.9 for this parameter. For b*, the product became strongly yellow, 

and product C had the highest saturation index of 36.6 ± 1.1. These treatments 

(A, B and C) showed h values between 73.5° ± 1.1 to 76.0° ± 0.9, which indicates 

that they were yellow [153]. Although milk is white, it has carotenoids, which are 

yellowish. This product also contains reducing sugars and amino groupings, 

which can react with each other and promote non-enzymatic browning (Maillard 

reaction). Maillard reaction can be accelerated when the temperature increases, 

such as in the case of evaporation and drying in this work [159]. 

The products that contained the dairy basis in the proportion of 75% milk 

concentrate and 25% whey concentrate, i.e., A, A' and A'' (group A), showed no 

significant difference (p> 0.05) in luminosity (brightness). Although inulin and 

maltodextrin can provide a degree of opacity, their addition could not change the 

brightness of the mixes [160]. This effect is attributed to the higher proportion of 

milk in these products because milk has opaline characteristics [155]. It is 

believed that the added concentration of drying agents is not sufficient to change 

the brightness of the product in the proportion of 75% milk concentrate and 25% 

whey concentrate.  
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The dairy mix powders with 50% milk concentrate and 50% whey 

concentrate, i.e., B, B' and B'' (group B), showed no significant difference (p> 

0.05) in the analyzed attributes. Thus, the addition of maltodextrin and inulin to 

these products with this proportion of milk and whey does not interfere with the 

objective color of the products.  

 

Table 4 - Results for the parameters L*, a*, b*, C e h of the dairy mix powders 

(n=2) 

2 For all treatments the dairy bases were prepared keeping the same ratio of 
concentrated milk and concentrated whey respectively 75% and 25% (A), 50% 
and 50% (B); 25% and 75% (C). A’, B’ e C’: addition of maltodextrin. A’’, B’’ e C’’: 
addition of inulin. 
L* = luminosity; a* = hue; b* = saturation; C = saturation index and h = hue angle. 
Same letters do not differ significantly by Tukey test (p <0.05). 

 

It is imperative to note that the behavior of the saturation index parameter 

of products with higher whey concentration in dairy-based C, C' and C'' (group C) 

enables the effect of drying agents in the browning saturation. Product C 

displayed a value of 36.0 ± 1.1, where C' and C'' had values of 30.6 ± 0.5 and 

30.5 ± 1.0, respectively, (p <0.05). Similar results were found by [161], who 

replaced the fat in the preparation of ice cream by various substances and noted 

Treatments2 L* a* b* C H 
A 47.1 ± 1.6bcd 7.5 ± 0.5d 30.2 ± 0.8b 31.1 ± 0,8b  76,0 ± 0.9ª 
A’ 50.9 ± 1.1abc 8.5 ± 0.5bcd 31.5 ± 0.3ab 32.6 ± 0.2b 75,0 ± 0.9ª 
A’’ 52.2 ± 2.8ab 9.6 ± 0.9ab 31.9 ± 1.3ab 33.4 ± 1.4ab 73,3 ± 0,9ª 
B 49.6 ± 3.8abc 9.4 ± 0.3abc 31.7 ± 2.6ab 33.0 ± 2.5ab 73.5 ± 1,1ª 
B’ 46.2 ± 3.7cd 8.6 ± 1.2abc 30.7 ± 2.6b 31.8 ± 2.8b 75,1 ± 1,3ª 
B’’ 49.7 ± 2.4abc 9.2 ± 0.9abc 31.5 ± 1.1ab 32.8 ± 1.0ab 73,8 ± 1,8ª 
C 54.4 ± 2.6a 10.2 ± 0.9a 34.5 ± 1.4ª 36,0 ± 1.1a 73,6 ± 2.1ª 
C’ 45.6 ± 2.4cd 8.2 ± 0.4bcd 29.4 ± 0.5b 30.6 ± 0.5b 74.5 ± 0,9a 
C’’ 45.0 ± 1.8d 7.8 ± 0.8cd 29.5 ± 1.1b 30.5 ± 1.0b 75.3 ± 1.3a 
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that maltodextrin could maintain the white color of the product [162] used inulin 

as a replacement for sucrose in chocolate production and observed that the 

samples with higher inulin concentrations had lower saturation indices (C). 

Another important parameter in the color analysis is the total or overall 

difference (ΔE), which enables us to determine how much the impression of the 

overall color of a sample differs from a standard and whether this difference is 

sensory noticeable [163]. The ΔE values for the dairy mix powders obtained from 

the nine treatments are shown in Table 5. The subjective perception of color with 

respect to these values was determined by [164]. 

Comparing the mixes with only milk and whey in the formulation (A, B and 

C), we found that the following overall differences: ΔE of 4.1 for A and B and 5.7 

for B and C. Both differences were classified as clear perception [164, 165]. 

However, ΔE of 8.5 for products A and C shows a pronounced difference, which 

is classified as a very clear perception.  

The results show that the change in proportion of milk and whey in the 

mixes changes the product color, and this change becomes more noticeable with 

the greater difference between the quantities of milk and whey in the dairy base.  

For ΔE of Group A (A - A’ and A - A’’), the addition of maltodextrin and 

inulin changed the color of the products, and both differences were classified as 

very clear perception. For Group B, B' and B’’ showed overall differences that 

were classified as very clear and clear perception, respectively. This result 

indicates the effect of the addition of maltodextrin and inulin on the product color.  
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Table 5 - Results for ΔE considering A, B e C as standard samples 

Treatments* 

ΔE** 

A A’ A’’ B B’ B’’ C C’ C’’ 

A 
- 4.22 5.52 4.12 - - 8.53 - - 

B - - - - 3.12 2.81 5.72 - - 

C 
- - - - - - - 10.73 10.63 

* For all treatments the dairy bases were prepared keeping the same ratio of 
concentrated milk and concentrated whey respectively 75% and 25% (A), 50% 
and 50% (B); 25% and 75% (C). A’, B’ e C’: addition of maltodextrin. A’’, B’’ e C’’: 
addition of inulin. 
** ΔE = total or global difference: 1 clear perception (1.5 to 3.0); 2 very clear 
perception (3.0 to 6.0); 3 extremely clear perception (6.0 to 12.0), according to 
[164]. 

 

In Group C, the differences between mix C and the ones with drying agents 

C' and C’’ were defined as clear.The observed difference in Group C is the largest 

among all groups seemingly because of the higher concentration of whey in the 

mix formulations. This feature was also observed in [166]. In another food matrix, 

when the effect of whey added to ham on color was assessed, it is worth noting 

that over 25% addition of whey to the matrix made the color change sensory 

noticeable. 

 

3.3 Theoretical calculations of T g 

 

To evaluate the effect of different dairy formulations in the glass transition 

temperature (Tg) in relation to the variation of the milk base composition and the 

addition of drying agents, Tg was calculated for the products of nine treatments. 

The data are summarized in Table 6. The theoretical Tg may be different from 
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(generally higher than) those obtained using the Differential Scanning 

Calorimetry Analysis (DSC) [129]. 

The theoretical values are not always accurate, and not all elements are 

considered in the calculation [132]. However, the application of the formula 

enables the correlation between the calculated and measured results to 

understand the product behavior in drying and storage. In addition, it helps to 

evaluate the effect of food composition on the glass transition temperature and 

provide a comparative and not absolute analysis of temperatures. In the studied 

formulations, three main factors contribute to the value of Tg: milk/whey ratio, 

percentage of lactose crystallization in whey and presence of maltodextrin and 

inulin. 

The data in Table 6 shows that the increase in whey content in the mixes 

from 25% to 75% causes a decrease in Tg from 0.6 to 3.6°C. The crystallization 

of lactose in whey concentrates of 0-75% causes a variation in the calculated Tg 

value from 1.0 to 2.3 ° C. 

The addition of inulin promotes an increase in calculated Tg from 9.6 to 

12.6 ° C, whereas maltodextrin increase T g from 16.3 to 18.3°C. From these 

results, one can conclude that in the formulation of dairy mixes, the addition of 

maltodextrin has the largest contribution to the product stability by causing 

greater relative increase in Tg, and the addition of inulin has the second largest 

contribution. The development of these formulations should consider the desired 

balance between Tg increase and particle size of the powders with respect to the 

addition of maltodextrin and inulin. 
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Table 6 - Effect of the composition and the crystallization rate on calculated 

glass transition temperature (Tg) 

Atributes 
 

75 milk 
+25 whey 

50 milk 
+50 whey 

25 milk 
+75 whey 

ΔTg max 
Effect of whey 

addition 
St LCW 0 103.8 101.8 100.2 3.6 

St LCW 25 104.1 102.2 100.6 3.5 

St LCW 50 104.4 102.8 101.3 3.1 

St LCW 75 104.8 103.6 102.5 2.3 

St LCW 90 105.1 104.2 103.8 1.3 

Inulin 113.4 113.0 112.8 0.6 

Mt 120.1 118.8 118.5 1.6 
ΔTg max 

Effect of the crystallization rate 
1.0 1.8 2.3  

ΔTg max 
Effect of inulin addition 

9.6 11.2 12.6  

ΔTg max 
Effect of maltodextrin addition 

16.3 17.0 18.3  

Where: St = dairy mix powder without maltodextrin and inulin, LCW = percentage 
of lactose crystallization in the concentrated whey before mix to milk, Mt = 
maltodextrin. 
 

The addition of whey and lactose crystallization shows no significant 

relative increase in Tg. Thus, these attributes are less important to the design of 

dairy mix powders than the addition of maltodextrin and inulin. The formulations 

with the highest calculated glass transition temperatures also had lower particle 

adhesion as shown in Figure 2 and during the experiments. These results are 

consistent with the increase in molecular mass of the soluble compounds in the 

powders [11]. The increase in Tg resulted in the reduced adhesion of particles on 

the equipment surface and agglomeration of molecules [23, 24]. [167, 168] 

assessed the effect of the maltodextrin addition in mango fruit pulp preparations 

and observed an increase in Tg when the maltodextrin concentration increased. 
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The glass transition values for inulin in anhydrous form and solution were 

presented by others [151]. However, no work evaluated the effect of the inulin 

addition on Tg of other products. 

 

3.4 Raman spectra and principal component analysis of dairy mixes 

 

Raman spectroscopy was used to evaluate the formulations in the 

production of dairy mixes. The Raman spectra of milk powder, whey powder and 

maltodextrin were separately discussed in previous studies of the group [169, 

170]. 

In the Raman spectra of the mixes without high molecular weight 

compounds (A, B and C), the vibrational modes of the asymmetrical CH2 

stretching were observed at 2930 cm-1. This band was assigned to the CH bonds 

of proteins and carbohydrates. In the region of the CH bond stretching, there was 

a band with weak intensity at 2850 cm-1. This spectral region was assigned to the 

CH2 symmetric stretching of lipids. 

The Raman spectrum at 1800-400 cm-1 showed many bands and was rich 

in structural information. The low-intensity band at 1750 cm-1 was assigned to the 

C = O stretch vibrational mode of fatty acids in milk [171]. At 1660 cm-1, there was 

a medium-intensity band related to the C = O stretching of protein molecules, 

which is denominated as the amide I mode. The amide II vibration mode, which 

is related to the N-H deformation coupled modes and C-N stretching of protein 

molecules, appeared at 1550 cm-1. The intense band at 1440 cm-1 was attributed 
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to the CH bond deformation modes and is related to lipid molecules, 

carbohydrates and aliphatic amino acids in milk protein [171, 172]. 

The region of 1200-800 cm-1 was dominated by bands that mainly involved 

the vibrational modes of the chemical bonds of carbohydrates. The main 

vibrational modes are C-O stretching, C-C stretching and C-O-H deformation at 

1120-1060 cm-1 and C-O-C deformation at 950-870 cm-1. 

Because there is a large amount of lactose in whey, its Raman spectra 

bands were characterized by the presence of this compound; the main bands 

were located at 2978, 2888, 1087 and 850 cm-1. This band increased in intensity 

when the whey content increased in the mix formulation (B and C). 

The addition of maltodextrin (A', B' and C') changed the spectral profile of 

the milk base (Figure 4). The maltodextrin Raman spectrum showed different 

bands from other components in the mixes. The literature shows the band at 477 

cm-1 as a marker to identify maltodextrin in milk samples [173]. Strong couplings 

between the vibrational modes were found in this region of the vibrational 

spectrum. Such modes are mainly related to the deformation of the skeleton of 

the glycoside ring [ (C-C-C + C-C-O)]. Other regions with observed changes are 

1340 cm-1 [(C-O) + (C-O-H)] and 1080 cm-1, which involve the coupled mode 

(C-O) + (C-C) + (C-O-H). 

Inulin is a polysaccharide composed of fructose; the changes in the Raman 

spectrum because of its addition are similar to the spectra of whey and 

maltodextrin.  
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Figure 4 - Results of Raman Spectroscopy 
Figure A represents dairy bases prepared by 75% of concentrated milk and 25% 
concentrated whey; B prepared by 50% of concentrated milk and 50% 
concentrated whey; and C prepared by 25% of concentrated milk and 75% 
concentrated whey. A’, B’ and C’: addition of maltodextrin. A’’, B’’ and C’’: addition 
of inulin.  
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The presence of inulin in dairy mixes (A’’, B’’ and C’’) after drying can be 

confirmed by the bands in the Raman spectrum at 1450 cm-1 (CH2), 1333 cm-1 

(CH2), 1270 cm-1 (CH), 1059 cm-1 (COC), 867 cm-1 (COC) and 813 cm-1 

(CC). The Raman spectroscopy technique can be used to assess the qualitative 

composition of mixes. This analytical approach does not require separation 

methods and other sample preparation steps. Thus, the analysis can be quickly 

performed, is consistent and does not generate waste. 

 

4.CONCLUSION 

 

The development of dehydrated dairy products from a mixture of milk and 

whey may have different final compositions, i.e., variations in protein and fat 

content, and various properties, such as adhesion, color and particle size. The 

conditions studied in this paper show that the addition of maltodextrin and inulin 

favorably contribute to the conservation and drying of powders; however, such 

addition increases the hydrodynamic particle size during rehydration. The 

increased whey proportion in the mix contributes to a minor brightness and more 

pronounced yellow color (browning) probably because of the increased incidence 

of Maillard Reaction. 
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CHAPTER 4 

DEVELOPMENT AND EVALUATION OF THE PHYSICO-CHEMICAL 

PROPERTIES OF A LACTOSE-FREE, MALTODEXTRIN AND SOLUBLE 

FIBER ADDED DAIRY PRODUCT 

 

Abstract 

In the last study, it was found that the addition of maltodextrin and inulin 

improved the drying properties of dairy mixes containing whey. In this chapter, it 

is intend evaluate the effect of addition of high molecular weight compounds on 

physicochemical and drying properties of dairy mixes. The mathematical model 

developed in the chapter 2, will be here applied in the drying of free-lactose dairy 

mixes. For this purpose, lactose-free dairy mixes containg or not maltodextrin or 

soluble corn fiber, will be dried in spray dryer and evaluated in relation of phisical 

chemical characteristics.  
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ABSTRACT 

 

Products made from the mixing of milk and other food substances have 

been gaining ground in the dairy market due to their nutritional characteristics 

and the need to meet the specific necessities of some types of consumers and 

applications in the food industry as in chocolate and ice cream production. The 
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alteration in the composition of the food changes its physico-chemical and drying 

properties. The addition of whey makes the food more difficult for drying, mainly 

because of the concentration of lactose in the product, which is responsible for 

making it more conducive to problems of stickiness and caking, during and after 

the drying process. These problems are even more evident in lactose-free 

products, since the hydrolysis of lactose releases sugars of low molecular weight, 

low glass transition temperature and more hygroscopic, compared to lactose. The 

objective of this work has been to evaluate the effect of the addition of 

maltodextrin 20 DE (Dextrose equivalent) and soluble corn fiber on the physico-

chemical and drying properties of lactose-free dairy product. The centesimal 

compositions, the particle agglomeration profiles of the powders, degree of 

hygroscopy, particle size during the hydration process, objective color, 

spectroscopic profile and mass and energy balance have been evaluated. The 

hydrolysis of lactose increased the degree of agglomeration of the particles of the 

powders, increased the hygroscopicity, reduced the rate of hydration of the 

proteins, increased the saturation index of the yellow color, promoted a change 

in the profile of the Raman spectrum in relation to the control product, besides 

greater mass loss and greater energy expenditure. The addition of high molecular 

weight compounds reduced the tendency to agglomeration of the particles, 

altered the profiles of the Raman spectra and in the case of matodextrin, there 

has been reduction of mass loss and energy expenditure. 

Keywords: spray drying; whey; lactose-free; mass and energy losses 



Chapter 4 - Development and evaluation of the physico-chemical properties of a lactose-free, 

maltodextrin and soluble fiber added dairy product 

 

 

75 

  

1.INTRODUCTION 

 

The world production of milk powder was approximately 8 million tons in 

2014, with skim milk powder being the largest dairy product in relation to the 

previous year [6]. Other dehydrated products that have gained commercial 

attention are the analogues of skim milk powder, which are products usually 

made from the mixture of milk and other food substances and can be consumed 

directly or used as food ingredient applications [57, 58]. The proportion of each 

component in the food depends on the desired characteristics in the final product, 

the legislation in force in each country and the specific need of the consumers to 

whom the food will be destined. 

The alteration in the composition of the food changes its physico-chemical 

properties, which impacts its drying characteristics [174]. The addition of whey to 

milk, for example, may negatively influence the behavior of the product during  

drying and storage process, due to the reduction of the casein concentration and 

the increase in the proportion of lactose, which has a higher hygroscopic capacity 

and lower glass transition temperature than casein [22, 69, 175]. 

Another factor that may hinder the drying process is the hydrolysis of 

lactose, whose final product is sugars of low molecular mass (galactose and 

glucose). These sugars have a lower glass transition temperature, are highly 

hygroscopic, and are more amenable to  Maillard reaction compared to the 

lactose molecule [22, 176]. 
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Products rich in amorphous lactose and in sugars derived from their 

hydrolysis are subject to problems of agglomeration of the powders and adhesion 

to the wall of the equipment, besides being propitious to caking after the drying 

process [12, 174, 177]. 

As an alternative to reduce the problems that occur in the drying process, 

the addition of high molecular weight compounds has been carried out since this 

maneuver reduces the hygroscopicity and increases the Tg of the product [25, 

168]. 

Knowing the composition of the food as well as the dynamics of its 

constituents is of great importance, both from the nutritional and the technological 

aspects. Among the technologies applied in food analysis, Raman spectroscopy 

is a very effective tool in the characterization of materials, is a versatile technique, 

which allows analyzing several components at the same time requiring no 

preparation step (mandatory in other conventional analyzes), besides being a 

non-destructive technique, suitable for online processes. Studies with traditional 

or lactose-free dairy products as well as high molecular weight added products 

have been reported by different authors [170, 173, 178–180]. 

The objective of this work has been to evaluate the effect of the addition 

of maltodextrin 20 DE and soluble corn fiber on the physico-chemical and drying 

properties of a lactose-free dairy product. 
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2.MATERIAL AND METHODS 

 

For the experiment, four different dairy products containing 50% milk and 

50% whey were produced in duplicate (n = 2) and identified as: T1, control 

product without lactose hydrolysis and without maltodextrin nor soluble corn fiber 

added; T2, product submitted to the process of hydrolysis of lactose and without 

maltodextrin nor soluble corn fiber added; T3, product submitted to the hydrolysis 

process and maltodextrin added; T4, product submitted to the hydrolysis process 

and soluble corn fiber added. 

For the preparation of the dairy mix were used fluid skim milk, fluid whey 

obtained from the production of mozzarella cheese, maltodextrin 20 DE 

(Ingredion) and soluble corn fiber (Tate & Lyle). Milk and whey mixtures were 

subject to concentration process up to 35% (m / m) of total solid in vacuum 

evaporator (Treu®), under boiling temperature of 60 ° C. To concentrated m ixs 

T2, T3 and T4 were added the enzyme lactase (Prozyn) and then subject to 

refrigeration process (5 ° C for 12 hours) until > 90%lactose hydrolysis occurred. 

The degree of hydrolysis of lactose was obtained according to the methodology 

used by [173].  

After the hydrolysis process, the mix was dried in a single-stage spray 

dryer with disk atomizer (Niro Atomizer®) model Minor Production with a drying 

capacity of 10 kg of water per hour. The drying parameters used were 163 ± 2 ° 

C temperature for inlet air and 85 ± 3 ° C for outlet air. 
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2.1 Physico-chemical analyzes 

 

The concentrations of total solids (TS), protein, ash, carbohydrates and 

lipids of the samples have been determined. The TS concentration was 

determined by the gravimetric technique in oven at 105°C. The total protein  and 

ash content were determined using Micro-Kjeldahl method and the gravimetric 

method, respectively, to evaluate the weight loss of the material, which was 

incinerated in a muffle furnace at 550°C. These analyses have been pe rformed 

according to [141]. The fat content was determined using Gerber method [142], 

and the carbohydrate content was determined from the difference between total 

solids and the protein, lipid and ash content. The water activity (aw) was measured 

using Aqualab (Decagon 3TE, Decagon Devices Inc., USA). 

 

2.2 Evaluation of the microstructure 

 

The morphology and agglomeration characteristics of the powders were 

evaluated without prior preparation using the Scanning Electron Microscope 

1000x (Hitachi TM 3000, Hitachi Ltd., Tokyo, Japan). The size distribution of the 

particles during rehydration was obtained using the laser diffraction analyzer 

Beckman Coulter LS 13 320 (Beckman Coulter, Miami, FL, USA), which was 

coupled to the liquid analysis module (Aqueous Liquid Module, Beckman Coulter, 
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Miami, FL, USA). Sufficient amounts of samples to generate turbidity readings 

were added to the liquid analysis module tank which contained water at 25°C. 

The samples were slowly added to prevent the formation of agglomerates. The 

rehydration process in the equipment was supervised for 15 min (data collection 

interval of 3 minutes) to ensure complete rehydration which was determined by 

the stabilization of the particle size distribution. Data were collected in the region 

of 0.04-2000 μm in 90 seconds. The refractive indices of 1.332 and 1.57 were 

used for the dispersing medium (water) and particles (casein micelles), 

respectively, according to [143] and are represented by % of volume occupied by 

the particles depending on their size. 

 

2.3 Hygroscopicity analysis 

 

The moisture gain and the hygroscopicity of the powders were determined 

by weighing the samples and analyzing their water activities according to the 

method used by [181], and some modifications were made. Approximately 3.0g 

of samples were weighed in Petri dishes, which were placed in a desiccator at 

25 ° C containing saturated CaCO 3 solution (44.1% RH). The mass and aw of the 

samples were evaluated for 132 hours, this process being repeated every 12 

hours. 
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2.4 Color Analysis 

 

The products were evaluated for their colorations, using ColorQuest XE 

HunterLab colorimeter, system L* a* b*, being, respectively, luminosity, hue and 

saturation. From the obtained results with the colorimeter, the values of C and h, 

representing, respectively, saturation index and pitch angle were calculated. 

 

2.5 Raman spectra 

 

The Raman spectra have been obtained using an RFS 100 FT-Raman 

spectrometer (Bruker), which was equipped with germanium detector, liquid 

nitrogen for cooling, an excitation line at 1064 nm, and Nd: YAG laser at 500 mW 

maximum. The conditions were electronically adjustable for each type of sample 

to be studied. In this work, the output power was set at 60 mW. This power level 

was selected to obtain the strongest Raman signal without overheating nor 

degrading the samples. The measurements were obtained at 4 cm-1 resolution in 

the spectral range of 3500-50 cm-1 with 512 accumulations every 15 minutes. The 

Opus 6.0 software (Bruker Optik Ettlingen, Germany) was used. 
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2.6 Mass and energy balance 

 

The mass balance was calculated by the difference between the total mass 

inserted in the system minus the mass obtained at the output of the system, while 

the energy balance was calculated by the difference between the total input 

energy minus the output energy. 

The calculated parameters were mass loss, energy loss and specific 

energy consumption (ESCpo), which is the amount of energy required to obtain 

1kg of powder according to the mathematical model developed by [182]. 

The mass loss was calculated by the difference between the mass of solids 

recovered after drying and the mass of solids injected for a certain time: Δ௠�௦௦ = ቀெ೛ x ்ௌ೛ ௧  ቁ − ௠,௜௡௝ܨ   x TS௠      eq.1 

Where Δmass is the mass loss (kg); Mp is the mass of powder obtained in the 

process (Kg); TSp is the total solids of the powder (kg solid · kg powder milk-1); T is the 

time (h); Fm,inj is the mass of concentrate product injected into the equipment (kg) 

and TSm is the total solids of the concentrate product (kg solid · kg concentrated milk-1). 

The energy loss was obtained by the difference between the total input 

energy and the total output energy: 

 

�௟௢௦௦  = (ͳ −  �೟,೚ೠ೟ �೟,೔೙ ) x ͳͲͲ        eq.2 
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Where εloss is the energy loss; εt,out is the total energy exiting the system and εt,in 

is the total energy injected into the system. 

The ESCpo was obtained by the ratio between the amount of total energy 

that entered the system and the mass of powder obtained after the drying 

process: 

௣௢�ܵܧ  = ( �೟,೔೙ ெ೛ )        eq.3 

where, ESCpo is the energy consumption spent to obtain one kilogram of powder 

recovered from the system; εt,in is the total energy that enters the system; Mp is 

the total mass of powder recovered in the process. 

 

2.7 Statistical Analyses 

 

The Complete Randomized Design (CRD) was used with 4 treatments and 

2 replications. The Analysis of Variance and Tukey's test were conducted for 

multiple comparisons of the means at 5% significance level. The Linear 

Correlation Analysis was applied except for the calculated values. The SAS 

software (SAS Institute Inc., 2008) version 9.1 was used. 
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3.RESULTS AND DISCUSSION 

 

3.1 Centesimal composition of dairy mix es 

 

According to the results, there was no significant difference (p> 0.05) 

between ESTs nor between aw concerning all treatments. In relation to protein, 

fat and ash, when the products T1 and T2, products containing only the milk base 

(milk and whey), were compared, they did not present any difference between 

themselves. This same relationship occurred between the mix containing in 

addition to the dairy base, maltodextrin and soluble corn fiber (T3 and T4). 

Addition of the high molecular weight compounds reduced the proportion 

of proteins, fat and ashes in the dairy mixes and increased the carbohydrate 

concentration (Table 1). 
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Table 1 - Physical chemical analysis data of the products 

Treatments 

Total solids 

(g·100g-1) 

Protein 

(g·100g-1) 

Fat 

(g·100g-1) 

Carbohydrates 

(g·100g-1) 

Ashes 

 (g·100g-1) 

Aw 

T1 96.90 ± 0.45ª 24.68 ± 0.26ª 3.15 ± 0.19ª 60.82 ± 0.20b 8.25 ± 0.06ª 0.17 ± 0.03ª 

T2 96.93 ± 0.30ª 24.49 ± 0.57ª 3.38 ± 0.14ª 60.90 ± 0.48b 8.16 ± 0.05ª 0.16 ± 0.02ª 

T3 96.20 ± 0.45ª 19.14 ± 0.21b 2.13 ± 0.14b 68.52 ± 0.38ª 6.42 ± 0.05b 0.16 ± 0.03ª 

T4 97.00 ± 0.67ª 19.31 ± 0.39b 2.21 ± 0.19b 69.29 ± 0.43ª 6.39 ± 0.05b 0.14 ± 0.03ª 

Aw = Water activity. T1, control product without lactose hydrolysis and without maltodextrin nor soluble corn fiber added; T2, product 
submitted to the process of hydrolysis of lactose and without maltodextrin nor soluble corn fiber added; T3, product submitted to the 
hydrolysis process and maltodextrin added; T4, product submitted to the hydrolysis process and soluble corn fiber added. 
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3.2 Scanning Electron Microscopy  

 

Figure 1 shows less agglomeration of the particles of the powder in T1, 

compared to other treatments. This was probably due to the lactose hydrolysis 

process applied to T2, T3 and T4 treatments. Lactose hydrolysis increases the 

concentration of  monosaccharide sugars (galactose and glucose) in the product, 

which have a lower glass transition temperature (Tg) than lactose [132]. 

 

 

 

 

 

 

 

 

 

Figure 1 - Scanning electron microscopy images of milk powder mixes, on 
1,000x magnification, showing the trends of the particles of the powder for 
agglomeration 
T1, control product without lactose hydrolysis and without maltodextrin nor 
soluble corn fiber added; T2, product submitted to the process of hydrolysis of 
lactose and without maltodextrin nor soluble corn fiber added; T3, product 
submitted to the hydrolysis process and maltodextrin added; T4, product 
submitted to the hydrolysis process and soluble corn fiber added. 

Tϭ TϮ T1 T2 

T3 T4 

50µm 50µm 

50µm 50µm 
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Addition of the high molecular weight compounds reduced the degree of 

agglomeration of the powder particles, with maltodextrin having a better effect in 

this regard. Maltodextrin is not hygroscopic, compared to low molecular weight 

sugars and its presence in the food matrix tends to reduce the degree of particle 

agglomeration [11]. Characteristic that can be presented by the soluble fiber, 

depending on its form of obtaining [123]. 

 

3.3 Hygroscopicity 

 

Lactose-free products absorbed more water than the traditional one and 

the addition of maltodextrin and soluble corn fiber was not able to reduce the 

mass gain. In addition, the soluble fiber-containing compound was the one that 

most absorbed water. This same behavior has been observed in the variation of 

aw for all the treatments.The degree of hydrolysis of the starch influences the 

properties of the product, the higher the hydrolysis, the greater its hygroscopicity 

and the more conducive to problems in drying and storage, which may be the 

case of this product [89, 183]. 
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Figure 2 - Hygroscopicity data of the products: graph of the mass gain of the 
powders at different times 
(A); Graph of the variation of aw at different times (B). T1, control product without 
lactose hydrolysis and without maltodextrin nor soluble corn fiber added (■);T2, 
product submitted to the process of hydrolysis of lactose and without maltodextrin 
nor soluble corn fiber added (●); T3, product submitted to the hydrolysis process 
and maltodextrin added (▲); T4, product submitted to the hydrolysis process and 
soluble maize fiber added (▼). 
 

3.4 Adhesion of the powders in the drying chamber 

 

According to figure 3, the treatments submitted to lactose hydrolysis 

process (T2, T3 and T4) showed a higher degree of adhesion of the powders to 

the equipment wall during the drying process. This is because galactose and 

glucose monomers, formed from the hydrolysis of lactose, are compounds of low 

molecular weight, therefore they act to reduce the glass transition temperature of 

the product [22]. Low molecular weight sugar-rich products are more amenable 

to adhesion problems and product stability during storage [75]. 

The treatments T2, T3 and T4 absorbed more water (figure 2). The water 

has significant plasticizing power over the amorphous lactose and the products 
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derived from its hydrolysis, having a negative effect on the Tg of the product. The 

increase in the water content of the food implies in the reduction of glass transition 

temperature [184, 185]. 

 

 

Figure 3 - Drying chamber images before and after the dust collection process: 
image of the chamber immediately after drying 
(A); Image after removal of dust (B). T1, control product without lactose hydrolysis 
and without maltodextrin nor soluble corn fiber added; T2, product submitted to 
the process of hydrolysis of lactose and without maltodextrin nor soluble corn 
fiber added; T3, product submitted to the hydrolysis process and maltodextrin 
added; T4, product submitted to the hydrolysis process and soluble corn fiber 
added. 
 

The addition of maltodextrin and soluble corn fiber present in mixes T3 and 

T4 reduced the degree of adhesion of the powders to the wall of the equipment 

in relation to T2. This fact can be noticed in the images of the chamber after the 

process of removal of the powders and of the difficulty of withdrawal of the 
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product that has been observed experimentally.The addition of high molecular 

weight compounds increases the final Tg of the products and may imply in 

improvement in the drying process and storage conditions [89, 132]. 

Product T2 showed greater adhesion of the powder to the wall of the 

chamber, presented caking during the drying process. This problem may have 

occurred because the temperature of the powder during the dehydration process 

was greater than the Tg of the product, which is low when compared to the other 

treatments [22]. 

The hydrolyzed product tends to absorb more water than the traditional 

one and this absorption can result in collapse and agglomeration of the powder 

and formation of hard mass. Physical changes (viscosity and collapse) have been 

described as time-temperature and humidity-dependent phenomena [75, 76, 

186]. 

 

3.5 Particle size after rehydration 

 

After the rehydration process of the dairy mixes in water, different particle 

size distributions have been obtained as shown in figure 4 and data summarized 

in table 2. 

Figure 4 shows the distribution of the percentage of the volume occupied 

by the particles according to their hydrodynamic diameters. Particle size 

distribution of two major populations is characteristic for fluid whole milk: one 
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corresponding to the casein micelles (50 to 400 nm) and one corresponding to 

the fat globules (1 to 10 μm). 

The dairy mix powder T1, after rehydration, showed a population of 

particles centered at approximately 141 nm, which corresponds to the casein 

micelles as in the fluid milk. A second region above 800 nm was also observed 

with a population of particles of 11.1% of the volume for T1, being attributed to 

the possible protein aggregates still in solubilization process, associated with the 

residual lipid fraction of the products, having their particles centered at 

approximately 2 μm. 

In Figure 4, it is possible to observe that, unlike T1, the T2 dairy mix 

presented, besides the two regions found in T1 (<500 nm and> 800 nm), a 

population of particles in the intermediate region (between 500 nm and 800 nm), 

corresponding to 3.1% of the volume. Considering that there is no significant 

difference in composition between T1 and T2 (Table 1), and due to the 

observation of a larger agglomeration of  particles in T2 powder by scanning 

electron microscopy in figure 1, it can be inferred that the obtaining of this 

population of particles identified in the region between 500 nm and 800 nm (after 

hydration) is directly related to the lactose hydrolysis process, which provides 

greater agglomeration of T2 particles, and, in this situation, decreases in the 

rehydration capacity of the powder. [187] correlated the decrease in the solubility 

of whole milk powder during its aging with the evolution of the Maillard reaction 

and the cross-linking of caseins. Later, this same team demonstrated the action 
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of the products of  Maillard reaction as promoters of cross-linking between 

caseins [187]. In this context, the fact that the product is subject to the hydrolysis 

process of lactose may provide an increase in the non-enzymatic browning 

reaction (Maillard reaction) of the powders, which could therefore contribute to 

the reduction of its rehydration capacity as shown in Table 2 of the particle 

distribution. 

Considering the two-step rehydration process as described by [143], the 

different morphologies of the dust particles could explain the different rehydration 

capacities observed. These authors described the process of rehydration of 

powdered MPC (milk protein concentrate) as occurring in two simultaneous 

steps: breaking particle agglomerates into individual particles and releasing the 

particle material into the aqueous phase [143]. Correspondingly, populations of 

particles in the intermediate region have also been identified for T3 and T4, these 

being in addition to the hydrolysis of lactose, the addition of maltodextrin and 

soluble fiber, respectively. In Table 3, it is possible to observe the distribution of 

the particles of the four rehydrated dairy mixes in the three regions of interest. 
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Figure 4 - Distribution of particle size of powdered dairy mixes after rehydration 
in water 
T1 (□), control product without lactose hydrolysis and without maltodextrin nor 
soluble corn fiber added; T2 (○),product submitted to the process of hydrolysis of 
lactose and without maltodextrin nor soluble corn fiber added; T3 (Δ), product 
submitted to the hydrolysis process and maltodextrin added; T4 (♦), product 
submitted to the hydrolysis process and soluble corn fiber added. 
  

A decrease in the population observed in the region <0.5 μm is 

accompanied by an increase in populations in the two other regions, leading to 

the conclusion that the addition of maltodextrin and soluble corn fiber leads to a 

decrease in hydrolyzate powders rehydration capacity, in detriment to the 

improvement of the drying capacity. 
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Table 2 - Statistical data of particle size analyzes (% volume) of dairy mixes 

after water hydration 

Treatments 

Volume of particles per region of size 

< 0.5 μm 

(%) 

0.5 – 0.8 μm 

(%) 

> 0.8 μm 

(%) 

T1 88.9 0 11.1 

T2 86.4 3.1 10.5 

T3 79.2 4.6 16.2 

T4 77.3 4.9 17.8 

T1, control product without lactose hydrolysis and without maltodextrin nor 
soluble corn fiber added; T2, product submitted to the process of hydrolysis of 
lactose and without maltodextrin nor soluble corn fiber added; T3, product 
submitted to the hydrolysis process and maltodextrin added; T4, product 
submitted to the hydrolysis process and soluble corn fiber added. 
 

3.6 Objective color 

 

The products in general presented a high luminosity compared to that of 

the powdered milk. This is due to the addition of whey to the mix and, 

consequently, to the reduction of milk constituents which are responsible for its 

white coloration and low luminosity [156–158]. 

According to the results, the hydrolysis process was not sufficient to alter 

the luminosity of the blends. The soluble fiber, according to the manufacturer, 

should have a neutral coloration in the formulations [188]. However, its addition 

significantly reduced (p <0.05) this parameter. Therefore, the brightness of the 

product should not be evaluated on an isolated basis. 
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In relation to the parameter a*, T3 presented the lowest value, tending 

slightly to the blue coloration. For the value of b*, all treatments showed a 

significant difference between themselves (p> 0.05). The hydrolysis process 

increased the tendency of the product to yellow, with this tendency being greater 

in those added with drying improvers, where T4> T3. 

The results for the hue angle (h) and the saturation index (C) showed that 

all products are yellow, and T2, T3 and T4 show a more pronounced staining than 

the traditional mix (T1). Glucose and galactose, the main products of lactose 

hydrolysis, are reactive and at elevated temperatures can react with the protein 

present in the mix, causing non-enzymatic browning [22]. 

The addition of maltodextrin and soluble fiber increased the degree of color 

saturation even further, and this effect was greater for fiber addition. The 

hydrolysis of the starch releases sugars, which are low in molecular weight and 

more susceptible to non-enzymatic browning, the greater the latter, the higher the 

degree of hydrolysis [90]. 
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Table 3 - Values of the parameters L*, a*, b*, C and h of the dairy powder mixes (n = 2) 

Tratamentos L* a* b* C H 

T1 93.26 ± 1.34 a -2.70 ± 0.02a 10.77 ± 0.29d 11.10 ± 0.29d -75.91 ± 0.28a 

T2 92.65 ± 0.89 a -2.81 ± 0.03b 12.34 ± 1.15c 12.66 ± 1.13c -77.09 ± 1.04b 

T3 91.75 ± 1.50 a -3.04 ± 0.02c 13.77 ± 0.16b 14.10 ± 0.16b -77.54 ± 0.06b 

T4 89.92 ± 0.39b -2.70 ± 0.04a 15.58 ± 0.47a 15.81 ± 0.47a -80.16 ± 0.15c 

Where: L* = Luminosity; a* = Tonality; b * = Saturation; C = Saturation index and h = hue angle. 
T1, control product without lactose hydrolysis and without maltodextrin nor soluble corn fiber 
added; T2, product submitted to the process of hydrolysis of lactose and without maltodextrin nor 
soluble corn fiber added; T3, product submitted to the hydrolysis process and maltodextrin added; 
T4, product submitted to the hydrolysis process and soluble corn fiber added. 
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3.7 Raman spectroscopic characterization 

 

Raman spectroscopy has been used in this work to evaluate the effect of 

hydrolysis of lactose and the addition of the high molecular weight compounds in 

the produced dairy mixes.  

Raman spectra of milk powder, whey powder and maltodextrin have 

already been discussed separately in previous studies of the group [169, 173], 

however, the study of dairy products with lactose hydrolyzate which were 

obtained by liquid mixture of milk and whey for later concentration and drying, if 

necessary, aimed to evaluate the behavior of the spectroscopic properties of the 

products. 

Figure 5 shows the Raman spectra of the four products after production. 

The Raman spectrum region of 1500 to 300 cm -1 presented a large number of 

bands and is rich in structural information. The intense band at 1460 cm-1 is 

attributed to the modes of deformation of the CH bond with contribution of the 

carbohydrate molecules and the aliphatic amino acids present in  milk proteins 

[171, 172]. 

The region of 1200 to 800 cm-1 is dominated by bands which mainly involve 

the vibrational modes of chemical bonds of carbohydrates. The main vibrational 

modes are the stretches C-O, C-C and C-O-H deformation in the region between 

1120 and 1060 cm-1; C-O-C deformation between 950 and 870 cm -1. 
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The main alterations in the spectra can be observed as a result of the 

hydrolysis of lactose and are located in the region of 1350 cm-1, from 1200 to 800 

cm-1 and in the low 480-410 cm-1 wave number. As lactose band intensities 

decrease accordingly with hydrolysis, the bands at 525 and 424 cm-1 refer to 

increased spectral contribution of glucose and galactose [189]. An important 

observation is that carbohydrates are present in amorphous form in dairy mixes 

immediately after production. 

The addition of maltodextrin (T3) caused changes in the spectral profile of 

the milk base. The Raman spectrum of maltodextrin presented bands that 

distinguish it from other components present in the mix. The literature shows the 

band in 477 cm-1 as a marker in the identification of maltodextrin in milk samples 

[173]. Strong couplings between the vibrational modes were found in this region 

of the vibrational spectrum, such modes are mainly related to the deformation of 

the skeleton of the glycosidic ring [(C-C-C + C-C-O)]. Other regions where 

changes have been observed are in the region of 1340 cm-1 [(C-O) + (C-O-H)], 

and of 1080 cm-1, which involves the coupled mode of (C-O) +  (C-C) + (C-O-

H). 

The Raman spectroscopy technique can be used to evaluate the 

qualitative effect of lactose hydrolysis on dairy mixes as well as the addition of 

maltodextrin. The presence of the soluble fiber in the dairy mixes (T4) after drying 

moderately modified the spectroscopic properties of the product, mainly in bands 
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in the Raman spectrum in the region of 950 and 850 cm-1 (C-O-C + C-C-H + 

C-O). 

 

 
Figure 5 - Raman spectra obtained from milk mixes 
T1, control product without lactose hydrolysis and without maltodextrin nor 
soluble corn fiber added; T2, product submitted to the process of hydrolysis of 
lactose and without maltodextrin nor soluble corn fiber added; T3, product 
submitted to the hydrolysis process and maltodextrin added; T4, product 
submitted to the hydrolysis process and soluble corn fiber added. 
 

3.8 Mass and energy balance 

 

The mass loss was different (p <0.05) among all treatments, with the 

traditional product presenting the lowest loss. The treatments subject to 

hydrolysis of lactose had the glass transition temperature reduced which favored 
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the increase of stickiness on the walls of the equipment and consequently led to 

loss of yield [24, 190]. [22], dried lactose-free milk and obtained only 50% of the 

final yield. 

 

Table 4 - Mass and energy balance of dairy products 

ESCpo = Energy specific consumption to produce 1 kilogram of powder. T1, 
control product without lactose hydrolysis and without maltodextrin nor soluble 
corn fiber added; T2, product submitted to the process of hydrolysis of lactose 
and without maltodextrin nor soluble corn fiber added; T3, product submitted to 
the hydrolysis process and maltodextrin added; T4, product submitted to the 
hydrolysis process and soluble corn fiber added. 
 

The high weight compounds presented opposite results among 

themselves. Maltodextrin proved to be efficient in reducing the mass loss. 

However, the soluble corn fiber- containing product was the one that presented 

the highest loss. Maltodextrin reduced the adhesion of the powder to the walls of 

the equipment and consequently increased the yield of the product [98, 191]. [72] 

also observed an increase in the production yield of blackberry juice promoted by 

maltodextrin addition. 

Treatments Mass loss (%) 
Energy loss 

(%) 

ESCpo* 

( kJ·kg-1) 

Efficiency 

(-) 

T1 6.80 ± 076a 17.21 ± 0.79a 21123 ± 876ab 4.67 ± 0.55ª 

T2 20.76 ± 0.54c 16.90 ± 1.5ª 23854 ± 145c 4.49 ± 0.29ª 

T3 14.12 ± 3.18b 21.07 ± 0.27b 19926 ± 474a 4.99 ± 0.39ª 

T4 24.33 ± 0.24d 19.03 ± 1.75 ªb 21301 ± 151b 4.65 ± 0.08ª 
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In relation to energy data, the hydrolysis process had no influence on 

energy loss, since there was no significant difference (p> 0.05) for this parameter, 

between the traditional (T1) and the lactose-free (T2). The presence of 

maltodextrin increased the energy loss compared to products containing only milk 

and whey. However, when the specific energy consumption for each kilogram of 

powder produced was evaluated, this treatment was the one that spent the least 

energy among lactose-free products. In addition, their expenditure was equal (p> 

0.05) to that of T1 (traditional product). Results that can be explained by the mass 

yields obtained for the four products. 

 

4.CONCLUSION 

 

Because it is a whey added product, the hydrolysis process implied a 

greater reduction in the quality of the physicochemical characteristics and drying, 

since it favored the darkening of the product, made it more hygroscopic, with 

greater tendency to adhesion of the particles and also increased the mass and 

energy losses in the drying process. The matodextrin was the high molecular 

weight compound that presented better performance in improving the drying 

process. It was able to reduce the hygroscopicity and adhesion of the powder in 

the drying chamber and also implied in the increase the yield of the product and 

reduces the energy expenditure required for its manufacture. 
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1.GENERAL CONCLUSION 

 

The knowledge of the efficiency of the spray dryer in the food drying is of 

paramount importance, since this is a technique that demands high amount of 

energy. The efficiency may be obtained by means of mass and energy balance, 

using the mathematical model developed in the present work. The model allows 

to evaluate the efficiency of equipment with different designs and the processing 

of different products, such as the dairy mixes elaborated from the milk and whey 

mixture.  

The addition of whey to milk changes the final composition of the product 

and influences various properties, such as adhesion, color and particle size. The 

addition of maltodextrin and inulin favorably contributed to the conservation and 

drying of powders. However, such addition increases the hydrodynamic particle 

size during rehydration. 

The lactose hydrolysis is another factor that hinders the drying process, 

and this difficulty is most evident in dairy mixes, since they are products rich in 

lactose. Among the high molecular weight compounds added, maltodextrin has 

been shown to be more efficient as it improves the the physicochemical and 

drying properties. 
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2.PERSPECTIVES 

 

This work allowed to create a mathematical model that presented an 

efficient tool in the thermodynamic characterization of equipment with different 

designs and in the elaboration of different products. The professionals in the 

drying sector acquired skills in milk drying and, empirically, whey drying 

processes, without a scientific knowledge of the process. Due to the variety and 

complexity of products to be elaborated, such as dehydrated dairy mixes, more 

rigorous methods based on their thermodynamic and physico-chemical 

properties are necessary. Therefore, it is interesting to apply the mathematical 

model in industrial equipment, in the most diverse types of products, since the 

evaluation of the efficiency of the equipment will allow industries to understand 

their processes and consequently to know effectively the mass and energy yields 

of their equipment.  

The efficiency of the drying process, the maintenance of the nutritional and 

sensorial properties of the product, depends on several factors, such as the 

characteristics of the food matrix and drying parameters (flow rate of the 

concentrate product, inlet and outlet air properties). These parameters should be 

specific to each type of food, and the more difficult it is to dry the product, the 

greater the need to respect the parameter values, since variations in them may 

imply problems in the characteristics of the food or in the low Mass and energy 

yield. In this way, it is interesting to perform a work by varying the drying 

conditions and applying the mass and energy balance, in order to understand the 
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influence of this variation on the physical-chemical and drying properties of the 

product, as well as the thermodynamic properties of the process. The results of 

the mass and energy balance will allow to know the best drying parameters for 

the elaborated product. 

This work also verified that the addition of maltodextrin has been shown to 

be advantageous in the preparation of powdered milk products, since it was 

capable of modifying its physicochemical and drying properties. It reduced the 

degree of adhesion and agglomeration of the powder, reduced the effect of the 

Maillard reaction on the color of the product and increased the glass transition 

temperature. However, the concentration of this compound in dairy mixes and the 

effect of this concentration on the process and product are not presented in the 

literature, which makes interesting to develop a work that shows the effect of the 

variation in the proportion of maltodextrin on the properties of elaborated dairy 

mixes from milk and whey, and that allows to discover what the ideal 

concentration for the product developed. 

Maltodextrin is obtained by partial hydrolysis of the starch, and its degree 

of hydrolysis is expressed as equivalent dextrose (DE). The degree of DE is 

largely responsible for the physico-chemical properties of maltodextrin, hence the 

final characteristics of the added products of that compound. Although increasing 

the Tg of the product, reducing the degree of agglomeration and increasing the 

energetic and mass yields, maltodextrin implies in increasing the hydrodynamic 

size of the particle and may present difficult solubilization, which may be a 

problem in some types of product. It is therefore necessary to carry out a work by 
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applying maltodextrins with different degree of DE in dairy mixes made from milk 

and whey. This study aims to show the effect of degree of DE on these products 

and to define the best maltodextrin in each situation. 
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