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We study the critical points of the normal map ν : N M → R
k+n , where M is an immersed

k-dimensional submanifold of R
k+n , N M is the normal bundle of M and ν(m, u) = m + u

if u ∈ Nm M . Usually, the image of these critical points is called the focal set. However, in
that set there is a subset where the focusing is highest, as happens in the case of curves
in R

3 with the curve of the centers of spheres with contact of third order with the curve.
We give a definition of r-critical points of a smooth map between manifolds, and apply it
to study the 2 and 3-critical points of the normal map in general and the 2-critical points
for the case k = n = 2 in detail. In the later case we analyze the relation with the strong
principal directions of Montaldi (1986) [2].

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Classically the focal set of a differential submanifold is given through the analysis of the singularities of the family of
distance squared functions over the submanifold, see [4]. J. Montaldi characterized in [2] the singularities of corank 2 of
distance squared functions on surfaces immersed in R

4 as semiumbilic points.
Also, if we consider a differentiable k-dimensional manifold M immersed in R

k+n , we know that its focal set can also be
interpreted as the image of the critical points of the normal map ν(m, u) : N M → R

k+n defined by ν(m, u) = πN (m, u) + u,
for u ∈ Nm M , where πN : N M → M denotes the normal bundle.

On the other hand, the concept of curvature ellipse at a point of a surface M immersed in R
4 was treated with full

details in [1]. It is defined as the locus of all the end points of the curvature vectors of the normal sections along all
the tangent directions to M at a point in it. This ellipse lies in the normal subspace of that point and it is completely
determined by the second fundamental. We call Veronese of curvature to the natural generalization of the curvature ellipse
for higher dimensions of M .

In this work, we describe first the focal set and its geometrical relation to the Veronese of curvature for k-dimensional
immersions in R

k+n . Then we define the r-critical points of a differential application f : H → K between two differential
manifolds and characterize the 2 and 3-critical points of the normal map. The number of these critical points at m ∈ M may
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depend on the degenerations of the curvature ellipse and we calculate those numbers in the particular case that M is an
immersed surface in R

4.

2. The Veronese of curvature

In the following, M will be a smooth k-dimensional manifold immersed in R
k+n . However, since all our study will be

local, we shall suppose without loss of generality that M is a regular submanifold of R
k+n . Over M we have the tangent

bundle π : T M → M , and the normal bundle πN : N M → M . Their fibers over m ∈ M will be denoted by Tm M and Nm M =
(Tm M)⊥ , respectively. We will denote by X(M) the Lie algebra of smooth vector fields, and if E is the total space of a vector
bundle over M , Γ (E) will be the module of its smooth sections. The value of such a section S at m ∈ M will be denoted Sm .

The usual inner product will be denoted by a dot and the first fundamental form of M by g ∈ Γ (T ∗M ⊗ T ∗M).
If X ∈ TmR

k+n , we will have the decomposition X = X� + X⊥ , with X� ∈ Tm M , X⊥ ∈ Nm M , and D X will stand for the
ordinary directional derivative. All vectors of Tm M and of Nm M are considered as elements of TmR

k+n and frequently
identified as usual with points of R

k+n .
The second fundamental form will be denoted α ∈ Γ (N M ⊗ T ∗M ⊗ T ∗M). If X, Y ∈ X(M) and Z ∈ Γ (N M), we have

Z · α(X, Y ) = Z · D X Y = Z · DY X . Related to α is the tensor field A ∈ Γ (T M ⊗ N∗M ⊗ T ∗M) given by A Z (X) = (D X Z)� .
Then, Z · α(X, Y ) = −Y · A Z (X).

Let P Tm M be the projective space of directions in Tm M . The second fundamental form defines a map ηm : P Tm M →
Nm M , which we call the Veronese of curvature, by

ηm
([t]) = ηm(t) = αm(t, t)

t · t
, t ∈ Tm M\{0}.

3. The focal set

We will describe in this section and the next the relations between the Veronese of curvature and the focal set of the
immersion M in R

k+n .
A useful definition of the focal set of M goes as follows.

Definition 3.1. Let ν be the normal map of M . Then the focal set of M, denoted here by F (M), is defined as the set of critical
points of ν . Since there will be little risk of confusion, the same name will be used for the image of F (M) by ν .

The next result is well known:

Proposition 3.2. The focal set of M is given by

F (M) = {
(m, u) ∈ N M: det(gm − u · αm) = 0, where m = πN(m, u)

}
,

where the determinant can be computed by means of any orthonormal basis of Tm M.

Proof. Let wi , i = 1, . . . ,n, be a local orthonormal frame of N M in a neighborhood U of m ∈ M and let ti , i = 1, . . . ,k, be
an orthonormal frame of T M in U . By means of the first of those frames we can work with a trivialization of N M on U
given by u ≈ (πN (m, u), x1, . . . , xn), where the xi are such that u = ∑

i xi wim , being m = πN (m, u). Thus the map ν can be
expressed as ν(m, x1, . . . , xn) = m + ∑

i xi wim .
If X ∈ Tm M , then dν(X,0) = X + ∑

xidwi(X) = X + ∑
xi D X wi , and dν(0, ∂xi ) = wi . Since the wi are orthonormal, the

vanishing of det(dν) is equivalent to the vanishing of the determinant of the orthogonal projection of dν|Tm M into Tm M , that
is to the vanishing of the determinant of the endomorphism of Tm M given by X → (dν(X,0))� = X + ∑

xi(D X wi)
� . The

component in t jm of (dν(tim,0))� is tim · t jm +∑
b xb(Dtim wb) · t jm = gm(tim, t jm)− um ·αm(tim, t jm), where u = ∑

b xb wbm .
That is, the condition is equivalent to the vanishing at m of the matrix with coefficients (g − u · α)(ti, t j). �
Proposition 3.3. Let Fm(M) = F (M) ∩ Nm M. Then the following properties are satisfied:

1. If u : M → N M be a local section in a neighborhood of m ∈ M, then det(gm − um · αm) = det(d(ν ◦ u)�m).
2. If u ∈ Fm(M), then there exists t ∈ Tm M\{0}, such that gm(t) = u · αm(t) ∈ T ∗

m M. In this case, we say that u belongs to the
focal set over t . In the following items, t and u satisfy that property.

3. u · ηm(t) = 1. In particular, u �= 0, ηm(t) �= 0.
4. ηm(t) /∈ (dηm)(Tt Tm M) ⊂ Tηm(t)Nm M, under the usual identification of Nm M with Tηm(t)Nm M.

Proof. 1) If, as before, we take a local frame wi of N M , we can write u = ∑
i ui wi . Thus, ν ◦ u = id+∑

i ui wi , whence if
X ∈ Tm M , we will have d(ν ◦ u)�m(X) = (X + ∑

i((D X ui)wim + ui
m D X wi))

� = X + Aum (X). Therefore,

det d(ζ ◦ u)�m = det
(
d(ν ◦ u)(ta) · tb

) = det
(
δab − um · αm(ta, tb)

)
.
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2) We can look at gm − u · αm as a linear map from Tm M to T ∗
m M . Since it maps linearly a vector space into another of

same dimension and has zero determinant, we conclude that there is some non-zero t ∈ Tm M such that (gm −u ·αm)(t) = 0.
3) If the 1-form (gm − u ·αm)(t) acts upon the vector t itself, we get t · t − u ·αm(t, t) = 0, whence, by dividing by t · t �= 0,

we obtain the claim.
4) Note that here ηm is taken as a map from Tm M\{0} to Nm M . For making the calculations easier we can assume that

t · t = 1. Then, if X ∈ Tt Tm M , we have

dηm(X) = 2

(t · t)2

(
(t · t)αm(t, X) − (t · X)αm(t, t)

) = 2
(
αm(t, X) − (t · X)ηm(t)

)
.

Suppose that this is equal to ηm(t). By inner multiplication of this with u we get u · ηm(t) = t · t = 1, while the same
multiplication with dηm(X) yields 2(u · αm(t) − gm(t))(X) = 0, which is absurd. �

In general, F (M) will be a hypersurface of N M , possibly with singularities, whose intersection with each fiber Nm M will
be an algebraic hypersurface of degree k. Thus, in the case of a surface M ⊂ R

2+n , the intersection Fm(M) of F (M) with
Nm M will be a quadric.

4. Focal set and the inverted pedal of the Veronese of curvature

Definition 4.1. Let P be a smooth manifold and μ : P → R
n a smooth map. For each p ∈ P , let pedμ(p) be the nearest point

to the origin among those of the affine subspace tangent to μ(P ) at μ(p), i.e. {μ(p)+ dμ(X): X ∈ T p P }. The resulting map
pedμ : P → R

n is called the pedal map of μ. Let P̃μ = {p ∈ P : pedμ(p) �= 0}. If R : R
n\{0} → R

n\{0} is the inversion with

respect to the hypersphere with center 0 and unit radius, the composition R ◦ pedμ : P̃ → R
n\{0} (and sometimes, also its

image) will be called the inverted pedal of μ.

Let us show the relation between the focal set of and the inverted pedal of η at m ∈ M . We are here interested solely in
the study of Fm(M). This justifies the use of the following simplified notation in this section:

T = Tm M\{0}, N = Nm M, α = αm, η = ηm, F = Fm(M), g = gm.

Proposition 4.2. Let z ∈ N be a point in the inverted pedal of η. Then z ∈ F .

Proof. Note that here η is taken as a map from T to N . Let t ∈ T and let 0 �= z = η(t) + dη(X), with X ∈ Tt(T ), a point in
the pedal of η so that R(z) belongs to the inverted pedal of η. We must have z · dη(Tt T ) = d(z · η)(Tt T ) = 0. In particular,
z · dη(X) = 0, whence z · z = z · η(t) �= 0. Also, d(z · η)t = 0. Hence t is a critical point of the map t 
→ z · η(t). But one sees
easily that this entails

g(t, t)z · α(
t, t′) − (

t · t′)z · α(t, t) = 0

for any t′ ∈ Tt T , i.e. (z · α − z · η(t)g)(t) = 0, and this requires the vanishing of det(z · α − z · η(t)g). By dividing that
determinant by (−z · η(t))k , we conclude that

det

(
g − z

z · η(t)
· α

)
= 0,

that is
z

z · η(t)
= z

z · z
= R(z) ∈ F . �

Let us see whether there is some form of converse of this. We put Bt = R(pedη(t)) + α(t, T )⊥ . Thus, Bt is an affine
subspace of N passing by R(pedη(t)). Note that α(t, T ) is the vector space generated by η(t) and the tangent space of the

Veronese of curvature at η(t). Let T̃ = {t ∈ T : pedη(t) �= 0}.

Theorem 4.3. F is the union of the inverted pedal of η with
⋃

t∈T̃ Bt .

Proof. Let x ∈ N be a point in F . Then det(g − x · α) = 0. Let t ∈ T , t · t = 1, be such that g(t) = x · α(t). We know that then
x · η(t) = 1 and η(t) /∈ (dη)(Tt T ). Let z = pedη(t); if z = 0 we would have η(t) ∈ (dηp)(Tt T ), which is absurd. As we have
seen before we will have (z · z)g(t) = z · α(t), from which we obtain g(t) = R(z) · α(t). Therefore (R(z) − x) · α(t) = 0, that
is R(z) − x ∈ Bt . Hence we can write this in the form

x = R(z) + u, u ∈ α(t, T )⊥. �
This describes completely F (M). Note that dimα(t, T ) � k. Hence, if for example k = 2 (M is thus a surface) and n = 2

then generically the dimension of Fm will be that of η(P Tm M), that is one; thus, F p will be a conic. If n = 3, it will be
generically a ruled quadric surface.
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5. r-Critical points of smooth maps

In this section we recall first the well-known notion of r-tangent bundle and define r-critical points. We shall use the
letter π to denote the natural map π : T M → M for any smooth manifold M .

The r-tangent bundle π r : T r M → M , for any non-negative integer r, is defined recursively as follows: the 0-tangent
bundle is id : M → M , the 1-tangent bundle is the tangent bundle. Suppose that we have defined π r : T r M → M and also a
bundle π r

r−1 : T r M → T r−1 M such that π r = π r−1 ◦ π r
r−1, where π = π1

0 . Then we define the next total space

T r+1M = {
X ∈ T

(
T r M

)
: π(X) = dπ r

r−1(X)
}

and the maps π r+1 = π r ◦ π and π r+1
r (X) = π(X) = dπ r

r−1(X). It is easy to see that T r M is the bundle of r-jets of curves
in M . That is, if X ∈ T r M , there is a curve γ : I → M , where I is an open neighborhood of 0 ∈ R, such that γ (0) = m, and X
stores all of the information of γ (0), γ ′(0), . . . , γ (r)(0). In fact, assume that γ (r) is a smooth map from I to T r M and that
π r

r−1 ◦ γ (r) = γ (r−1) . Then, define γ (r+1) = γ (r)′ = dγ (r) ◦ 1 : I → T T r M , where 1 : R → T R is the unit vector field. Therefore

π
(
γ (r+1)

) = (
π ◦ dγ (r) ◦ 1

) = γ (r)

and dπ r
r−1 ◦ γ (r+1) = d(π r

r−1 ◦ γ (r)) ◦ 1 = dγ (r−1) ◦ 1 = γ (r−1)′ = γ (r) . Hence, γ (r+1)(0) ∈ T r+1M .

If A ∈ T r M , we shall denote by T r+1
A M the fiber of π r+1

r over A. Let V T r M = {X ∈ T (T r M): dπ r
r−1(X) = 0} be the

vertical bundle over T r M , which is a vector bundle whose fibre upon X ∈ T r M is denoted V X T r M . Let A ∈ T r M and
X, Y ∈ T r

A M . Then dπ r
r−1(X − Y ) = dπ r

r−1(X) − dπ r
r−1(Y ) = π(X) − π(Y ) = 0. Hence, X − Y ∈ V A T r M . Therefore the fi-

bre T r+1
A M is an affine space. Its dimension is that of M . We define recursively the subset O r M ⊂ T r M as follows. First,

O 1M is the image of the zero section of π : T M → M , i.e. O 0
m = π(O 1

m). Assume that r > 1 and that O r−1M has been
defined so that the intersection of O r−1M with the fibre T r−1

m M , for m ∈ M , is exactly one point denoted O r−1
m M and that

π r−1
r−2 (O r−1

m M) = O r−2
m M . Then, O r

m M is by definition the zero of the vector space T O r−1
m M T r M . Note that π(O r

m M) = O r−1
m M

and that dπ r−1
r−2 (O r

m M) = {0 ∈ T O r−2
m M(T r−1 M)} = O r−1

m M . Hence, O r
m M ∈ T r M and π r

r−1(O r
m M) = O r−1

m M .

Finally, if f : M → N is a smooth map between manifolds, it induces a smooth map f (r) : T r M → T r N given by
f (r)(γ (r)(0)) = ( f ◦ γ )(r)(0) for any smooth curve γ : I → M , where 0 ∈ I . If g : N → P is another smooth map, then
(g ◦ f )(r) = g(r) ◦ f (r) .

Definition 5.1. Let f : H → K be a smooth map between manifolds. We say that X ∈ T 1 H = T H is a 1-critical point of f
if X �= 0 and f (1)(X) ∈ O 1 K that is if df (X) = 0. And if A ∈ T r H we say that it is an r-critical point of f if π r

r−1(A) is an
(r − 1)-critical point of f and f (r)(A) ∈ O r K .

6. 2-Critical points of ν for immersions in RRR
k+n

Now, we will study the 2-critical points of the normal map ν : N M → R
k+n . We use the following notations for

the different bundles that we consider: π : T M → M , πN : N M → M , π1 : T (N M) → N M , πT : T (T (N M)) → T (N M),
π2 : T 2(N M) → T (N M).

Let i∗(T R
k+n) → M be the induced bundle of the bundle T R

k+n → R
k+n , by the inclusion i : M → R

k+n . The sections of
this bundle are differentiable applications of the form Z : M → R

k+n . We can decompose each application in a unique way
in two smooth summands Z = Z� + Z⊥ , where Z� ∈ X(M) and Z⊥ ∈ Γ (N M).

We define the operator ∇ : X(M) × Γ (i∗(T R
k+n)) → Γ (i∗(T R

k+n)) putting ∇X Z = (D X Z�)� + (D X Z⊥)⊥ , where
(D X Z)m = dZ(Xm) with the usual identification of T Zm R

k+n with R
k+n . One can verify easily that ∇ is a linear connec-

tion in the vector bundle i∗(T R
k+n) → M , which preserves the dot product.

Also we can decompose the dual subbundle of i∗(T R
k+n) → M , in two subbundles, respectively isomorphic to the dual

of the bundle T M , denoted T ∗M , and to the dual of N M , denoted N∗M . This means, among other things, that we can look
to tensor fields such as g or α as tensor fields over the vector bundle i∗(T R

k+n). That is, if for instance X, Y ∈ Γ (i∗(T R
k+n))

and β ∈ Γ ((i∗(T R
k+n))∗) we will have

β
(
α(X, Y )

) := β
(
α

(
X�, Y �))

, g(X, Y ) := g
(

X�, Y �)
.

Then, we extend ∇ to sections of those subbundles in the usual manner, and to tensor fields that are sections of the tensor
product of copies of the bundles T M , T ∗M , N M and N∗M , that can be seen as a section of the tensorial product of copies
of i∗(T R

k+n) → M by its dual. This extension of ∇ will preserve also the dot product. For instance, if W ∈ X(M) we have

DW
(

Z · α(X, Y )
) = W

(
Z · α(X, Y )

) = ∇W
(

Z · α(X, Y )
) = (∇W Z) · α(X, Y )

+ Z · (∇W α)(X, Y ) + Z · α(∇W X, Y ) + Z · α(X,∇W Y ).

The connection ∇ is determined by a metric connection in the principal fiber bundle of adapted frames of i∗(T R
k+n) → M ,

that is frames as (t1, . . . , tk , w1, . . . , wn) where (t1, . . . , tk) is a frame of T M and (w1, . . . , wn) is one of N M .
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Definition 6.1. Let m ∈ M , v ∈ Tm M and U ∈ Nm M . In the following we will say that there is a 2-critical point of ν over (v, U ),
or that (v, U ) admits a 2-critical point of ν if there is some 2-critical point X2 ∈ T 2(N M) of ν such that U = π2(X2) and
v = (π2

1 ◦π
(2)
N )(X2). In other terms, if X2 = u′′(0), being u : I → N M a smooth curve, then v = (πN ◦ u)′(0) and U = u(0). In

the same manner we say that v ∈ Tm M admits a 2-critical point of ν if there is U ∈ Nm M such that (v, U ) admits a 2-critical
point of ν .

The following theorem characterizes the properties that must have a pair (v, U ) as above in order to admit a 2-critical
point of ν . In it we shall suppress the subindex m, that means evaluation at m, whenever this will not cause confusion, for
instance when there appears any of the symbols U or v .

Theorem 6.2. Let m ∈ M, v ∈ Tm M and U ∈ Nm M. Then, (v, U ) admits a 2-critical point iff the following conditions are satisfied:

a) v �= 0 and g(v, .) − U · α(v, .) = 0, i.e. U belongs to the focal set over v.
b) U · (∇vα)(v, v) = 0.
c) Let (t1, . . . , tk) be an orthonormal basis of Tm M such that t1 and v are parallel. Then the following linear system, whose unknowns

are the components of x = x2t2 + · · · + xktk, has a solution:

g(x, t j) − U · α(x, t j) = U · (∇vα)(v, t j), j = 2, . . . ,k.

Proof. Suppose that X2 ∈ T 2(N M) can be written as X2 = ũ′′(0), where ũ : I → N M is a smooth curve such that, if
γ := πN ◦ ũ, we have ũ(0) = U and γ ′(0) = v . We have π2 ◦ ũ′′ = ũ′ and πN ◦ ũ′ = ũ. Let X := π2(X2). For t ∈ I ,
ũ(t) ∈ Nγ (t)N ⊂ R

k+n . Hence we may thing also of ũ as a map from I to R
k+n , and this justifies the use of the follow-

ing notations:

1. A will denote X2 = ũ′′(0) as element of R
k+n .

2. V will denote π2
1 (X2) = ũ′(0) as element of R

k+n .

3. a will denote π
(2)
N (X2) = γ ′′(0) as element of R

k+n .

This is taken in the same sense as when one speaks of the acceleration of a moving particle as a vector in R
3, without

telling that it is the acceleration of the particle at the point m and velocity v .
Suppose that X2 is 2-critical. Then X must be 1-critical, that is

dν(X) = dν
(
ũ′(0)

) = (ν ◦ ũ)′(0) = (γ + ũ)′(0) = v + V = 0.

Since X cannot vanish we have V �= 0, whence v = γ ′(0) �= 0. This means that me may suppose that γ : I → N M is an
immersion and this implies that there is a smooth section u of N M in a neighborhood of m such that ũ = u ◦ γ in a
neighborhood of 0 and U = um . We deduce that ũ′ = du ◦ γ ′ = Dγ ′ u, so that V = ũ′(0) = D v u, and A = ũ′′(0) = D v Dγ ′ u.
Moreover ν(2)(X2) = ν(2)(ũ′′(0)) = (γ + u ◦γ )′′(0) = 0. Therefore, X is a 2-critical point of f iff the following conditions are
satisfied:

1) v �= 0 and v + D v u = 0, or equivalently v + V = 0.
2) a + D v (Dγ ′ u) = 0 or equivalently a + A = 0.

The first condition can be separated in two parts. The normal part says that ∇v u = 0 and the tangent part that v +
(D v u)� = 0. Multiplying the tangent part by a vector y ∈ Tm M , we obtain g(v, y) − U · α(v, y) = 0. In other words, we
obtain the following conditions:

a) v �= 0 and g(v, ·) − U · α(v, ·) = 0,
1.2) ∇v u = V ⊥ = 0.

Now, we study condition 2). Denote by Y the parallel transport of y along γ . Then, we have ∇γ ′ Y = (Dγ ′ Y )� = 0, so
that

Y · D v(Dγ ′ u) = D v(Y · Dγ ′ u) − (D v Y ) · D v u = −D v
(
u · α(

Y , γ ′)) + (D v Y ) · v,

by 1). Since Y is parallel, the second term vanishes. Having in mind that ∇v u = 0 by 1.2) an applying 2) we get

y · a − U · (∇vα)(y, v) − U · α(∇v Y , v) − U · α(y,a) (6.1)

= g(a, y) − U · α(a, y) − U · (∇vα)(v, y) = 0, (6.2)

i.e.

g
(
a�, ·) − u · α(

a�, ·) = U · (∇vα)(v, ·).
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Let us put a� = pv + b, with b · v = 0. Then 2) reads g(b, .) − U · α(b, ·) = U · (∇vα)(v, ·) by condition a). If this 1-form
acts over v , and we consider condition a), we obtain:

b) U · (∇vα)(v, v) = 0. (6.3)

And if that 1-form acts upon the vectors t j , j = 2, . . . ,k, we get condition c).
We have a⊥ = (D vγ

′)⊥ = α(v, v). Hence the normal part of 2) is:

2.2) α(v, v) + A⊥ = 0.

Suppose that the system a), b), c) is satisfied by v, U and x = x2t2 + · · · + xktk . It is enough to prove that we may choose
γ and ũ such that γ ′(0) = v , γ ′′(0)� = x, ũ(0) = U , and that 1.2) and 2.2) are satisfied. The conditions on γ can always
be satisfied because v ∈ Tm M and the tangent part of γ ′′(0) may be arbitrary. As for ũ, we take first a parallel orthonor-
mal reference of N M along γ , (u1, . . . , un). Thus we can write u(t) = ∑

i pi(t)ui(t) with the conditions
∑

i pi(0)ui(0) = u

and pi′ (0) = 0, i = 1, . . . ,n. Then u′(0) = ∑
i pi(0)u′

i(0). Since the ui are parallel, this implies that u′(0)⊥ = 0, which is
condition 1.2).

Condition 2.2) can be written as u′′(0)⊥ = −α(v, v) or equivalently as ui(0) · u′′(0) = −ui(0) · α(v, v), i = 1, . . . ,n. Since
we have

u′′(0) =
∑

i

(
pi′′(0)ui(0) + pi(0)u′′

i (0)
)
,

this condition means that 2.2) is satisfied by choosing

pi′′(0) = −ui(0) · α(v, v) −
∑

j

p j(0)ui(0) · u′′
j (0).

Hence, our claim is true. �
6.1. 2-Critical points of surfaces in R

4

In this section we study the 2-critical points of the normal map for surfaces in R
4. Since it is obvious from the pre-

ceding theorem that there is a 2-critical point over (v, U ) with v �= 0 iff there is one over (v/|v|, u) we may assume that
g(v, v) = 1. We shall denote by J : Tm M → Tm M the rotation of 90◦ .

Proposition 6.3. The pair (v, U ), where 0 �= v ∈ Tm M and U ∈ Nm M, admits a 2-critical point of ν iff the following conditions are
satisfied:

a) U · α(v, v) = v · v, U · α(v, J v) = 0;
b) U · (∇vα)(v, v) = 0;
c) U · α( J v, J v) �= v · v or U · (∇vα)(v, J v) = 0.

Proof. A vector x ∈ Tm M that is orthogonal to v may be written as q J v , for some q ∈ R. Also J is an isometry, whence
g( J v, J v) = v · v . Thus, the conditions of Theorem 6.2 for (v, U ) are now

a′) g(v, .) − U · α(v, .) = 0;
b) U · (∇vα)(v, v) = 0;
c′) q(v · v − U · α( J v, J v)) = U · (∇vα)(v, J v) has a solution for q ∈ R.

Then, a) is equivalent to a′) because (v, J v) is a basis of Tm M . Obviously c) is equivalent to c′). �
Remark 6.4. Note that conditions a) and b) are the same that characterize the strong principal directions defined by Montaldi
in [2]. Note also that c′) is true generically, so that generically the question whether a direction v admits 2-critical points is
answered by ascertaining that v satisfies the equation

det
(
α(v, J v), (∇vα)(v, v)

) = 0, (6.4)

which leads to a polynomial equation of fifth degree. For its effective computation see [3].

Conditions a′) or a), mean that U is a focal point corresponding to v and this can be analyzed easily by using the
description of the focal locus by means of the inverted pedal. Let us fix the names of some special points. A point m where
the curvature ellipse consists of the origin only is called planar. If it reduces to a point it is called umbilic. If the ellipse
lies in a line passing by the origin, it is called of inflection. If it is a segment, semiumbilic. Note that an inflection point is
semiumbilic, an umbilic is of inflection, etc.
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For simplicity, in the following we shall assume that v is a unit vector. If m is not semiumbilic, that is its curvature
ellipse does not collapse to a segment, then for any v we have α(v, J v) �= 0. In fact, that vector is the derivative of η(v) (its
velocity) with respect to t when v(t) = t1 cos t + t2 sin t , where (t1, t2) is an orthonormal basis of Tm M , and that velocity
only vanishes at the cusp points of the ellipse when it degenerates to a segment. Then, a) and b) can be satisfied only when
v is a solution of Eq. (6.4). Suppose that then the first alternative of c) does not hold, that is v · v − U · α( J v, J v) = 0. Then
we have g( J v, .)− U ·α( J v, .) = 0, as it is easily verified. But this means that U is the focal point corresponding to v and to
J v , and this means that the tangent line to the ellipse at η(v) and η( J v) are the same. Since η(v) and η( J v) are opposite
with respect to the center of the ellipse, we conclude that the ellipse is a segment against the hypothesis. The conclusion is
that if m is not semiumbilic, then v determines a strong principal direction iff it admits a 2-critical point, or equivalently iff it satisfies
Eq. (6.4).

If m is semiumbilic but not a point of inflection, then for all v such that η(v) is not an extremal point of the ellipse
we have α(v, J v) �= 0, so that then there is a solution to a) and b) iff (6.4) is true. But then η(v) = η( J v) and α(v, J v) =
α( J v, J 2 v); hence, the point U in Fm associated to v is the same as that associated to J v . We conclude that the first
alternative of c) is false. Thus, v admits a 2-critical point iff, in addition to (6.4), the second alternative of c) is true. If η(v) is an
extremal point of the ellipse, then α(v, J v) = 0, and α(v, v) �= α( J v, J v) because m is not umbilic. Therefore (v, U ) satisfy
a) and b) iff U · (∇vα)(v, v) = 0 and U · α(v, v) = 1. Suppose that the first alternative of c) is false. Then U is a focal point
associated both to v and J v . Therefore, as a consequence of Theorem 4.3, U is exactly the point of intersection of two lines,
one being the line orthogonal to η(v) passing by the inverse of η(v), and the other is the same but relative to η( J v). If
then the second alternative of c) does not hold, v does not admit a 2-critical point.

Assume now that m is an inflection non-umbilic point. Then if η(v) is not an extreme point, the line tangent to the
ellipse at η(v) passes by the origin, so that v cannot have an associated focal point, and a fortiori a 2-critical point. If
η(v) is an extremal point and η(v) = 0 then it cannot be a strong principal direction nor admit a 2-critical point. If it is
extremal but different from the origin, then, as in the case of semiumbilics, it satisfies a) and b) iff U · (∇vα)(v, v) = 0 and
U · α(v, v) = 1. Then, since α( J v, J v) is collinear with α(v, v), the first alternative of condition c) only fails if both vectors
are equal, that is if the point is umbilic, against the hypothesis. Therefore, if m is an inflection non-umbilic point, there are no
strong principal directions over m, nor 2-critical points over v.

Suppose that m is umbilic but not planar. Then α = c ⊗ g , with 0 �= c ∈ Nm M . Thus the vector U must lie in the line
orthogonal to c that passes by the inverse of c and be orthogonal to (∇vα)(v, v). The first alternative of c) will fail always,
so that (v, U ) will admit a 2-critical point if in addition U is orthogonal to (∇vα)(v, J v), and this requires that this vector
and (∇vα)(v, v) be parallel.

Finally, if m is planar, it does not admit strong principal directions nor 2-critical points.

7. 3-Critical points of ν for immersions in RRR
k+n

Now, we will study the 3-critical points of the normal map. In addition to the notation of the preceding section, we will
use π3 : T 3(N M) → T 2(N M).

Let X3 ∈ T 3(N M) be a 3-critical point of ν . Then X2 = π3(X3) is a 2-critical point, so that we may use the same notation
as before plus the following:

1. B will denote X3 = ũ′′′(0) as element of R
k+n .

2. b will denote π
(3)
N X3 = γ ′′′(0) as element of R

k+n .

We will say that ν admits a 3-critical point over (v,a, U ), where v ∈ Tm M , a ∈ T 2
m M and U ∈ Nm M if there is a 3-critical

point of ν , X3 ∈ T 3(N M), such that (π3
1 ◦ π

(3)
N )(X3) = v , (π3

2 ◦ π
(3)
N )(X3) = a and π3(X3) = U .

Theorem 7.1. Let m ∈ M, v ∈ Tm M, a ∈ T 2
m M and U ∈ Nm M. Let us choose any orthonormal basis of Tm M, (t1, . . . , tk) such that t1

and v are parallel. Then, ν admits a 3-critical point over (v,a, U ) iff the following conditions are satisfied:

a) v �= 0 and g(v, .) − U · α(v, .) = 0, i.e. U belongs to the focal set over v.
b) U · (∇vα)(v, v) = 0.
c) g(x,a) − U · α(x,a) = U · (∇vα)(v,a).
d) 2U · (∇vα)(v,a) + U · (∇2α)(v, v, v, v) + U · (∇a�α)(v, v) = 0.
e) The following linear system, whose unknowns are the components of y = y2t2 + · · · + yktk has a solution:

g(y, t j) − U · α(y, t j) = −α(v, v) · α(v, t j) + U · (∇2α
)
(v, v, v, t j)

+ U · (∇a�α)(v, t j) − U · α(Aα(v,v)v, t j) + 2U · (∇vα)
(
a�, t j

)
.

Proof. Note that c) is the same as Eq. (6.2). Thus, the condition that we must require in addition to a), b) and c) is

ν(3)
(
ũ′′′(0)

) = (γ + u ◦ γ )′′′(0) = b + D v Dγ ′ Dγ ′ u = b + B = 0.



544 M.G. Monera et al. / Topology and its Applications 159 (2012) 537–544
Let us compute the normal part of b + B . If w ∈ Nm M and W is the parallel transport of w along γ , we will have

w · b = w · D v
(

Dγ ′γ ′) = D v
(
W · Dγ ′γ ′) − D v W · (Dγ ′γ ′)�

= D v
(
W · α(

γ ′, γ ′)) + w · α(v,a) = w · (∇vα)(v, v) + 3w · α(v,a),

that is we get the equation B⊥ = −(∇vα)(v, v) − 3α(v,a). Now we need to prove that we can set the values of the pi′′′(0)

in order to satisfy this equation (see the proof of Theorem 6.2), and this is trivial.
As in 6.2, let Y denote the parallel transport of y ∈ Tm M along γ . Then

Y · Dγ ′ Dγ ′ u = Y · (Dγ ′(Dγ ′ u)� + Dγ ′(Dγ ′ u)⊥
)

= −(Dγ ′ u) · α(
Y , γ ′) + Dγ ′(Y · Dγ ′ u)

= −(Dγ ′ u) · α(
Y , γ ′) − Dγ ′

(
u · α(

Y , γ ′))
= −2(Dγ ′ u)⊥ · α(

Y , γ ′) − u · (∇α)
(
γ ′, Y , γ ′) − u · α(

Y , γ ′′),
where, as usual, the tensor field ∇α over M is defined as (∇α)(x, y, z) = (∇x�α)(y, z), for smooth maps x, y, z : M → R

k+n .
Also, we have a + A = a + D v Dγ ′ u = 0. Therefore

(D v Y ) · D v Dγ ′ u = −(D v Y ) · a = −(D v Y ) · a⊥ = −α(v, v) · α(v, y).

We compute separately the following, having in mind that a + A = 0 and v + V = 0:

∇v
(
(Dγ ′ u)⊥

) · α(y, v) = D v
(
(Dγ ′ u)⊥

) · α(y, v)

= A · α(y, v) − α(y, v) · α(v, v) = −a · α(y, v) + α(y, v) · α(v, v) = 0.

By substitution and recalling that ∇v Y = 0 and V ⊥ = 0 we get

y · D v Dγ ′ Dγ ′ u = D v(Y · Dγ ′ Dγ ′ u) − (D v Y ) · D v Dγ ′ u

= ∇v
(−2(Dγ ′ u)⊥ · α(

Y , γ ′) − u · (∇α)
(
γ ′, Y , γ ′) − u · α(

Y , γ ′′)) + α(v, v) · α(v, y)

= −U · (∇2α
)
(v, v, v, y) − U · (∇a�α)(y, v) − 2U · (∇vα)(a, y)

− U · α(
y,∇v

(
γ ′′�)) + α(v, v) · α(v, y)

= −U · (∇2α
)
(v, v, v, y) − U · (∇a�α)(y, v) − 2U · (∇vα)(a, y)

− U · α(y,b − Aα(v,v)v) + α(v, v) · α(v, y).

Hence, from b + B = 0 we obtain

g(b, .) − U · α(b, .) = −α(v, v) · α(v, .) + U · (∇2α
)
(v, v, v, .)

+ U · (∇a�α)(v, .) + 2U · (∇vα)(a, .) − U · α(Aα(v,v)v, .).

If this 1-form acts upon v we have, taking account of condition a):

d) 2U · (∇vα)(v,a) + U · (∇2α
)
(v, v, v, v) + U · (∇a�α)(v, v) = 0.

Then we may find b such that b + B = 0 iff there is a vector y = y2t2 + · · · + yktk such that:

g(y, t j) − U · α(y, t j) = −α(v, v) · α(v, t j) + U · (∇2α
)
(v, v, v, t j)

+ U · (∇a�α)(v, t j) − U · α(Aα(v,v)v, t j) + 2U · (∇vα)
(
a�, t j

)
,

which is condition e). �
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