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ABSTRACT

BERNARDES, Rodrigo Cupertino, D.Sc., Universidade Federal de Vigosa, July, 2021.
Ethoflow: an artificial intelligence-based software that facilitates behavioral
measurements and their application for toxicological assessments in insects. Adviser:
Gustavo Ferreira Martins. Co-adviser: Maria Augusta Lima Siqueira.

The application of artificial intelligence (AI) techniques has demonstrated outstanding
performance for automating complex tasks in many areas. Thus, software with Al
implementation can be sufficiently robust to meet the demand for studies on animal behavior
(e.g., evaluating behavior under field conditions). Studies on risk assessment in bees have
focused on the possible causes of loss of their colonies worldwide, which is attributed to
different factors, including agricultural practices with the use of agrochemicals. In toxicological
studies of agrochemicals in bees, behavioral assessment is an important sublethal parameter.
Thus, the development and application of Al tools can considerably contribute to the
understanding of how agrochemicals and other factors are affecting the bees’ health. The
present work aimed to develop an Al-based software (Ethoflow) to automatically assess animal
behavior. In addition, Ethoflow was applied to evaluate sublethal behavioral changes in
toxicological studies of agrochemicals in forages of two stingless bee species, including
Melipona quadrifasciata and Partamona helleri (Hymenoptera, Apidae, Meliponini). The
results obtained demonstrate that: (1) Ethoflow is robust for multivariate behavioral
assessments, behavioral assessments in heterogeneous environments, tracking individuals in
groups maintaining their identities and can be trained to learn behaviors specific to animals; (2)
it is possible to classify agrochemical contamination in bees with high accuracy by integrating
multivariate behavioral data with Al algorithms and the agrochemicals glyphosate and
imidacloprid differentially impact the midgut physiology of M. quadrifasciata; (3) the foliar
fertilizer copper sulfate (CuSQO4) causes sublethal effects on the behavior and structure and
physiology of the midgut epithelium of P. helleri; (4) the mixture of mesotrione and atrazine
herbicides interfered in food intake and behavioral parameters, caused damage to the midgut
epithelium and altered the pattern of proteins related to the cell proliferation and differentiation
in midgut of P. helleri. In general, Ethoflow is a useful support tool for technical-scientific
applications in the animal behavior field and has significant potential in risk assessments of

non-target organisms for modeling the multiple factors affecting bees’ health, including the



adverse effects of agrochemicals. Besides, Al algorithms trained with multivariate behavioral
data predict bees’ agrochemical contamination with high accuracy. Finally, the analyzes
enabled holistic assessments of sublethal effects of different agrochemicals on the behavior and

physiology of bees.

Keywords: Bee. Computer vision. Machine learning. Meliponini. Pollinators.



RESUMO

BERNARDES, Rodrigo Cupertino, D.Sc., Universidade Federal de Vigosa, julho de 2021.
Ethoflow: software baseado em inteligéncia artificial para medi¢ées comportamentais e
suas aplicacoes em avaliacoes toxicologicas em insetos. Orientador: Gustavo Ferreira
Martins. Coorientadora: Maria Augusta Lima Siqueira.

A aplicagdo de técnicas de inteligéncia artificial (IA) tem demonstrado desempenho
excepcional para automatizar tarefas complexas em muitas areas. Um software com
implementag¢ao de IA pode ser robusto atender a demanda de estudos sobre comportamento
animal (por exemplo, para avaliar comportamentos em condi¢des de campo). Estudos sobre
avaliagdo de risco em abelhas tém se concentrado nas possiveis causas de perda de suas colonias
em todo o mundo, o que ¢ atribuido a diferentes fatores incluindo praticas agricolas com uso de
agroquimicos. Em estudos toxicologicos de agroquimicos em abelhas, avaliagdo
comportamental ¢ um importante parametro subletal. Dessa forma, o desenvolvimento e
aplicagdo de ferramentas com IA pode contribuir substancialmente para o entendimento de
como os agroquimicos e outros fatores estdo afetando a satde das abelhas. O presente trabalho
objetivou desenvolver um software (Ethoflow) baseado em IA para avaliar comportamento
animal automaticamente. Além disso, o Ethoflow foi aplicado em avaliacdes comportamentais
em forrageiras de duas espécies de abelha sem ferrdo, Melipona quadrifasciata e Partamona
helleri (Hymenoptera, Apidae, Meliponini) expostas a diferentes agroquimicos. Os resultados
obtidos demonstram que: (1) o Ethoflow ¢é robusto para avaliagdes comportamentais
multivariadas, avaliagdes comportamentais em ambientes heterogéneos, rastreamento de
individuos em grupos mantendo suas identidades e pode ser treinado para aprender
comportamentos especificos dos animais; (2) ¢ possivel classificar contaminag¢do por
agroquimicos em abelhas com alta acurdcia, integrando dados comportamentais multivariados
com algoritmos de IA e os agroquimicos glifosato e imidaclopride, diferencialmente, impactam
a fisiologia do intestino médio de M. quadrifasciata; (3) o fertilizante foliar sulfato de cobre
causa efeitos subletais no comportamento e na estrutura e fisiologia do epitélio do intestino
médio de P. helleri; (4) a mistura dos herbicidas mesotriona e atrazina interferiu no consumo
alimentar e parametros comportamentais, causou danos ao epitélio do intestino médio e alterou
o padrao de proteinas relacionadas a proliferagao e diferenciagao de células-tronco do intestino

médio de P. helleri. Em resumo, o Ethoflow ¢ uma ferramenta de suporte 1til para aplicacdes



técnico-cientificas em comportamento animal e tem potencial significativo em avaliagdes de
risco de organismos ndo-alvo para modelar os multiplos fatores que afetam a satide das abelhas,
incluindo os efeitos adversos dos agroquimicos. Além disso, algoritmos de 1A, treinados com
dados comportamentais multivariados, preveem a contaminacao por agroquimicos em abelhas
com alta acuracia. Finalmente, as anélises permitiram avalia¢des holisticas dos efeitos subletais

de diferentes agroquimicos no comportamento e fisiologia das abelhas.

Palavras-chave: Abelha. Aprendizado de maquina. Meliponini. Polinizadores. Visdo
computacional.
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INTRODUCTION

The increase in the availability of computational resources, especially the graphic units
for processing in parallel, has contributed to the outstanding performance of artificial
intelligence (Al) in many areas. Using Al approaches it is possible to train algorithms on a
representative dataset to perform classification predictions on other independent datasets
(Ghahramani, 2015). Thus, a properly trained Al algorithm can generalize to new situations and
automate tasks.

Due to subjectivity and non-parametrization, evaluating animal behavior manually is a
limited method (Noldus et al., 2002) and the implementation of Al for automatic behavior
analysis has great potential (Dell et al., 2014). Al applications in animal behavior science seem
to be an active topic nowadays and tools have been developed, for example, software for animal
tracking (it gets the animal’s position in each frame of a digital video and record the Cartesian
or polar coordinates of the movement) (Rodriguez et al., 2018; Romero-Ferrero et al., 2019;
Sridhar et al., 2019; Walter and Couzin, 2020) and software for animal pose estimation (it
measures the geometrical configuration of animal body parts) (Graving et al., 2019; Mathis et
al., 2018; Pereira et al., 2019).

In general, the available software for animal behavior analyses detect the animals by
background subtraction or thresholding (Dell et al., 2014; Yilmaz et al., 2006). These computer
vision approaches require videos with good contrast between the object and the background,
and homogeneous background (i.e., with slight variation in color, luminosity, and texture).
Nonetheless, sufficiently robust systems are needed to assess multiple individuals, maintaining
individual identities in heterogeneous environments (i.e., complex environmental landscapes
such as in the field or multi-scenes with variation in color, luminosity, texture, and different
objects) (Dell et al., 2014).

By tracking animals, it is possible to calculate important kinematic measurements (from
animals’ Cartesian or polar coordinates over time) (Yilmaz et al., 2006) of their behavior, such
as speed and walked distance. Additionally, evaluating complex behaviors of animals can bring
important insights, for example, in ecotoxicity assessments. In the case of social insects,
evaluation of complex behaviors such as changes in trophallaxis (i.e., a complex social behavior
of food exchange among social insect nestmates) is of great importance under pesticide

exposure (Boff et al., 2018; Gandra et al., 2016). Without accessible tools, many of these
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assessments are done manually and subjectively, limiting the detection of complex behavioral
changes.

A suitable tool to automatically assess animal behavior has great potential for risk
assessment in bees. Efforts for risk assessment in bees are crucial to understanding the different
factors that have led to the decline of these pollinators. The decline of bees worldwide is
attributed to different factors, including agricultural practices with increased agrochemicals
(Barbosa et al., 2015; Freitas et al., 2009; Lima et al., 2016). Studies showed that the harmful
effects in bees by exposure to agrochemicals resulting from the adverse sublethal impacts on
behavior and gut physiology and morphology, such as damage to the midgut cells (Farder-
Gomes et al., 2021b, 2021a; Lima et al., 2016; Sgolastra et al., 2019). Assessing these sublethal
effects are essentials to understand the factors associated with the long-term success of bee
colonies because changes that compromise the individual, without leading to death, can affect
the entire dynamics of colonies (Johnson, 2015; Lima et al., 2016).

This work aimed to develop an Al-based software (Ethoflow) to improve animal
behavior analyzes. The developed software was applied to assess behavioral changes in
agrochemical-exposed bees in toxicological studies. The software developed in this work has
achieved substantial contribution in the animal behavior field being successfully applied in
other studies (Araujo et al., 2021; Farder-Gomes et al., 2021b; Viana et al., 2021). With
Ethoflow it was possible to obtain multivariate behavioral data to train Al algorithms that
predicted the contamination by agrochemicals in bees with high accuracy. Moreover, the
analyzes enabled holistic assessments of the agrochemical sublethal effects in stingless bee
species, including behavioral disorders and morphology, protein quantification, and antioxidant
activity in bees’ midgut.

The first chapter reports the development, algorithm, and performance of the Ethoflow
software, which was trained to recognize trophallaxis and applied in bioassays with two species
of eusocial bees to compute kinematic behavioral variables. In the second chapter, the software
Ethoflow was used to measure multivariate behavior data of foragers of Melipona
quadrifasciata exposed to agrochemicals (glyphosate, and imidacloprid), and Al algorithms
were applied to predicting bees’ agrochemical contamination. Besides, changes in the detection
pattern of different proteins related to bee gut physiology after exposure to the two types of
agrochemicals were quantified. The third chapter assesses the sublethal effects of copper sulfate

(CuSOg4; used in crops primarily as foliar fertilizer) in the behavior and midgut physiology of
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the stingless bee Partamona helleri. The fourth and last chapter evaluates the harmful effects

of a mixture containing the herbicides mesotrione and atrazine on P. helleri.

AIMS

Develop and validate an open-source desktop software (Ethoflow) using Al tools to
assessing animal behavior in heterogeneous environments, tracking individuals in groups,
maintaining their identities, and assessing specific behavior.

Apply Al algorithms to predicting bees’ agrochemical contamination (glyphosate, and
imidacloprid) from behavior data and assess the detection pattern of different proteins related
to bee gut physiology after exposure to the agrochemicals in foragers of M. quadrifasciata.
Estimate the lethal concentration at 50% of CuSO4 (LCso; the concentration that led to the
deaths of 50% of the exposed population) in foragers of P. helleri and assess the walking
behavior, morphologies of midgut and peritrophic matrix (PM), midgut oxidative stress, and
immunofluorescence detection of proteins related to midgut physiology after exposure to
CuSOs.

Estimate lethal concentrations at 50% and 10% (LCso and LCo) for acute oral exposure to a
mix of herbicides (mesotrione and atrazine), and assess food consumption, behavior, midgut
epithelium and PM, and the pattern of cells positive for proteins related to the proliferation

and differentiation of midgut stem cells in forages of P. helleri.
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CHAPTER 1. Ethoflow: computer vision and artificial intelligence-based software for
automatic behavior analysis
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Abstract: Manual monitoring of animal behavior is time-consuming and prone to bias. An alternative
to such limitations is using computational resources in behavioral assessments, such as tracking
systems, to facilitate accurate and long-term evaluations. There is a demand for robust software
that addresses analysis in heterogeneous environments (such as in field conditions) and evaluates
multiple individuals in groups while maintaining their identities. The Ethoflow software was de-
veloped using computer vision and artificial intelligence (Al) tools to monitor various behavioral
parameters automatically. An object detection algorithm based on instance segmentation was imple-
mented, allowing behavior monitoring in the field under heterogeneous environments. Moreover, a
convolutional neural network was implemented to assess complex behaviors expanding behavior
analyses’ possibilities. The heuristics used to generate training data for the Al models automatically
are described, and the models trained with these datasets exhibited high accuracy in detecting indi-
viduals in heterogeneous environments and assessing complex behavior. Ethoflow was employed
for kinematic assessments and to detect trophallaxis in social bees. The software was developed in
desktop applications and had a graphical user interface. In the Ethoflow algorithm, the processing
with Al is separate from the other modules, facilitating measurements on an ordinary computer
and complex behavior assessing on machines with graphics processing units. Ethoflow is a useful
support tool for applications in biology and related fields.

Keywords: animal monitoring; convolutional neural networks; deep learning; machine learning;
object detection; tracking

1. Introduction

Behavioral studies are critical to understanding the fundamental aspects of animal
ecology [1,2]. The assessment of animal behavior by visual inspection is limited and
subjective and does not allow observations over long periods [3]. The use of computational
tools in behavioral assessments allows accurate and long-term evaluations of animals [2,4].
For instance, automatic tracking systems obtain the animal’s position in each frame of a
digital video and record the Cartesian or polar coordinates of the movement [5].

From animals’ coordinates over time is possible to calculate important kinematic
measurements (e.g., the animal walked distance and meandering). Furthermore, evaluating
complex behaviors (measurements based on characteristics extracted from specific animal
behaviors) can provide relevant insights into animal biology. For example, the evaluation
of complex behaviors among social insects, such as changes in trophallaxis (the complex
social behavior of food exchange among nestmates), is important for understanding their
response to stress agents such as pesticides [6,7].

Sensors 2021, 21, 3237. https:/ /doi.org/10.3390/521093237 https: / /www.mdpi.com/journal /sensors
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Robust systems are needed for animal monitoring in heterogeneous environments (i.e.,
complex environmental landscapes such as in the field or multi-scenes with variation in
color, luminosity, texture, and different objects) [2]. The greatest challenge in heterogeneous
environments involves extracting target objects from the background (segmentation) [8].
Background subtraction or thresholding are well-established in digital image processing
for object segmentation [5]. However, these approaches require video recordings of homo-
geneous environments (i.e., with similar pixel values or slight variation in color, luminosity,
and texture) and are not applicable in heterogeneous environments.

Using artificial intelligence (Al) technics such as machine and deep learning can be
sufficiently robust for animal behavior assessments in heterogeneous environments [9].
Convolutional neural networks (CNNs) are deep learning models widely used in computer
vision [10]. These models are organized into layers composed of several neurons and
convolutional kernels/filters with learnable weights. The CNNs comprise two basic
parts: a convolutional base and a densely connected classifier. In the convolutional base,
operations (convolutions) decompose the input in abstract and useful information (feature
extraction) for classification in dense layers. Thus, the convolutional base’s function is
finding appropriate representations (feature map) for the classification in the dense layers,
where the feature map undergoes successive nonlinear operations to obtain the predictions.
The learning process of neural networks consists of updating the network parameters in
the opposite direction of the cost function gradient, reducing the loss, until finding optimal
parameters that result in a minimal loss (i.e., minimal difference between the expected
value and the predicted value) [10].

Given the potential application of Al and the demand for studying animal behavior in
natural conditions [2], we developed the open-source desktop software Ethoflow. In the
software algorithm, (i) we used unsupervised machine learning to provides an optimal
identity assignment and maintain the identity among individuals in animal group tracking.
Using deep learning, (ii) we implemented instance segmentation for animal monitoring
in heterogeneous environments. Moreover, (iii) deep learning was applied to recognize
animal complex behaviors. Besides, (iv) we performed bioassays with two species of
eusocial bees to validate Ethoflow. Finally, (v) we evaluated parameters associated with
Ethoflow’s performance. Thus, the proposed software:

e  hasa graphical user interface (GUI) and has already been successfully applied in other
studies [11,12];

performs animal tracking in homogeneous or heterogeneous environments;

can maintain the identity among individuals in animal group tracking;

evaluates various kinematic variables (e.g., mean speed, tuming angle, and group interaction);
supports complex behavior assessment (e.g., mating, grooming, and trophallaxis).

A brief overview of recent tools involving tracking methods and Al techniques for
animal behavioral assessments is presented in Section 2. The methods and results of the
Ethoflow algorithm, applications in different setups and bioassays, and performance in
processing speed and accuracy are described in Sections 3 and 4. Finally, the discussion
and conclusions are presented in Sections 5 and 6, respectively.

2. Related Work

The tracking software Tracktor uses unsupervised machine learning to track animal
groups maintaining individuals’ identities [13]. This software exhibited advantages in pro-
cessing speed and robustness compared to the software IdTracker [14] and the ToxTrac [15].
Some other tracking software exhibit outstanding performance using deep learning al-
gorithms [16], including the idtracker.ai [17] and the TRex [18]. These two software also
apply CNNSs to track many animals simultaneously with high accuracy in maintaining
individuals’ identities.

In addition to tracking software, there are also tools for measuring the geometrical
configuration of body parts denoted as pose estimation [16]. Deep learning approaches
have also led to notable improvements in pose estimation software (e.g., DeepPoseKit,
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DeepLabCut, and LEAP) [19-21]. For instance, the DeepLabCut uses transfer learning
with a pre-trained network in large datasets (e.g., ImageNet). This approach can improve
performance and reduce the number of required training examples [19]. However, it may
come with the cost of slow inference due to excessive parameterization in large networks.
The LEAP framework uses a relatively simple 15 layers CNN to limit model complexity and
maximize inference speed [20]. However, the LEAP achieved limited accuracy compared
to the DeepPoseKit and DeepLabCut [21]. To improve the speed-accuracy tradeoff in
DeepLabCut and LEAP, the DeepPoseKit toolkit was developed using Stacked DenseNet,
a deep learning architecture that provides fast and accurate detection even at low spatial
resolutions [21].

The unfolding of behavioral assessments in tools without graphical user interface
(GUI) (e.g., Tracktor) [13] requires familiarity with programming, which can limit the
general public use. In this context, the Ethoflow software looks user-friendly due to the
GUI. The available tracking software measure large collectively animal groups with high
accuracy, especially those using deep learning. However, these tracking software operate
by background subtraction or thresholding [13-15,17,18]. These approaches require video
recordings of homogeneous environments and are not applicable in the field. In Ethoflow,
we implemented thresholding by Otsu’s method [22] (Section 3.1.3) to handle assessments
in a homogeneous environment. In addition, we also implemented instance segmentation
by Mask R-CNN [9] for evaluation in heterogeneous environments (Section 3.1.4).

With pose estimation toolkits, variables can be measured to predict complex animal
behavior after some posterior machine learning analysis [23]. Although our goal with the
Ethoflow software is tracking analysis, Ethoflow also directly measures complex behaviors.
After hyperparameter optimization, we defined a parsimonious CNN architecture to assess
complex binary behavior (Section 3.1.8). Deep learning software is computationally costly
and requires graphics processing unit (GPU) hardware. Accordingly, they are not feasible
to use on an ordinary computer. An interesting feature in our proposal is that the deep
learning algorithms (used for analysis in a heterogeneous environment and measurement of
complex behaviors) are separate from the other modules in Ethoflow. Wherefore, Ethoflow
covers kinematic measurements on an ordinary computer and assesses more complex
behavior with a GPU.

3. Materials and Methods
3.1. Software Features and Algorithm

The Ethoflow software was developed in modality desktop application with Python
language, including the image library OpenCV [24] and the framework TensorFlow [25]
with Keras for AI models. Other libraries, such as SciPy [26], Numpy [27], Pandas [28], and
SciKit Learn [29], were also used. We recommended Python version 3.6.8 and Microsoft
Windows 10 when running the Ethoflow. The main input and output files, formats, descrip-
tions, and quick examples of using these Ethoflow files are described in Supplementary
materials (Table 51). The following subsections will provide further details on the Ethoflow
algorithm steps (Figure 1).

3.1.1. Input Video

Multi-threaded processing was implemented in the algorithm. In this procedure, the
video is read in a thread independent of the processing thread, and the frames are stored
in a stack (Figure 1; step 1.1; Appendix A). This avoids the delay between frame reading
and other processing steps of the algorithm, whereby frames are always available to obtain
better rates in frames per second (fps).

3.1.2. Preprocessing

In preprocessing (Figure 1; step 1.2), the video is processed to eliminate the regions
that are not of interest to the user and transformed into a virtual primary color system (color
space XYZ). In this color space, the chromaticity (XZ) and luminance (Y) are coded sepa-



Sensors 2021, 21, 3237

19

40f23

rately, resulting in a more uniform response to the luminosity variation. Then, grayscale
transformation and normalization are applied to increase homogeneity between the frames.
Smoothing is also applied through a transformation based on the median of neighborhood
pixels to eliminate noise.

- L J <
Input video | 1.1

Object detection | 1.3

Heterogeneous
environments?

€5 |
Y v

Instance segmentation ‘ 14

v

v
‘ Position and identity ‘ 1.6

1
[ Kinemalic variables ‘ 1.7

1o, Complex behavior?

yes

‘ Complex behavior model ‘ 1.8
v

- Export data
Output {- Accuracy

Figure 1. Flowchart of the Ethoflow algorithm. The numbers on the right side of the rectangles
indicate the steps in the algorithm process. These steps are described in the subsequent sections from
Sections 3.1.1-3.1.9. Diamond symbols indicate the option of using the deep learning algorithms (for
analysis in a heterogeneous environment or measurement of complex behaviors) according to the
need. Thus, the Ethoflow performs kinematic measurements on an ordinary computer and assesses
more complex behavior with a graphics processing unit hardware.

—

9

3.1.3. Object Detection

After preprocessing, manual and automatic image thresholds are applied to detect
individuals (Figure 1; step 1.3). In manual thresholding, the classification of pixel (x, y) is
performed according to a global threshold defined by the user (g):

. lif(x, )>
fxy) ‘{ 0if(xy) <3 } @

One of the automatic thresholding options is based on Otsu’s method [22], wherein
the optimal threshold minimizes the within-class variance. This algorithm attempts to find
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a threshold value (k) that minimizes the within-class variances cy and ¢; (background and
objects, respectively). If the set of gray levels of an image L = {1, 2, - ,} and the total
number of pixels N = {ny,ny, - - ,n;}, then the probability of occurrence of a gray level

(p:) is given by
pi= @

As the method is based on the normalized histogram,

1=

pi=1 3
i=1

Thus, the probability of occurrence (w;), means (;), and variances (o;) of each class,
are given by

k L
wo=) piandwi= ) p; @)
i=1 i=k+1

k L :
iy L i%pi g g, = Lickii'* P 5

wy wl

ko g 82 L L N2
R = i (i —po)pi and 02 = Yicka(i— ) Ky ©)
wp wq
The within-class (7, ) and between-class (o) variances are

0% = woog +widf, @)
o = wows (py — po)’. ®)

The total variance is 07 = 02 + 07, and calculating the between-class variance im-
proves the computational time because the variance between classes is based on first-order
statistics (class means) [22].

3.1.4. Instance Segmentation

Instance segmentation (IS) [9] is another type of automatic segmentation available
in Ethoflow for animal behavior assessments in heterogeneous environments (Figure 1;
step 1.4). ResNet-101 [30] was the convolutional base used in this model, following a Mask
R-CNN implementation [31]. In this model, the video frames pass through a convolutional
base for feature extraction, leading to feature map generation. The region proposal network
(RPN) is then applied, which provides several candidate boxes (ROI proposals). As several
ROIs are generated, the model classifies these boxes into foreground proposals (animals)
and backgrounds. ROI pooling is applied to standardize the foreground proposals” size,
slicing each foreground into a fixed number of parts, and max pooling is applied to
standardize the size. Finally, the boxes labeled as real animals are instantiated using a
pixel-wise sigmoid function (Figure 2).

3.1.5. Post-Processing

In post-processing (Figure 1; step 1.5), morphological operations are applied to elimi-
nate residues. First, dilation is used to fill parts that belong to the same individual but are
detected separately. Second, the gradient is calculated and subtracted from the expanded
frame to eliminate undesirable edges. Finally, erosion is applied to eliminate any noise
erroneously detected as individuals.

3.1.6. Position and Identity

In step 1.6 of the algorithm, the animal contours (the pixels contained in the animal
body) are identified. The contours are identified without establishing hierarchies while
retaining only the extreme points of the contour line segments. The contour measurements,
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such as the area, length, and the ratio between the area and length, are calculated to restrict
the contours that are identified based on the user’s inputs.

Detected individuals

s

ROI pooling sigmoid

: (plxcl wise)
- .-.I _).‘ 1

\ Feature map ROlpropnsaIs Foreground

Convolutional base

proposals l'lilﬂﬂ’ ;
(et "g

B [5]
Max_p_oo'm_g :

Figure 2. Diagram depicting the operations involved in instance segmentation used in Ethoflow for
animal behavior assessments in heterogeneous environments. RPN: region proposal network; ROI:
box surrounding the object of interest.

When the number of contours identified is smaller than the number of individuals
specified by the user, the nonhierarchical clustering k-means algorithm is applied to
separate merged individuals. In this unsupervised machine learning algorithm, the number
of groups (k) in which the set of pixels will be grouped is equal to the number of individuals
specified by the user. The initial k centroids are randomly defined among the set of data
points. Then, the next set of centroids are chosen according to the probability of spreading
between the centers [32]. The contour points are compared with each centroid and are
allocated to the group where the Euclidean distance is minimal. Considering the inputs for
the algorithm X = {xl, e x,,} of n data points, this algorithm runs interactively to find a
set C = {cy,..., Ck} that minimizes the function ¢, (C) as follows:

= Yy, )

xeX

where d(x, C)? is the distance from x to the closest center in C. To choose centroids in the
k-means algorithm, the first set of centers Cj are randomly selected from the dataset. Then,
this step is repeated for 2 < 7 < k: ¢; is chosen to be equal to a data point x,, according to
the probability [32]:
d(xg, C)?
¢x(C)
A combinatorial optimization algorithm [33] is applied to maintain the identity of
individuals, which provides the optimal identity assignment among the centroids of animal
contours. This is based on the Euclidean distance between the set of centroids of the objects
in the frame;.1 = {ay,az,...,a,} and the set of centroids in the frame; = {by, by, ..., by}
Considering that each a,, is assigned to only one b, the goal is to minimize the total cost of
assignments about the distance matrix (D) between each a, and by:

(10)

dirpdrz - -dig

dod 2"'d2,
D— 2,142, n ) (11)

\_d,,ld,,z d,, n J
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n n
The mathematical model [33] for the assignments is given as Minimum : ), } d(},
x=1j=1

where d;},- is the cost (Euclidean distance) from centroid a, to centroid b,. There are n!
ways to assign a, to b, and achieve the optimal assignment, interactively, with the follow-
ing steps:

1.  The minimum of each row is subtracted from the entire row.

2. The minimum of each column is subtracted from the entire column.

3. All zeros in the matrix are crossed with the minimum possible lines.

If crossing lines = n, then the optimal assignment is found.

Else:

To determine the smallest entry not crossed by any line,

Subtract this entry from each uncrossed row and add it to each crossed column.
Proceed to step 3.

3.1.7. Kinematic Variables

Among the identified and assigned animal contours, each individual’s centroid (Carte-
sian position) is determined. Based on this Cartesian position x, y of individuals over time
(video frames; f), various kinematic variables are computed in algorithm step 1.7. The
distance that an animal walks during the video is tracked distance (td) (Equation (12)).
Dividing td by the total time of the video, the mean velocity can be calculated. Ethoflow
also calculates the maximum velocity achieved by the animal.

;
fd= 3" \/(xm — %)+ (Y1 — i) (12)
=1

The average angle that the individual rotated in each frame (turning angle; ta) is
computed by the absolute sum of the angles (°) of the movement divided by the video
frames (f) (Equation (13)), while the meandering (the average angle that the individual
rotated during the video; M) is divided by tracked distance (fd) (Equation (14)); the angle
of the movement is the arctangent of the locomotion in planes i (Ay;) and x (Ax;).

Ay
i f arctan (E)lSO
T ; x|l {3
Ay;
1 f arctan (E) 180
7] ; R (14)

The movement of individuals is categorized based on the user-defined values. When
defining the analysis protocol, the user defines the thresholds for low (t!) and high move-
ment (th). Thus, considering the movement of individuals in each frame as mf: mf <tlis
counted as resting (the time associated with no activity of the individual); < mf < th is
counted as mean movement (the time in intermediated activity); mf > th is counted as fast
movement (the time in high activity). The sum of these counts is divided by the frames per
second (fps) used to sample the video to obtain these values in time.

The user also sets a threshold for interaction (ti). The interaction is considered when
the individuals approach a distance < ti. The sum of all interactions of an individual is
defined as centrality. The network density (nd) is a measurement associated with group
interaction (Equation (15)). A network is a set of items in which the vertices are defined as
nodes (1), and the connections among them are defined as edges (i17) [34]. Here, the nodes
are the individuals, and the edges represent the number of interactions among them.

2m

nd= nn—1) (13}
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If the user defines a region of interest (i), Ethoflow computes how long the individuals
stayed inside this region, considering the position (coordinates x, y) of each individual in
the video frames (f):

f.‘

Y (=) €ri. (16)

i=1
Considering the direction unit (1) of the individuals (i), the proportion of the group
polarized (p) at each frame is calculated as

(17)

The angular momentum (rotate; r) for each frame is a cross product (or vector product;
%) between the distance (d) of an individual to the center of mass of the group and the
direction of movement (u):

p— % : (18)

i
EH;‘ X d),
j=1

These parameters provide information on the global structure of the group [35], such
as how much individuals are aligned in a group (polarization; gp), how much the group
displays low directional alignment between neighboring individuals (swarming; gs), and
how much the group moves around its center of mass (milling; gm). The sum of these
counts is divided by the fps to obtain these values in time:

> 0.65and r < 0.35
R (19)
o= VB p<0.3?;2d?’<0.35’ 20)
gm = Y p< 0.3?;?(1 r >0.65} @1

3.1.8. Complex Behavior Model

Ethoflow also measures complex behaviors using a CNN model (step 1.8). Different hy-
perparameter configurations were tested to define the CNN model (Figure 3) (Appendix B).
In this step, the bounding box computed from animal contours passes through the convo-
lutional base (convolutional and max-pooling layers) for feature extraction. The activation
function is applied to the output of each layer to introduce nonlinearity. Then, behavior
classification is performed in the dense layers. When the complex behavior that the user is
evaluating occurs, the network output will be equal to behavior 1; otherwise, behavior 0.
The behavior occurrence sum is divided by the video frames to generate the percentage
of occurrence of the behavior. Thus, we are interested in determining the occurrence of
binary behaviors that are detectable through spatial information.

3.19. Output

In step 1.8, the behavioral parameters are automatically saved in a comma-separated
values (csv) file in the path defined by the user. This file also contains the raw data, the
coordinates (x, ) of movement in each frame. Thus, the user is free to calculate other
kinematic parameters, in addition to those automatically computed by the software. At
the end of the video processing, Ethoflow exhibits the detection rate (dr), which is the
proportion that the individual was detected during the entire video minus false detection.
False detection is considered when an individual has between frames velocity greater than
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the percentile at 95% of group velocity across all frames. Given the instantaneous speed
vector IS = (isy,...,isy) and f frames in the video, dr is defined as:

B £ isi > 2% Pos(1S) (1
dr—l(( . 5 )(?)) (22)

where P.g5 is the percentile at 95% of the IS vector.

124 x 124 x 3 (input) 2 (prediction)
ofe)

3 |
Convolution | | o q

%

Figure 3. Convolutional neural network architecture defined after hyperparameter optimization
(Appendix B) to recognize animal complex behavior on Ethoflow. This model was configured with
stochastic gradient descent (learning rate at 0.0001 and momentum at 0.9) as an optimizer and
binary cross-entropy as a loss function. Batch normalization was applied before max-pooling layers.
Dropout was also applied after dense inner layers. In the inner layers (convolutional or dense), the
function activation was Elu. The dimensions (width x height x depth) of feature map are given in
each layer; the output dimensions of a layer are the same as the input dimensions of the next layer. In
the flatten process, the data are transformed into a vector to enter the dense layers. In the last dense
layer, a sigmoid function is applied, which gives the binary output.

3.2. Applications and Performance
3.2.1. Application in Heterogeneous Environments

The Ethoflow was run on a machine with Intel i7-9750H CPU 2.60 GHz x 12, 8
GB RAM and GPU NVIDIA® GeForce® GTX 1660 (6 GB) Ti Max-Q. To apply Ethoflow
in a heterogeneous environment experiment, we trained the IS model to detect the bee
Melipona quadrifasciata through the 1325 images in various heterogeneous backgrounds
(Figure 4). In addition to these image data, the inputs with bounding box positions, classes,
and masks (pixel-wise positions of the animals) are required to train the IS model [9]. The
manual generation of these inputs is a laborious task. Then, we developed a heuristic to
automatically generate these inputs based on several random backgrounds and a video in
homogeneous conditions to detect objects using manual segmentation or Otsu’s method.
Frames are randomly sampled in the video and pass through the algorithm’s preprocessing
and object detection stages (Figure 5A). Then, the animals are “copied,” and the contours
are “pasted” into random backgrounds (Figure 5B). Concomitantly, the bounding box,
class, and mask of each animals are saved in a dictionary with the following structure:
Dictionary {image;: {object;: {box: {center: {x,y}, width, height}; class:{target}; mask:{all
points (x,y)}}}}.

Of all the data generated with the heuristic, 976 (74%) were used for training, 249
(19%) for validation, and 100 (7%) to evaluate the classification using the average precision
(AP) [36]. To obtain AP, we calculated the intersection over union (loU) of the predicted
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bounding boxes (i.e., the x, iy coordinates in the upper-left corner and width and height of
the rectangular box around the object of interest) and target bounding boxes. Based on the
IoU, the precision (Equation (23)) and recall (Equation (24)) can be calculated using the true
positives (TP), false positives (FP), and false negatives (FN) for the detected objects (DO) in
a determined threshold (x) (Equation (25)).

: TP
precision ~TP+EP (23)
TP
“TP+FN @4
if loU > x, DO=TP
if IToU < x, DO =FP (25)

if the model fails to detect a target object, DO = FN

There is a tradeoff between the precision and recall, wherein the higher the recall,
the more the model tends to find all the target objects, i.e., a low FN value. However, an
increase in the recall tends to decrease the precision, as it increases FP. Considering equally
spaced recall levels n = (0, 0.1,- - -, 1.0), interpolation is performed using the highest
precision value for a given recall. Then, the AP is obtained from the interpolated values of
the precision (Piuerp(7)):

1M
AP = e Z Pinferp (P‘,'). (26)
i=0

Figure 4. Examples of some images that were generated automatically to train the model for tracking
the stingless bee Melipona quadrifasciata in different conditions of a heterogeneous background. The
white arrows indicate some bee contours pasted in the backgrounds.
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Figure 5. Schematic representation of the heuristic used to generate labeled images for the IS model
automatically. The segmented objects (indicated by green masks) on a homogeneous background
(A) are glued to random backgrounds (B).

3.2.2. Application in Complex Behavior

Ethoflow was also applied to learn the detection of trophallaxis, the complex social
behavior of food exchange among nestmates, in M. quadrifasciata. Thus, 1270 labeled images
were generated (724 for non-trophallaxis and 546 for trophallaxis) (Figure 6). In this dataset,
70% of the data was used for training, while 20% was used for validation. Another sample
dataset (10%) was used to assess the classifier’s performance based on the global accuracy
from the confusion matrix, Kappa index, and Z-test (5%)).

Figure 6. Examples of images that were automatically labeled with our heuristic to train the CNN
model to recognize trophallaxis in the stingless bee Melipona quadrifasciata. The images with green
outlines (top) are examples of trophallaxis. The images with dashed purple outlines (bottom) are
examples of non-trophallaxis.



27

Sensors 2021, 21, 3237 12 0f 23

The labeled images used to train the CNN model for recognizing trophallaxis were also
generated through a heuristic automatically. When bees perform trophallaxis, they position
themselves in front of each other and exchange food. Based on this predictable positioning,
the heuristic was based on the individuals” area and body length. Initially, the program
estimates the median (M) and standard deviation (sd) of the body area (a) and length (1)
in frames where there is no crossing (no meeting between individuals). Subsequently, the
software obtains the images (b) from the video and labels them as trophallaxis if:

area(b) = 2 (M(a) — sd(a)) and

area(b) < 2% (M(a) 4 sd(a)) and

length(b) =2+ (M(l) — sd(l)) and
length(b) < 2% (M(1) +sd(1))

, Else : b is not trophallaxis. (27)

3.2.3. Application in Behavioral Bioassays

A behavioral assay was performed with the two stingless bee species. Bees of both
species were collected from four colonies each of M. quadrifasciata and Partamona helleri in
Vigosa, State of Minas Gerais, Brazil (20°45' S and 42°52' W). The collected bees were kept
for 1 h in the laboratory under conditions similar to those found in their colonies (28 °C
and 80% relative humidity in total darkness) [37]. Subsequently, bee behavior was recorded
in the arenas (Petri dish, 9 cm diameter, 2 cm height) for 15 min with a digital video camera
(HDR-XR520V, Sony Corporation) at 30 fps and high definition (1920 x 1080 pixels). Be-
havioral bioassays were performed in a room with artificial fluorescent light at 25 + 3 °C
and 70 £ 5% relative humidity. Bioassays were performed with 37 replicates, with each
replicate corresponding to a group of five bees of each of the two species. The kinematic
variables measured with Ethoflow included centrality, polarization, milling, resting, mean-
dering, and tracked distance. In the centrality response, the interaction was considered
when the individuals approached a distance <1.41 cm. An instantaneous tracked distance
<0.046 cm frame~! was counted as resting. Centrality was the response variable in the
model with interaction between polarization and bee species, or model with interaction
between milling and bee species. Meandering was the response variable in the model with
interaction between resting and bee species. Besides, the tracked distance between the bee
species was compared. These models were fitted with generalized linear models (GLM)
with a gamma distribution, displaying adequate distribution for continuous data in which
the variance increases with the square of the mean [38]. When an explanatory variable had
no significant effect, the model was simplified, and the results were plotted as a function of
the significant variable.

A toxicological bioassay was also performed with M. quadrifasciata to demonstrate
trophallaxis recognition under pesticide stress conditions. The acclimated bees were orally
exposed to the commercial formulation (cf) (water-dispersible granules at 700 g a.i. Kg~!,
Bayer CropScience, Sao Paulo, SP, Brazil) of the neonicotinoid imidacloprid in a sublethal
concentration (0.2 mg cf L~1). This concentration is 300x smaller than that recommended
for controlling the whitefly Bemisia tabaci (60 mg cf L) [39]. The pesticide imidacloprid is
commonly associated with bee decline and causes motor impairments in bees [40]. After
3 h of exposure, the bees were filmed as previously described, and trophallaxis behavior
was quantified using Ethoflow. Trophallaxis response (1 = 60) to the pesticide was assessed
using a GLM with a Poisson distribution, a suitable distribution for count data [38].

3.24. Performance

Using videos with variations in resolution, the number of individuals, animals, and
backgrounds (Supplementary Materials; Figure S1), we evaluated some parameters asso-
ciated with Ethoflow’s performance and also compared it with other tracking software
that has a satisfactory processing rate, based on the processing speed obtained by Srid-
har etal. (2019) [13]. A multiple regression model was applied to assess whether the fps
rate responds to the interaction between the resolution and the number of individuals.
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The effect of centrality and the number of individuals in fps was assessed using a GLM
with a gamma distribution. Analysis of covariance (ANCOVA) was performed to assess
whether the detection rate varied with the interaction between the number of individuals
and background (homogeneous and heterogeneous).

4. Results
4.1. Heterogeneous Environment and Complex Behavior

Ethoflow was efficient in detecting the tested bees with high precision and low false
positives in heterogeneous environments (average precision + standard error = 0.916 £ 0.02;
Figure 7A). In addition, in complex behavior assessment, the CNN model exhibited high
accuracy in the validation process (global accuracy = 92.13%, Kappa index = 0.84, Z = 24.74,
Figure 7B).

4.2. Behavioral Bioassays

The results of the bioassays demonstrated significant differences between behaviors,
bee species, and response to pesticide stress. In both species, the centrality increased
with the polarization of the group (F 1 35 = 25.1, p < 0.0001) and decreased with milling
(F 1,35 =46.2, p < 0.0001) (Figure 8A). Meandering was influenced by the statistical inter-
action between the variables resting and bee species (F 1,33 = 4.71, p = 0.037; Figure 8B).
Moreover, a difference between species was observed in the tracked distance (F 1 35 = 13.6,
p = 0.0008; Figure 8C), and bees exposed to the pesticide exhibited significantly reduced
trophallaxis (x? =94.9, df =58, p <0.0001; Figure 8D).

4.3. Performance

In homogeneous backgrounds, Ethoflow achieved a median rate of 32.5 fps. This rate
is a satisfactory processing speed compared to other tracking software that does not use
Al in their algorithms (e.g., idTracker = 5.5 fps; ToxTrac = 28.6 fps; Tracktor = 25.7 fps)
(Figure 9).

Statistical interaction was observed between the variables video resolution and group
size in fps rate (F 1 130 = 12.81, p = 0.0005, Figure 10A). The heterogeneous environ-
ment quantification was not influenced by the video resolution or number of individuals
(F 1,28 = 0.81, p = 0.37, Figure 10B), and the fps rate in a heterogeneous environment (0.386)
was lower than in homogeneous backgrounds. The fps decreased with an increase in the
centrality of individuals (F 1 ag = 81.24, p < 0.0001, Figure 10C). There was no significant ef-
tect on the number of individuals (F 1, 37 = 0.009, p = 0.93), and no interaction was observed
between the centrality and individuals (F 1 35 =1.62, p = 0.21). Besides, the software exhib-
ited high detection rates with significant interaction between the number of individuals
and type of background (F 1 ¢4 = 137.85, p < 0.0001, Figure 10D), where an increase in the
number of individuals had a greater influence on the heterogeneous environments.
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Figure 7. Performance of the Al models used in Ethoflow. (A) Animals’ detection in heteroge-
neous environments based on instance segmentation (IS). The high average precision (left panel;
n =100) implies that the model precisely detects real animals in the scenes with no false positives, as
demonstrated by (right panel) the detected animals (marked Melipona quadrifasciata bees with masks
in random colors) in different heterogeneous backgrounds. (B) The training process of the CNN
model (top panel) and validation (percentage confusion matrix; bottom left panel) (1 = 127) for the
monitoring of trophallaxis (green circles) in bees (bottom right panel).
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Figure 8. Behavioral assessments conducted using the Ethoflow software. (A) Association between centrality and group
dynamics polarization (top panel) and milling (bottom panel) (n = 37). The 2D density plots and network diagrams showed
that a higher interaction exists among individuals in more polarized bee groups, while this interaction is reduced in the
milling groups. In the networks, the circles represent individuals, and connections correspond to the edges, where their
widths are proportional to the frequency of interactions. (B) Meandering behavior is associated with resting proportions
(left panel) (1 = 37) and histograms of polar coordinates (rays and azimuth angles) for the two bee species (right panel).
(C) The tracked distance of the assessed bee species (1 = 37). In group representative tracks, the track color reflects the
individual identity (right panel). (D) Trophallaxis alteration in Melipona quadrifasciata after pesticide exposure (n = 60).
* p < 0.05 in the generalized linear model.
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Figure 10. Quantification of the performance of Ethoflow. (A) Frames per seconds (fps) response
to the video resolution (in pixels) and the number of individuals in homogeneous backgrounds;
the dots (1 = 134) represent the raw data. (B) Histogram of the fps in heterogeneous environments
(n = 30). The box plot indicates the median and range of dispersion (lower and upper quartiles and
outliers). (C) Fps in response to centrality. The proportion of group interaction per frame was used to
quantify the centrality (n = 40). (D) Accuracy of the software as a function of the interaction between
the number of individuals and type of environment (homogeneous and heterogeneous); the symbols

represent the raw data (circles; n = 98).
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5. Discussion

We developed Ethoflow software using computer vision, machine learning and deep
learning techniques. This program had consistent speed rates and accuracy on processing.
In addition to the possibility to study complex behaviors, Ethoflow allows multivariate
assessment of kinematic behaviors. Multivariate assessment of behavioral traits can bring
important insights into animals” ecological aspects, for instance, in studies of toxicological
assessments and animal behavior [41-43]. Some modern software programs that use deep
learning to evaluate behaviors demand powerful machines with GPU [17,18,44], which
makes the analysis of laboratory routines in ordinary computers difficult. In the Ethoflow
algorithm, the Al processing is separate from the other modules, enabling kinematic
measurements on an ordinary computer and assessing more complex behavior using a
GPU. Wherefore, to perform kinematic measurements in homogeneous environments, an
ordinary computer is sufficient (e.g., a central process unit of the 3.60 GHz) to run Ethoflow.
In complex behavior assessments and heterogeneous environments, a GPU computer is
interesting for optimizing speed-up computational processes.

Unraveling complex behaviors can be limited by software without adequate tools
or software that are complex to set up or does not have a GUI, requiring familiarity
with their tools [13,17,45], limiting their usage in the general public. Thus, there is a
demand in research for powerful software with simplified-interface that, at the same
time, increase the ability to study more complex behaviors. In this context, the Ethoflow
software looks friendly and does not require line commands to be used due to the GUL
Additionally, Ethoflow does not require a great familiarity with computational tools and
has multidisciplinary applications.

During the processing in homogeneous backgrounds, the effects of resolution and
number of individuals in the fps demonstrated that the frame reading step (higher resolu-
tion, higher reading time) and calculating identities (more individuals, more combinations)
could decrease the processing speed. Nonetheless, the implementation of multi-threaded
reading [46] in Ethoflow solves these problems. This type of reading avoids the delay be-
tween calculating the identity and reading the frames, whereby there will always be frames
available in the queue for immediate calculation of the identity. This procedure possibility
satisfactory fps rates compared to other software available for the same purpose [13-15].
The identity calculation algorithm step occurs when at least two individuals interact. Thus,
fps showed a negative correlation with centrality because the greater the interaction, the
greater the identity calculations. The number of individuals (mainly in groups > 3) had no
binding effect on the fps, probably, because the amount of interaction between individuals
depends on the density of the group (i.e., number of individuals per space) and not only
on the size (i.e., the number of individuals) [35].

In heterogeneous environments, there is no influence of the video resolution or num-
ber of individuals on the processing, and the fps rate is lower than in homogeneous
backgrounds. This shows that the main bottleneck in processing occurs in the detection
of animals by Ethoflow through the instance segmentation model. With instance seg-
mentation, real-time processing (~30 fps) has not been achieved; processing around 5 fps
was reported using a robust GPU [9]. Even though it is not possible to achieve real-time
processing with instance segmentation, this functionality in the Ethoflow imposes great
advantages given the various possibilities of analysis in heterogeneous environments.
Furthermore, video acquisition by Ethoflow is independent of processing, which enables
real-time video records.

The reliable detection rates obtained with Ethoflow demonstrated that this software
is sufficiently robust for applications in different assays. Moreover, using the heuristic to
generate training data automatically made it possible to obtain a high average precision
model. Such in heterogeneous environments, there was a more pronounced decrease in the
detection rate of objects; therefore, increasing the amount of data for training can improve
the detection [47]. With the use of our heuristic, increasing the amount of data does not
take much time from the user, but it could increase the time of computational training and
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inference. Another alternative would be to increase the quality of the data with images
annotated manually. One tool that can be used to label images manually is VGG Image
Annotator (VIA) [48].

6. Conclusions

This study provides information about the development of e-applications of computer
vision and the artificial intelligence-based software Ethoflow. This software is suitable
for multivariate kinematic evaluations, behavioral assessments in heterogeneous envi-
ronments, tracking individuals in groups maintaining their identities, and can be trained
to learn complex behaviors. Ethoflow was applied to biological assessments and was
efficient to detect significant differences between different bee species and pesticide stress.
Some possibilities of data analysis and representation were demonstrated with Ethoflow’s
output. The deep learning models were implemented to expand the possibilities of animal
behavior analyses to other fields, including the behavioral monitoring of domestic animals
in precision livestock farming. According to demand, Ethoflow will be constantly updated
for future improvements and new functions, such as tracking three dimensions. Therefore,
Ethoflow is a helpful support tool for technical and scientific applications in biology and
related fields.

7. Patents

This software is registered with the Brazilian National Institute of Intellectual Property
(INPI, Ministério da Economia, Brazil, reg. no. BR 51 2020 000737-6).
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Appendix A

The video is read by a thread that is independent of the processing thread, and the
frames are stored in a stack (queue). This queue is a linear data structure that stores items
in a “FIFO” (First In, First Out) manner (Figure Al). Frames are exchanged between the
reading and processing threads. This increases the processing speed, as frames are always
present in the queue and ready for processing, and no time is spent waiting for the next
frame to be read.
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Figure Al. Representation of the processing steps in the multi-threading feature of Ethoflow.

Appendix B

Different hyperparameters were tested to find a suitable convolutional neural network
(CNN) model. This model was trained to recognize trophallaxis in the stingless bees,
Melipona quadrifasciata, and can be used to recognize many binary behaviors. Using the
validation accuracy of such a variable response, the interaction between the dropout and
the activation function of the network output was evaluated (Figure A2A). Dropout is
a regularization technique that randomly zeros out the input units of a layer, breaking
fixed patterns to avoid overfitting [49]. Here, a better response was obtained, deactivating
neurons with a probability of 0.2 (dropout = 0.2) (Figure A2A). The higher rates, despite
reducing overfitting, decreased the accuracy. The activation function of the network output
that presented the best response was the sigmoid function (Equation (A1)) (Figure A2A).
This function binarizes the network output (0 or 1). As it involves a binary behavior
classification, the sigmoid function is expected to generate better output.

{ flx)= #, where x is the output from the previously hidden layer}. (A1)

The activation function of the inner layers and the optimization method were also
evaluated. The best result was obtained with the exponential linear unit (Elu) function,
along with mini-batch stochastic gradient descent (mini-batch SGD) as the optimizer
(Figure A2B). The Elu function (Equation (A2)) is an identity function for positive values,
and it tends smoothly to —a for negative values. This function saturates for very small
(extremely negative) values, resulting in the activation average being close to zero. Thus,
ELUs tend to normalize the layer’s output, accelerate learning, and increase accuracy [50].

x,ifx>0

f(x):(m(ex—n,:‘fxgo)' 22

In the mini-batch SGD, the term stochastic refers to a random sampling of batches in
the data. Based on the loss value, the optimizer plays the role of updating the network’s
trainable parameters (weights). This is executed by calculating the loss gradient concerning
the parameters (current weights) of the network. Mathematically, this process is performed
by deriving the cost function and finding the gradient of the current weights. Then, the
weights are updated in the gradient’s opposite direction, reducing the loss slightly with
each batch. Since the classification is binary (the output from the network is a probability),
binary cross-entropy (Equation (A3)) was used as the cost function. Cross-entropy is a
measure of the distance between the expected result y and the predictions p(y).

Hp(q) = _71 _:Z]_iyx *log(p(yi)) + (1 —yi) xlog(1 — p(vi)), (A3)

where # is the number of network outputs.
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As an increase in the learning rate tended to decrease the accuracy (Figure A2C), the
lowest rate tested (0.0005) was maintained. The learning rate determines the magnitude of
gradient descent. At high learning rates, network updates can result in great randomness.

The network interacts with the data in mini-batches, i.e., it does not process an entire
dataset simultaneously; rather, the data is divided into small batches. Although this
hyperparameter is important in CNN models [51], it does not play an important role in our
model (Figure A2D). Therefore, one of the smallest values (batch size = 5) was selected to
accelerate the network’s training time.
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Figure A2. Hyperparameter optimization of the CNN model used in Ethoflow. (A) Compilation of
the validation accuracy in response to the dropout and the activation function of the network output.
(B) Validation accuracy in response to the optimizer and activation function of the inner layers. (A,B)
The bars represent the mean + standard error. The values at the base of each bar represent the
number of times a given configuration was tested. Scatterplot of the accuracy as a function of the (C)
learning rate and (D) batch size. The translucent band around the line of regression represents the
confidence interval (n = 432).

In many statistical models, the normalization of variables is important (e.g., to avoid
the predominance of some variables due to different scales). To this end, batch normaliza-
tion layers were used in the CNN model. This layer can adaptively normalize the data as
the mean and variance change during training [52].

Using the hyperparameters defined above, the network’s size (number of layers) was
also evaluated, and better accuracy was obtained with smaller architectures (Table Al).
While more layers (a higher-dimensional representation space) allow the network to learn
more complex representations, this increases the network’s computational cost; accordingly,
model L7 was employed.
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Table Al. Different architectures tested to ascertain the ideal number of layers in the CNN model

(n =28).
Number of Layers
Validation Accuracy (Mean + sd) Convolutional Dense Model

0.63 4+ 0.028 5 4 L1
78 4+ 0.036 5 3 L2
0.83 4+ 0.042 5 2 L3
0.81 4+ 0.063 4 4 L4
0.8 £0.121 4 2 L5
0.8 & 0.020 3 4 L6
0.91 + 0.031 3 3 L7

Data augmentation is a powerful technique for mitigating overfitting. Using the
defined architecture (model L7 in Table A1), different data augmentation configurations
were tested (Table A2). Excessive data augmentation reduces the accuracy, while sets with
little augmentation increase overfitting. Thus, set 3 was deemed the best option to address
the problem of overfitting.

Table A2. Sets tested for data augmentation. In all the tests, the horizontal flip and fill mode = the
“nearest” was used. Model L7 in Table A1 was used for these tests.

Parameters Setl Set2 Set3 Setd
Rotation range 20 16 14 11
Width shift range 0.1 0.08 0.06 0.01
Height shift range 0.1 0.08 0.06 0.01
Shear range 0.05 0.02 0.01 0.008
Zoom range 0.1 0.08 0.06 0.01
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Abstract!

Machine learning (ML) is a branch of artificial intelligence (AI) that enables the analysis of
complex multivariate data. ML has significant potential in risk assessments of non-target insects
for modeling the multiple factors affecting insect health, including the adverse effects of
agrochemicals. Here, the potential of ML for risk assessments of glyphosate (herbicide;
formulation) and imidacloprid (insecticide, neonicotinoid; formulation) on the stingless bee
Melipona quadrifasciata was explored. The collective behavior of forager bees was analyzed
after in vitro exposure to agrochemicals. ML algorithms were applied to identify the
agrochemicals that the bees have been exposed to based on multivariate behavioral features.
Changes in the in situ detection of different proteins in the midgut were also studied.
Imidacloprid exposure leads to the greatest changes in behavior. The ML algorithms achieved
a higher accuracy (up to 91%) in identifying agrochemical contamination. The two
agrochemicals altered the detection of cells positive for different proteins, which can be
detrimental to midgut physiology. This study provides a holistic assessment of the sublethal
effects of glyphosate and imidacloprid on a key pollinator. The procedures used here can be

applied in future studies to monitor and predict multiple environmental factors affecting insect

health in the field.

Keywords: Artificial intelligence, Ecotoxicology, Modelling, Physiological response,

Pollinators, Risk assessment

! List of abbreviations: ML, machine learning; Al, artificial intelligence; ERK1/2, extracellular signal-regulated
kinase; JNK, c-Jun NH2-terminal kinase; MAPK, mitogen-activated protein kinase; cf, commercial formulation;
GLM, generalized linear model; ANOVA, analysis of variance; RFE, recursive feature elimination; RF, random
forest; LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; KNN, k-nearest neighbors; NB,
naive Bayes; SVM, support vector machine; GB, gradient boosting; MLP, multilayer perceptron; PCA, principal
component analysis; PERMANOVA, permutational multivariate analysis of variance; AChE, acetylcholinesterase
enzyme; ACh, acetylcholine.
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1. Introduction

Artificial intelligence (AI) based approaches are used to find and predict answers from
different unknowns in nature with high efficiency and precision in cause-effect relationships
(Ghahramani, 2015). Machine learning (ML) is a branch of Al that learns complex structures
(linear or non-linear) in multivariate data without the assumption of a statistical distribution
(Crisci et al., 2012). Once trained, ML algorithms can accurately predict new independent
datasets. Al-based tools also enable accurate automatic behavioral measurements in insects
(Bernardes et al., 2021; Graving et al., 2019). Recent studies have shown the use of these tools
for toxicological assessment in bees, such as the use of ML to characterize the foraging activity
of bees in the field (Gomes et al., 2020) and to measure the effect of exposure to insecticides
(neonicotinoids) on the behavior of honey bees within colonies (Siefert et al., 2020). Therefore,
ML approaches can also be applied to predict exposure to different agrochemicals in bees
through automatically measured behavioral features.

The risk assessment in bees has focused on the possible causes of their colony losses
worldwide, which has been attributed to different factors, such as climate change, loss of
habitat, pathogens, parasites, and agricultural practices with increased agrochemical usage
(Cham et al., 2018; Freitas et al., 2009). The harmful effects of agrochemicals on bees include
adverse sublethal impacts on behavior and gut physiology and morphology, such as damage to
the midgut cells, which can impair the survival, nutrient absorption, and long-term success of
bee colonies (Araujo et al., 2021; Farder-Gomes et al., 2021; Johnson, 2015; Lima et al., 2016;
Sgolastra et al., 2019).

Oral exposure to agrochemicals can change the detection pattern of proteins related to
cell signaling pathways in the midgut of the stingless bee Partamona helleri (Araujo et al.,
2021; Farder-Gomes et al., 2021), including variations in extracellular signal-regulated kinase
(ERK1/2) and c-Jun NH2-terminal kinase (JNK) proteins, which belong to the mitogen-
activated protein kinase (MAPK) family. This protein family is involved in modulating
proliferation, differentiation, and programmed cell death in response to a wide range of stimuli,
including oxidative stress (Biteau and Jasper, 2011; Kockel et al., 2001; Simon et al., 2009).
Similarly, the Notch protein with the homeodomain transcription factor Prospero and Wingless
(Wg) protein and the crucial mediator Armadillo protein are involved in vital processes of

proliferation, differentiation, and death in the insect midgut (Guruharsha et al., 2012; Liu et al.,
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2010; Swarup and Verheyen, 2012; Tian et al., 2018). Nonetheless, these proteins related to
cell signaling pathways have been poorly studied in bees.

Glyphosate is a systemic herbicide used to prevent weed growth (Brookes et al., 2017).
This herbicide acts on the cycle of shikimic acid, inhibiting the biosynthesis of essential
aromatic amino acids (e.g., tyrosine, phenylalanine, and tryptophan) for plant growth and
microorganisms (Dill et al., 2010; Herrmann and Weaver, 1999; Maeda and Dudareva, 2012).
Although this biochemical pathway is not found in animals, the detrimental effects of
glyphosate on vertebrates and invertebrates, including bees, have already been reported (Battisti
et al., 2021; Helmer et al., 2015; Luo et al., 2021; Straw et al., 2021; Tomé¢ et al., 2020). The
potentially harmful effects of glyphosate on honey bees include impaired foraging behavior and
cognitive ability (Balbuena et al., 2015; Herbert et al., 2014; Luo et al., 2021).

Neonicotinoid imidacloprid, an agonist of nicotinic acetylcholine receptors (nAChR), is
one of the most widely used agrochemicals for pest control in crops (Liu et al., 2006), and acts
on the central nervous system of insects on cholinergic synaptic transmissions, causing
alterations in sensory and motor systems (Matsuda et al., 2001). In addition to causing high
mortality, bees treated with imidacloprid showed disturbances in behavior, development of
mushroom bodies, and learning (Brito et al., 2020; Carrillo et al., 2013; Jacob et al., 2019; Tomé
etal., 2012). In 2013, the European Commission adopted certain strategies to maintain healthy
bee colonies and restrict the use of three neonicotinoids, including imidacloprid, in crops in
open fields owing to high toxicity in bees according to the guidelines on a risk assessment of
plant protection products on bees (EFSA, 2013).

Stingless bees (Hymenoptera, Apidae, Meliponini) are important pollinators and are
more sensitive to agrochemical exposure than honey bees (Arena and Sgolastra, 2014; Cham et
al., 2018; Tomé et al., 2017) owing to peculiar characteristics, such as small colony size, longer
development time, and mass provisioning of the larval diet (Boyle et al., 2018; Lima et al.,
2016). Among stingless bees, the genus Melipona stands out because it represents the largest
group of eusocial bees, including many species of economic importance, which can compete
with the exotic and Africanized honey bees for pollination sites (Pires et al., 2018; Ramirez et
al., 2018; Slaa et al., 2006). Furthermore, in recent years, some species of Melipona have been
endangered in Brazil, which has led to the creation of risk assessment programs by government
agencies that help preserve these species owing to their important role in ecosystem services

(ICMBio, 2018; Pires et al., 2018).
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In this study, the potential of applying ML for agrochemical risk assessment was
explored in stingless bees. ML algorithms have been proposed to predict agrochemical effects
in bees based on multivariate behavioral features. Our study included the treatment of the
stingless bee Melipona quadrifasciata to glyphosate (herbicide, formulation) and imidacloprid
(insecticide, formulation) using an established protocol for the exposure of caged bees (Botina
et al., 2020). The collective behavior of bees treated with these two agrochemicals using Al-
based software for an automatic behavior analysis was assessed. Then, feature selection and
optimization of the hyper-parameters were conducted to improve the predictive performance of
several ML algorithms. In addition, different metrics associated with the predictive
performance were evaluated, and the decision boundaries of the trained ML algorithms were
checked. In addition, the physiological response to agrochemicals was evaluated through the in
situ detection of different proteins that play a role in the immune response (i.e., ERK1/2 and
JNK), and in the cell proliferation and differentiation (i.e., Nocht, Prospero, Wg, and Armadillo)
in the midgut of bees. To the best our knowledge, this is the first effort to predict the
contamination of a stingless bee by agrochemicals using ML approaches based on multivariate

behavioral features and an assessment of cellular protein responses related to gut physiology.

2. Materials and methods
2.1. Exposure bioassay

The herbicide glyphosate (commercial formulation (cf); Roundup Original DI®,
Monsanto do Brasil Ltd., Sao Jos¢ dos Campos, SP, Brazil) was used at the concentration of 20
uL cf mL! (20,000 ppm), based on the recommendation applied for managing different weeds
in crops (MAPA, 2021). The insecticide imidacloprid (cf; Evidence®, Bayer CropScience, Sdo
Paulo, SP, Brazil) was used at the concentration of 2 pg cf mL™' (2000 ppm). Because
imidacloprid 1s highly toxic to bees, a concentration 300-times less than recommended for
controlling the whitefly Bemisia tabaci (MAPA, 2021) was used, based on the sublethal
concentration previously reported for M. quadrifasciata (Tomé et al., 2015b). The
agrochemicals were diluted in a honey solution (50% distilled water, 50% honey) to prepare
the contaminated diets (i.e., honey solution + agrochemical) at the concentrations mentioned
above. An uncontaminated diet (i.e., a honey solution without agrochemicals) was offered to

the control.
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Foragers of M. quadrifasciata were collected from six unrelated colonies (SISBIO, ID
46746-1, Chico Mendes Institute for Biodiversity Conservation) and maintained at the
Experimental Apiary at UFV (Minas Gerais, Brazil; 20° 45' S and 42° 52' W). The foragers
were collected at the hive entrance using glass jars, transferred to plastic pots kept in an
incubator, and fasted under conditions similar to those found in their colonies (28 °C and 80%
relative humidity in total darkness) for 1 h before exposure (Botina et al., 2020). The bees were
approximately 20-30 days old when workers conducted the foraging activities (Giannini, 1997;
Kerr and dos Santos Neto, 1956). Bees from different colonies were not mixed, that is, bees
from the same colony were kept in the same pot. The bees had access to contaminated diets for
3 h ad libitum. The exposure occurred orally through feeders (2 mL microcentrifuge tubes)
inserted laterally in holes in the walls of the cages (500 mL plastic pots), where 13 bees were
kept per cage. After the exposure period, the contaminated diets were replaced with feeders
with a non-contaminated diet (i.e., honey in water). In the control group, the non-contaminated
diet was replaced with a new diet (Botina et al., 2020). The mortality of the bees was checked
24 h after the exposure period, and bees were counted as dead if they were unable to move or
stand upright. A total of 468 bees were exposed, considering all treatments (13 bees per cage x
2 cages x 3 treatments X 6 hives).

To assess the mortality, a generalized linear model (GLM) was fitted with a binomial
error distribution, considering the treatment with agrochemicals as the explanatory variable and
the proportion of bees that died as the response variable. The differences among levels of the
explanatory variable (agrochemical treatments) were determined by gradual simplification of
the GLM (p < 0.05) (Crawley, 2012). These analyses were conducted in R software using the
stats package (R Core Team, 2020).

2.2. Collective behavior analysis

The collective behavior of bees was assessed immediately after exposure (at 0 h) and 24
h after exposure. Different bees were used at 0 and 24 h after exposure to avoid temporal
pseudo-replication and increase the robustness of the predictive capacity of the ML algorithms
(Hendriksma et al., 2011). The bees were recorded within an arena (Petri dish, 15 cm diameter,
2 cm height) for 15 min with a digital video camera (HDR-XR520V, Sony Corporation) at 30
fps and high definition (pixel resolution of 1920 x 1080). A microcentrifuge tube cap with

honey solution was added to each arena to feed the bees during the recording period.. The
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recordings were conducted in a room at 25 + 3 °C and 70 £ 5% relative humidity with three red
LED lights (6 W) placed 50 cm above the arena to avoid phototactic influence on behavior
monitoring. A group of six bees from the same hive was filmed in each arena. The average
response of the group was considered a replicate to avoid pseudo-replication owing to the non-
independence of errors among individuals from the same hive (Hendriksma et al., 2011). A
total of 72 replicates (2 arenas X 6 hives x 3 treatments x 2 times), totaling 432 sampled bees
(6 bees x 72 replicates) were considered.

The videos were analyzed using Ethoflow® software, an Al-based software for
automatic behavior analysis (Bernardes et al., 2021) (Supplementary videos). With this tool,
the multivariate behavioral data containing the following 17 features were extracted: tracked
distance (centimeter), max speed (centimeter per second), turn angle (degree, the average angle
that the individual rotated in each video frame), meandering (degree, the average angle that the
individual rotated during the video), number of stops, number of mean movements (count
associated with intermediated activity), number of fast movements, resting, mean movement
(proportion of time the insects stayed during intermediated activity, tracked distance of > 0.046
and < 0.53 cm frame™!), fast movement, degree (all interactions of an individual with others of
the group), network density (the proportion of interaction in the insect group), feeding,
polarization (the proportion of individuals aligned in a group), milling (the proportion of
individuals in rotation about the center of mass), swarm (the proportion of individuals having
disordered movements), and transition (the proportion of individuals not among the states of
polarization, milling, or swarming). A detailed description of these features is provided in
Appendix A.

Behavioral features were extracted as difference of the mean of each feature separately
divided by the standard deviation to obtain a standard range (a distribution with mean = 0 and
standard deviation = 1) to avoid the effect of a scale that may generate predominance of a
specific feature (Singh and Singh, 2020). Behavioral data were univariately analyzed through
an analysis of variance (ANOVA) and a Tukey post hoc test for multiple comparisons among

agrochemical treatments using R software with the stats package (R Core Team, 2020).

2.3. Machine learning (ML) approaches

2.3.1. Feature selection
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A recursive feature elimination (RFE) was applied to select a subset of the most relevant
behavioral features. During this procedure, an ML algorithm starts with all dataset features to
calculate the importance of each feature. The least important features were then pruned from
the current dataset. This step is recursively repeated until the desired number of features to be
selected is reached (Guyon et al., 2002). RFE was used along with ML algorithms, i.e., random
forest (RF), support vector machine (SVM) with a linear kernel, and a linear discriminant
analysis (LDA). The most relevant features were ranked and selected based on the average

accuracy obtained from the three algorithms with a three-fold cross-validation.

2.3.2. Hyper-parameter optimization

Hyperparameters are not directly learned by the model and must be configured in some
ML algorithms (Bergstra and Bengio, 2012). Therefore, to find a set of hyper-parameters that
improve the performance of the algorithms, hyperparameter optimization was conducted
through a grid search. This procedure consists of an exhaustive search over a specified
hyperparameter space to evaluate the performance of the ML algorithms (Bergstra and Bengio,
2012). Thus, we set up the RF, quadratic discriminant analysis (QDA), LDA, k-nearest
neighbors (KNN), Gaussian naive Bayes (NB), support vector machine (SVM), gradient
boosting (GB), and multilayer perceptron (MLP) algorithms repeatedly three times and used a

three-fold cross-validation with data randomization for each algorithm.

2.3.2. Algorithm performance

To train the ML algorithms defined after hyper-parameter optimization (RF, QDA,
LDA, KNN, NB, SVM, GB, and MLP), we used 70% of the dataset with the most relevant
features selected (Section 2.3.1). The predictive performance of the trained algorithms was then
evaluated with the other 30% of the dataset for an independent validation. Thus, confusion
matrices were constructed to calculate the predictive performance metrics, that is, the accuracy,

kappa, weighted precision, weighted recall, and F1 score, according to the following formulas:

k

accuracy = %, (1)
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where k is the number of classes, x;; indicates the observations classified within the correct
population (diagonal of the confusion matrix), N is the sample size, N; is the sample size of the
given class i, x;g 1s the marginal total of the confusion matrix line 7, and xg; is the marginal

total of the confusion matrix column ;.

Based on the values of kappa (K) and kappa variance (07), z-tests were carried out to
indicate whether the prediction was different from random (Z,) and for a statistical comparison

between the ML algorithms (Z}) at a significance level of 5%.
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where a and b are the ML algorithms under analysis.

Principal component analysis (PCA) was carried out to reduce the data to two
dimensions (PC1 and PC2) and examine the decision boundaries of the trained ML algorithms
in terms of the PCA scores. Python language (version 3.6.8) was used in the analyses and

development of the ML approaches, including Numpy (Harris et al., 2020), Pandas (McKinney,
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2010), and SciKit-learn (Pedregosa et al., 2011). All analyses were carried out on a machine
with the following features: Intel i7-9750H CPU @ 2.60 GHz x 12, 8 GB RAM, and an
NVIDIA® GeForce® GTX 1660 (6 GB) Ti Max-Q GPU.

2.4. Physiological bioassay

The physiological responses to agrochemical exposures were assessed using
immunofluorescence to detect proteins (in situ) related to proliferation, differentiation, and
death in the midgut. After 24 h of exposure to agrochemicals, the bees were dissected in a saline
solution (0.1 M NaCl, 20 mM KH>POs4, and 20 mM Na;HPO4). The guts were transferred to
Zamboni’s fixative (2% paraformaldehyde containing 15% picric acid in a 0.1 M sodium
phosphate buffer) for 1 h at = 25°C. Then, the guts were washed three times with sterile
phosphate-buffered saline (PBS; 0.1M, pH 7.2) and incubated at 0.1 M PBS/1% Triton X-100
(PBST) for 2 h, followed by incubation for 24 h at 4°C in the following primary antibodies:
rabbit anti-ERK1/2, rabbit anti-Notch (Cell Signaling Technology, Inc., Beverly, MA, USA),
mouse anti-JNK, mouse anti-Prospero, and mouse anti-Wg and mouse anti-Armadillo
(Developmental Studies Hybridoma Bank, lowa City, IA, USA). After incubation, the samples
were washed three times (10 min each) with PBS and incubated with FITC-conjugated
secondary antibodies (anti-rabbit; green fluorescence) or TRITC-conjugated secondary
antibody (anti-mouse; red fluorescence) (Sigma-Aldrich Corp., St Louis, MO, USA) (1:500).
The cell nuclei were stained with diamidino-2-phenylindole (DAPI; Biotium, Inc., Hayward,
CA, USA) for 30 min, washed in PBS, and mounted on slides with coverslips in a 30% sucrose
solution. The slides were analyzed and photographed under a fluorescence microscope (Evos
M5000; Thermo Fisher Scientific, Carlsbad, CA, USA). The number of labeled cells in five
guts per treatment was quantified using a 20x objective lens. Five guts from each treatment
group were prepared without incubation with primary antibodies as negative controls. Because
the midgut is a large organ, cell counts were conducted separately, considering the anterior,
middle, and posterior regions of the organ. The total number of cells per organ was determined
by summing the number of cells detected in each of the three regions. Cell quantification was
conducted using Image-Pro 4.5 software (Media Cybernetics, Silver Spring, EUA).

Data from protein detection were subjected to PCA. Because the data were at the same
scale, the eigenvalues and eigenvectors in the PCA were defined using the covariance matrix.

The principal components were selected based on eigenvalues higher than the mean values of
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all eigenvalues. The significance of the groups formed by the PCA was tested using a
permutational multivariate analysis of variance (PERMANOVA) with 9999 permutations and
the Euclidean distance. A homogeneity test of multivariate dispersion (PERMDISP) was used
to check the assumption of the homogeneity of the PERMANOVA (Anderson, 2017). Pairwise
contrasts among agrochemical treatments were applied with a Bonferroni adjustment. These
analyses were conducted in R software (R Core Team, 2020) using the factoextra (Kassambara

and Mundt, 2020) and vegan (Oksanen et al., 2019) packages.

3. Results
3.1. Mortality

Oral exposure of foragers to imidacloprid caused significant mortality in comparison to
foragers exposed to glyphosate and a control (x> = 18.2, df =13, p < 0.0001). However, the
mortality caused by the ingestion of glyphosate was not different from that of the control group

(x*=1.4,df =11, p=0.24) (Figure 1).
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Figure 1. Mortality of the stingless bee Melipona quadrifasciata 24 h after exposure to
glyphosate and imidacloprid agrochemicals. Different letters indicate statistically significant
differences in GLM (p < 0.05). The bars represent the means, and vertical bars are the standard

CITors.

3.2. Collective behavior
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There was a significant difference among agrochemicals in all behavioral features
exhibited by the foragers (p < 0.05, Figure 2). Imidacloprid-exposed bees were more debilitated
(shortest tracked distance and more significant resting), more disoriented (more significant
swarm and transition), and fed more than the control (Supplementary video S1). Glyphosate-
exposed bees and the control showed a similar pattern for most features, except that these bees

interacted more with each other after glyphosate exposure (Supplementary videos S2 and S3).
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Figure 2. Boxplots with violin distribution of the multivariate behavioral data assessed in

foragers of Melipona quadrifasciata exposed to glyphosate or imidacloprid. Each feature was

scaled to the standard range (mean = 0 and standard deviation = 1), subtracting the mean and
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dividing by the standard deviation. Different letters on the x-axis indicate a significant
difference based on a Tukey test (p < 0.05); in addition, the statistic output for each feature is

given.

3.3. Machine learning approaches

3.3.1. Feature selection

The most parsimonious ML algorithms used in feature selection were prioritized to
choose the number of relevant features. Thus, the smallest number of variables in which a given
algorithm reached the highest precision was selected. With the RF, 17 features were selected,
followed by LDA with 10 features, and SVM with 5 features (Figure 3A). Therefore, following
the ranking of importance, the five most relevant features were the tracked distance, number of

stops, transition, meandering, and degree (Figure 3B).
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Figure 3. Selection of the most relevant behavioral features exhibited by foragers of Melipona

quadrifasciata exposed to glyphosate or imidacloprid. (A) Establishment of the number of
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features and (B) feature importance ranking with recursive feature elimination. The ML
algorithms providing information about the feature importance are random forest (RF), support
vector machine (SVM), and linear discriminant analysis (LDA). (A) Lines represent the average
of a 3-fold cross-validation. (B) Bars represent the average ranking among the three ML

algorithms.

3.3.2. Hyper-parameter optimization

After the hyper-parameter optimization, the models were trained using the parameters
listed in Table 1. Because the algorithms QDA and NB have essentially only one hyper-
parameter for tuning, the default in the SciKit-learn library was used (Pedregosa et al., 2011).

All grid search interactions are shown in Supplementary Table 1.

Table 1. Hyper-parameters use in the machine learning algorithms after hyper-parameter
optimization through a grid search. The definition of hyper-parameters and values was based

on the SciKit-learn library (Pedregosa et al., 2011)

Algorithms Hyper-parameters Values
trees 50
Random forest
max features sgrt
Quadratic discriminant
reg 0
analysis
shrinkage auto
Linear discriminant analysis
solver Isqr (least squares)
metric Euclidean
K-nearest neighbors neighbors 3
weight function distance
Gaussian naive bayes variance smoothing 1x10°
regularization 10
Support vector machine kernel polynomial

gamma scale
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learning rate 0.1
max depth 9
Gradient boosting

boosting stages 1000

subsample 0.7

activation function relu

Multi-layer Perceptron network layer sizes 100
solver adam

3.3.3. Algorithm performance

The algorithms were extremely efficient in discriminating the imidacloprid class with

100% true positives in all confusion matrices (Figure 4). Although the algorithms somewhat

confused the glyphosate class with the control class, the MLP algorithm efficiently separated

these two classes with 87.5% and 85.7% true positives for glyphosate and control, respectively

Figure 4). Interestingly, the QDA algorithm had high precision with 100% true positives for
g gly g ghp p

imidacloprid or control classes (Figure 4).
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Figure 4. Confusion matrices of machine learning algorithms for predicting the agrochemical

contamination (glyphosate or imidacloprid) in foragers of Melipona quadrifasciata based on

behavioral features. The applied algorithms were a random forest (RF), quadratic discriminant
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analysis (QDA), linear discriminant analysis (LDA), k-nearest neighbors (KNN), Gaussian
naive Bayes (NB), support vector machine (SVM), gradient boosting (GB), and multi-layer
perceptron (MLP). The confusion matrices reveal the number of correct and incorrect

predictions for each class in percentage.

The ML algorithms were statistically significant in predicting the class of agrochemicals
in which bees were contaminated (p < 0.001; Figure 5). The algorithms exhibited accuracies
between 67% and 91% (Figure 5). The MLP algorithm showed significant differences in QDA
(Z=1.972,p=0.048), LDA (Z=1.961, p = 0.049), and NB (Z =2.064, p = 0.039). The MLP
presented the best performance, reaching a kappa value of 0.86 and accuracy of 91% (Figure

5).
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Figure 5. Validation of performance metrics (accuracy, kappa, precision, recall, and F1 score)
of machine learning algorithms: random forest (RF), quadratic discriminant analysis (QDA),
linear discriminant analysis (LDA), k-nearest neighbors (KNN), Gaussian naive Bayes (NB),
support vector machine (SVM), gradient boosting (GB), and multi-layer perceptron (MLP).
These algorithms were tested to predict the type of contamination (with glyphosate or
imidacloprid) in foragers of Melipona quadrifasciata based on behavioral features. The z-test

values are provided for each algorithm.

With the data containing the selected behavioral features, the PCA and the first two
principal components explained 82% of the variation. The distinct separation between the
glyphosate and control groups was not evident in the PCA scores (Figure 6). However, the

algorithms that defined the decision boundaries among the classes well were mainly nonlinear

algorithms (e.g., MLP, GB, and SVM).
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of foragers of Melipona quadrifasciata, and the principal components (PC1 and PC2) explained
54% and 28% of the total data variation, respectively. The applied algorithms were random
forest (RF), quadratic discriminant analysis (QDA), linear discriminant analysis (LDA), k-
nearest neighbors (KNN), Gaussian naive Bayes (NB), support vector machine (SVM), gradient
boosting (GB), and multi-layer perceptron (MLP).

3.4. Physiological response

The number of positive cells for different proteins in the midgut of forager M.
quadrifasciata (mean + standard error) after 24 h of exposure to glyphosate were as follows:
11.6 + 0.6 (Armadillo), 148 + 0.15 (ERK1/2), 31.8 + 1.30 (JNK), 224 + 1.7 (Notch), and 109 +
0.6 (Prospero), and 4 + 0.52 (Wg). In addition, the numbers of positive cells for each protein
after 24 h of exposure to imidacloprid were 9.6 = 0.74 (Armadillo), 55.6 = 1.1 (ERK1/2), 37.4
+ 1.18 (JNK), 38.8 = 0.61 (Notch), 164 = 1.06 (Prospero), and 9.8 + 0.4 (Wg). Finally, the
numbers of positive cells for each protein in the control were 54.4 = 1.72 (Armadillo), 60.2 +
0.8 (ERK1/2), 3.2 £0.12 (JNK), 32.8 = 0.91 (Notch), 94.2 + 1.02 (Prospero), and 17.4 + 0.31
(Wg) (Figures 7 and 8).
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Figure 7. Number of positive cells for different proteins (Armadillo, ERK1/2, JNK, Notch,

Prospero, and Wg) in the midgut of foragers of Melipona quadrifasciata 24 h after the treatment
with glyphosate or imidacloprid, and the control. The axis numbers (from 0 to 280) indicate the

number of positive cells. The bars are mean + standard error.

The assumption of homogeneity among samples within each treatment was accepted
(homogeneous dispersion) (PERMIDISP: F » 12 = 0.39, p = 0.69), indicating the suitability of
PERMANOVA. There was a significant difference in protein detection patterns among
treatments with agrochemicals (F 2,12 = 44.9, p <0.0001, R*= 0.88, Figure 8B). Both glyphosate
treatment (F = 55.26, p = 0.015, R? = 0.87) and imidacloprid treatment (F = 12.13, p = 0.039,
R? = 0.6) were different from those of the control. Likewise, glyphosate treatment and

imidacloprid treatment were different from each other (F = 56.04, p = 0.021, R? = 0.87). An
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ordination diagram of the PCA shows the relationship among treatments (Figure 8B) and the
different proteins sampled through in situ detection (Figure 8C). Two proteins with eigenvalues
of greater than the mean were selected. Thus, PC1 (first component of PCA) and PC2 (the
second component of PCA) explained 55.7% and 28.6% of the total variance of the data,

respectively.
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Figure 8. Detection (in situ) of positive cells for different proteins in the midgut of foragers of
Melipona quadrifasciata 24 h after the treatment with glyphosate or imidacloprid, and the
control. (A) Representative whole mounts of the midgut with positive cells (green or red) for
Armadillo, ERK1/2, JNK, Notch, Prospero, and Wg. DNA (blue) was stained with DAPI. Scale
bars: 100 um. (B) The principal component analysis (PCA) diagram shows the three treatments
in two-dimensions based on Euclidean distance. Confidence ellipses are based on treatment
centroids (95%). (C) PC loadings associated with the detection of positive cells for different

proteins. Axis values (%) indicate how much the components explain the total data variance.

4. Discussion

According to our results, acute oral exposure to glyphosate did not lead to lethal toxicity
in M. quadrifasciata when tested at the recommended label concentrations for weed control
(MAPA, 2021), which corresponds to a higher concentration compared to the residues found in
the field from this agrochemical (Berg et al., 2018). Low mortality rates have also been reported
for honeybees exposed to glyphosate either by contact or orally for both label-recommended
concentrations and field-realistic concentrations (Abraham et al., 2018; Battisti et al., 2021;
Faita et al., 2020; Helmer et al., 2015; Tomé et al., 2020). Moreover, contact exposure to
glyphosate (only active ingredient) did not increase the mortality in adult bumblebees; however,
glyphosate formulations containing surfactants can contribute to increase the mortality (Straw
et al., 2021). The ingestion of glyphosate during post-embryonic development significantly
increases the mortality of immature M. quadrifasciata (Seide et al., 2018). Thus, the lethal
toxicity of glyphosate depends on the route, age, formulation composition, and time of exposure
to the agrochemical (Battisti et al., 2021; Straw et al., 2021). In contrast to glyphosate,
imidacloprid ingestion exhibited greater lethal toxicity to M. quadrifasciata even at a highly
diluted concentration (300-times less concentrated than the field concentration). This
insecticide has been reported to be highly toxic to bees (Blacquicre et al., 2012; EFSA, 2013;
Pereira et al., 2020). Studies have confirmed the high mortality rate when stingless bees are
exposed to this insecticide both in immature bees (Tomé et al., 2012) and adults (Costa et al.,
2015; Tome et al., 2015a; Valdovinos-Nuiez et al., 2009). In contrast to our results in adults,
glyphosate ingestion is more lethal to larvae of M. quadrifasciata than imidacloprid (Seide et

al., 2018).
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Changes in locomotor behavior after exposure to agrochemicals are commonly used to
indicate sublethal effects in bees (Desneux et al., 2007; Thompson and Maus, 2007).
Imidacloprid led to the greatest changes in locomotor behavior features, unlike glyphosate
exposure, which only increased the interaction among individuals of M. quadrifasciata. These
findings may be related to the different modes of action of each agrochemical, whereby
glyphosate acts on the shikimate pathway, found only in plants and microorganisms, and is
absent in animals (Dill et al., 2010; Herrmann and Weaver, 1999). Despite the lack of evidence
that glyphosate has a target site to act on insects, chronic exposure of honeybees to low-
concentration glyphosate decreased the acetylcholinesterase enzyme (AChE) activity (Boily et
al., 2013), which can modulate nerve impulses, and consequently, alter locomotor behavior. In
addition, the sublethal effects of this herbicide in bees include impaired learning, disordered
foraging behavior, and retrieval of memories (Farina et al., 2019; Luo et al., 2021; Vazquez et
al., 2020).

Similar to our results, oral exposure to imidacloprid impaired the locomotor behavior of
foragers of stingless bees and honeybees (Delkash-Roudsari et al., 2020; Jacob et al., 2019).
Imidacloprid mimics acetylcholine (ACh) action binding on the postsynaptic neuron nAChR in
insects. AChE cannot break down the imidacloprid, leading to an overstimulation and blocking
of the nAChR, causing paralysis and death, and consequently affecting behavioral patterns
(Buckingham et al., 1997; Tomizawa and Casida, 2005). In addition, imidacloprid maintains a
sustained activation of the Kenyon cell nAChR in the mushroom bodies in bees, causing
morphological changes in these structures and compromising the learning and sensory
integration (Palmer et al., 2013; Tom¢ et al., 2012). Such changes in the behavior of foragers
exposed to agrochemicals can compromise essential pollination activities in both natural and
agricultural ecosystems (Ramirez et al., 2018; Schneider et al., 2012).

The ML algorithms used here to discriminate the sublethal effects of each agrochemical
on the behavior of bees demonstrated high precision regardless of the different modes of action
of glyphosate (herbicide) and imidacloprid (insecticide). The most divergent pattern among the
behavioral features demonstrated by imidacloprid was 100% detected in all ML algorithms.
Interestingly, the ML algorithms reached 87.5% of true positives for the glyphosate class
despite the similarity of the behavioral features between the glyphosate and control. Our results
also emphasize that combining Al-based approaches with multivariate assessment can detect

patterns of sublethal alterations that are not found in univariate behavioral assessments.
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In general, the effects of agrochemicals on the behavior of bees have been evaluated in
a univariate manner (Barbosa et al., 2015; Botina et al., 2019; Tomé¢ et al., 2015b). The
availability of automated behavioral tools has facilitated multivariate behavioral measurements
(Bernardes et al., 2021), whereas some irrelevant or less important features can negatively
impact the performance of ML algorithms (Blum and Langley, 1997), and the assessment of
highly correlated behavioral features produces multicollinearity (Yoo et al., 2014). When
dealing with multivariate data, an important step is feature selection to optimize the ML
performance (Blum and Langley, 1997). Among the 17 features studied here in M.
quadrifasciata, the models achieved a better performance with the tracked distance, number of
stops, transition, meandering, and degree. These five most relevant features are computed with
a low computational demand from the Cartesian coordinates of the collective locomotory
movement of insects (Bernardes et al., 2021). Therefore, these features can include important
endpoints to predict the environmental factors influencing bee health, using features from radio-
frequency identification tags, as an example (Nunes-Silva et al., 2020).

The ML algorithms had satisfactory kappa values, indicating appropriate (0.61< kappa
< 0.8) and highly suitable (kappa > 0.81) predictive performance (McHugh, 2012). As exhibited
in the decision boundaries, the non-linear classifiers better fit the separation among treatments,
highlighting the better performance of MLP and GB. However, GB has over-adjusted
boundaries of the data, which may affect the ability to generalize to new datasets (Srivastava et
al., 2014). MLP is an artificial neural network architecture that deals very well with nonlinear
and complex data modeling (Rossi and Conan-Guez, 2005). The algorithm used here achieved
a higher accuracy (91%) in the validation dataset, demonstrating a groundbreaking result in
predicting agrochemical contamination in bees based on behavioral features.

Microscopy analyses revealed the sublethal effects of the two agrochemicals on the bee
gut. The increase in Notch and ERK1/2, detected after glyphosate exposure, suggests that this
compound causes injuries and cell death in the midgut of M. quadrifasciata, despite the absence
of lethal effects. These proteins are related to cell proliferation, and their production might
compensate for cell death in exposed foragers (Biteau and Jasper, 2011; Liu et al., 2010; Simon
et al., 2009). The ingestion of glyphosate or imidacloprid also increased the number of positive
midgut cells for INK (9.5-times and 11.5-times, respectively), while decreasing the number of
positive cells for Wg (—4-times for glyphosate and —1.8-times for imidacloprid) and Armadillo

(—4.9-times to glyphosate and —5.6-times to imidacloprid) in comparison to the control. Based
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on these results, it can be speculated that the ingestion of glyphosate or imidacloprid interferes
with the integrity of the midgut epithelium because a decrease in Wg proteins activates the
apoptotic pathway mediated by the INK pathway in Drosophila melanogaster (Kockel et al.,
2001; Tian et al., 2018). Ingestion of imidacloprid increased the number of positive cells for
Prospero (1.5-times both the control and glyphosate exposure). Prospero, similar to Notch, is
associated with cell renewal (Simon et al., 2009). Altogether, these changes in the detection of
proteins in the midgut of M. quadrifasciata may be related to the stress caused by the ingestion
of agrochemicals, and while some cells die, others proliferate to maintain the midgut
homeostasis. The variation in the protein detection pattern in the midgut of adult bees after
agrochemical contamination has already been reported elsewhere (Araujo et al., 2021; Farder-
Gomes et al., 2021), and changes in the biochemical cascades caused by different agrochemicals

deserve to be investigated in detail as sublethal effects in the future.

5. Conclusions

This study provides a holistic assessment of the sublethal effects of both glyphosate and
imidacloprid on the foragers of M. quadrifasciata. Our pioneering study successfully integrated
multivariate behavioral features with ML algorithms to predict agrochemical contamination in
bees. ML built using a multivariate behavior dataset achieved a higher accuracy for classifying
agrochemical contamination in foragers using the MLP algorithm. A multivariate assessment
also revealed changes in protein detection in the midgut after exposure to glyphosate or
imidacloprid. Ingestion of imidacloprid caused significant changes in behavior and protein
detection in the midgut of bees, and the discrimination of bees exposed to this insecticide using
ML was highly precise. Changes in protein detection in the midgut of glyphosate-exposed
foragers have not implied changes in survival or in the majority of the behavior features studied,
and despite this, it is worth mentioning that the ML model was able to classify bees
contaminated with glyphosate. The method proposed herein can be widely applied to other
insects, indicating further field applications of ML for predicting the environmental factors

influencing their behavior and health.
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Appendix A

The tracked distance is measured as the distance that an animal walks during a video
recording. The max speed is the maximum speed achieved by the animal. The turn angle is the
average angle that the individual rotates in each videoframe. Meandering is the average angle
that the individual rotates during the video. The number of stops is the count associated with
no activity of the animal (the tracked distance of < 0.046 cm frame™! was counted as a stop).
The mean number of movements is the number associated with the intermediated activity (the
tracked distance of > 0.046 and < 0.53 cm frame™! was counted as the mean movement). The
number of fast movements is the number associated with high activity (the tracked distance of
> 0.53 cm frame! was counted as fast movement). Resting, mean movement, and fast
movement were calculated as the proportion of time the animals stayed in each state of activity.
Degree is the sum of all interactions of an individual with other animals of the group (an
interaction was considered when the individuals approached a distance of < 1.41 cm). The
network density is the proportion of interactions in an animal group. Feeding is the proportion
of time that individuals spent feeding during the video. Polarization is the proportion of
individuals that are highly aligned in a group. Milling is the proportion of the group with a high
degree of rotation about its center of mass. Swarm is the proportion of individuals in a group
that are in a disordered movement. Transition is the proportion of the group that was in a
transition among the polarization, milling, and swarm states. The mathematical definition of

these features can be found in Bernardes et al. (2021).
Supplementary Material

https://drive.google.com/file/d/11d78f1ISnCU3JHvmXKUwgAJ7vKX07sZkx/view?usp=sharin

g

Supplementary videos

Video S1. Representative video showing the collective behavior of Melipona quadrifasciata
foragers exposed to neonicotinoid imidacloprid. The target letters in the bees are individual
identities assigned automatically by the software used in the video analyses.

https://drive.google.com/file/d/1xvLwiEIc2NJRPctINXEUgpEHppuUtIBkf/view?usp=sharing



https://drive.google.com/file/d/1id78fiSnCU3JHvmXKUwgAJ7yKXo7sZkx/view?usp=sharing
https://drive.google.com/file/d/1id78fiSnCU3JHvmXKUwgAJ7yKXo7sZkx/view?usp=sharing
https://drive.google.com/file/d/1xvLwjElc2NJRPcfNXEUqpEHppuUtIBkf/view?usp=sharing
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Video S2. Representative video showing the collective behavior of Melipona quadrifasciata
foragers exposed to the herbicide glyphosate. The target letters in the bees are individual
identities assigned automatically by the software used in the video analyses.

https://drive.google.com/file/d/1arszitBKh5FulDjUePbbY-tig1 Rt9sV-/view?usp=sharing

Video S3. Representative video showing the collective behavior of a non-exposed Melipona
quadrifasciata forager (control). The target letters in the bees are individual identities assigned
automatically by the software used in the video analyses.
https://drive.google.com/file/d/17zAWMiQXpQaBbi7Uxnwe-CfWI-
YAjD7V/view?usp=sharing



https://drive.google.com/file/d/1arszjtBKh5FulDjUgPbbY-tiq1Rt9sV-/view?usp=sharing
https://drive.google.com/file/d/17zAWMiQXpQaBbi7Uxnwe-CfWl-YAjD7V/view?usp=sharing
https://drive.google.com/file/d/17zAWMiQXpQaBbi7Uxnwe-CfWl-YAjD7V/view?usp=sharing
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Abstract

Copper sulfate (CuSOs4) is widely used in agriculture as a pesticide and foliar fertilizer.
However, the possible environmental risks associated with CuSOg use, particularly related to
pollinating insects, have been poorly studied. In this study, we evaluated the both lethal and
sublethal effects of CuSOj4 on the stingless bee Partamona helleri. Foragers were orally exposed
to five concentrations of CuSO4 and the concentration killing 50% (LCso) was estimated. This
concentration was subsequently used in behavioral, midgut morphology, and antioxidant
activity analyses. We detected increases in bee mortality with the ingestion of increasing
concentrations of CuSOs. Ingestion at the estimated LCso (142.95 pg mL™") resulted in altered
walking behavior and damage to the midgut epithelium and peritrophic matrix of bees.
Furthermore, the LCso caused an increase in the activities of catalase and superoxide dismutase,
and in levels of the lipid peroxidation biomarker malondialdehyde. Furthermore, the in situ
detection of caspase-3 and LC3, proteins related to apoptosis and autophagy, respectively,
revealed that these processes are intensified in the midgut of treated bees. These data highlight
that the ingestion of CuSO4 can have considerable sublethal effects on the walking behavior
and midgut of stingless bees, and therefore could pose potential risks to pollinators including

native bees.

Keywords: Bioassays, CuSOs, heavy metal, LCso, stingless bee, toxicological effects
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1. Introduction

Heavy metals such as copper (Cu), zinc (Zn), and manganese (Mn) are found in
numerous agrochemical formulations that are used to enhance agricultural production (Deng et
al. 2007; Worku and Hailu 2018). Depending on the concentration, heavy metals can be toxic
and have potentially adverse effects on intracellular components, including organelles, cell
membranes, and enzymes (Pena et al., 1999; Wang and Shi 2001; reviewed by Tchounwou et
al. 2012). Following their application to crops, agrochemical products based on heavy metals
can accumulate in the leaves and flowers, and can accordingly be transferred to pollinating
insects that forage on the treated plants (Hladun et al. 2015, 2016; Cai et al. 2019) or accumulate
directly in the bodies of insects (Hongxia et al. 2010; Baghban et al. 2014; Botina et al. 2019;
Goretti et al. 2020).

The salt copper sulfate (CuSOs) is widely used as a fungicide, insecticide, and foliar
fertilizer (Michaud and Grant 2003; Rodrigues et al. 2016), and it has been demonstrated that
chronic intoxication with CuSOg4 can reduce the locomotor activity (Bonilla-Ramirez et al.
2011) and central nervous system neuronal function (Hwang et al. 2014) of the fly Drosophila
melanogaster. In coccinellid beetles, chronic intoxication with CuSO4 has been found to
increase the time of development, reduce fertility, and extend the pre-reproductive period of
females (Michaud and Grant 2003). The ingestion of CuSO4 has been shown to alter the color
and thickness of the midgut in the flesh fly Sarcophaga peregrina (Wu et al. 2009), and the
integrity of the peritrophic matrix (PM) in Aedes aegypti larvae (Rayms-Keller et al. 1998). In
the stingless bees, the ingestion of CuSOj affects the survival and the walking behavior of the

workers of Friesella schrottkyi and the respiration rate of Partamona helleri (Rodrigues et al.

2016; Botina et al. 2019).
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Debates provoked by recent widespread reductions in pollinator populations,
particularly bees, have addressed several factors, including both biotic risks (mites, viruses,
fungi, and bacteria) and abiotic ones (habitat degradation, climate change, and agrochemicals)
(vanEngelsdorp and Meixner 2010; Lima et al. 2016; Steinhauer et al. 2018; Cham et al. 2019;
Tomé et al. 2020). Among these, stress attributable to the use of agrochemicals, and its
consequences, in stingless bees have received prominent attention in recent years, mainly due
to the associated sublethal effects (Tomé et al. 2015, 2017; Bernardes et al. 2018; Araujo et al.
2021).

Among the sublethal effects associated with the exposure of stingless bees to
agrochemicals, those that stand out are the impairment of locomotor activity (Tomé et al. 2012;
Barbosa et al. 2015; Bernardes et al. 2017; Marques et al. 2020), changes in the expression of
genes related to immune response and detoxification (Viana et al. 2021), and damage to cells
in the nervous ganglion (Jacob et al. 2015; Tomé¢ et al. 2012) and midgut (Aratjo et al. 2019).
In addition, oxidative damage and cell death in the digestive tract have recently been
investigated (Araujo et al. 2021; Farder-Gomes et al. 2021).

Stingless bees play essential roles in pollinating a substantial proportion of the flora in
tropical regions and, depending on the ecosystem, are known to pollinate between 40% and
90% of native trees (Kerr et al. 2001; Braga et al. 2012; Pedro 2014). P. helleri, for instance, is
an important pollinator of trees in the Atlantic Forest (Camargo and Pedro 2003; Ramalho
2004); this species has been widely used as a model for toxicological studies related to stingless
bees due to its large number and their relative facility of being found in the environment
(Bernardes et al. 2018; Araugjo et al. 2019; Pereira et al. 2020; Fader-Gomes et al. 2021). During
foraging, workers can be directly exposed to CuSO4 through contact or ingestion. In addition,

they may collect copper contaminated resources (e.g., pollen, nectar, and resins), since heavy
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metals can accumulate in different parts of plants (Fageria et al. 2002). The larvae can be
intoxicated with these collected resources and potentially suffer lethal and sublethal effects
(Lima et al. 2012)

Given the knowledge gap about CuSOg4 effects in non-target organisms, such as stingless
bees, and the ecological significance of these bees, we sought to evaluate the lethal and
sublethal effects of ingested CuSOy4 in foragers of the P. helleri. In the present study, we
estimated the LCsy and assessed walking behavior in this stingless bee. In addition, we assessed,
for the first time, the CuSO4 sublethal effects on processes of apoptosis, autophagy, and

antioxidant activity of the P. helleri midgut.

2. Material and methods

2.1. Bees and chemicals

Five different colonies of P. helleri were collected in Vigosa (MG, Brazil; 20°, 45” S,
and 42° 52° W) with permission from the Chico Mendes Institute for Biodiversity Conservation
(SISBIO, ID 75536) and established in the experimental apiary at the Universidade Federal de
Vigosa (UFV) for at least two years before the beginning of the experiment. These number of
colonies assure the genetic variability, as workers from different colonies are descendants of
different queens. Foragers were collected at the entrance of the colonies using glass jars when
they exit the hive to forage, avoiding harm to the original colonies. These bees were between
20 to 30 days old; age that workers perform most foraging activity (Giannini 1997; Kerr and
Santos-Neto 1956; Simdes and Bego 1979). The collected specimens were taken to the
laboratory where they acclimatized without food, in an incubator at 28 + 1°C and 70% + 5%

humidity in the dark for a period of 1 h before experimental exposure. This acclimatization was
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necessary to standardise the feeding condition of the tested workers and based on an exposure
protocol for stingless bees (Botina et al. 2020) and previous works (Tomé et al. 2015, 2017).
Copper sulfate [CuSO4: Penta 24 (240 g kg! Cu and 110 g kg S); Multitécnica
Industrial, Sete Lagoas, MG, Brazil] was diluted in 50% aqueous sucrose solution to obtain the
concentration of 5000 pg mL™!, which was gradually diluted to obtain the other concentrations
used in the mortality bioassay (see below). This is the concentration that is routinely used to
spray the leaves of Brazilian tomato crops (MAPA 2020), and this stock solution was used to
prepare solutions of different concentrations for use in a mortality bioassay. To prepare the
solutions for all bioassays, we used 30 mg of copper sulfate and the residue was properly
discarded following local waste management protocols. After bioassays, contaminated bees

were also discarded properly.

2.2. Bee mortality

The collected foragers were transferred to plastic containers (250 mL) separated
according to colony (10 bees per colony), each of which was considered an experimental unit
(Botina et al. 2020). In total, we set up 30 containers with 300 sampled bees (10 bees in each
container for each of the five colonies, which were exposed to each of the six concentrations of
the CuSOs, including the control). The control group received a non-contaminated sucrose
solution (sucrose:distilled water, 1:1). We used the average natural mortality of control bees to
correct for the mortality recorded in the other treatments (Abbott 1925). Diets were offered in
1.5 mL feeders constructed from perforated microcentrifuge tubes, which were inserted into a
hole in the wall of the plastic containers. Maintenance of bees in plastic containers, as well as
the feeding method used here, followed exposure protocol for stingless bees (Botina et al. 2020)
and previous works (Aragjo et al. 2021; Farder-Gomes et al. 2021). The bees were subjected to

a 3-h exposure (acute exposure) to the following six concentrations of CuSO4 diluted in 50%
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sucrose solution: 5000, 1666.7, 554.2, 183.4, 58.4, and 0.0 ug mL! (control). To obtain this
range in concentrations (c), in a preliminary experiment, we identified the concentration that
caused low mortality (/) (close to 10%) and the one that caused high mortality (%) (close to
90%). Then we calculate the dilution rate (k) in relation to the concentrations (n) as k= (logio(h)
- logio(/))/ (n-1), and determinate each concentration (cn) as the previous concentration plus the
dilution rate (¢, = cn.s + 10).

Following exposure, the bees were allowed to feed on 50% uncontaminated sucrose
solution ad libitum. We evaluated mortality at 24 h after commencing exposure and used these
data to estimate the mortality curve and determine the 50% lethal concentration (LCso). The
absence of movement was taken to be indicative of bee mortality (Botina et al. 2020).
Throughout the experimental period, the foragers were maintained in the aforementioned

incubator under dark conditions.

2.3. Bee behavior

The behavior of bees was monitored 24 h after exposure to the LCso (142.95 pg mL™)
of CuSOq or the control diet. The bees were exposure in groups during 3 hours (item 2.1). The
bees were individually transferred to a Petri dish arena (9 cm diameter and 0.8 cm high)
containing a filter paper base and covered with transparent plastic film to prevent bee escape
(Botina et al. 2020). The movements of the bees were recorded for 10 min using a digital camera
operating at 30 frames per second and analyzed using Ethoflow® software (Bernardes et al.,
2021), based on which, we calculated walking distance (cm), mean velocity (cm s™), resting
time (s), and the number of stops. The bioassays were carried out between 10:00 and 14:00
under artificial fluorescent lighting at 25 + 2°C. In total, we monitored the behavior of 32 bees
(four bees for each colony exposed to each of the two treatments - in this case, it was used four

colonies and not five).
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2.4. Midgut morphology

From bees exposed (item 2.1) to the LCso (142.95 pg mL™!) of CuSO4 and control, we
choose randomly 10 bees to dissect (5 for LCso and 5 for control) in saline solution for insects
(0.1 M NaCl, 0.1 M KH2POg4, and 0.1 M Na;HPOs). The midgut of bees was transferred to
Zamboni’s fixative solution (2% paraformaldehyde, containing 15% picric acid in 0.1 M
sodium phosphate buffer), and maintained therein for 2 h at 25 + 2°C. Thereafter, the samples
were washed three times in 0.1 M phosphate-buffered saline (PBS), dehydrated in a graded
ethanol series (70% to 95%), and embedded in Historesin (Leica Biosystems, Nussloch,
Germany). Sections of the embedded material (5 pm thick) were obtained using a Leica RM
2255 microtome, and were stained with hematoxylin and eosin (HE). Samples were observed
under an Olympus BX-53 light microscope, coupled with an Olympus DP 73 digital camera
(Olympus Optical Corp., Tokyo, Japan).

To detect the PM (glycoconjugates and polysaccharides containing (-1-4 N-
acetylglucosamine residues) in the midgut lumen, other unstained sections were washed twice
in PBS and incubated for 1 h with 10 g mL"! fluorescein isothiocyanate (FITC)-conjugated
lectin [wheat germ agglutinin (WGA)-FITC: L4895; Sigma-Aldrich, Israel] diluted (1:500) in
0.1M PBS. After a triple wash in PBS, the sections were stained with diamidino-2-phenylindole
(DAPI: 1:500; Biotium, Inc., Hayward, CA, USA) for 30 min to label the cell nuclei. Sections
were subsequently washed a further three times and mounted with a 50% sucrose solution. As
a negative control, sections were stained only with DAPI and mounted with a 50% sucrose
solution. The slides were observed and photographed using an Olympus BX53 fluorescence
microscope, coupled with an Olympus XM 10 digital camera (Olympus Optical Corp., Tokyo,

Japan).
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2.5. Abdomen antioxidant activity

The abdomen of bees that had been exposed to LCso (142.95 pg mL™") of CuSO4 and
control were homogenized separately in 1 mL of PBS, using a Tissue Master 125 homogenizer
(OMNI) and centrifuged at 10000 xg for 10 min at 4°C (Hearaeus Fresco 16 centrifuge; Thermo
Scientific). For each of the 10 samples, we prepared a homogenate, collected the supernatant,
and spectrophotometrically assed antioxidant activity based on the activity of the enzymes
catalase (CAT), glutathione S-transferase (GST), and superoxide dismutase (SOD), and
contents of the lipid peroxidation biomarker malondialdehyde (MDA).

The activity of CAT was measured at 374 nm, based on quantification of the kinetics of
the decomposition of H20; to O2 and H,O (Hadwan and Abed 2016); GST activity was
determined at 340 nm by monitoring thioester formation, using 1-chloro-2,4-dinitrobenzene
(CDNB) as a substrate (Habig et al. 1974); SOD activity was assessed at 320 nm using the
pyrogallol autoxidation method (Marklund and Marklund 1974); and the content of MDA was
assessed at 535 nm using the thiobarbituric acid reactive substances (TBARS) method (Buege
and Aust 1978). For each of the 10 samples (five abdomens per two treatments), we performed
multiple measurements to enhance the variance structure of the data, totaling 60 measurements
(six measurements for each of the 10 samples). Thereby, in statistical analyses, we carried out
bootstrap sampling to randomly generate confidence intervals from the observed data (item 2.7)
(Efron 1992). The results were expressed as kilo units of protein per milliliter (kU protein mL"
1) for CAT activity, units of protein per milliliter (U protein mL™") for GST and SOD, and

micromoles of protein per milliliter (umol protein mL™) for MDA.

2.6. Midgut immunofluorescence
Fixed midguts (see section 2.4) were washed three times and incubated in 0.1 M

PBS/1% Triton X-100 (PBST) for 2 h. The organs were incubated separately, for 24 h at 4°C,
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with the PBS-diluted primary antibodies anti-LC3 (1:500: Cell Signaling Technology, Beverly,
MA, EUA) and anti-caspase-3 cleaved (1:500: Sigma-Aldrich, St. Louis Mo., EUA), indicative
of autophagy and apoptosis, respectively. Immunostaining was performed using midguts
obtained from five bees exposed to the LCso of CuSO4 and the control, totaling 20 individuals
(five bees for each of the two treatments, analyzed using each of the two primary antibodies).
After initial incubation with the primary antibodies, the samples were washed three
times and then re-incubated with secondary antibody conjugated to FITC (Sigma-Aldrich
Corp., St Louis, MO, USA) in PBS (1: 500) for 24 h at 4°C. After subsequent washing, the
nuclei of midgut cells were stained with TO-PRO-3 (Life Technologies, Eugene, EUA) for 30
min and mounted in a Mowiol solution (Fluka, St. Louis, MO, EUA). As a negative control,
the midguts of five exposed bees and five control bees were treated as described above,
excluding the step corresponding to incubation with the primary antibody. The samples were
examined under a Zeiss 510 Meta confocal microscope (Carl Zeiss AG, Oberkochen, Germany)
at the Nucleo de Microscopia e Microanalise (NMM-UFV). The quantification of cells staining
positive for LC3 or caspase-3 was performed using Image-Pro 4.5 software (Media Cybernetics,
Silver Spring, EUA), for which, six images obtained under a 20 objective lens were randomly

selected for each sample.

2.7. Statistical analysis

All statistical analyses were performed using R software (R Core Team, version 4.0.0,
2020). For the data obtained in the mortality bioassay, we fitted a concentration-response
(Probit) model and estimated the LCso of CuSOys in P. helleri.

Principal component analysis (PCA) was performed for variables associated with
walking behavior (distance, velocity, resting time, and number of stops). Given that these

variables do not have the same scales, the components were defined based on a correlation
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matrix. Bartlett’s test was used to assess the suitability of the proposed model. We selected
principal components (PCs) with eigenvalues that were higher than the mean value of all
eigenvalues. We fitted generalized linear mixed models (GLMMs) with PC1 and PC2 scores as
response variables and using Gamma error distribution structure (a suitable distribution for
continuous data where the variance increases with the square of the mean) (Crawley 2012). The
colonies were included as random effects in GLMMs to compensate for the identical
background of bees (Hendriksma et al. 2011).

Considering the different measurements used for the detection of antioxidant activity
on the same sample, we carried out bootstrap with 1000 interactions, taking 10 samples per
treatment in each interaction. Bootstrap sampling enabled us to randomly generate confidence
intervals from the data observed empirically (Efron 1992). In each bootstrap sample,
permutation tests were executed with 1,000 interactions to assess differences between
treatments. A permutation test was necessary to determine statistical inference in the
distribution of the data generated in each bootstrap interaction (Lunneborg 2014).
Consequently, the test hypothesis for each variable (CAT, GTS, SOD, and MDA) was based
on 10° random interactions.

We fitted generalized linear models (GLMs) with Poisson distribution (a suitable
distribution for count data) (Crawley 2012) to the immunofluorescence dependent variables
(i.e., the mean number of cells staining positive for LC3 or caspase-3). In addition, given that
the measured variables have the same scale, we performed hierarchical cluster analysis using a

complete linkage method and Euclidean distance.
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3. Results and Discussion

3.1. Toxicity of CuSO4

The hypothesis assuming the suitability of the model was accepted (Fs,27 =1.02, p =
0.42), indicating that the Probit concentration-response model is suitable for analysis of the
mortality bioassay results. The LCso (confidence interval) estimated using this concentration-
response model was 142.95 ng mL™! (69.5-231.76, Fig. 1).

The exposure to CuSOs in label rate (5000 pg mL™') caused 100% mortality on P.
helleri foragers, as previously reported for P. helleri (Botina et al. 2019) and F. schrottkyi
(Rodrigues et al. 2016) exposed to this compound. This mortality reflects the oral intoxication
caused by CuSOg4, as heavy metal intoxication reduces the viability of bees (Di et al. 2016). The
LCso found in the present study is thirty-five times lower than that recommended for use in the
field (5000 pg/mL); therefore, CuSO4 may present a risk for these bees when they go out to
forage. The foragers can also collect pollen, nectar, and resins containing heavy metals, which
can favor the accumulation of heavy metals in the colonies. These heavy metals can also be

ingested by the larvae (Desoky et al. 2019; Lima et al. 2016; Yarsan et al. 2007).
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Figure. 1. Concentration—mortality curve for Partamona helleri foragers exposed to copper
sulfate (CuSOs). The dots represent the means of five observations at each exposure
concentration, obtained for a total of 30 bees (including the controls). The dashed lines above

and below the fitted regression curve indicate the 95% confidence interval. The box plot (right

panel) shows the variation in mortality data (median, lower, and upper quartiles).

3.2. Walking activity

Bartlett’s test indicated the suitability of the selected PCA model (y° = 259.47, df =6,
p <0.001). Principal components 1 (PC1) and 2 (PC2) explained 88.9% and 6.4% of the total
variance in the data, respectively (Fig. 2A). PC1 compared the variables velocity and distance
with resting time and number of stops. These variables had opposite loadings signals (Fig. 2B),
thereby enabling us to separate fast from slow individuals. Negative loadings indicate higher
velocities and distances walked, whereas positive loadings indicate longer resting times and a

larger number of stops. Significant differences among treatments were detected in PC1, with
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values obtained for exposed individuals being more positive, which is taken to be indicative of
slow movements (y*> = 4.6, df = 6, p = 0.032, Fig. 2C, and 2D). PC2 compared the number of
stops with the other variables (Fig. 2B). However, we found that oral exposure to CuSO4 did
not result in any significant differences in PC2 (y* = 0.01, df =6, p = 0.99, Fig. 2C).

Our findings indicate that the oral intoxication with the LCso of CuSO4 reduced the
walking activity of P. helleri, since the treated individuals presented more positive loadings in
PC1. This behavioral change could be attributed to physiological changes in the nervous
system. The exposure to copper and other heavy metal altered the feeding behavior of
honeybees (Burden et al. 2019). Moreover, copper poisoning was associated with neurological
changes in D. melanogaster, indicating that the intoxication with copper-based compounds

leads to disruptions of vital behaviors, such as dispersion and reproduction (Arcaya et al. 2013).
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Figure. 2. Walking behavior of Partamona helleri foragers 24 h after exposure to CuSO4 (LCso;

142.95 pg mL!") for 3 h. (A) An ordination diagram of the principal component analysis
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categorized according to CuSOs4 exposure and control, N = 32 (n = 16 per treatment). The
percentage values shown in the axis labels indicate the proportion of the total variance explained
by each component. (B) Loadings of the two principal components associated with each
behavioral variable. (C) A box plot of the median and range of dispersion (lower and upper
quartiles and outliers) of the PC1 (top panel) and PC2 (bottom panel) scores. * p < 0.05 in
GLMM. (D) Individual representative tracks showing the walking behavior of control and

CuSOg-exposed P. helleri foragers.

3.3. Morphology of the midgut

The midgut of P. helleri foragers comprises an epithelium containing digestive and
regenerative cells (Fig. 3A, C). In foragers that ingested the uncontaminated diet (control), the
digestive cells have an evident striated border at their apex, and a well-developed PM was
observed in the gut lumen, as confirmed by WGA-FITC staining (Fig. 3E). In contrast, the
midgut epithelium of bees that ingested the LCso of CuSO4 was characterized by collapsed cells
that lacked a striated border (Fig. 3B, D). Moreover, compared with that of the control foragers,
the PM was thin (Fig. 3F).

Cellular disintegration in the midgut epithelium, as observed in the present study, has
also been reported in adult workers of the honey bee Apis mellifera in response to chronic
exposure to sublethal doses of calcium oxide nanoparticles and lead oxide (Dabour et al. 2019).
Similarly, exposure to the heavy metals cadmium and copper has been observed to affect the
size and thickness of the midgut of the fly Boettcherisca peregrina (Diptera) and even causes
destruction or condensation of the mitochondria of gut cells (Wu et al. 2009). Collectively,
these findings indicate that damage caused by nanoparticles (Dabour et al. 2019) or compounds
containing heavy metals such as cadmium and copper (Wu et al. 2009) (e.g., CuSOy in the

present study), have the potential to impair organ function and compromise individual survival.
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The weak signal we detected for WGA-FITC fluorescence in the gut lumen of treated
bees indicates that oral intoxication with the LCso of CuSO4 adversely affects PM synthesis.
Similar observations of a perturbed PM have been made in larvae of 4. aegypti that had ingested
heavy metals (Hg, Cd, and Cu) (Rayms-Keller et al. 1998). Moreover, oral intoxication with
heavy metals (Cd, Cu, or Zn) has been reported to impair the digestion of ingested food in the
third-instar larvae of Helicoverpa armigera (Lepidoptera) (Baghban et al. 2014). Based on these
observations, we can thus infer that the epithelial degradation induced by CuSO4 reduces PM
synthesis, thereby confirming that heavy metal intoxication negatively influences the structure

and homeostasis of the midgut in P. helleri.
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Figure. 3. Histological sections of the midgut epithelium of Partamona helleri foragers orally
exposed to a control diet (A, C, E, and G) or to the LCsp of CuSO4 (142.95 pg mL™") (B, D, and
F). A-D: Sections stained with hematoxylin and eosin (HE). E-F: Sections stained with wheat
germ agglutinin-fluorescein isothiocyanate (WGA-FITC) (green). Cell nuclei are stained with
DAPI (blue). (G) Negative control for WGA staining. DC: Digestive cells; RC: regenerative

cells; BB: brush border; L: midgut lumen; M: muscle; N: nuclei; PM: peritrophic matrix.
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3.4. Enzyme activity

Bees orally exposed to CuSO4 showed a significant increase in CAT (bootstrap =
0.606, p = 0.005, Fig. 4A) and SOD (bootstrap = 2.21, p = 0.01, Fig. 4C) activities, as well in
levels of MDA (bootstrap = 0.598, p = 0.003, Fig. 4 D), whereas in contrast, the activity of GST
was not significantly altered in response to exposure (bootstrap = 0.686, p = 0.11, Fig. 4B).

Consistently, it has previously been observed that the activities of both CAT and SOD
increased in the foragers of P. helleri that were exposed to the insecticide fipronil (Farder-
Gomes et al. 2021), indicating that different agrochemicals can induce oxidative stress on these
bees. Under these circumstances, elevated SOD and CAT activities would perhaps be expected,
given that these enzymes are among the main endogenous defense-related enzymes of the
antioxidant system deployed to counter the generation of reactive oxygen species (ROS)
(Birben et al. 2012; Hsieh and Hsu 2013), which is known to increase in response to exposure
to CuSOg4 (Alaraby et al. 2016; Yang et al. 2019). Moreover, the observed increase in MDA
levels indicative of the cell membrane damage promoted by CuSO4, as membrane lipids are
susceptible to peroxidative attack in response to exposure to CuSO4 (Buege and Aust 1978;

Kalita et al. 2018).
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Figure. 4. Quantification of the activity of the enzymes catalase (A), glutathione S-transferase
(B), and superoxide dismutase (C), and of the levels of malondialdehyde (D) in Partamona
helleri orally exposed to the LCsp of CuSO4 (142.95 ug mL™). The violin plots (left panel) show
the distribution of the observed data com bootstrap and dots correspond to amostrated values
in each 1000 bootstrap interactions in raw dataset (i.e., 6 resamples in each of the 5 replicates
in each of the 2 treatments). Histogram (right panel) of the probability distribution of the
random difference (permutational difference) in each of the 1000 permutational tests within
each of the 1000 bootstrap interaction, totaling 10° interactions. The blue lines represent the
mean observed difference after all bootstrap interactions. The dashed red lines are the quantiles
at 2.5 and 97.5% of the distribution of the permutational difference, that is, it shows the region
of rejection of the null hypothesis (i.e., the treatment and control do not differ) at 5% bilateral

probability. * p < 0.05 in permutation tests.

3.5. LC3- and caspase-3-positive cells in the midgut

Immunofluorescence analysis revealed that the number of LC3-positive cells in the
midgut of control bees was significantly lower (1.2 + 0.37; mean =+ standard error) than that in
the midgut of CuSO4-exposed bees (16.8 £ 1.88) (x° = 7.95, d.f. =8, p <0.001, Fig. 5). These
data are consistent with the findings of previous studies that have indicated that oral intoxication
with the insecticide spinosad or an herbicide mixture (Atrazine + Mesotrione) increased the
number of cells positive for LC3 in the midgut of P. helleri (Aragjo et al. 2019, 2021). In this
regard, the higher proportion of autophagic cells in the midgut of exposed bees compared with
the controls can be explained in terms of the response to stress induced by the ingestion of
CuSOsa.

Caspase-3-positive cells were only detected in the midgut of exposed bees (mean 20.4

+ 1.33; Fig. 5), thereby indicating the occurrence of apoptotic cell death in the midgut



104

epithelium can be attributed to the oral intoxication with CuSOa. This type of cell death is
known to occur in response to multiple stimuli, including the accumulation of ROS and

oxidative stress (Kannan and Jain 2000; Rost-Roszkowska et al. 2010; Gregorc and Ellis 2011).
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Figure. 5. Representative whole mounts (top panel) of the midgut of Partamona helleri
foragers orally exposed to the LCso of CuSO4 (142.95 pg mL™!), showing LC3- and caspase-3-
positive cells (green). The nuclei are stained with TO-PRO-3 (red). Hierarchical cluster analysis
and heat map representation (bottom panel) were based on the complete linkage method and
Euclidean distance of the number of positive cells. N = 10 (five bees for each of the two

treatments) for each of the two primary antibodies.

4. Conclusion

In this study, we demonstrate that the CuSO4 acute ingestion, in a concentration
(estimated LCso - 142.95 ug mL™") lower than that recommended for use in the field, impaired
walking activity, and disrupted midgut morphology and homeostasis in foragers of the stingless
bee P. helleri. Furthermore, CuSO4 was found to promote increases in midgut antioxidant
activity, autophagy, and apoptosis. Collectively, our findings indicate that when applied as a
pesticide/fertilizer, CuSO4 can have considerable sublethal effects on the midguts of stingless
bees, and therefore could pose a potential threat to pollinating insects of native trees as stingless
bees.
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CHAPTER 4. A mixture containing the herbicides Mesotrione and Atrazine imposes
toxicological risks on workers of Partamona helleri



118

Science of the Total Environment 763 (2021) 142980

Science of the Total Environment

journal homepage: www.elsevier.com/locate/scitotenv

Contents lists available at ScienceDirect

AC|

Total Envir

A mixture containing the herbicides Mesotrione and Atrazine imposes L))

toxicological risks on workers of Partamona helleri

Check for
updates

Renan dos Santos Aratijo *, Rodrigo Cupertino Bernardes ¢ Gustavo Ferreira Martins °

* Departamento de Entomologia, Universidade Federal de Vicosa, Vigosa, MG 36570-900, Brazil
. Departamento de Biologia Geral, Universidade Federal de Vigosa, Vigosa, MG 36570-900, Brazil

HIGCGHLIGHTS

CRAPHICAL ABSTRACT

+ The oral exposure to the mix of herbi-
cides interfered with behaviour and
food consumption of Partamona helleri.

+ The exposure led to damages of the
midgut epithelium and peritrophic ma-
trix.

* The exposure changed the number of
cells positive for signalling-pathway
proteins.

GRS Sublethal oHfects
s \ Behavioural sherstions Midgut impalemants

o
f 2T \
| frgne |
\ . /
s y

Wi of hariiides s '\‘:’: 7
= &

Food

; z

b t

b o b7
Cancentration Concantration

ARTICLE INFO

ABSTRACT

Article history:

Received 24 July 2020

Received in revised form 30 September 2020
Accepted 4 October 2020

Available online 14 October 2020

Editor: Henner Hollert

Keywords:
Stingless bee
Herbicide

Midgut
Peritrophic matrix
Cell signalling

1. Introduction

A mixture of Mesotrione and Atrazine {Calaris®) has been reported as an improvement of the atrazine her-
bicides, which are agrochemicals used for weed control. However, its possible harmful effects on non-target
organisms, including pollinators, needs to be better understood. In this worlk, the effects of the mix of her-
bicides on food consumption, behaviour (walking distance, and meandering), and the morphology of the
midgut of the stingless bee Partamona helleri were studied. Foragers were orally exposed to different con-
centrations of the mix. The concentrations leading to 10% and 50% mortality (LC,g and LCs,, respectively)
were estimated and used in the analysis of behaviour and morphology. The ingestion of contaminated
diets (50% aqueous sucrose solution + mix) led to a reduction in food consumption by the bees when com-
pared to the control, bees fed a non-contaminated diet {sucrose solution). Ingestion of the LCs, diet reduced
locomotor activity, increased meandering, induced the degradation of the epithelium and peritrophic ma-
trix, and also changed the number of cells positive for signalling-pathway proteins in the midgut. These re-
sults show the potential toxicological effects and environmental impacts of the mix of herbicides in
beneficial insects, including a native bee.

© 2020 Elsevier B.V. All rights reserved.

Machado et al., 2020). These generalist bees are visitors of flowers of
countless species (Heard, 1999). During the visits, they may be exposed

Stingless bees (Apidae: Meliponini) are considered efficient pollina-
tors of many species of wild flora and various crops of economic value in
tropical and subtropical regions (Hmcir et al., 2016; Azmi et al,, 2019;

* Corresponding author.
E-mail addresses: renan.s.araujo@ufv.br (RS. Aradjo), gmartins@ufv.br (G.F. Martins).

https://doiorg,/10.1016/].scitotenv.2020.142980
0048-9697/© 2020 Elsevier B.V. All rights reserved.

to agrochemicals, such as herbicides, sprayed on many crops, which
may represent a threat to the survival and maintenance of the bee col-
onies (Revised in Lima et al., 2016; Seide et al,, 2018; Belsky and Joshi,
2020; Vazquez et al., 2020).

Herbicides are used to control weeds that absorb these compounds
through the leaves, stems, or roots (Kraehmer et al.,, 2014a, 2014b;
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Wang et al,, 2018; Albuquerque et al., 2020). Herbicides interfere with
specific metabolic pathways and kill the target weed by acting on
growth regulators, inhibitors (seedling growth, photosynthesis, and
biosynthesis of amino acids, lipids, and pigments) or act as cell mem-
brane disruptors (Peterson et al, 2015; Revised in Lushchak et al.,
2018).

Mesotrione [2-(4-mesyl-2-nitrobenzoyl)cyclohexane-1,3-dione|
and Atrazine (2-chloro-4-ethylamino-6-isopropylamino-1,3,5-triazine)
are among the most used herbicides worldwide (Barchanska et al.,
2012). Mesotrione, a tricetone, is an inhibitor of the enzyme 4-
hydroxyphenylpyruvate dioxygenase and is one of the best-selling her-
bicides in the world (Dumas et al., 2017; Carles et al., 2017). Atrazine in-
hibits the photosystem Il by binding on the plastoquinone (Farland
et al,, 2008). Although banned in the European Union since 2007, Atra-
zine is widely used in countries, including Brazil and the United States
(Fernandes et al., 2020; MAPA, 2020). A formulation (Calaris®) contain-
ing a mixture of Mesotrione and Atrazine was developed by Syngenta
and has been considered an upgrading of atrazine herbicides (Matte
et al,, 2018; Syngenta, 2020).

Poisoning by Mesotrione or Atrazine can cause damage to arthro-
pods. For example, Mesotrione increases the mortality of the mite
Tetranychus urticae (Schmidt-Jeffris and Cutulle, 2019), and Atrazine
delays the maturation and induces molting errors in the spider
Pardosa milvina (Godfrey and Rypstra, 2018). Atrazine poisoning in
insects can result in changes in survival, reproduction, longevity, de-
velopment time, body size, and locomotion, depending on the spe-
cies (Vogel et al., 2015; Marcus and Fiumera, 2016; Ejomah et al.,
2020). In addition, Atrazine poisoning can cause changes in the phys-
iology of insects, such as dysfunction in the endocrine system
(McCallum et al., 2013), neurotransmission (Papaefthimiou et al.,
2003), and in the expression of genes associated with detoxification
(Le Goffet al, 2006), and proteins related to oxidative stress and en-
ergy production (Thornton et al., 2010). In Apis mellifera bees, Atra-
zine poisoning decreased acetylcholine activity (Boily et al., 2013)
and increased lipid peroxidation (Helmer et al., 2015). However,
the toxicological effects of these herbicides on stingless bees are
still unknown.

The toxicological risk of agrochemicals in bees includes, among
other stressors, the lethal and sublethal effects (Rortais et al., 2017;
Delkash-Roudsari et al., 2020). Sublethal effects are relevant because
they can interfere with the development, behaviour, reproduction,
and physiology of organs such as the midgut. The midgut epithelium
of bees comprises the enterocytes (or digestive cells), which synthe-
sise digestive enzymes and absorb nutrients; regenerative or stem
cells, responsible for the cell renewal; and enteroendocrine cells
that synthesise neuropeptides (Martins et al., 2006; Cruz Landim,
2009; Christie, 2020). The midgut epithelium or peritrophic matrix
(PM; an extracellular matrix that protects the midgut epithelium)
may also be compromised after oral exposure of bees to agrochemi-
cals with different spectra of action (Desneux et al., 2007; Oliveira
et al., 2013; Lopes et al., 2018; Araujo et al.,, 2019a, 2019b; Carneiro
et al., 2020). However, the effects of herbicides on endocrine cells
and proteins of signalling pathways related to the process of prolifer-
ation and differentiation of cells in the midgut have not yet been
studied.

Given that herbicides potentially cause damage to bees, this work
aims to evaluate the effects of oral exposure to the mix of herbicides
(Mesotrione + Atrazine) on the stingless bee workers, Partamona
helleri. The food consumption, behaviour (walking distance and
meandering), and morphology of the midgut epithelium were
assessed after oral intoxication and compared to the controls (non-
intoxicated individuals). In addition to identifying the effects of in-
toxication with the mix of herbicides, the integrity of the PM was
checked, and the midgut cells were tested for different cell markers,
including the FMRFamide neuropeptide (H-Phe-Met-Arg-Phe-NH,)
and proteins related to cell proliferation and differentiation.
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2. Material and methods
2.1. Bees and herbicide mix

Adult workers of P. helleri were collected from four colonies kept in
the experimental apiary at the Universidade Federal de Vicosa (UFV),
Vigosa, MG, Brazil (20° 75'S 42° 86'W) under the license ID 75536
(ICMBio - SISBIO, Ministério do Meio Ambiente, Brazil ). Foragers were
used in all experiments; these bees go out to collect food resources in
the field and can be exposed to agrochemicals during their outside ac-
tivities (Tomé et al.,, 2017; Botina et al., 2020). The bees (20-30 days
old) were collected at the entrance of each colony with a glass Erlen-
meyer flask which was placed at the exit of the hive. The collected for-
ages were taken to the laboratory and were kept in an incubator at 28
°C and 80% humidity in the dark for 1 h for acclimation (Botina et al.,
2020).

The bees were exposed to a mix of Mesotrione and Atrazine in
their commercial formulation [Calaris® - active ingredients:
Mesotrione (50 g/L) and Atrazine (500 g/L); formulation adjuvants
(597 g/L); concentrated suspension; Syngenta, Sdo Paulo, SP,
(Brazil)] registered for agricultural use in Brazil. A stock solution
was prepared by diluting the commercial formulation of the mix at
the maximum recommended rate for the field (i.e., 240 mL of the
mix in 20 L of water) in 50% aqueous sucrose solution, according to
the manufacturer's recommendations for the control of morning
glory weeds (Ipomoea hederifolia, Ipomoea nil, Ipomoea quamoclit,
and Merremia cissoides) and crabgrass (Digitaria cilaris, and Digitaria
nuda) in sugarcane (Saccharum officinarum) cultivation. The dilution
of the stock solution of the mix was prepared by diluting 300 uL in 25
mlL of 50% aqueous sucrose solution. This herbicide solution was con-
sidered as the 100% concentration and was used as a basis to acquire
eight more successive dilutions that resulted in the concentrations
used in the concentration-mortality bioassay (Section 2.2)

.2.2. Concentration-mortality and food consumption bioassays

After the acclimation period, ten foragers from each colony
were transferred to plastic pots with a volume of 250 mL, with
each pot equivalent to an experimental unit. The bees were ex-
posed orally to the solution of the mix of herbicides through a
hole made in microtubes (1.5 mL) of a centrifuge which was
inserted into the wall of each plastic pot. The mix of herbicides
was used in the following concentrations: 100%, 75%, 50%, 25%,
10%, 7.5%, 5%, 2.5%, and 1% (OECD, 2017; Botina et al., 2020).
These concentrations (except 100%) are below than recommended
for the use in the field according to the manufacturer's instructions
and, similar to the ingestion of food contaminated by herbicides in
natural conditions. The contaminated diet was offered to the bees
for 3 h (Tome et al,, 2015; Bernardes et al., 2018; Araujo et al.,
2019a). After this period, the microtubes were replaced, and the
bees were fed ad libitum with a 50% sucrose solution (without her-
bicide) for 24 h. This 50% sucrose solution was offered to the con-
trol group only once, which had ten forages from each colony, and
was sufficient to feed the bees during the experiment (27 h). All
bees were kept under controlled conditions as described above.
Bees devoid of the movement were described as dead. In this bioas-
say, 50% and 10% lethal concentrations (LCsp and LCyq, respec-
tively) were estimated and used in subsequent bioassays.

The effects on bees' food consumption after oral exposure to the
mix of herbicides were analysed by weighing the microtubes con-
taining the diets. The microtubes with different concentrations
(Section 2.2) were weighed separately, before and after 3 h of the
exposure,on an analytical balance (XS3DU, Mettler Toledo, Colum-
bus, OH). Therefore, food consumption was recorded in grams (g),
corresponding to the average consumption of the ten bees in each
experimental unit (Botina et al., 2020).
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2.3. Behavioural bioassay

The behaviour was monitored for 24 h after the workers' exposure
for three hours to the LG5y and LCy concentrations determined in the
concentration-mortality bioassay and control. The behaviour of groups
of five workers from each of the four colonies for each of the three treat-
ments (total N = 60) was recorded for 10 min with a digital video cam-
era (HDR-XR520V, Sony) at 30 frames per second and in high definition
(1920 x 1080 pixels). These records were made in a bright room with
artificial led light at 25 + 3 °C. The videos were analysed using the
Ethoflow® software (Instituto Nacional de Propriedade Industrial -
INPI, Brazil, BR 512020 000737-6; Bernardes et al., 2020) to calculate
the distance travelled (cm) by the workers in the arenas (Petri dishes
of 9 cm diameter x 2 cm high). This software was also used to evaluate
the behaviour of meandering (°* cm™!), which is based on the polar co-
ordinates of the movement (defined as the sum of the azimuth angles
divided by the sum of the rays of the movement).

2.4. Histology of the midgut and WGA-FITC staining

Foragers exposed to the LGsp (n = 5) and LGy, (n = 5) concentra-
tions and the controls (n = 5) were anesthetised at —20 °C for 1.5
min and dissected in insect physiological solution (0.1 M Na(l, 20 mM
KH;PO, and 20 mM Na,HP,). The midguts were fixed in Zamboni solu-
tion (4% paraformaldehyde, Sorensen's phosphate buffer, and saturated
picric acid solution) for 2 hat 25 + 2 °C. The organs were washed and
stored overnight in sodium phosphate buffer (0.1 PBS, pH 7.2). Samples
were dehydrated in an ascending series of ethanol (70%, 80%, 90%, 95%,
and 99%) embedded in Leica® historesin (Leica Biosystems Nussloch
GmbH, Heidelberg, Germany) and sectioned at 5 pm thick with a glass
knife on an automatic microtome. The sections were stained with he-
matoxylin and eosin for 15 min and 1 min, respectively, analysed, and
photographed with an Olympus BX53 light microscope connected to a
DP 73 digital camera (Olympus Optical Co., Tokyo, Japan).

Histological sections were also used to detect the PM. Sections were
incubated for 1 h at room temperature with FITC-conjugated lectin
(WGA-FITC, Sigma-Aldrich, # L4895, Israel) diluted (1:400) in PBS to
detect glycoconjugates and polysaccharides containing [3-1-4 N-acetyl-
glucosamine residues. The sections were washed three times and incu-
bated for 30 min with DAPI (diamidino-2-fenilindole; Biotium, Inc.,
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Hayward, CA, EUA; 1:500) for DNA (cell nuclei) staining. After a triple
wash, the sections were mounted in a 50% sucrose solution, analysed,
and photographed under fluorescence microscopy coupled to an Olym-
pus XM10 digital camera (Olympus Optical Co., Tokyo, Japan). The in-
tensity of the WGA-FITC fluorescence signal in the images was
measured with Image-ProPlus 4.5 software (Media Cybernetics, Silver
Spring, USA). Inthis measurement, five images were selected at random
from each treatment acquired with a final magnification of 1600x.

2.5. Immunofluorescence

Fixed midguts (session 2.4) were washed three times and incubated
for 2hin 0.1 M PBS with 1% Triton X-100 (PBST). The organs were incu-
bated for 72 h at 4 °C with primary antibodies diluted in PBS. The pri-
mary antibodies used were: anti-FMRF-amide XP Rabbit mAb (1:500
dilution) (Gene Tex, San Antonio, TX, USA), anti-LC3 B (D11) XP Rabbit
mAb (1:500), anti-phospho-p44/42 MAPK (Erk1/2) XP Rabbit mAb
(1:200) and anti-NOTCH 1 (D6F11) XP Rabbit mAb (1:400) ( Cell Signal-
ling Technology, Inc., Beverly, MA, USA); anti-WNT Mouse (Wingless
protein, monoclonal, Drosophila — Brook and Cohen, 1996) (1:600)
and anti-PROSPERO Mouse (MR1A - Campbellet al,, 1994) (1:400) (De-
velopmental Studies Hybridoma Bank, lowa City, lowa, USA). For each
antibody, five midguts of bees treated with LCsp, LCip, and control
were used, totalling fifteen individuals.

After the primary incubation, the organs were washed three times
and incubated for 24 h with conjugated secondary antibody anti-
Rabbit TRITC (1:500) (Thermo Fisher-Scientific, Waltham, Mass., EUA)
or anti-Mouse 1gG Goat pAb (1:500) ( Gene Tex, San Antonio, TX, USA)
in PBS at 4 °C. The samples were stained with DAPI for 1 h, washed
again, and mounted on glass slides with 50% sucrose solution. Samples
were analysed and photographed under fluorescence microscopy. Dif-
ferences between treatments were quantified by counting positive
cells detected throughout the organ, which was carefully analysed
using the 20x objective.

Five midguts from each treatment (LCgq, LCyq, and control) were
used as a negative control. The organs were treated as previously de-
scribed, except for the step referring to the incubation with the primary
antibody.

0.20 4
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e F =477, p=0035
y=0.116 - 0.00034x
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Fig. 1. Mortality and food consumption of the stingless bee Partamona helleri exposed to different concentrations of the mix of herbicides (Mesotrione + Atrazine). (A) Concentration —
mortality curve. The dots represent the observed values. The red line is the estimate based on the probit model. The dotted blue lines represent the 95% confidence intervals. LCsgand LCqg
are indicated (black dotted lines). (B) Food consumption (g) per experimental unit. The red line indicates linear regression. The points represent the observed values ofa ol N = 36 (n =

4 pots with ten workers for each of the nine concentrations in the mix).
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2.6. Data analyses

For mortality bioassay data, a concentration-response model
(probit) was created and used to estimate the lethal concentrations at
50% and 10% (LCsq, and LC, ). The results of food consumption were
subjected to linear regression analysis. Mixed linear models (LMMs)
were adjusted for behavioural data (walking distance and meandering).
These data were adequate for Gaussian distribution, and the colony was
considered as a random effect since groups of individuals from the same
colony were evaluated together in the same arena. Wheat Germ Agglu-
tinin (WGA - peritrophic matrix staining) data were analysed using
generalised linear models (GLM) with gamma distribution, a suitable
distribution for continuous data where the variance increases with the
square of the mean (Crawley, 2012).

To evaluate changes in the detection of intracellular proteins (im-
munostaining) caused by acute toxicity to the mix of herbicides, an
analysis of permutational multivariate variance (PERMANOVA) with
999 permutations and Euclidean distance was performed. The variables
were standardised to a mean = 0 and standard deviation = 1 to elimi-
nate the scale effect. Paired combinations (contrasts) were performed
with Bonferroni adjustment. The multivariate dispersion homogeneity
test (PERMDISP) was used to check the assumption of homogeneity of
PERMANOVA (Anderson, 2014) . Principal component analysis (PCA)
was used to obtain an ordering of the samples in the treatments and
the relationship of the variables with the treatments. The main compo-
nents were defined by the covariance matrix, as the variables were
standardised. Through GLM, univariate analyses were also performed
to complement the cell signalling results. These models were adjusted
with a negative binomial distribution because the variables are of the
count type. In addition, this distribution avoids the occurrence of
overdispersion (high residual deviance).

In LMMs and GLMSs, when necessary, contrasts by gradual simplifica-
tion of the models were performed to assess the difference between the
levels of the explanatory variable (treatment with the mix of herbi-
cides). The residues were checked on all models to verify the adequacy
of the distributions. All analyses were performed using R software (R
Core Team version 4.0.0, 2020).

3. Results
3.1. Mortality and food consumption

The effects of different concentrations of the mix of herbicides on
mortality were verified for workers of P. helleri. The concentration-
response model was adequate for the results of mortality after oral ex-
posure (}* = 59.347,d.f = 7,p = 0.99, Fig. 1A). The estimated concen-
trations (95% confidence interval) were LCsg = 34.1% (25.86; 46.98)
and LGy = 5.43% (3.16; 7.88). Workers decreased food consumption
with increasing concentrations of the mix of herbicides (F . 55 = 4.77,
p = 0.035, Fig. 1B).

3.2. Behaviour

The walking distance was significantly different between treatments
with the mix of herbicides (y 2=274 df=2, p < 0.0001). Bees from
the LCsp treatment walked less than bees from the LC,p and control
reatments (Fig. 2A-D, and Movies S1-53). Meandering behaviour was
also different between treatments (y 2 = 39.2, df = 2, p < 0.0001).
The LCsq treatment showed greater meandering behaviour (Fig. 3A-B)
with greater azimuth angles occurring more frequently (Fig. 3C).

3.3. Midgut and peritrophic matrix (PM)
Digestive cells with high vacuolization and disintegrating protru-

sions in their apical region were observed in the epithelium treated
with the LCso of the mix (Fig. 4A-B). On the other hand, these signals
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of degradation were less evident in the LCyo and control. Control bees
did not have protrusions in the apical region and signals of the disinte-
gration of digestive cells (Fig. 4C-F).

The analysis of the fluorescence signal intensity in the PM stained
with WGA-FITC showed a significant difference (y? = 2.83,df = 12,p
= 0.027, Fig. 5A-B). The greater intensity of labelling for PM was de-
tected in the control group.

3.4. Immunostaining

The assumption of homogeneous dispersion was not rejected
(PERMIDISP: F 5, 12 = 1.62, p = 0.24), demonstrating the suitability of
the PERMANOVA analysis. The mix of herbicides caused significant
changes in the pattern of in situ detection of proteins related to cell sig-
nalling (PERMANOVA: F, , = 1.85, p = 0.013, R? = 0.24). The paired
combinations demonstrated that the LCsp treatment differed from the
control (Fig. 6A). In the first component (PC1), which explains most of
the variance (29.84%), the variables PROSPERO and WNT presented
the highest loads and, therefore, contributed more to the divergence be-
tween treatments (Figs. 6B, 7, and Fig.51). The variables LC3 and NOTCH
showed high positive loads for the second axis (PC2), which are more
associated with the LCs; treatment, which presented the most positive
PC2 scores (Fig. 8 and Fig. S2). These results were consistent with the
univariate analysis performed for each cell signalling variable
(Table S1).

4. Discussion

To our knowledge, this work was the first to study the toxicological
effects of the formulation of the mix of herbicides (Mesotrione + Atra-
zine - Calaris®) on pollinators. Our data shows that the estimated con-
centrations (LCsg, and LC,q -Fig. 1), which are below the recommended
concentration used in the field, imposed a risk on adult workers of P.
helleri in laboratory conditions, that represent an extreme scenario of
exposure of the mix of herbicides. Concentrations lower than that rec-
ommended for the field of an Atrazine-based herbicide were also toxic
to workers of the termite Macrotermes bellicosus (Ejomah et al., 2020).
These data are concerning because the main constituent of the mix of
herbicides is Atrazine (Matte et al,, 2018), an agrochemical that is con-
sidered to have a high relative environmental risk and is banned in
the European Union (Barchanska et al., 2012). Thus, the ingestion of
herbicide formulations based on Atrazine or a mix, in which Atrazine
is the main component, can be harmful to the survival of benefidal in-
sects, such as P. helleri (this work) and M. bellicosus (Ejomah et al.,
2020). As a consequence, Atrazine can have broader adverse effects
and affect the colony of these individuals. These effects need to be stud-
ied to understand their full impact.

The presence of the herbicides in the diet inhibited the consumption
of food by P. helleri, and the amount ingested by the individuals was suf-
ficient to increase their mortality in comparison to the control. This
lower diet consumption can be caused by nutritional stress due to intox-
ication by the ingested xenobiotic and by the inhibitory phage effect of
the contaminated food (Bernardes et al., 2017; Tong et al, 2019). The
type of stress caused by oral exposure to agrochemicals (insecticides,
and fungicides) increased mortality of bees, including Apis mellifera
and stingless bees (eg., P. helleri, and Scaptotrigona xanthotrica) (Tome
etal, 2015, 2017; Tosi et al,, 2017).

The results of the behavioural response (Fig. 2, and Movies S1-53)
corroborate investigations that agrochemicals affect walking ability in
stingless bees (Tomé et al., 2012, 2015; Barbosa et al,, 2015; Marques
et al, 2020), which can lead to changes in dispersion and reproduction.
Even worse, oral intoxication by the mix of herbicides (LCsy) increased
the meandering behaviour of P. helleri, suggesting that this agrochemi-
cal may also be neurotoxic (Cheng et al., 2020). However, further stud-
ies are needed to understand the effect of the mix of herbicides on the
nervous system of bees.



RS. Aratijo, R.C. Bernardes and G.F. Martins

A

1200

1

1000

800 —

600 —

400

Tracked distance (cm)

200

LCs LCiyy  Control

Time (s)

122

Science of the Total Environment 763 (2021) 142980

Time (s)

Time (s)

Fig. 2. Walking distance (cm) by workers of Partamona helleri exposed to different concentrations of the mix of herbicides (Mesotrione <+ Atrazine). (A) The bars are means + standard
error ofa total of N = 60 (n = 5 workers from each of the 4 colonies in each of the 3 treatments). Bars represented by different letters are significantly different according to the contrasts
due to the gradual simplification of the model. (B}, (C), and (D) represent movement tracks in the arenas (9 cm = 9 cm) over the monitoring time (600 s) for the LCsy, LCyp, and control

reatments, respectively.

Exposure to the LCs; of the mix of herbicides also harmed the midgut
epithelium of P. heileri, leading the high cell vacuolisation, which is in-
dicative of cell death (Araujo et al., 2019a). A greater number of LC3
B-positive cells was also detected in the midgut of bees that ingested
the LCsq of the mix of herbicides (Table S1). Therefore, these two results
reinforce that the mix has the potential to stimulate autophagy and con-
sequently, the degradation of the intestinal epithelium.

The decrease in the intensity of staining by WGA-FITC in orally ex-
posed bees indicated that the degradation of the epithelium was so
high that it compromised the maintenance of PM. Similar data have
been reported in adult A. mellifera bees (Lopes et al,, 2018) and during
the development of P. helleri (Araujo et al, 2019b) after oral exposure
to Spinosad. Together, these data show that ingestion of agrochemicals,
including the mix of herbicides and insecticides, can negatively affect
the PM, a structure responsible for protecting the midgut epithelium
against abrasion of food particles, digestive enzymes, and pathogens

(Hegedus et al,, 2009), and, because of that, drastically reduce the
bee's life span.

Oral exposure to the mix of herbicides also reduced the number of
cells positive for PROSPERO or FMRF in the midgut of intoxicated bees
compared to the control PROSPERO is a transcription factor that possi-
bly regulates the differentiation of stem cells into enteroendocrine cells
in insects (Micchelli and Perrimon, 2006; Zeng and Hou, 2015; Di Cara
et al, 2018). It is hypothesized that a reduction in the number of cells
positive for PROSPERO correlates to fewer enteroendocrine cells. Fur-
thermore, the reduction in the amount of FMRF positive cells in the mid-
gut of treated works of P. helleri suggests that the mix of herbicides leads
to the death of differentiated enteroendocrine cells, which can affect
midgut homeostasis (Amcheslavsky et al, 2014).

Unlikely the results observed for PROSPERO and FMREF, the exposure
of P. helleri to the LCsp of the mix of herbicide caused an increase in the
number of cells positive for WNT or NOTCH. It has been reported that
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Fig. 3. Meandering behaviour presented by workers of Partamona helleri exposed to different concentrations of the mix of herbicides (Mesotrione + Atrazine). (A) The bars are means +
standard error of a total of N = 60 (n = 5 workers from each of the 4 colonies in each of the 3 treatments). Bars represented by different letters are significantly different according to the
contrasts by gradual simplification of the model. (B) Representation of meandering accumulated every second of monitoring [ 600 s) categorised by treatments. {C) Histograms of the polar
wordinates showing the proportion of occurrence of the rays and azimuth angles of the walk in the different treatments.
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Fig. 5. Peritrophic matrix (PM) of the midgut of Partamona helleri exposed orally tothe LCsq and LCy of the mix of herbicides (Mesotrione + Atrazine) or the 50% sucrose solution (control).
(A} Micrographs of the midgut stained with WGA-FITC (green = PM } and DAPI ( blue = nucleus). (B} WGA-HTC fluorescence intensity. The boxes indicate the medians and the dispersion
(lower and upper quartiles and outliers) of a total N = 15 samples (n = 5 medium intestines for each of the 3 treatments ). The dot above the yellow bar indicates an outlier. Different
letters indicate a significant difference according to the contrasts in the GLM (p < 0.05).

WNT and NOTCH signalling pathways are related to the proliferation detection of MAPK-positive cells in bees exposed to the mix. The
and differentiation of midgut stem cells in Drosophila melanagaster MAPK protein regulates the proliferation and differentiation of insect
(Kuwamura et al., 2010, 2012). There was also an increase in the midgut cells (Kondoh et al., 2005; Tong and Feng, 2018). Therefore,
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Fig. 6. Principal component analysis (PCA) considering the number of positive cells for proteins related to cell signalling in the midgut of Partamona helleri exposed orally to the LC;; and
LCypofthe mix of herbicides (Mesotrione + Atrazine) or the 50% sucrose solution (control). (A} PCA ordering diagram with ellipses representing the confidence interval (95%) around the
centroid of each treatment (major points) of a total N = 15 samples (n = 5 midguts for each of the 3 treatments ). (B} Representation ofloads of the variables associated with the firstand
second components. The directions and lengths of the arrows indicate the relative loads of the variables to the components. The box plots indicate the median and dispersion range (lower
and upper quartiles) of the scores for component 1 {upper panel} and component 2 (right panel), categorised by treatments with the mix of herbicides. The percentage values onthe axes
indicate how much each component explains the total variance of the data.
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Fig. 7. Immunostaining of WNT positive cells in the midgut of Partamona helleri workers treated with LCsp and LCyp of the mix of herbicides (Mesotrione + Atrazine) or 50% sucrose
solution (control). The negative control (without the primary antibody) was done with midgut of bees treated with LCso. Red: WNT positive cells. Blue (DAP1): cell nuclei.

we hypothesise that the increase in the number of cells positive for
WNT or NOTCH (and slightly for MAPK) is related to the organ
attempting to maintain homeostasis by increasing stem cell differentia-
tion to compensate for cells that have been harmed after the ingestion
of the mix of herbicides.

5. Conclusion

In conclusion, our findings demonstrate that oral exposure to the
mix of herbicides decreases survival, reduces food consumption, and af-
fects the walking and meandering behaviours of adult workers of P.
helleri. The exposure also caused damage to the epithelium and MP of
the midgutand changed the number of cells positive for proteins related
to cell signalling pathways related to the proliferation and differentia-
tion of midgut stem cells.

Although the conditions tested in the present study were in the labo-
ratory, this study showed the potential toxicological effects of the mix of
herbicides in beneficial insects, including a pollinator bee. Future studies
are needed to estimate the risk imposed by the mix of herbicides in the
field to pollinators and also to assess its effect on synergies with other

agrochemicals. These studies will also help to make decisions regarding
the use of the mix of herbicides to mitigate its damage to pollinators.

CRediT authorship contribution statement

Renan dos Santos Aradjo: Conceptualization; Investigation; Meth-
odology; Visualization; Writing - original draft. Rodrigo Cupertino
Bernardes: Conceptualization; Investigation; Methodology; Software;
Visualization; Making figures. Gustavo Ferreira Martins: Conceptuali-
zation; Funding acquisition; Project administration; Supervision; Writ-
ing - review & editing.

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.scitotenv.2020.142980.

Dedaration of competing interest
The authors declare that they have no known competing financial

interests or personal relationships that could have appeared to influ-
ence the work reported in this paper.



RS. Aratijo, R.C. Bernardes and G.F. Martins

NOTCH

LC10 LC50

CONTROL

126

Science of the Total Environment 763 (2021) 142980

NOTCH + DAPI

20 ym
]

Fig. 8. Immunostaining of NOTCH positive cells (red) in workers treated with the LCsp and LC, g of the mix of herbicides (Mesotrione + Atrazine) or with 50% suarose solution (control ). Cell

nuclei are stained with DAPI (blue).
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CONCLUSIONS

e Ethoflow is an open-source desktop software with a graphical user interface, making it
easier for the general public due to non-demand for programming. Additionally, Ethoflow is
suitable for multivariate kinematic evaluations, behavioral assessments in heterogeneous
environments, tracking individuals in groups maintaining their identities, and can be trained to
learn specific animal behavior. Finally, Ethoflow is efficient in detecting bees in heterogeneous
environments and performing different behaviors under no treatment or treated with pesticides
with satisfactory processing speed and accuracy.

e The collective behavior of foragers of M. quadrifasciata exposed to glyphosate and
imidacloprid was monitored automatically with Ethoflow. Integrating multivariate behavioral
data with Al algorithms, it was obtained up to 91% accuracy for predicting agrochemical
contamination in bees. Moreover, a multivariate assessment of the in situ detection of different
proteins that play a role in the immune response, cell proliferation, and differentiation in midgut
revealed that the agrochemicals differentially impact the midgut, depending on the modes of
action of the agrochemicals. This effort provides a broad assessment of the adverse sublethal
effects of glyphosate or imidacloprid on the pollinators. The method proposed can be widely
applied for other bees, pointing to the field application of Al to predict the environmental factors
influencing bees’ health.

e The oral exposure to CuSOg4 lead sublethal effects in foragers of P. helleri. The sublethal
effects caused by this agrochemical included disturbances in the walking behavior, in the
structure of the midgut epithelium, and in the PM organization. Additionally, the ingestion of
CuSOq4 lead oxidative stress and altered the immunofluorescence detection of proteins that play
arole in the immune response, cell proliferation, and differentiation in the midgut. Accordingly,
CuSO4 lead some potential toxicological risks for pollinating insects, such as P. helleri.

e The LCso and LCjo were estimated for acute oral exposure to the mix of herbicides
mesotrione and atrazine in forages of P. helleri. The mix of herbicides interfered in the food
consumption and behavioral parameters of bees. The exposure also caused damage to the
epithelium and PM and changed the pattern of cells positive for proteins related to the
proliferation and differentiation of midgut stem cells.

e This work presented and validated the Al-based system Ethoflow. This software
provides a useful tool for technical-scientific applications in the animal behavior field and in

toxicological assessments of non-target organisms for modeling the multiple factors affecting
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bees’ health, including the adverse effects of agrochemicals. With Ethoflow it is possible to
obtain multivariate behavioral data to train Al algorithms that predict the contamination by
agrochemicals with high accuracy. Ethoflow also enabled holistic assessments, including

sublethal effects of different agrochemicals on the behavior and physiology of bees.



