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ABSTRACT 
 
BENEZOLI, Victor Hugo, D.Sc., Universidade Federal de Viçosa, August 2020. Modeling of 
oil palm energy surface fluxes and growth for Brazilian Amazon climate conditions. 
Adviser: Hewlley Maria Acioli Imbuzeiro. Co-adviser: Santiago Vianna Cuadra. 
 
 
The increase in demand for African palm oil (Elaeis guineensis Jacq.) has caused an increase 

in production, especially through the opening of new areas. Due to the limitation of lands in 

Southeast Asia, which is the main producing region in the world, the expansion of oil palm 

plantation has occurred in Latin American countries, such as Brazil. Roughly 400 million 

hectares in Brazil are suitable for the planting of oil palm, but half of this is currently covered 

by forest, mainly by the Amazon Rainforest. Also, climate change has reduced the amount of 

land suitable for oil palm plantation in Brazil, since, under unfavorable climatic conditions, 

crop yield is reduced. To reconcile the increase in oil palm production in Brazil with the 

conservation of forests, modeling has been used widely as a tool to define the best suitable areas 

for planting expansion, as well as for the assessment of management techniques that aim to 

increase the yield. Thus, the aim of this study was to implement the oil palm crop in the 

ECOSMOS model and to evaluate the model's ability to simulate the energy and carbon balance, 

as well as the crop yield. The carbon allocation scheme for oil palm is quite different from the 

other crops implemented in ECOSMOS. Thus, we use the sub-PFT approach, so that each 

phytomer in the plant evolves simultaneously, but individually. The results showed that the 

model was able to simulate with good accuracy the net radiation (Rn), the latent heat flux (LE), 

and the net ecosystem CO2 exchange (NEE), but it was not able to simulate with satisfactory 

accuracy the sensible heat flux (H) due to the lack of information on the soil physical-hydric 

properties. In addition, the model was able to accurately simulate the annual yield for plants 

aged between 12 and 25 years. For plants aged outside this range, the yield was overestimated. 

Besides, the model was able to better simulate genetic varieties that show seasonality in yield. 

However, despite presenting good results to simulate the energy and carbon flux, as well as the 

crop yield, the model still needs to consider key factors for oil palm, such as the ratio between 

male and female inflorescences and the abortion rate of inflorescences, which affect crop yield. 

 
 
Keywords: Amazon. Agriculture. ECOSMOS.  
 
  



 
 

 

RESUMO 
 
BENEZOLI, Victor Hugo, D.Sc., Universidade Federal de Viçosa, agosto de 2020. 
Modelagem dos fluxos superficiais de energia e do crescimento da palma de óleo para 
condições climáticas da Amazônia brasileira. Orientador: Hewlley Maria Acioli Imbuzeiro. 
Coorientador: Santiago Vianna Cuadra. 
 
 
O aumento da demanda mundial pelo óleo da palma africano (Elaeis guineensis Jacq.) tem 

causado aumento na produção, principalmente através da abertura de novas áreas. Devido à 

limitação de terras no sudeste da Ásia, que é a principal região produtora do mundo, a expansão 

da área plantada de palma de óleo vem ocorrendo em países da América Latina, como o Brasil. 

Aproximadamente 400 milhões de hectares no Brasil são adequados para o plantio de palma de 

óleo, mas metade disso é atualmente coberta por florestas, principalmente pela Floresta 

Amazônica. Além disso, as mudanças climáticas podem reduzir a quantidade de terras 

adequadas para o plantio de palma de óleo no Brasil, uma vez que, em condições climáticas 

desfavoráveis, a produtividade diminui. Para conciliar o aumento da produção de palma de óleo 

no Brasil com a manutenção das florestas, a modelagem tem sido amplamente utilizada como 

ferramenta para definir as áreas mais adequadas para expansão do plantio, bem como para a 

avaliação de técnicas de manejo que visam aumentar o rendimento. Assim, o objetivo deste 

estudo foi implementar a cultura da palma de óleo no modelo ECOSMOS e avaliar a capacidade 

do modelo em simular o balanço de energia e de carbono, bem como a produtividade da cultura. 

O esquema de alocação de carbono para a palma de óleo é bem diferente das outras culturas 

implementadas no ECOSMOS. Assim, usamos a abordagem sub-PFT, de forma que cada 

fitômero na planta evolui simultaneamente, mas individualmente. Os resultados mostraram que 

o modelo foi capaz de simular com boa precisão o saldo de radiação (Rn), o fluxo de calor 

latente (LE) e a troca líquida de CO2 no ecossistema (NEE), mas não foi capaz de simular com 

precisão satisfatória o fluxo de calor sensível (H) devido à falta de informações sobre as 

propriedades físico-hídricas do solo. Além disso, o modelo foi capaz de simular com precisão 

a produtividade anual para plantas com idades entre 12 e 25 anos. Para plantas fora dessa faixa, 

a produtividade foi superestimada. Além disso, o modelo foi capaz de simular melhor as 

variedades genéticas que mostram sazonalidade na produtividade. No entanto, apesar de 

apresentar bons resultados para simular o fluxo de energia e carbono, bem como a produtividade 

da cultura, o modelo ainda precisa considerar processos importantes para a palma de óleo, como 

a razão sexual e a taxa de aborto de inflorescências, que afetar a produtividade da cultura. 

 
Palavras-chave: Amazônia. Agricultura. ECOSMOS. 
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1. INTRODUCTION 

The oil of African palm (Elaeis guineensis Jacq.) is the vegetable oil with the highest 

production and commercialization volume in the world. According to the United States 

Department of Agriculture (USDA), the global production in 2019 was 75.19 million tons of 

processed oil, higher than the production of soy oil in the same period (56.86 million tons). The 

oil extracted from the palm fruit has several uses in the industry, such as in food, in the 

composition of detergents and cosmetics, and more recently in the production of biodiesel 

(Pirker et al., 2016). Most of the world’s production comes from Southeast Asia. According to 

USDA, Indonesia is the main world producer, with 57.19% of the world production, followed 

by Malaysia (27.26%) and Thailand (3.99%). Together, the three countries produce almost 90% 

of the total of palm oil in the world. 

The demand for palm oil has caused an increase in production. Currently, the world 

production has doubled since 2005, from 36 million tons of processed oil to the current 72 

million, according to USDA. However, much of this increase in production was a result of the 

increase in planted area, and not an increase of yield (Furumo and Aide, 2017). The planted 

area of oil palm has doubled since 2003, from 11.7 million hectares to the current 23.7 million 

hectares. In addition, the ideal oil palm production conditions are on tropical forest areas. 

According to Furumo and Aide (2017), more than half of the new palm planted areas came 

from tropical forest in Malaysia and Indonesia during 1990-2005 period. Worldwide, oil palm 

cultivation was accountable for the conversion of 270,000 ha per year of forests in cultivated 

areas between the years 2000 and 2011 (Vijay et al., 2016). 

Latin America has emerged as a feasible alternative to Southeast Asia to increase 

world palm oil production. Currently, Colombia is the main producer of palm oil in Latin 

America and the fourth largest producer in the world. Brazil has a small contribution to the 

international market, ranking ninth and accounting for 0.72% of world production. However, 

the modest Brazilian oil palm production has been expanding. According to USDA, national 

production increased from 2.7 million tons in 2010 to 5.4 million tons in 2019. This expansion 

is linked both to the creation of incentive governmental programs to increase the palm oil 

production, such as Pronaf Eco Dendê (Monteiro de Carvalho et al., 2015), as well as the 

increase in domestic and international demand. The Pará state is the largest producer of palm 

oil in Brazil, accounting for 70% of the total planted area and 90% of national production. 

Oil palm tree is a plant that is a member of the Arecaceae family. An important 

characteristic of the plants of this family is the presence of a single apical vegetative meristem 



14 
 

 

that gives rise to the phytomers (the leaf and the underlying fruit bunch) in regular succession 

(Adam et al., 2005). Each phytomer supports a large leaf and an inflorescence structure in the 

axil that could be male or female. After reaching maturity, each plant is able to produce one 

phytomer every 15-18 days on average, depending on environmental and endogenous factors, 

such as water stress, air temperature, number of female inflorescences, and age (Breure, 1994; 

Woittiez et al., 2017). So, the plant is able to produce bunches of fruits and keeps vegetative 

growth at the same time throughout life (Forero, Hormaza and Romero, 2012).  

Oil palm emerged in the tropical forests of western and central Africa, with its center 

of diversity possibly located in Nigeria (Hayati et al., 2004; Maizura et al., 2006). The climate 

in this region is rainy, warm, and humid, so that the demand for water and temperature by plant 

is high. Corley and Tinker (2015) estimate that the plant grows well in regions with well 

distributed annual rainfall above 2,000 mm, mean air temperature between 24°C and 28°C, and 

relative humidity higher than 85%. 

The most suitable areas for oil palm plantations in the world are in equatorial regions, 

such as Southeast Asia, Sub-Saharan Africa and South and Central America. In Brazil, more 

than 400 million ha are suitable for the cultivation of oil palm, but almost half of this area is 

currently covered by tropical forests, especially in the Amazon region (Pirker et al., 2016; Vijay 

et al., 2016). Furthermore, a large part of this area is under threat of becoming unsuitable for 

oil palm production. Almeida et al. (2017) reported that most of the Amazon region has been 

experiencing a consistent increase in the mean air temperature since the 1970s, including the 

eastern Amazon, where the main Brazilian oil palm plantations are placed. Da Silva et al. (2019) 

reported an increase in the frequency of extreme temperature and precipitation events in eastern 

Amazonia, which include heat waves, warmer days and cooler nights, as well as a drier climate 

with poorly distributed rainfall. Furthermore, Avila-Diaz et al. (2020) pointed out that these 

trends of extreme temperature and precipitation events in eastern Amazonia will be remaining 

in the future. These climate conditions could result in a substantial reduction in suitable areas 

to oil palm production in Brazil, as suggested by Paterson et al. (2017), and also reducing yield 

in current suitable areas. In addition, due to the Amazon Rainforest currently covers most of 

the areas suitable for oil palm cultivation in Brazil, the expansion of Brazilian oil palm 

plantations may lead to an undesirable increase in deforestation in the Amazon. 

The challenges imposed to the growth of oil palm production in Brazil due to 

competition by area with the Amazon Rainforest and climate change require a deepening of 

knowledge about the plant's life cycle, including growth and yield. Previous studies have shown 
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how the environment and endogenous factors of the plant, such as age and reproductive cycle, 

affect the growth and yield of oil palm (Hoffmann et al., 2017; Woittiez et al., 2017). However, 

it is still unclear how large the contribution of each climate factor is to carbon uptake and 

assimilation in oil palm. Furthermore, it is necessary to understand how these climatic factors 

affect the crop yield. A tool widely used in studies involving the relationship between 

agricultural production and the climate is the land surfaces model. These models are able to 

simulate crop yields under different climatic conditions, explicitly simulating processes such as 

photosynthesis, respiration, and phenology, as well as the exchange of carbon, water and energy 

between the biosphere and the atmosphere (Sellers, 1997). In addition, modeling allows to 

assess the impact of management techniques on carbon assimilation and yield, as well as 

assessing the suitability of areas for the cultivation of different agricultural species, avoiding 

the deforestation of low-yield areas. 

There are currently several models that simulate oil palm yield, such as APSIM-Palm 

(Huth et al., 2014), ECOPALM (Combres et al., 2013), PALMSIM (Hoffmann et al., 2014), 

and CLM-Palm (Fan et al., 2015). However, most of these models simplify land surface 

processes and limit assimilation to a few climatic factors, such as solar radiation and soil water 

content. Few models, such as CLM-Palm, are able to simulate growth, yield and exchanges of 

carbon, water and energy between the ecosystem and the atmosphere. In this study the 

ECOSMOS-Palm sub-model is presented, which simulates the growth and yield of oil palm 

through the structure of the ECOSMOS model, based on the Agro-IBIS model (Foley et al., 

1996; Kucharik and Brye, 2003). In addition, the sub-PFT scheme proposed by Fan et al. (2015) 

was used to implement phenology and carbon allocation to the plant pools (roots, trunk, leaves, 

and fruits). 

Thus, the objectives of this study are (i) to implement the oil palm crop model in the 

ECOSMOS integrated simulator, (ii) to evaluate modelled crop carbon assimilation and energy 

balance through two micrometeorological flux tower measurements, and (iii) to investigate 

modelled crop yield response to climatic and meteorological conditions of the main producing 

region in Brazil. 
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2. MATERIAL AND METHODS 

2.1. The ECOSMOS-Palm model 

ECOSMOS is a biophysical growth model based on Agro-IBIS (Foley et al., 1996; 

Kucharik and Brye, 2003). Researchers from EMBRAPA (Brazilian Agricultural Research 

Company) have re-written the Agro-IBIS code in the R and C++ languages, and have been 

implementing the most common crops in Brazil. One of the major changes in the ECOSMOS 

framework is that developers can add new Crops-PFT (plant functional type) as module in R, 

and this crop module is linked with the core model sub-routines that solves the biophysical 

processes, such as photosynthesis, energy balance, and soil water dynamics. 

Like Agro-IBIS model, the ECOSMOS structure is divided into four main modules: 

(i) land surface processes module; (ii) crop dynamics module; (iii) belowground carbon and 

nitrogen cycle module; and (iv) crop phenology module (Kucharik and Brye, 2003). The land 

surface processes module simulates on a 60-minute timescale both canopy and soil physics in 

addition to plant physiology (photosynthesis, leaf respiration, and stomatal conductance). The 

crop dynamics module simulates both the gross and net primary production (GPP and NPP, 

respectively) and total ecosystem respiration on a daily to annual timescale. Belowground 

carbon and nitrogen cycle module simulate the soil respiration, litter decomposition, and 

nitrogen cycle processes such as nitrogen mineralization, fixation, and deposition, fertilization, 

and plant uptake also on a daily to annual timescale. Last, the phenology module simulates on 

a daily timescale the crop phenological processes based on the degrees-day method. 

Regarding plant physiology, the simulation of photosynthesis and respiration are 

different for C3 and C4 plants. In C3 plant, such as oil palm, the stomatal conductance is coupled 

to photosynthesis and regulates plant transpiration, according to Collatz et al. (1991) strategy. 

Stomatal conductance (gs) simulation in ECOSMOS is affected by CO2 and H2O air 

concentration close to leaf surface, as well as by the current leaf photosynthesis rate, according 

to the Leuning (1995) formulation, as follows: 

gs = m
An

(Cs - Γ*) (Ds
D𝑜)  + b Eq. 1  

where m and b are empirical plant-specific parameters, Cs is the CO2 mole fraction, Ds is the 

water vapor deficit, Do is a reference value, Γ* is the CO2 compensation point, and An is the 

current net photosynthesis rate. Net photosynthesis rate simulation, in turn, is limited by light, 

temperature, and CO2 concentration (Farquhar, von Caemmerer, and Berry, 1980), as follows: 
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An = min(JE, JC, JS) - Rd Eq. 2  

where JE, JC, and JS describe the photosynthetic rates limited by light, ribulose bisphosphate 

carboxylase (Rubisco), and sucrose synthesis capacity, respectively, and Rd is the daytime 

respiration rate (Collatz et al., 1991). In other words, net photosynthesis rate is equal to the 

most limiting assimilation rate. Note that the photosynthetic rate is dependent on climatic 

conditions, since it can be limited by solar radiation, by temperature (which affects the CO2 

fixation capacity of the Rubisco enzyme, Vmax), or even by the atmospheric humidity, which 

affects stomatal conductance. 

The oil palm is an evergreen perennial crop, setting it apart from other crops existing 

in the ECOSMOS model. The life cycle of the oil palm in the model starts with the transplanting 

of the seedling. The plant does not produce fruit bunches in the first 2-3 years (vegetative 

growing stage), but in the mature stage, it usually can produce fruit bunches for at least 25 years. 

During the vegetative growing stage, the plant allocates NPP only to the vegetative growth 

pools. 

Phenology and carbon allocation schemes was based on the sub-canopy structure 

developed by Fan et al. (2015). The phenology of the phytomers evolves simultaneously, but 

independently. Each phytomer works as a sub-PFT evolving in a sequential order controlled by 

the phyllochron (the thermal time necessary to start a phytomer) in which the newer, tinier 

phytomers overlap the older, larger. Although the phenological evolution is individual, the 

phytomers share the same root system and the same single stem (Fan et al., 2015). 

The phytomer life cycle was divided into five stages in the model: (i) leaf spear 

(unopened leaf) initialization; (ii) leaf opening; (iii) leaf maturity; (iv) bunch fruit filling; and 

(v) leaf senescence. During the first stage, the leaf spears do not perform photosynthesis, so 

they do not contribute to the LAI (leaf area index). In the second stage, the plant gradually 

transfers the carbon allocated in the leaf spear pool to the opened, photosynthetically activated 

leaf pool. In the third stage, the leaf grows until reaching maturity. In the fourth stage, the plant 

allocates NPP to the fruit filling until the ripe, and then it is ready for harvest. Harvesting usually 

takes place once a month for management issues. Senescence is the last phase of the phytomer’s 

life cycle. At this stage, the phytomer no longer receives carbon assimilated by the plant and 

begins to wilt. Finally, the leaf is pruned right after completing the senescence stage. 
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2.1.1. Phenology and carbon allocation 

During the vegetative growing stage, all plant stocks all assimilated carbon in the 

vegetative structures (leaves, root system and stem), which means that the fourth leaf growth 

stage does not occur. The following allometric equations fractionate carbon into root (Aroot), 

stem (Astem), and leaf (Aleaf) pools during the vegetative growth stage. 

Aroot = aroot
i  - (aroot

i  - aroot
f ) DDP

Amax
   Eq. 1  

Aleaf = aleaf
i  (1 - Aroot) Eq. 2  

Astem = 1 - Aroot - Aleaf Eq. 3  

where aroot
i  and aleaf

i  are the initial allocation coefficients for roots and leaves in the vegetative 

growing stage, and aroot
f  is the final allocation coefficient for roots. DPP is the number of the 

days past since the plant was transplanted, and Amax is the maximum plantation age (in days). 

The stem allocation also was divided into live and dead (woody) pools by a stem coefficient. 

During the productive stage, part of the carbon is allocated for the fruit filling. 

However, only phytomers that are in the fruit filling stage will receive carbon allocated to the 

fruits. The following equation presents the fraction of NPP that will be allocated to fruit filling 

(Afruit). 

Afruit = 
2

1 + e-b(NPPmon - 100) - a Eq. 4  

where a and b are the adjustment coefficients that control the exponential equation (base value 

and shape, respectively), NPPmon is the sum of NPP in the previous month, and the number 100 

(in g-C m-2 mon-1) is the NPP of the month before oil palm reaches the productive stage 

(Kotowska et al., 2015). Afruit varies from 0 to 2 and it is relative to the vegetative unity, which 

means all vegetative fractions must be multiplied by a reduction factor (rf). The fruit fraction 

(Afruit) is now the difference between the sum of the reduced vegetative fractions and the unit. 

rf = 
1

1 + Afruit
 Eq. 5  

Afruit = 1 - rf (Aroot + Aleaf + Astem) Eq. 6 

The leaf fraction allocation changes in the mature stage due to the change in the 

phytomer allocation strategy, according to the following equation: 
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Aleaf = aleaf
p  - (aleaf

p  - aleaf
f )× ( DPP-DPP2

Amax × dmat - DPP2
)dalloc

leaf

 Eq. 7  

where aleaf
p  is the leaf allocation fraction just before the productive stage starts, DPP2 is the 

number of days until the productive stage starts, dmat controls the stability of the non-linear 

curve based on the age of the plant, and dalloc
leaf  controls the shape of the equation (convex or 

concave for negative or positive values, respectively). 

The carbon allocation strategy within the sub-PFT structure depends on the 

phenological stage of each phytomer. For leaves, the total carbon fraction allocated is divided 

into leaf spears and opened leaves pools according to factor fs (fraction allocated to the leaf 

spears pool). The carbon allocated for each pool is then divided by the same portion for each 

phytomer, except for those in senescence. Also, opened leaves receive gradually the carbon of 

the leaf spears that reaches the stage two of the phytomer life cycle. The fruit bunch accumulates 

carbon allocated for fruit filling at an increasing rate, where bunches of fruit close to ripening 

receive more carbon, according to the following equation. 

Sp
fruit = 

GDD15 - GDDmin
fmat

GDDmin
fmax - GDDmax

fmat Eq. 8  

where Sp
fruit is the carbon sink size of phytomer p (0 ≤ Sp

fruit ≤ 1), GDD15 is the GDD with 

15°C base temperature accumulated for each phytomer since the leaf opening, and GDDmin
fmat 

and GDDmax
fmax are the GDD for the beginning and end fruit filling, respectively. Each phytomer 

receives a fraction of the total fruit carbon pool given by: 

Afruit
p  = 

Sp
fruit∑ Sp

fruitn
p=1

 × Afruit Eq. 9  

 

2.2. Region of study and experimental field data 

2.2.1. Region of study 

The study area is in the northeastern Pará state, in Brazil, in a commercial oil palm 

plantation (Figure 1a). There are eight farms covering 107,000 ha in four municipalities (Moju, 

Acará, Tailândia and Tomé-Açu), of which 39,000 ha are planted with oil palm and 64,000 ha 

are covered by tropical rainforest. Four weather stations, named Agropalma, Amapalma, CPA, 
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and Castanheira (hereinafter referred to as AGR, AMA, CPA, and CAS, respectively) are 

placed in four different farms. 

Figure 1 – Maps of the region of study located in Brazil (a) and Indonesia (b). 

 

Source: Author. 

Oil palm has been cultivated in northeastern Pará since the second half of the 20th 

Century. Before the oil palm plantation, the Amazon Rainforest covered all region. From the 

petroleum crisis in the 1980s, the Brazilian government created programs to encourage the 

production of biofuels, such as the Pro-óleo (Programa Nacional de Produção e Óleos Vegetais 

para Fins Energéticos), which aimed to increase to 30% the amount of biodiesel in petroleum-

derived diesel. (Feroldi, Cremonez and Estevam, 2014). Currently, the northeastern Pará is the 

major Brazilian producer. 

The local climate is characterized by high rainfall amount (~2,800 mm yr⁻¹) and high 

air temperature and humidity throughout the year. The seasonality of rainfall is strong, with 

rainy summers (December to May) and drier winters (April to November). During the rainy 

season months, the precipitation is usually greater than 200 mm, reaching a peak in March 

(~500 mm). In the drier months, the precipitation reduces, but only in August and September, 

the rainfall amount is usually less than 100 mm. The average annual air temperature is 26°C 

and sometimes exceed 36°C in the warmer months. The relative humidity is high throughout 

the year, usually above 70%. 

Besides the sites at commercial oil palm plantation, two micrometeorological towers 

provided data to calibrate and validate the model. The first (JAM, Figure 1b) is placed in a 

commercial oil palm plantation in the Jambi province, in Indonesia, near to Jambi City. The 
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annual precipitation is about 2,200 mm, with a rainy season during the first semester, peaking 

in December and March and a drier season during the second semester. The climate is hot, with 

a mean air temperature of 26°C (Stiegler et al., 2019). The second site (MOJ, Figure 1a) is in a 

commercial plantation in the northeastern Pará, near to Moju City. The local climate is hot and 

humid, with an average air temperature of 26°C and relative humidity usually greater than 80%. 

The annual precipitation is about 3,000 mm, with strong seasonality. The rainy season starts in 

December and ends in June, raining more than 200 mm per month on average, peaking in March 

(Fonseca et al., 2018). During the drier months, the precipitation reduces, but is usually greater 

than 100 mm. 

2.2.2. Eddy covariance measurements 

Two micrometeorological stations placed in JAM and MOJ sites (see section 2.1) 

provided data for model calibration and validation. Both micrometeorological stations are 

placed in commercial plantations and provide data of net radiation (Rn), sensible and latent heat 

fluxes (H and LE, respectively), ground heat flux (G), and net ecosystem CO2 exchange (NEE). 

In the JAN site, eddy covariance instruments are placed in a 22 m high tower, while the G 

sensor is placed on 5 cm deep (Meijide et al., 2017). In the MOJ site, eddy covariance 

instruments are placed in a 23 m high tower, and the G sensor is placed on 10 cm deep (Fonseca 

et al., 2018). Eddy covariance measurements are available from March 2014 to December 2018 

for JAM and from January 2015 to March 2016 for MOJ. In the JAM site, some data issues 

produce missing data from August 2016 to June 2017. In the MOJ site, a malfunction in the 

sonic anemometer produced poor-quality data after April 2016. The data sets were not subjected 

to any gap filling process. 

Three post-processing methods were applied in both datasets to remove poor-quality 

data. First, the data flagged as class 2 according to the steady-state and integral turbulence 

characteristic test were removed (Mauder and Foken, 2006). Then, a filter was applied to the H 

and LE data in which the energy balance (H + LE = Rn + G) does not close by at least ±40%. 

Last, it was applied the change-point detection method to find a friction velocity threshold (uthreshold
* )  in which the atmospheric is stable due to the not well-developed turbulence 

condition (Barr et al., 2013). All NEE value measured under u* ≤ uthreshold
*  was removed. 

2.2.3. Climate data 

The main source of climate data is the weather stations placed into the six sites. Table 

1 presents the data period and climate variable available for each site. Data from JAM site is 
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available in a 30-minute interval, while the AGR, AMA, CPA, and CAS dataset sites are 

provided in a 15-minute interval, and the MOJ site dataset provides data every 10 minutes. 

Table 1 – Climate dataset availability for the weather station placed in the studied sites 

Site Period of data available Climate variables 

JAN Mar 2014 – Apr 2019 Air temperature, relative humidity, wind speed, 
precipitation, solar radiation, air pressure at the surface 
level 

MOJ Jan 2014 – Dec 2017 Air temperature, relative humidity, wind speed, 
precipitation, incoming and outgoing shortwave and 
longwave radiation, air pressure at the surface level 

AGR Jan 2012 – Dec 2018 Air temperature, relative humidity, wind speed, 
precipitation, solar radiation 

AMA Jan 2013 – Dec 2018 Air temperature, relative humidity, wind speed, 
precipitation, solar radiation 

CPA Dec 2012 – Dec 2018 Air temperature, relative humidity, wind speed, 
precipitation, solar radiation 

CAS Jan 2013 – Dec 2018 Air temperature, relative humidity, wind speed, 
precipitation, solar radiation 

Source: Author. 

The weather station datasets presented a large number of low-quality and missing data 

values. It was considered low-quality all impossible or very unlikely values (for example, 

negative relative humidity and air temperature above 60°C, respectively). All low-quality data 

was removed from the dataset, producing even more missing data in the time series. Also, model 

experiments require a complete time series. So, the weather station datasets were integrated to 

an hour and filled all missing values using the ERA5 dataset (C3S, 2017). Air pressure at the 

land surface was provided by ERA5 for AGR, AMA, CPA, and CAS sites.  

Additionally, two daily gridded climate datasets were used to provide older data for 

the weather stations as required. The first dataset is the Brazil Gridded Meteorological Data 

(hereinafter referred to XAV), which is an interpolation product of several Brazilian rain gauges 

and weather stations (Xavier, King and Scanlon, 2016). The second dataset (hereinafter referred 

to NPW) is a reanalysis provided by NASA POWER Project (Sparks, 2018).  
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2.2.4. Yield database 

We use yield data from a data set provided by the commercial plantation previously 

referred, placed in northeastern Pará, Brazil, to compare with the yield simulated by the model. 

The plantation is divided into eight farms (named from A to H) and each farm into several plots 

(see Fig. 1a). The production database provides yield data from 2004 (or after for younger plots) 

to 2018 for all plots of all farms, except for farm F, which was not addressed in this study. There 

are plots planted in different years on the same farm, so all plots placed on the same farm and 

planted in the same year were grouped by averaging, producing 56 groups. The plot groups 

were also grouped according to the variety planted into its plots. Table 2 presents the list of 

varieties and the proportion of each one per farm. 

Table 2 – List of varieties per farm. The superscripts represent the proportion of the variety in 
the farm, where *** ≥ 50%, ** ≥ 25%, * ≥ 10%, and fs (few samples) ≥ 5%. Less than 5% is 
not shown. The variety names are according to the provided database 

Farm Variety (proportion) 

A Deli X La Mé***, Deli X Yangambi*, Deli X Avros*, Deli X Ghanafs 

B Deli X La Mé**, Deli X Avros**, Deli X Ghana*, Deli X Ekonafs, Deli X Yangambifs 

C Deli X La Mé*, Deli X Ghana*, Deli X Ekona*, Deli X Avros*, Deli X Kigomafs, 

Damifs 

D Deli X La Mé*, Deli X Gana*, Deli X Ekona*, Deli X Avros*, Deli X Kigoma*, Deli 

X Congo* 

E Deli X La Mé**, Deli X Ghana*, Deli X Ekona*, Deli X La Mé / Yangambi* 

G Deli X La Mé**, Deli X Ghanafs, Deli X Avros*, Deli X Nigeria*, Compacta X 

Gana*, Compacta X Nigeria*, Deli X Nigeria / Compacta Ghanafs, Deli X Avros / 

Deli X Compactafs 

H Deli X La Mé*, Deli X Ghana*, Deli X Ekonafs, Deli X Nigeriafs, Compacta X 

Ghanafs, Compacta X Nigeriafs, Deli X Compactafs, Tanzania X Ekona*, Compcta 

X Ekonafs 

Source: Author. 

2.2.5. Soil properties 

The database available for this study did not provide field measurements of soil 

properties in any of the sites studied. Due to this lack of information, the global database 
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SoilGrids250m were used (Hengl et al., 2017). The database uses field measurements from 

150,000 soil profiles worldwide to train the machine learning model and uses remote sensing 

data to provide information about soil properties across the globe in a 250 m horizontal 

resolution and seven soil layers (0 cm, 5 cm, 15 cm, 30 cm, 60 cm, 100 cm, and 200 cm deep). 

In this study, information about clay, silt, and sand content and the soil bulk density were 

provided by the SoilGrids250m database from 5 cm to 200 cm. Also, other soil properties 

required by the model, such as field capacity and permanent wilt point, saturated hydraulic 

conductivity and porosity were estimated through empirical equations that consider the soil 

properties provided by SoilGrids250m database (Clapp and Hornberger, 1978; Cosby et al., 

1984). 

 

2.3. Model calibration and validation strategies 

2.3.1. Sensitivity analysis and calibration 

A model sensitivity analysis determines how the variation of a parameter value affect 

the model performance to simulate a variable. The sensitivity analysis aids to reduce the number 

of parameters that need to be calibrated. 

The sensitivity analysis and the parameters calibration were performed using the JAM 

site data. First, 2,000 simulations were performed using a set of parameter values randomly 

chosen within a predefined range and used by oil palm PFT for each simulation. The input 

climate data was provided by NPW dataset from 2002 (planting year) to 2013 and from the 

JAM weather station from 2014 to 2018. Then, the model performance was evaluated to 

simulate H, LE, and NEE by MAE (mean absolute error) as followed: 

MAE = 
1
n  ∑|Pi - Oi|n

i=1

 Eq. 10  

where n is number of available data and Pi and Oi is i-th predict and observed values of a 

variable, respectively. 

The model sensitivity was evaluated by fitting three multiple linear regressing among 

the MAE of H, LE, and NEE and all parameter values used in the simulations. It was considered 

that the model was sensitive to parameters in which the corresponding coefficient (βi) was 

significant at 90% probability. For the model calibration, were selected the parameters that 

performed the 5% best simulations for the three evaluated variables and aggregated into six 
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frequency classes. The average value of the most frequent class was selected as the calibrated 

parameter. Figure 2 shows the diagram that summarizes the sensitivity analysis and the 

calibration framework. 

Figure 2 – Diagram of the sensitivity analysis and model calibration. 

 
Source: Author. 

2.3.2. Model validation 

Model performance was validated to simulate the components of energy (Rn, H, and 

LE) and carbon (NEE) balance on the land surface and compared to the observed field 

measurements form the MOJ site. The simulation was carried out from 2006 (planting year) to 

2017 using the set of calibrated parameters. The model climatic input was the XAV dataset 

from 2006 to 2014 and MOJ weather station data from 2014 to 2017. Due to the limited eddy 

covariance time series length, the validation period was from January 2015 to April 2016. 

Some statistics were used to estimate the error of the simulation concerning eddy 

covariance measurements. A regression analysis was performed to estimate the goodness to fit 

between hourly simulated and observed data through the R2 (coefficient of determination). Also, 

the MAE and RB (relative bias, Eq. 11) were used to estimate the model accuracy. 
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RB = 100 × 
 ∑ |Pi - Oi|n

i=1
 ∑ |Oi|n

i=1
 Eq. 11  

where n is number of available data and Pi and Oi is i-th predict and observed values of a 

variable, respectively. The RB is able to show that the model is underestimating (negative 

values) or overestimating (positive values) the observed data, so that the closer to zero, the 

better the model's performance. 

 

2.4. Oil palm carbon uptake and assimilation 

The effects of climatic factors, such as air temperature and vapor pressure deficit (VPD) 

on carbon uptake and assimilation by the oil palm were evaluated, as well as the model's 

performance to simulate this relationship. The water and light use efficiency (WUE and LUE, 

respectively) were calculated according to the following equations to assess the relationship 

between carbon uptake and assimilation by the oil palm and the climate factors: 

WUE = 
NEP
ET  Eq. 12 

LUE = 
NEP

PARin - PARout
 Eq. 13 

where NEP is the monthly mean of net ecosystem productivity (g-C m-2 s-1), ET is 

evapotranspiration (mm s-1), and PARin and PARout are the incident and reflected 

photosynthetically active radiation, respectively (MJ m-2 s-1). NEP is measured directly using 

the eddy covariance technique (NEP = -NEE). Both WUE and LUE were estimated only for 

the daytime period (between 6:00 and 18:00). 

The WUE and LUE analysis were divided according to the air temperature and the 

VPD into two parts. First, it was assessed how WUE and LUE vary according to air temperature 

and VPD on an hourly scale to understand the impact of these climatic factors on the carbon 

assimilation of oil palm plantations. It was also assessed the ability of the model to reproduce 

the behavior of WUE and LUE with air temperature and VDP. In the second part, it was 

calculated the mean of each month for both WUE and LUE to assess the behavior throughout 

the year. The ability of the model to simulate the monthly variation of both WUE and LUE was 

assessed. In both analyzes, the evaluation was performed only in 2015, since only the first three 

months of 2016 have data available. 
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2.5. Yield simulations 

Oil palm yield is strongly dependent on endogenous factors, such as plant age, as well 

as external factors, such as soil, crop management, and climate. To consider these factors, the 

oil palm yield was evaluated in relation to planting age and per farm. The simulations of the 

yield of each group of plots were ran using the climatic data from the weather station closest to 

the centroid of the group of simulated plots. To simulate the yield of the groups of plots planted 

before the beginning of the period of available data from the nearest weather station, the XAV 

data set was also used. The set of parameters used in all simulations corresponds to that 

calibrated according to section 2.3.1. The average monthly yield was also assessed for the farms 

as a whole and for each farm individually, as well as the performance of the model to simulate 

the crop yield for each month. The variation in yield among plots of each farm was also assessed 

using the coefficient of variation (CV) as the statistical metric. The CV is the ratio between the 

standard deviation and the average, so that the higher the CV, the greater the dispersion of yield 

on the evaluated farm. 
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3. RESULTS 

3.1. Sensitivity analysis and calibration 

The proposed sensitivity analysis framework was able to identify the most sensitive 

parameters to simulate energy and carbon fluxes. Figure 3 presents the 33 parameters that 

significantly affect the simulation of at least one variable (H, LE, and NEE) on JAM site. NEE 

simulation was sensitive to the largest number of parameters, followed by H and LE (24, 18, 

and 10 parameters, respectively). For four parameters, the model was shown to be sensitive to 

simulate all variables simultaneously (H, LE, and NEE), whereas for 13 parameters the model 

was sensitive to the simulation of two of them. Finally, the model was shown to be sensitive to 

17 parameters to simulate only one variable. 

Figure 3 – List of parameters that the model showed to be sensitive to simulate H, LE, and NEE. 
Black circles represent the p-value of the parameter coefficients of the linear regression fitted 
between the MAE of the simulations and the values of the parameters. The dashed red line 
represents the 90% probability threshold for considering that the model was sensitive to the 
parameter to simulate H, LE, and NEE. Parameters description could be found in Table 3 

 
Source: Author. 

As expected, NEE simulation was shown to be sensitive mainly to photosynthesis, 

plant respiration, and leaf carbon allocation parameters. The parameters that control the 

allocation of carbon and specific leaf area (SLA) affect the LAI, which provides an interface 

between solar radiation and photosynthetic cells, whereas parameters that control 
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photosynthesis and leaf respiration affect the rate of net carbon assimilation. LE was mainly 

sensitive to stomatal conductance, cumulative root fraction, and leaf growing control 

parameters since this flux is related to the water change phase by evaporation in the ecosystems. 

So, the root distribution in the soil profile controls the amount of soil water available to the 

plant, and stomatal conductance couple to photosynthesis controls the leaf stomata aperture. 

Consequently, these processes regulate the water loss by leaves, affecting the LE. Last, the H 

simulation depends on the air temperature profile (Sellers, 1997). Most of the energy used to 

heat the air is provided by the soil, which was previously heated by the absorbed solar radiation 

which passed through the canopy. In addition, the heat transfer within the soil and between the 

soil and the overlying atmosphere is regulated by the soil thermal conductivity, which is 

affected by its physical properties (e.g. particle size, mineralogy) and the degree of saturation 

(Zhang and Wang, 2017). Thus, the model is more sensitive in the simulation of H to the 

parameters that control the LAI, which controls the amount of radiation that reaches the ground, 

as well as those related to water loss by evapotranspiration, which controls the soil water content. 

The model parameter uncertainty was analyzed using the CV of the parameters that 

performed the 5% best simulation results of H, LE, and NEE (Figure 4). The results showed 

that the uncertainty of β and θ parameters was low for NEE, whereas the βr and θ parameters 

presented the lower uncertainty for H, and βr was the parameter with the lower uncertainty in 

the LE simulation. Also, the uncertainty of the parameters common to two or more calibrated 

variable was almost always similar. The parameter m, for example is an exception to this rule 

since the CV of the parameter for H is almost half of the CV for NEE. Besides to showing the 

uncertainty of the parameters in the simulation of H, LE, and NEE, Figure 4 also gives an idea 

of how sensitive the model is for each parameter. A low CV implies that the best results of the 

simulations were achieved in a small range of parameter values, meaning that small variations 

in the parameter value considerably reduce the performance of the model. Thus, the smaller the 

CV, the more sensitive the model is to the parameter. Indeed, the simulation of H and LE, for 

example, shown to be sensitive to the βr parameter, since the βr parameter controls the 

distribution of fine roots in the soil profile. Thus, both evapotranspiration, which affects the LE 

simulation, and the thermal conductivity of the soil, which affects the H simulation, are strongly 

dependent on the βr value. 
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Figure 4 – Coefficient of variation (CV) of the parameters that performed the 5% best 
simulation results for H, LE, and NEE. 

 
Source: Author. 

In the calibration process, the parameter value calibrated for each variable individually 

was estimated, according to the proposed methodology. The final calibrated value for each 

parameter was obtained by averaging the calibrated values for each variable individually. Some 

parameters showed quite different values for the calibration of H, LE, and NEE. For example, 

the value of parameter α was 45.9% lower for NEE than the calibrated value. For H and LE, 

the difference was only 18.4% and 8.3%, respectively. Table 3 presents the parameters that the 

model was most sensitive to and calibrated values.
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Table 3 – Summary of parameter values calibrated to simulate H, LE, and NEE 

Parameter Description Sensitive to 
simulate 

Calibrated 
value 

Unit 

α Intrinsic quantum efficiency H, LE, and NEE 0.074 - 

β Photosynthesis coupling coefficient H and NEE 0.94 - 

θ Photosynthesis coupling coefficient H and NEE 0.94 - 

γ Leaf respiration coefficient H and NEE 0.017 mol mol-1 

m Coefficient m of stomatal conductance equation H, LE, and NEE 10.4 mol m-2 s-1 

d Drought index NEE 1.02 - 

b Coefficient b of stomatal conductance equation H and NEE 0.004 mol m-2 s-1 

Vmax Maximum rate of Rubisco carboxylase enzyme 
activity 

H, LE, and NEE 9.1 x 10-5 mol m-2 s-1 

SLA Specific leaf area H and NEE 13 m2 kg-C-1 

τroot Fine root biomass turnover time constant H and NEE 1108 years 

βr Cumulative fine root fraction H, LE, and NEE 0.98 - 

sβ0 Water stress factor NEE -34.5 - 

Sβ1 Water stress factor H 555 - 

Thigh High-temperature threshold in the Vmax 
temperature-dependence equation 

H and NEE 40.3 °C 

Tlow Low-temperature threshold in the Vmax 
temperature-dependence equation 

LE 8.2 °C 

f2 Parameter in the Vmax temperature-dependence 
equation 

H 0.36 - 

aroot
i  Initial root allocation coefficient H and NEE 0.28 - 

aroot
f  Final root allocation coefficient NEE 0.10 - 

rratio Leaf:root N allocation ratio NEE 0.73 - 

sratio Leaf:stem N allocation ratio NEE 0.02 - 

fN Minimum leaf nitrogen content that does not 
experience N stress 

LE 0.03 g-N 

aleaf
𝑖  Initial leaf allocation coefficient H 0.18 - 

aleaf
f  Final leaf allocation coefficient H and NEE 0.28 - 

dmat Age-controlling parameter in the leaf allocation 
equation 

H and NEE 0.61 - 

dleaf
alloc Shape-controlling parameter of the leaf 

allocation equation 
H and NEE 0.54 - 

af Controlling the base value of the fruit bunches 
C allocation equation 

NEE 0.12 - 

bf Controlling the shape of the curve in the fruit 
bunches C allocation equation 

H and NEE 0.04 m2 g-C-1 

Ldisp Unopen/open leaf C allocation ratio H and NEE 0.24 - 

LAItrans Leaf area index in the transplanting NEE 0.18 m2 m-2 

LAImax Maximum allowable LAI LE 6.4 m2 m-2 

GDDmax
sen  Thermal time from leaf expansion to end of 

senescence for each phytomer 
H and NEE 8217 °C 

GDDmax
fmat Thermal time from the beginning to end of fruit 

filling for each bunch 
H and NEE 6033 °C 

GDDmin
lmat Thermal time from leaf opening to leaf maturity 

for each phytomer 
NEE 1118 °C 

Source: Author. 
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The calibration was efficient for the adjustment of the parameters related to the 

evapotranspiration process. The behavior of the simulated evaporation in relation to the VPD 

was similar to the measured, showing that the parameters that control the stomatal conductance 

and the water uptake by roots was close to the expected (Figure 5a). In addition, the calibration 

was able to adjust good parameters to simulate the response of carbon assimilation during the 

day (NEE) to air temperature. This relationship must be well represented by the model since 

the photosynthetic rate responds to the air temperature (Sage and Kubien, 2007). However, the 

response of the NEE to the air temperature during the night, when the carbon flux comes from 

ecosystem respiration, did not correspond to that measured in the field (Figure 5c). The results 

show that the NEE grows linearly with the air temperature, but the field measurements showed 

that the ecosystem respiration varied widely for the same air temperature range. Indeed, 

ecosystem respiration does not only depend on air temperature, but on other factors such as soil 

moisture, which could cause non-linearity in the relationship between NEE and air temperature 

(Chen et al., 2019; Wen et al., 2006). In addition, there is great uncertainty in NEE 

measurements by the eddy covariance method at night, when the atmospheric boundary layer 

stability conditions, in general, are not ideal. 

Figure 5 – Behavior of (a) evapotranspiration (ET) in relation to the variation of the vapor 
pressure deficit (VPD) and the net ecosystem productivity (NEE) variation during the day (b) 
and at night (c) in relation to the air temperature. The red and blue circles correspond to the 
measured and simulated data, respectively 

 
Source: Author. 

 

3.2. Energy and carbon fluxes simulation  

3.2.1. Model validation 

The model performance to simulate the hourly energy and carbon fluxes for MOJ site 

varied widely according to the assessed variable. It is noteworthy that both energy and carbon 
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fluxes data were previously filtered, as presented above (section 2.2.2). In addition, the 

simulated data corresponding to the observed missing values were also removed. Table 4 shows 

the amount (in hours) and the percentage of data remaining after filtering. 

Table 4 - Amount (and percentage) of data before and after filtering 

Variable Data amount before filtering Data amount after filtering 

Rn 62,410 (89%) 62,410 (89%) 

H 17,924 (51%) 2,633 (8%) 

LE 1,6049 (46%) 2,633 (8%) 

NEE 1,6855 (48%) 7,059 (20%) 

Source: Author. 

Rn long-term mean simulated slightly underestimated the measurements, with a 

relative bias of -9.86%. The low MAE of 19.04 W m-2 compared to the variable diurnal 

magnitude and a very high R² (Figure 6a) for the linear regression fitted between simulated and 

observed data showed that the model was accurate to simulate Rn. In addition, the simulated 

Rn followed similar diurnal cycle behavior compared to the measurements, underestimating a 

bit from 9:00 to 15:00 (Figure 6b). 

Figure 6 – Linear regression fitted between observed and simulated net radiation (a), and the 
simulated (blue line) and observed (red line) net radiation diurnal cycle (b) for MOJ site. R² is 
the coefficient of determination 

 
Source: Author. 

The simulated LE also achieved a good agreement with the measurement data, with a 

low relative bias of 0.96% and a high R² (Figure 7a). However, the high MAE of 59.16 W m-2 

compared to the variable diurnal amplitude showed that the bias is widely spread around zero 

(CV of the bias was 1,785%). Diurnal cycle behavior of simulated LE was similar to the 
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observed data but delayed by one hour. This delay causes an underestimation of the lowest LE 

values (< 250 W m-2) and an overestimation of the highest values, raising the MAE. Therefore, 

the simulated daytime peak of LE around noon is higher than the observed data (Figure 7b). 

Figure 7 – Linear regression fitted between observed and simulated latent heat flux (a), and the 
simulated (blue line) and observed (red line) latent heat flux diurnal cycle (b) for MOJ site. R² 
is the coefficient of determination 

 
Source: Author. 

Poor agreement was achieved between simulated and observed sensible heat flux, with 

a relative bias of -54.16%. The Long-term simulated and observed mean were quite different, 

and the low R² (Figure 8a) and the high MAE of 51.16 W m-2 compared to the flux diurnal 

amplitude showed that the model was not able to simulate H accurately. The diurnal cycle of H 

was flattened and delayed compared with field measurements. The model did also not well 

simulate the amplitude of the diurnal cycle (Figure 8b). 
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Figure 8 – Linear regression fitted between observed and simulated sensible heat flux (a), and 
the simulated (blue line) and observed (red line) sensible heat flux diurnal cycle (b) for MOJ 
site. R² is the coefficient of determination 

 
Source: Author. 

Last, NEE was simulated with an satisfactory agreement, with relative bias of -16.01% and a 

high R² (Figure 9a). Diurnal cycle behavior was well simulated, as well as the diurnal amplitude. 

The CO2 source-to-sink transition at 7:00 of the simulated NEE agreed with the observation, as 

well as the transition of sink-to-source at 17:00 (Figure 9b). 

Figure 9 – Linear regression fitted between observed and simulated net CO2 ecosystem 
exchange (a), and the simulated (blue line) and observed (red line) net CO2 ecosystem exchange 
diurnal cycle (b) for MOJ site. R² is the coefficient of determination 

 
Source: Author. 

The set of parameters calibrated from the data provided by the JAM site proved to be 

well adjusted to simulate the Rn, the NEE and the LE of the MOJ site, while the H simulation 

was poor. The small overestimation of Rn around noon is mainly related to the lack of 

information about the optical properties of the plant and the leaves orientation. In turn, the 

problems found in the LE and H simulation seem to have a similar origin. As explained earlier, 
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the sensible heat flux depends on the heat exchange between the land surface and the 

atmosphere. The lack of good quality information about the soil physical-hydric properties 

affects the simulation of thermal conductivity. This issue affects the H simulation more than 

the LE simulation, since most of the latent heat flux originates in plant transpiration, while the 

air temperature gradient is directly affected by the energy exchange at the soil-atmosphere 

interface. 

Additionally, despite the good overall performance in the NEE simulation, the MAE 

of 5.71 µmol m-2 s-1 was relatively high when compared to the daytime amplitude. This 

controversial result was probably due to the poor result in the NEE simulation under low 

turbulence conditions (low u*), mainly during the night, when there is a high uncertainty in the 

estimated NEE from the sensors. Figure 10a shows that the bias is low (close to zero) under 

high turbulence conditions and high otherwise. In addition, NEE tends to be overestimated 

during the night (median bias of 25%), so that more than 60% of the nighttime carbon flux bias 

is greater than zero. On the other hand, the bias is well distributed around zero during the 

daytime, with median of 1.2% (Figure 10b). 

Figure 10 – Distribution of the NEE bias (%) according to the friction velocity (u*; m s-1) and 
according to the frequency (a and b, respectively) for MOJ site. Light red present the daytime 
NEE bias and the light blue is the nighttime NEE bias in both frames 

 
Source: Author. 

 

3.2.1.1. Oil palm carbon uptake and assimilation 

Daytime (from 07:00 to 17:00) water and light use efficiency for oil palm were 

evaluated on hourly and monthly time scales. On hourly timescale, both WUE and LUE were 

higher in the morning, just after sunrise (Figure 11Figure 12). Throughout the day both WUE 

and LUE steadily decrease, but at a lower rate from 11:00 to 16:00. At 17:00, both WUE and 
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LUE drop sharply to an efficiency close to zero. The model was able to simulate with good 

accuracy WUE and LUE on an hourly time scale after 09:00, but overestimated WUE and 

underestimated LUE from 07:00 to 08:00. However, it is observed that during the first hours of 

the day, atmospheric stability conditions are not favorable for the eddy covariance technique 

measurements. Therefore, part of the lack of fit between the simulated and observed data close 

to the sunrise may be due to measurement issues. 

Figure 11 – Daytime average of WUE (a) and LUE (b) for the MOJ site. The circles and lines 
in red represent the measured values, while the circles and lines in blue show the results of the 
simulation 

 
Source: Author. 

On a monthly timescale, oil palm was more efficient (above the monthly average) in 

the water and light use in the first half of the year (Figure 12). From March to May, the oil palm 

reached maximum monthly efficiency, peaking in April, with WUE of 1.5 g-C kg-H2O-1 and 

LUE of 0.88 g-C MJ-1. During the second half of the year, the efficiency in the use of water and 

light was reduced, mainly in the last three months. The WUE reaches its lowest value in 

December (0.8 g-C kg-H2O-1), while the LUE reaches the minimum in October (0.46 g-C MJ-1). 
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Figure 12 – Monthly daytime of (a) water use efficiency (WUE) and (b) light use efficiency 
(LUE) in 2015 for MOJ site. Solid and dashed lines show the observed and simulated values 
from both WUE and LUE, respectively 

 
Source: Author. 

The model also simulated WUE and LUE well on a monthly timescale, so that there 

was no statistically significant difference between the simulated and measured data (t-test 

α = 0.05). The monthly mean of the measured WUE was 1.1 ± 0.2 g-C kg-H2O-1, while the 

model reached an average of 1.0 ± 0.3 g-C kg-H2O-1 (t-test p-value = 0.41). In the same period, 

the measured monthly LUE was 0.14 ± 0.03 g-C MJ-1, while the model estimated it at 

0.13 ± 0.03 g-C MJ-1 (t-test p-value = 0.33). The monthly behavior of WUE and LUE was also 

well simulated by the model, so that the simulated high efficiency period was also the first half 

of the year, with WUE peaking in April (1.5 g-C kg-H2O-1), but with LUE peaking in July 

(0.87 g-C MJ-1). In addition, the period of minimum efficiency in the water and light use was 

also well simulated, so that both WUE and LUE reached the lowest value in October 

(0.8 g-C kg-H2O-1 and 0.49 g-C MJ-1, respectively). 

In addition to the monthly variation of WUE and LUE, the efficiency in the water and 

light use according to the air temperature and the VPD was evaluated. Both WUE and LUE 

observed were sensitive to air temperature and VPD variation, so that the efficiency of carbon 

assimilation reduces to an exponential decay rate when air temperature and VPD rise (Figure 

13). However, the variation in air temperature and VPD affects WUE more strongly than LUE. 

Note that WUE decreases by up to 90% with an increase of 14°C or 35 hPa, whereas LUE 

decreases by only 12% for the same range of air temperature and VPD. Simulated WUE 

presented the same behavior of the observed data, but a bit more sensitive than the observed for 

both air temperature and VPD. In turn, LUE was simulated with low sensitivity for both air 

temperature and VPD, compared to the observed. 
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Figure 13 – Water and light use efficiencies variation in relation with air temperature (a and c) 
and vapor pressure deficit (b and d). Solid and dashed line presented the exponential decay 
curve for observed and simulated data, respectively 

 
Source: Author. 

It was also analyzed in this study how and what factors limit the efficiency in the use 

of water and light. Figure 14 shows that air temperature and VPD affect WUE, so that the higher 

the air temperature and VPD, the lower the WUE. Furthermore, it is observed that under lower 

air temperature and VPD (< 28°C and < 10 hPa, respectively), NEP increases strongly with a 

small increase in ET. On the other hand, an opposite pattern is observed when the air 

temperature exceeds 32°C and the VPD overcomes the 20 hPa since the plant needs to 

evapotranspirate more so that the assimilation increases a bit. 

Figure 14 – Decomposition of WUE into NEP and ET components. Iso-efficiency is shown by 
black dashed lines with their respective values of WUE. Circle colors present the VPD (a) and 
air temperature (b) 
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Source: Author. 

LUE was also sensitive to the variation in air temperature and VPD. Figure 15 shows 

that for low PAR (< 150 W m-2), carbon assimilation was often less than the ecosystem 

respiration, making NEP less than zero, even under air temperature and VPD close to ideal 

conditions. Under high air temperature (> 34°C) and high VPD (> 20 hPa), LUE was not limited 

by radiation, so that the low efficiency was due to the reduced NEP caused by unfavorable air 

temperature and VPD conditions. The LUE was higher for moderate air temperature (< 30°C) 

and VPD (< 20 hPa), but it was limited by light saturation, where NEP does not exceed 

30 µmol m-2 s-1. However, even under light saturation conditions, the LUE was sensitive to air 

temperature and VPD, since the NEP reduced steadily with rising of both VPD and air 

temperature (rate of -0.5 µmol-CO2 m-2 s-1 hPa-1 and -0.14 µmol-CO2 m-2 s-1 °C-1, respectively). 

Figure 15 – Decomposition of LUE into NEP and PAR components. Iso-efficiency is shown 
by black dashed lines with their respective values of LUE. Circle colors present the VPD (a) 
and air temperature (b) 

 
Source: Author. 

 

3.3. Yield simulations 

The long-term average annual yield of all studied farms was 18.39 ± 7.33 t-FFB ha-1 

(tons of fresh fruit bunches per hectare) during the study period, but this yield was not constant 

throughout the whole life plantation. On average, oil palm yield increases steadily from 2~3 

YPP (years past planting) to 10~12 YPP, reaching an average yield of ~20.0 t-FFB ha-1. From 

then on, the yield becomes almost constant until 25 YPP, when it starts to decrease (Figure 16). 

The standard deviation bars in Figure 16 show that, although the yield varies a lot for plantation 

with the same age, the growth, stability and decrease stages have remained. The simulated long-

term average of the yield was close to that observed (17.84 ± 6.14 t-FFB ha-1), with an RB 
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of -2.98%. However, although the yield behavior related to planting age was well simulated by 

the model, mainly for the stable yield stage (≥ 12 YPP, RB = -6.1%), in the first harvests (≤ 5 

YPP, RB = 49.0%) and in very old plantation (> 25 YPP, RB = 39.0%), the simulated yield was 

largely overestimated. Last, during the growing yield stage (> 5 YPP), the model 

underestimated the observed yield (RB = -14.1%). It is important to note that the drop in yield 

observed after 25 YPP is due to a management issue. The plants become very tall, making 

harvesting difficult and some fruit bunches are not harvested. Thus, the reduction observed after 

25 YPP may not represent a real drop in crop yield, so it is not possible to say that the model 

overestimates yield in older plants. 

Figure 16 – Oil palm average yield according to the plantation age. Light red and blue bars are 
the observed and simulated monthly yield, and the vertical lines are the standard deviation 

 
Source: Author. 

The annual yield of oil palm plantations also varied among the farms (Figure 17). 

Farms A and C achieved the highest long-term annual mean yield (20.45 t-FFB ha-1 and 22.84 

t-FFB ha-1, respectively), while the lowest yield was achieved by farms G and H 

(12.24 t-FFB ha-1 and 12.12 t-FFB ha-1, respectively). The average yield on farms B 

(18.21 t-FFB ha-1), D (18.85 t-FFB ha-1), and E (16.80 t-FFB ha-1) was similar to the general 

average yield for all farms. The model simulated the yield of farms A, B, and G with good 

accuracy, with RB of 1.96%, -1.45%, and -3.50%, respectively. For farms C and E, the model 

performance to simulate the yield was quite lower than that achieved by farms A, B, and G, 

with RB of 19.70% and -18.76%, respectively. For farms D and G, the model performed a 

slightly better simulation than that achieved for farms C and E, with RB of 12.96% and -14.30%, 
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respectively. Note that the yield of plot groups is highly correlated with the planting age, so that 

younger plot groups presented a reduced yield, in addition to worse simulation performance. 

Figure 17 – Observed (OBS), simulated (SIM) mean of annual yield, and the planting year for 
each plot groups. The letters A to H are the centroid of the farms. There is no available dataset 
for farm F 

 
Source: Author. 

Crop yield also varied widely on a monthly time scale across farm plot groups. The 

yield of plot groups on farm B proved to be the least homogeneous, with a CV of 38.3%. The 

yield range of plot groups on farms A and E was also large, with a CV of 28.0% and 20.1%, 

respectively. For farms G and H, the variation in yield among plot groups was slightly lower, 

with CV of 17.3% and 13.5%, respectively. Finally, the variation in yield among plot groups 

on farms C and D was much lower than the others, with CV of 6.7% and 6.2%, respectively. 

This variation in yield among plot groups planted in the same farm could be explained by the 

range of plot planting year. Farms with plots planted in a small interval of years show a more 

homogeneous yield than farms with plots planted over the study period. For example, on farm 

B there are plots planted since the mid-1980s, through the 1990s, and also in the early 2010s. 

On the other hand, plots on farms C and D were planted between the second half of the 1990s 

to the beginning of the 2000s. The variation in the planting year also affects the model 

performance to simulate the average yield of the farms due to an offsetting error effect. Thus, 

farms with plots planted over a wide range of years have a lower average error, since the 

performance of the model is affected by the age of the plot. The left-hand chart in Figure 18 

shows the bias (difference between observed simulated values) of the yield of all plot groups 

of per farm. Note that the yield of the older plot groups (circles in dark blue tones) has the 

largest errors. 
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Figure 18 – Monthly yield bias distribution for each farm (left-hand chart). Bars show the 
median ± standard deviation. The color of the circles is the plant age when the yield was 
simulated. Boxplot in the right-side frame present the distribution of the RB of the plot groups 
in the farms, so that the box includes 50% of the data, with the horizontal tick inside the box as 
the median. Black dots represent the mean RB of each farm 

 
Source: Author 

Oil palm yields also varied on a monthly time scale (MEAN, Figure 19). From 

February to August, the yield was similar for all months (~1.5 t-FFB ha-1). From September 

onwards, yields begin to rise, peaking in October and November (~2.1 t-FFB ha-1), and then 

reduces. The monthly behavior of the simulated yield also varied, but with greater amplitude 

and with the high-yield period beginning two months earlier. From December to June, the yield 

was almost constant, ranging between 1.3 t-FFB ha-1 and 1.5 t-FFB ha-1. From July onwards, 

the yield begins to rise, peaking in September (2.8 t-FFB ha-1), and then reduces. We also 

observed a large variation in the monthly yield among farms (farms from A to H, Figure 19). 

Strong seasonality was observed in the plot groups yield on farms A and E. Yield from farms 

B, G, and H showed a slight seasonality, whereas farms C and D produce almost in the same 

level throughout the months. Farms A, B, and E reached the largest yield between September 

and December, whereas the yield from farms G and H was highest from October to January. 
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Despite the low seasonality, the yield of farm D slightly increase in October and November, 

and farm C produces a bit more from January to June (Figure 19). 

Figure 19 – Yield monthly mean for farms A, B, C, D, E, G, H, and the general mean (MEAN) 
of farms. Light red bars present the observed yield data and blue bars present the simulated 
yield 

 
Source: Author. 



45 
 

 

In addition to the climate, the genetic factor also affects the seasonal yield of the oil 

palm crop. This study was limited to the calibration of the model to carbon and energy fluxes. 

However, there are genetic factors that cause variation in crop yield, in addition to the dynamics 

of NPP (Barcelos et al., 2015). Figure 20 shows the percentage bias between the simulated and 

observed yield of the varieties that cover at least 5% of the total area of the studied farms. We 

observed that, on average, the model underestimated the yield for the Deli x Avros, Deli x 

Ekona, and Deli x Ghana varieties, whereas the yield of the Deli x La Mé and Deli x Nigeria 

varieties is overestimated. Furthermore, it is noted that the model presented the best 

performance to simulate the Deli x La Mé variety, with an average bias of 1.83%. For the other 

varieties, the average bias was -10.87% for Deli x Ghana, -13.12% for Deli x Ekona, -14.54% 

for Deli x Avros, and 16.26% for Deli x Nigeria. 

Figure 20 – Average percentage bias for the main varieties planted on the studied farms. 

 
Source: Author. 

It should also be noted that the variety Deli x La Mé showed the highest seasonality in 

yield. The average amplitude (average of the difference between the months with the highest 

and lowest yield) of the observed variety yield was 5.43 t-FFB ha-1, whereas in the other 

varieties the average amplitude was less than 4.5 t-FFB ha-1 (Figure 21). Seasonality in the 

varieties yield could be also seen in the farms monthly yield (see Figure 19), since there are 

different predominant varieties in each farm. On farm A, for example, more than 50% of the 

plots are planted with the high-seasonality variety Deli x La Mé, whereas on farm C, prevails 

the low-seasonality varieties Deli x Ekona (23%) and Deli x Ghana (20%). Therefore, varieties 

with marked seasonal yield are generally best simulated by the model. 
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Figure 21 – Seasonal yield behavior of the five most planted varieties in the study area. Deli x 
La Mé is the most planted variety in the study area (27%), followed by Deli x Ghana (14%), 
Deli x Ekona (12%), Deli x Avros (10%), and Deli x Nigeria (9.5%). Light red and blue lines 
present the observed and simulated monthly mean yield, respectively 

 
Source: Author. 
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4. DISCUSSION 

4.1. Climate dependence on oil palm carbon uptake efficiency 

Previous studies have shown that oil palm achieve a high rate of photosynthesis 

compared to others C3 photosynthesis pathway plants, saturating at a PPFD (Photosynthetic 

Photon Fluence Density) of 1,100 µmol m-2 s-1 (~240 W m-2 of PAR) in ~20 µmol-CO2 m-2 s-1 

(Apichatmeta, Sudsiri and Ritchie, 2017; Dufrene and Saugier, 1993). Also, the palm oil growth 

is satisfied with PAR of at least 230 MJ m-2 month-1 (Woittiez et al., 2017), which is commonly 

overcome in the equatorial region, where MOJ site is located. On the other hand, the water 

demand by the oil palm is high, estimated at ~6 mm day-1 under non-limiting conditions 

(Woittiez et al., 2017). This high demand is probably due to its equatorial origin, where rainfall 

is abundant throughout the year. Water stress affects the plantation severely, causing vegetative 

disturbances, such as accumulation of unopened leaves, premature senescence of the older 

leaves, and abortion of fruit bunches, leading the plant to death in severe cases (Caliman and 

Southworth, 1998). In order to avoid excessive water loss under dry conditions, the plant has a 

strong control over the stomatal opening, which controls the exchange of gases between the 

intracellular medium and the underlying atmosphere (Lamade and Bouillet, 2005). 

Due to the strong stomatal control, environmental factors such as VPD, strongly affect 

the leaves carbon uptake and assimilation. Under high-VPD conditions, the plant reduces the 

rate of CO2 uptake due to stomatal closure, also affecting the NEP, since less CO2 is available 

for photosynthesis in the leaf intracellular medium. In addition, air temperature also affects 

NEP, so that under warmer conditions (T > 34°C), the leaves could overheat, inhibiting 

photosynthesis, at the same time that promotes carbon loss due to increased ecosystem 

respiration. On the other hand, under very temperatures (T < 12°C), vegetative development 

and fruit ripening are slower than normal. (Corley and Tinker, 2015; Lamade and Bouillet, 

2005). It is not expected that in equatorial regions the oil palm will experience excessively low 

air temperatures events, but it is common that in some periods of the day the higher air 

temperature causes thermal stress. Indeed, extreme warm events (T > 34°C) were recorded on 

the MOJ site in 2015, mainly in October and November, where the frequency of occurrence 

was 8.3% and 14.1%, respectively. 

The results showed that the WUE and LUE is strongly dependent of the variation in 

carbon assimilation, so that under less favorable climate conditions, especially under 

excessively warm and high-VPD conditions, the WUE and LUE are reduced due to the lower 

carbon assimilation rate (Dufrene and Saugier, 1993; Lamade and Bouillet, 2005; Niu et al., 
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2015; Smith, 1989). The reduction in the assimilation of carbon by the plant lead to a reduction 

in the yield of the crop since the yield of the oil palm is limited by the source (Legros, Mialet-

Serra, Clement-Vidal, et al., 2009). Therefore, the results show that the expected climate 

changes for eastern Amazonia can strongly affect Brazilian oil palm production, but they also 

present ways to offset the negative effects of climate change. Through the management of plant 

density and water availability in the soil, the drop in WUE and LUE can be compensated for, 

reducing the loss of carbon assimilation due to the future warmer and drier climate. 

It is noteworthy that the WUE and LUE were estimated based on the NEP. Thus, the 

variation in net carbon assimilation can have two possible explanations: (i) the NEP depends 

on the rate of photosynthesis, which varies depending on the VPD and the air temperature; or 

(ii) NEP varies due to the variation in ecosystem respiration, which is affected by air 

temperature. Indeed, both effects are likely to affect the variation of NEP, but it was not possible 

to identify which effect prevails with the data available in this study. 

 

4.2. Modelling the oil palm growing and yield 

The model described in this study considered only NPP as a limiting factor for crop 

yield. Indeed, Fan et al. (2015) showed that the crop yield source-limited equation was able to 

capture the yield dynamics under optimal and stress conditions, so that under stress conditions 

(e.g. water limitation), NPP is reduced, limiting yield. Models based on land surface processes, 

such as ECOSMOS, are usually better to simulate the dry matter assimilation dynamics because 

they consider the complete carbon cycle in the plant. Processes such as respiration and 

photosynthesis are simulated explicitly and consider water availability in the soil, radiation, air 

temperature and the vapor pressure deficit in the assimilation of carbon. Other models that 

simulate oil palm yield, such as PALMSIM (Hoffmann et al., 2014) and ECOPALM (Combres 

et al., 2013) are more limited to simulate the plant carbon dynamics, since they are mainly 

limited by radiation. 

Previous studies have shown that disturbances in the source of assimilates affected the 

yield of oil palm, so that the reduction in the amount of assimilates caused by pruning, for 

example, could reduce the yield (Jones, 1997; Legros, Mialet-Serra, Caliman, et al., 2009; 

Legros, Mialet-Serra, Clement-Vidal, et al., 2009). However, it was observed that the crop yield 

in younger (<12 YPP) or older (>25 YPP) plants was lower compared to plants aged between 

5 YPP and 25 YPP. The yield of the oil palm changes with age, mainly due to the change in the 
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proportion of female inflorescences and the average weight of the mature bunches (Woittiez et 

al., 2017). In this study, only the dynamics of the NPP was considered as a source of variation 

in the allocation rate of assimilates to the fruits, but factors such as the sex ratio and the rate of 

abortions of inflorescences or developing bunches affect the yield of the oil palm crop (Corley 

and Tinker, 2015). These factors vary not only according to the availability of assimilates, but 

also with the age of the plant (Jones, 1997; Woittiez et al., 2017) and were not considered in 

the development of this model due to data limitations. However, even without considering these 

factors, the model still managed to capture with satisfactory accuracy the dynamics of crop 

yield as a function of plant age. It is also noteworthy that for plots with more than 25 YPP, the 

yield observed in the field also reduces due to the difficulty in harvesting the fruit bunches due 

to the size of the plants. Thus, the low performance of the model to simulate the yield in older 

plants may have been caused by the inaccuracy of the observed data. 

The genetic factor has also been shown to significantly affect oil palm yield, mainly 

in seasonality. Some varieties showed a more seasonal yield, while others show a more 

homogeneous yield throughout the year. This result shows that a high genetic variability is 

desirable in a commercial plantation, in order to maintain the yield at higher levels throughout 

the year. On farm A, for example, during the first half of the year the yield is much lower than 

farms grown with less seasonal varieties, such as C, despite the high yield in the second half of 

the year. In addition, the model was not able to consider genetic variability in the simulation of 

crop yield, so that only the most seasonal varieties were well simulated. This result suggest that 

the JAM site was probably cultivated with some seasonal variety when eddy covariance 

measurements were taken, affecting the calibration of the model parameters. 

Despite the satisfactory result to simulate oil palm yield, the model developed in this 

study fails to answer some questions, such as the importance of reproductive factors in the 

dynamics of growth and crop yield. The lack of data about the plant's reproductive stage limited 

this study to consider only age as an explicit endogenous variation factor in the growth and 

yield of the crop. Further studies may improve the dry matter allocation equation for fruits 

considering not only the NPP in the carbon allocation dynamics for the fruits, but also factors 

such as the sex ratio and the rate of inflorescences and developing bunches. In addition, a robust 

multi-variety calibration is necessary for the model to be able to capture the variation in yield 

between the main genetic materials used by producers. 
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4.3. Study limitations 

The results found in this study point to a good performance of the model, but some 

considerations must be made about the limitations of this study. The main limitations of this 

study are related to data availability and quality. First, it was observed that the model is sensitive 

to the physical characteristics of the soil. Soil physics characteristics control processes such as 

the soil water content and soil heat transfer. Thus, the generic information used in this study 

inserts a great uncertainty in the results, mainly in the simulation of H, as presented in section 

3.2. The soil data used in this study come from a global database, which includes few and not 

validated information about the soil properties. Also, important information, such as the 

permanent wilt point, field capacity, porosity and saturated hydraulic conductivity were 

estimated from this database applied to equations that were also not adjusted for this specific 

study site. It is expected that the inclusion of local soil properties will improve the model’s 

results, mainly the H and LE simulations. 

In addition to improving soil properties in the model, implementing equations for the 

oil palm reproductive cycle could also help improve the model's performance. As discussed in 

section 4.2, some characteristics of the oil palm reproductive cycle, such as sex ratio and 

developing bunch abortion rate, can greatly affect crop yield. It is also worth mentioning that 

another important limitation of the study was the lack of a robust calibration for genetic varieties. 

Multi-variate calibration is fundamental to improve the model's performance in simulating the 

yield on a monthly scale, since it was observed that each variety presents a different seasonal 

yield behavior of the crop. This improvement can assist farmers in choosing which variety to 

plant, according to their needs. 
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5. CONCLUSIONS 

In this study the yield of oil palm in Brazil from a climatic perspective was analyzed. 

It is observed that the assimilation of carbon by the oil palm is strongly affected by climatic 

factors, such as air temperature and vapor pressure deficit. This climate-dependence makes 

efficiency in the use of some resources, such as solar radiation and water, also affected by these 

climatic factors, even when these resources are not scarce. It was also observed that the climate 

affects the yield of the oil palm, since the filling of the fruit bunches is also affected by the 

assimilates availability. 

The model developed in this study proved to be able of simulating carbon and energy 

exchanges between the land surface and the atmosphere on an hourly time scale. The exception 

was the simulation of the sensitive heat flux, which was affected by the lack of data on the soil 

physical properties. In addition, the model was also able to simulate well the oil palm yield in 

the main producing region of Brazil. In general, the model better simulated the yield of plants 

from 12 to 25 years old and for varieties that showed higher seasonality in yield, while the yield 

in younger (<5 YPP) or older plants (> 25 YPP) was overestimated . 

Despite showing a good result, some improvements are required so that the model can 

simulate oil palm yield in more comprehensive conditions. One of the possible improvements 

that should be made is the multi-variety calibration, since only species with largely seasonal 

yield have been well simulated. In addition, the quality of the simulation proved to be dependent 

on soil properties, so that the inclusion of these information measured in the field can contribute 

to the improvement of the model. 

Future studies should be conducted to include the simulation of the oil palm 

reproductive cycle in the model in order to improve the simulation of crop yield. In addition, it 

is essential that a multi-variety calibration is conducted in future studies, in order to make the 

model more general so that palm and oil producers can use the model in making decisions about 

which varieties should be planted. 
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