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Abstract Bacteriocins are ribosomally synthesized peptides
that have bacteriostatic or bactericidal effects on other bacte-
ria. The use of bacteriocins has emerged as an important
strategy to increase food security and to minimize the inci-
dence of foodborne diseases, due to its minimal impact on the
nutritional and sensory properties of food products. Gram-
negative bacteria are naturally resistant to the action of bacte-
riocins produced by Gram-positive bacteria, which are widely
explored in foods. However, these microorganisms can be
sensitized by mild treatments, such as the use of chelating
agents, by treatment with plant essential oils or by physical
treatments such as heating, freezing or high pressure process-
ing. This sensitization is important in food microbiology,
because most pathogens that cause foodborne diseases are
Gram-negative bacteria. However, the effectiveness of these
treatments is influenced by several factors, such as pH, tem-
perature, the composition of the food and target microbiota. In
this review, we comment on the main methods used for the
sensitization of Gram-negative bacteria, especially
Salmonella, to improve the action of bacteriocins produced
by Gram-positive bacteria.

Keywords Bacteriocins . Biocontrol . Gram-negative
bacteria . Outermembrane

Introduction

Bacteriocins are antimicrobial peptides that are ribosomally
synthesized by Gram-negative and Gram-positive bacteria
that have bacteriostatic or bactericidal effects on other bacteria

(Héchard and Sahl 2002; Meghrous et al. 1999). These pep-
tides show great potential for use in foods as a strategy for
control of foodborne pathogens and spoilage microorganisms
(Allende et al. 2007; Deegan et al. 2006). The use of bacte-
riocins has minimal impact on the nutritional and sensory
properties of foods, thus satisfying consumer demand for
products with a lower amount of chemical additives (Gálvez
et al. 2007; Settanni and Corsetti 2008). In addition, bacterio-
cins have several desirable characteristics, such as low toxicity
and stability against proteases and temperature (Dischinger
et al. 2014; Garcia et al. 2010).

Usually, Gram-negative bacteria are naturally resistant to
the bacteriocins produced by Gram-positive bacteria, due to
their outer membrane, which acts as an effective barrier (Cao-
Hoang et al. 2008; Gyawali and Ibrahim 2014). Nevertheless,
agents or treatments that destabilize the outer membrane en-
able these peptides to affect Gram-negative bacteria (Gálvez
et al. 2014; Chalón et al. 2012; Martin-Visscher et al. 2011).
This sensitization is relevant in food microbiology, because
most pathogens related to foodborne diseases are Gram-
negative bacteria (Boziaris and Adams 1999). This strategy
has been demonstrated with food additives, such as chelating
agents or plant essential oils; with sanitization treatments
using other antimicrobial compounds, such as sodium hypo-
chlorite; and with conservation and food processing treat-
ments, such as freezing, high pressure processing and pulsed
electric fields, on several Gram-negative bacteria, including
Aeromonas hydrophila, Arcobacter butzleri, Citrobacter
freudii, Enterobacter aerogenes, Escherichia coli,
Salmonella, Shigella flexneri, Shigella sonnei, Pseudomonas
aeruginosa, Pseudomonas fluorescens, Pseudomonas putida
and Yersinia enterocolitica (Tables 1 and 2).

The efficacy of these strategies has already been demonstrated
in several tests both in vitro and in food models. Most such tests
have used nisin (Tables 1 and 2), because of its approval for use
in foods by the Food and Drug Administration (FDA) as a
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BGenerally recognized as Safe^ (GRAS) additive (Federal
Register 1988). Bacteriocins can be used in several products
foods, such as meat, chicken, dairy, eggs, seafoods, fruit and
vegetables products (Gálvez et al. 2014). Its use increases the
food security and the shelf life of foods (Allende et al. 2007;
Deegan et al. 2006). They are produced in foods, by activity of
bacteriocin-producing strains or are added in foods, as food
preservatives (Settanni and Corsetti 2008). Its activity can be
influenced by several factors, such as environmental conditions
of storage of food, food components, solubility and food addi-
tives (Settanni and Corsetti 2008). The sensibility of target cell
can be also altered due to changes in cell composition in response
to environmental conditions (Kawasaki 2012).

Classification and mechanism of action of the bacteriocins

Bacteriocins can be subdivided into classes that reflect the sim-
ilarities and differences of the molecules (Cleveland et al. 2001;
Garcia et al. 2010). Class I, also known as lantibiotics, contains
small peptides, of 19 to 50 amino acids and a molecular mass of
less than 5 kDa (Table 3) (Cleveland et al. 2001). This group is
characterized by the presence of unusual amino acids residues,
such as lanthionine (Lan) and methyl lanthionine (MeLan), that
result from post-translational modifications (Cleveland et al.

2001; Guder et al. 2000; Sahl and Bierbaum 1998).
Lantibiotics are subdivided into subclasses or subtypes according
to their chemical structure and activity (Kraaij et al. 1999).
Subclass A is composed of amphipathic peptides that are elon-
gated and flexible, with capacity to form pores, such as nisin,
galidermin and bovicin HC5. Lantibiotics grouped in subclass B
are smaller and globular, such asmesarcidin and cinnamicin, and
can inhibit specific enzymes (Kraaij et al. 1999).

Class II bacteriocins are composed of thermostable peptides,
containing 20 to 60 amino acids, without post-translational
modifications and molecular mass lower than 10 kDa
(Table 3) (Deegan et al. 2006; Héchard and Sahl 2002).
Generally, this class is subdivided into subclasses: subclass IIa
is composed of peptides that demonstrate activity against
Listeria and exhibit a common N-terminal domain (Tyr-Gly-
Asn-Gly-Val-X-Cys). Examples of this group include the
carnobacteriocin BM1 and the piscicolin 126 (Cintas et al.
2001; Ennahar et al. 2000; Héchard and Sahl 2002). Subclass
IIb is composed of bacteriocins that are formed by two peptides
that act synergistically, such as lactocin 705, in which the active
molecule is formed by the interaction of two peptides, of 33
amino acids residues each, called 705α and 705β (Castellano
et al. 2003). Subclass IIc includes circular peptides that are
dependent on the Sec system, such as carnocyclin A and
enterocin AS-48 (Cintas et al. 2001; Héchard and Sahl 2002).

Table 2 Use of bacteriocins on Gram-negative bacteria in foods associated to different treatments

Bacteriocin Target microorganism Concentration Associated treatment Foodmatrix Reference

Nisin E. coli 1280 AU.g−1 High pressure processing
(400 MPa, 10 min)

Ham Garrida et al. (2002)

A. butzleri 500 AU.mL−1 Sodium lactate (2 %), sodium
citrate (1.5 %)

Chicken Long and Phillips (2003)

E. coli, P. fluorescens 500 AU.mL−1 High pressure processing
(200 to 500 MPa, 5 min)

Milk Black et al. (2005)

S. enterica Typhimurium 0.25 to 0.5 μg.mL−1 Essential oil (5 to 30 μL.100 mL−1) Barley soup Moosavy et al. (2008)

Pseudomonas sp. 500 to 1500 AU.g−1 EDTA (10 mM) Chicken Economou et al. (2009)

S. enterica Stanley, E. coli,
S. enterica Newport

300 AU.mL−1 EDTA (20 mM) Apple juice Ukuku et al. (2009)

S. enterica Enteritidis 500 or 1000 AU.g−1 Oregano essential oil (0.6 or 0.9 %) Sheep meat Govaris et al. (2010)

Pseudomonas sp. 500 AU.mL−1 EDTA (20 mM), potassium sorbate,
sodium benzoate, sodium
diacetate (3 %)

Shrimps Norhana et al. (2012)

S. enterica Enteritidis 500 to 2500 AU.mL−1 Heating (55 °C) Egg white Boziaris et al. (1998)

Enterocin
AS-48

E. coli O157:H7 50, 100 or 200 μg.mL−1 EDTA (20 mM), sodium
polyphosphate (0.3 or 0.5 %)

Apple juice Ananou et al. (2005)

S. enterica Choleraesuis 30 μg.mL−1 Pulsed electric field (35 kV, 150 Hz) Viedma et al. (2008)

S. enterica 25 μg.mL−1 Lactic acid (1.5 %) and polyphosphoric
acid (0.1 %), tri-sodium phosphate
(1.5 %), sodium hypochlorite
(100 ppm)

Soybean
sprouts

Cobo Molinos et al. (2008)

E. coli, S. sonnei,
S. flexneri,
E. aerogenes, Y.
enterocolitica and
A. hydrophila

25 μg.mL−1 Polyphosphoric acid (different
concentrations for each species
between 0.2 and 2 %)

5410 J Food Sci Technol (September 2015) 52(9):5408–5417
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Generally, bacteriocins act in sensitive cells by forming
pores in the cytoplasmic membrane, which causes an efflux
of intracellular metabolites, such as potassium and amino
acids, resulting in the depolarization of the membrane and,
consequently, cellular death (Helander and Mattila-Sandholm
2000; Nes et al. 2006). During the anchoring in the cytoplas-
mic membrane, the bacteriocins can use a specific receptor,
which explain the high efficiency in vivo. Nisin, gallidermin
and bovicin HC5 appear to use the same receptor molecule,
lipid II (Bonelli et al. 2006; Hasper et al. 2004; McAuliffe
et al. 2001; Paiva et al. 2011; Wiedemann et al. 2001). Thus,
these bacteriocins also interfere with the biosynthesis of pep-
tidoglycan (Guder et al. 2000). Because the lipid II is a
molecule that is highly conserved among prokaryotes, if these
peptides have access to the cytoplasmic membrane, they will
act more efficiently than those peptides that require specific
receptors for anchoring to the membrane, such as
carnobacteriocin BM1 and piscicolin 126 that use the man-
nose phosphotransferase system (Martin-Visscher et al. 2011).
In this case, the amino acid sequence of the receptor may vary
among different bacterial species, which can lead to differ-
ences in the sensitivity of target cells (Martin-Visscher et al.
2011).

Despite some similarities among the bacteriocin molecules
of the same class, the sensitivity of target cells varies. These
variations are not only due to changes in the bacteriocin
molecule but also to differences in the lipid composition of
the target cell membrane (Nissen-Meyer and Nes 1997).

Bacteriocins combined with food preservatives

Food preservatives are substances added to products to extend
the storage life, by prevent or retard the deterioration of odor,
color, texture, flavor, appearance, safety and nutritive value
(Richter et al. 1993). Examples including the ethylenedi-
aminetetraacetic acid (EDTA), which is widely used as a
chelating agent to minimize reactions catalyzed by metals
and acids and their salts, which used to minimize the growth
of microorganism and with technologic function (Beales
2004; Branen and Davidson 2004; Chalón et al. 2012).
These preservatives may act in destabilize of the outer mem-
brane, by release of components of the structure or by inter-
calate in the membrane, permitting the bacteriocin action
(Alakomi et al. 2000).

The use combined of the bacteriocins with EDTA is one of
most common strategies in the sensitization of Gram-negative
bacteria (Tables 1 and 2). EDTA acted promotes the release of
the LPS layer (Alakomi et al. 2003). Details of the action
mechanism are not yet understood, but it is known that there is
at least partial disruption of the lipopolysaccharide layer
(LPS), possibly due to binding to calcium and magnesium
ions, which would establish a cross-link with sugar residues

and phosphate radicals, inside the core polysaccharide, rein-
forcing the structure of the outer membrane (Alakomi et al.
2003; Branen and Davidson 2004). Thus, EDTA acts to
enhance the bacterial activity of other antimicrobials, in addi-
tion to expanding the spectrum of action of bacteriocins,
particularly against Gram-negative bacteria, such as
Salmonella, E. aerogenes, S. flexneri, C. freudii, E. coli,
P. aeruginosa and A. butzleri (Table 1) (Branen and
Davidson 2004). Usually, low concentrations of EDTA (10
to 20 mM) are sufficient to produce sensitization for bacteri-
ocin activity (Tables 1 and 2).

However, several factors can alter the sensibility of target
cells, including the manner of administration of the chelating
agent, the time of treatment and the environmental conditions
of treatment (Boziaris and Adams 1999; Phillips and Duggan
2001; Prudêncio et al. 2015). The inhibition of microbial
growth appears to be a time-dependent process, and the meth-
od of application can be a critical factor in obtaining the
desired effect, it is recommended the simultaneous use of the
bacteriocin and the chelating agent (Boziaris and Adams
1999; Phillips and Duggan 2001; Stevens et al. 1991). The
activity of the chelating agent is also influenced by pH: at low
pH, a large proportion of the carboxylate group is in its non-
ionized form, which is not a particularly effective electron
donor and the EDTA-metal complex is less stable. Therefore,
the combination of EDTA with bacteriocins is more effec-
tive at near-neutral pH, although several peptides, such as
nisin and bovicin HC5, are more efficient to low pH value
(Ananou et al. 2005; Boziaris and Adams 1999; Houlihan
et al. 2004; Lappe et al. 2009; Norhana et al. 2012;
Prudêncio et al. 2015).

The sensitivity to the combination of bacteriocins and
EDTA varies between different species of Gram-negative
bacteria, and even between different strains of the same spe-
cies. The concentration of chelating agent necessary for sen-
sitization is also variable, possibly because of the differences
in the structure of the LPS layer, which interfere with the
permeability (Boziaris and Adams 1999). For use in foods,
large quantities of the chelating agent may be required for the
removal of exogenous divalent cations that are associated with
the food system and for the effective sensitization of Gram-
negative cells (Boziaris and Adams 1999; Lappe et al. 2009).

Other chemical compounds can also be used for the dis-
ruption of the outer membrane, such as acids and salts
(Tables 1 and 2). Lactic, citric and polyphosphoric acids and
their salts, as well as tri-sodium phosphate, act as
disintegrating agents of the outer membrane and have dem-
onstrated activity in the sensitization of Gram-negative bacte-
ria, including E. coli, S. sonnei, S. flexneri, E. aerogenes,
Y. enterocolitica, A. hydrophila, Salmonella and A. butzleri
(Tables 1 and 2) (Alakomi et al. 2000; Belfiore et al. 2007;
Cobo Molinos et al. 2008; Long and Phillips 2003; Phillips
and Duggan 2001). These associations are efficient in foods,
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and different methods of application can be employed, such as
in a washing solution for sanitization or addition of bacteriocin
with compounds, similar to food additives (Table 2) (Belfiore
et al. 2007; Cobo Molinos et al. 2008).

Bacteriocins combined with plant essential oils

Plant essential oils are volatile complex natural substances,
characterized by the presence of phenolic compounds with a
strong odor that are produced by aromatic plants as secondary
metabolites. Essential oils may have bactericidal, fungicidal,
virucidal activities and medicinal properties, and have practi-
cal applications, such as analgesics, perfumes, anti-
inflammatory agents, local anesthetics and food preservatives
(Bakkali et al. 2008; Burt 2004).

Components of plant essential oils such as thymol and
carvacrol, act on the bacterial membrane, resulting in impor-
tant morphological alterations and in the depletion of the
intracellular content (Govaris et al. 2010; Moosavy et al.
2008). The mechanism of action of such agents is still poorly
understood, but it is known that thymol and carvacrol act to
disintegrate the outer membrane, and their activity does not
involve the chelation of divalent cations from the outer mem-
brane, because compounds such as magnesium chloride do
not interfere with their activity, in contrast to the action of
EDTA (Helander et al. 1998).

However, the use of essential oils and their derivatives in
foods is limited by sensory changes, because high concentra-
tions are needed to exert antimicrobial activity (Govaris et al.
2010; Gutierrez et al. 2008; Nazer et al. 2005). Furthermore,
food composition may influence the action of essential oils:
high protein concentrations and moderately acidic pH result in
an increase in the antimicrobial activity of oregano and thyme
essential oils, while concentrations of potato starch or sun-
flower oil greater than 5 % reduce their efficiency (Gutierrez
et al. 2008).

Thus, one alternative has been an association with other
antimicrobial agents, such as bacteriocins. The effectiveness
of this strategy has already been demonstrated with carvacrol
and pediocin on E. coli O157:H7 (Turgis et al. 2012), and
carvacrol and thymol and nisin on S. enterica Enteritidis, and
others (Table 2) (Govaris et al. 2010). This strategy is
viable, because of the consequent reduction of the amount
of antimicrobial added to foods, and such a dual applica-
tion prevents possible undesirable sensory changes due to
the presence of large amounts of essential oils (Govaris
et al. 2010; Nazer et al. 2005; Turgis et al. 2012). This
was demonstrated on S. enterica Typhimurium and
S. aureus, in which the presence of nisin considerably
reduced the concentration of essential oil for the inhibition
of both bacteria (Moosavy et al. 2008).

Bacteriocins combined with high pressure processing
(HPP)

High pressure processing has been evaluated as a food pas-
teurization technique for inactivating microorganisms at room
temperature, and thus minimizing the loss of sensory and
nutritional components of the food (Huang et al. 2014;
Masschalck et al. 2001). Under normal conditions, the process
preserves the original color, flavor and nutritional content
because smaller molecules such as pigments, vitamins, vola-
tile compounds and others are less affected by high pressure
(Huang et al. 2014).

The mode of action of HPP depends on the level of pres-
sure. Pressures between 30 and 50 MPa can influence gene
expression, protein synthesis and reduce the number of ribo-
somes. A pressure of 100 MPa induces partial protein dena-
turation, while 200 MPa causes damage to the cytoplasmic
membrane and the internal cell structure. An increase of
300 MPa or more induces irreversible damage, such as the
denaturation of enzymes and proteins and the rupture of the
membrane (Garrida et al. 2002; Huang et al. 2014).

Microorganisms demonstrate differences in their resistance
to pressure, depending on the species, strain, physiological
state, processing temperature and substrate (Huang et al. 2014;
Patterson 2005). As the different levels of pressure exert
distinct effects, it is necessary to evaluate the response of each
microorganism in each food system (Huang et al. 2014). In
low-acid foods, vegetative cells exhibit great resistance to this
process, requiring high pressure for the inactivation of micro-
organisms, which is not economically feasible and further-
more may causes changes in the sensory characteristics of
foods, such as texture and color (Black et al. 2005; Garrida
et al. 2002; Masschalck et al. 2001).

Generally, HPP treatment does not completely inactivate
microorganisms, allowing the recovery of injured cells, but
such recovery is dependent upon the treatment conditions and
of the presence of other antimicrobial compounds (Patterson
2005). Food constituents may protect microbial cells against
the increase in hydrostatic pressure or facilitate their recovery
after treatment. Thus, to prevent the emergence of resistant
cells, this technology has been used in conjunction with other
antimicrobial compounds to ensure food safety. One of the
alternatives is the use of bacteriocins, because high pressure
destabilizes the outer membrane, increasing the activity of
bacteriocins in Gram-negative cells. Furthermore, Gram-
negative bacteria are more sensitive to HPP, whereas Gram-
positive bacteria are more sensitive to bacteriocins. Thus,
combined use is complementary (Garrida et al. 2002;
Masschalck et al. 2001; Patterson 2005).

Several works have demonstrated the efficacy of this strat-
egy and report an increase in bactericidal activity against
important pathogens, such as Salmonella and E. coli, in addi-
tion to the spoilage microorganisms that are measured by the
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total plate count (Tables 1 and 2) (Ponce et al. 1998; Rodriguez
et al. 2005; Zhao et al. 2013). Moreover, pressure-resistant
strains of E. coli have also demonstrated sensitivity to nisin,
when treated under high pressure (Masschalck et al. 2000).

However, the process of sensitization can be transient, this
is occurs only during the period in which the Gram-negative
cells are subjected to high pressure. Therefore, the simulta-
neous administration of bacteriocin with high pressure is
recommended (Black et al. 2005; Masschalck et al. 2001).
The sensitivity of different species is variable and
P. fluorescens demonstrated more sensitivity than E. coli, in
milk (Black et al. 2005).

Bacteriocins combined with a pulsed electric field

The application of a pulsed electric field is considered a non-
thermal technology that acts by forming reversible or irrevers-
ible pores in the cell membrane. This process improves the
sensitization of Gram-negative bacteria to the action of bacte-
riocins, which work synergistically, increasing the damage to
the cytoplasmic membrane (Table 2) (Viedma et al. 2008).

There is little information available about the effect of this
strategy in Gram-negative bacteria. However, it is known that
the efficiency of the treatment increases with temperature,
possibly due to the increase in cell membrane fluidity, which
facilitates the process of disorganization promoted by these
treatments. However, this parameter can bemaintained inmild
temperatures. For example: for apple juice, a temperature of
40 °C is adequate, and such a temperature ensures sensory and
nutritional qualities and reduces the costs of the process,
which is of great interest for the food processing industry
(Viedma et al. 2008).

As with other treatments, the method of application is an
important parameter, with the simultaneous use of pulsed
electric fields with bacteriocins being more efficient. This is
primarily due to the high resistance of Gram-negative bacteria
to treatments with pulsed electric fields, particularly at acidic
pH, a condition under which bacteriocins demonstrate greater
efficiency (Boziaris and Adams 1999; Houlihan et al. 2004;
Viedma et al. 2008).

Bacteriocins combined with temperature treatments

Temperature treatments may promote perturbations in the
outer membrane, either at low or high temperatures, favoring
the action of bacteriocins.

A reduction in temperature promotes a change in the structure
of the outer membrane. These alterations may permeabilize the
cell to bacteriocin, allowing the nisin to act on S. Typhimurium
and E. coli at refrigeration temperatures (Elliason and Tatini
1999; Prudêncio et al. 2015). The chilling process only allows

the effective sensitization of Gram-negative bacteria to the action
of bacteriocins, when the temperature drops rapidly, because
there is not enough time for the reorganization of the outer
membrane, altering its permeability. It has been demonstrated
that the growth phase of E. coli influences the concentration of
bacteriocin required for inhibition. Thus, cells in stationary phase
under rapid chilling require higher concentrations of nisin (Cao-
Hoang et al. 2008). As observed with other strategies, simulta-
neous treatment with bacteriocins has a more significant result
than the sequential use (Cao-Hoang et al. 2008).

The bactericidal effect varies depending on the strains,
bacteriocins and methodologies used, as demonstrated by
the results of Kalchayanand et al. (1992), wherein
S. enterica Typhimurium and Y. enterocolitica were more
sensitive to nisin, while A. hydrophila and Pseudomonas
putida were more sensitive to pediocin during freezing.

Heat also sensitizes Gram-negative bacteria to the action of
bacteriocins (Boziaris et al. 1998; Phillips and Duggan 2002).
The application of bacteriocin after heat treatment resulted in a
synergistic effect, and unlike other treatments, simultaneous
use only slightly increases the reduction in viability (Ueckert
et al. 1998). Differences related to strains and bacteriocins
were also observed with the use of heat, and pediocin was
generally more efficient than nisin (Kalchayanand et al. 1992).

Conclusions

Currently, there is a large number of characterized bacteriocins
with potential use in food. However, the effectiveness of this
strategy depends on several factors, such as pH, temperature,
food composition and target microbiota. Therefore, it is nec-
essary to establish effective conditions for the use of each
bacteriocin in each food matrix.

Although several agents and/or treatments used in combina-
tionwith bacteriocins inhibit bacterial growth alone, the presence
of these peptides provides an additional level of protection by
preventing the growth of cells affected by sublethal damage, thus
ensuring greater safety for the food product.

The use of bacteriocins in association with chemical com-
pounds or physical treatments allows us to extend the spec-
trum of action of these peptides on Gram-negative bacteria, in
addition to minimizing the emergence of resistant cells.
However, for effective application of this technology, more
studies are necessary, with different food matrices and in
mixed cultures, to understand how bacteria can survive and
adapt in a complex environment.
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