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ABSTRACT 

 

BERNARDES, Rodrigo Cupertino, D.Sc., Universidade Federal de Viçosa, July, 2021. 
Ethoflow: an artificial intelligence-based software that facilitates behavioral 

measurements and their application for toxicological assessments in insects. Adviser: 
Gustavo Ferreira Martins. Co-adviser: Maria Augusta Lima Siqueira. 

 

 

The application of artificial intelligence (AI) techniques has demonstrated outstanding 

performance for automating complex tasks in many areas. Thus, software with AI 

implementation can be sufficiently robust to meet the demand for studies on animal behavior 

(e.g., evaluating behavior under field conditions). Studies on risk assessment in bees have 

focused on the possible causes of loss of their colonies worldwide, which is attributed to 

different factors, including agricultural practices with the use of agrochemicals. In toxicological 

studies of agrochemicals in bees, behavioral assessment is an important sublethal parameter. 

Thus, the development and application of AI tools can considerably contribute to the 

understanding of how agrochemicals and other factors are affecting the bees’ health. The 

present work aimed to develop an AI-based software (Ethoflow) to automatically assess animal 

behavior. In addition, Ethoflow was applied to evaluate sublethal behavioral changes in 

toxicological studies of agrochemicals in forages of two stingless bee species, including 

Melipona quadrifasciata and Partamona helleri (Hymenoptera, Apidae, Meliponini). The 

results obtained demonstrate that: (1) Ethoflow is robust for multivariate behavioral 

assessments, behavioral assessments in heterogeneous environments, tracking individuals in 

groups maintaining their identities and can be trained to learn behaviors specific to animals; (2) 

it is possible to classify agrochemical contamination in bees with high accuracy by integrating 

multivariate behavioral data with AI algorithms and the agrochemicals glyphosate and 

imidacloprid differentially impact the midgut physiology of M. quadrifasciata; (3) the foliar 

fertilizer copper sulfate (CuSO4) causes sublethal effects on the behavior and structure and 

physiology of the midgut epithelium of P. helleri; (4) the mixture of mesotrione and atrazine 

herbicides interfered in food intake and behavioral parameters, caused damage to the midgut 

epithelium and altered the pattern of proteins related to the cell proliferation and differentiation 

in midgut of P. helleri. In general, Ethoflow is a useful support tool for technical-scientific 

applications in the animal behavior field and has significant potential in risk assessments of 

non-target organisms for modeling the multiple factors affecting bees’ health, including the 



 
 

adverse effects of agrochemicals. Besides, AI algorithms trained with multivariate behavioral 

data predict bees’ agrochemical contamination with high accuracy. Finally, the analyzes 

enabled holistic assessments of sublethal effects of different agrochemicals on the behavior and 

physiology of bees. 

 

Keywords: Bee. Computer vision. Machine learning. Meliponini. Pollinators. 



 
 

RESUMO 

 

BERNARDES, Rodrigo Cupertino, D.Sc., Universidade Federal de Viçosa, julho de 2021. 
Ethoflow: software baseado em inteligência artificial para medições comportamentais e 

suas aplicações em avaliações toxicológicas em insetos. Orientador: Gustavo Ferreira 
Martins. Coorientadora: Maria Augusta Lima Siqueira. 
 

 

A aplicação de técnicas de inteligência artificial (IA) tem demonstrado desempenho 

excepcional para automatizar tarefas complexas em muitas áreas. Um software com 

implementação de IA pode ser robusto atender a demanda de estudos sobre comportamento 

animal (por exemplo, para avaliar comportamentos em condições de campo). Estudos sobre 

avaliação de risco em abelhas têm se concentrado nas possíveis causas de perda de suas colônias 

em todo o mundo, o que é atribuído a diferentes fatores incluindo práticas agrícolas com uso de 

agroquímicos. Em estudos toxicológicos de agroquímicos em abelhas, avaliação 

comportamental é um importante parâmetro subletal. Dessa forma, o desenvolvimento e 

aplicação de ferramentas com IA pode contribuir substancialmente para o entendimento de 

como os agroquímicos e outros fatores estão afetando a saúde das abelhas. O presente trabalho 

objetivou desenvolver um software (Ethoflow) baseado em IA para avaliar comportamento 

animal automaticamente. Além disso, o Ethoflow foi aplicado em avaliações comportamentais 

em forrageiras de duas espécies de abelha sem ferrão, Melipona quadrifasciata e Partamona 

helleri (Hymenoptera, Apidae, Meliponini) expostas a diferentes agroquímicos. Os resultados 

obtidos demonstram que: (1) o Ethoflow é robusto para avaliações comportamentais 

multivariadas, avaliações comportamentais em ambientes heterogêneos, rastreamento de 

indivíduos em grupos mantendo suas identidades e pode ser treinado para aprender 

comportamentos específicos dos animais; (2) é possível classificar contaminação por 

agroquímicos em abelhas com alta acurácia, integrando dados comportamentais multivariados 

com algoritmos de IA e os agroquímicos glifosato e imidaclopride, diferencialmente, impactam 

a fisiologia do intestino médio de M. quadrifasciata; (3) o fertilizante foliar sulfato de cobre 

causa efeitos subletais no comportamento e na estrutura e fisiologia do epitélio do intestino 

médio de P. helleri; (4) a mistura dos herbicidas mesotriona e atrazina interferiu no consumo 

alimentar e parâmetros comportamentais, causou danos ao epitélio do intestino médio e alterou 

o padrão de proteínas relacionadas à proliferação e diferenciação de células-tronco do intestino 

médio de P. helleri. Em resumo, o Ethoflow é uma ferramenta de suporte útil para aplicações 



 
 

técnico-científicas em comportamento animal e tem potencial significativo em avaliações de 

risco de organismos não-alvo para modelar os múltiplos fatores que afetam a saúde das abelhas, 

incluindo os efeitos adversos dos agroquímicos. Além disso, algoritmos de IA, treinados com 

dados comportamentais multivariados, preveem a contaminação por agroquímicos em abelhas 

com alta acurácia. Finalmente, as análises permitiram avaliações holísticas dos efeitos subletais 

de diferentes agroquímicos no comportamento e fisiologia das abelhas. 

 

Palavras-chave: Abelha. Aprendizado de máquina. Meliponini. Polinizadores. Visão 
computacional. 
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INTRODUCTION 

The increase in the availability of computational resources, especially the graphic units 

for processing in parallel, has contributed to the outstanding performance of artificial 

intelligence (AI) in many areas. Using AI approaches it is possible to train algorithms on a 

representative dataset to perform classification predictions on other independent datasets 

(Ghahramani, 2015). Thus, a properly trained AI algorithm can generalize to new situations and 

automate tasks.  

Due to subjectivity and non-parametrization, evaluating animal behavior manually is a 

limited method (Noldus et al., 2002) and the implementation of AI for automatic behavior 

analysis has great potential (Dell et al., 2014). AI applications in animal behavior science seem 

to be an active topic nowadays and tools have been developed, for example, software for animal 

tracking (it gets the animal’s position in each frame of a digital video and record the Cartesian 

or polar coordinates of the movement) (Rodriguez et al., 2018; Romero-Ferrero et al., 2019; 

Sridhar et al., 2019; Walter and Couzin, 2020) and software for animal pose estimation (it 

measures the geometrical configuration of animal body parts) (Graving et al., 2019; Mathis et 

al., 2018; Pereira et al., 2019).  

In general, the available software for animal behavior analyses detect the animals by 

background subtraction or thresholding (Dell et al., 2014; Yilmaz et al., 2006). These computer 

vision approaches require videos with good contrast between the object and the background, 

and homogeneous background (i.e., with slight variation in color, luminosity, and texture). 

Nonetheless, sufficiently robust systems are needed to assess multiple individuals, maintaining 

individual identities in heterogeneous environments (i.e., complex environmental landscapes 

such as in the field or multi-scenes with variation in color, luminosity, texture, and different 

objects) (Dell et al., 2014). 

By tracking animals, it is possible to calculate important kinematic measurements (from 

animals’ Cartesian or polar coordinates over time) (Yilmaz et al., 2006) of their behavior, such 

as speed and walked distance. Additionally, evaluating complex behaviors of animals can bring 

important insights, for example, in ecotoxicity assessments. In the case of social insects, 

evaluation of complex behaviors such as changes in trophallaxis (i.e., a complex social behavior 

of food exchange among social insect nestmates) is of great importance under pesticide 

exposure (Boff et al., 2018; Gandra et al., 2016). Without accessible tools, many of these 
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assessments are done manually and subjectively, limiting the detection of complex behavioral 

changes. 

A suitable tool to automatically assess animal behavior has great potential for risk 

assessment in bees. Efforts for risk assessment in bees are crucial to understanding the different 

factors that have led to the decline of these pollinators. The decline of bees worldwide is 

attributed to different factors, including agricultural practices with increased agrochemicals 

(Barbosa et al., 2015; Freitas et al., 2009; Lima et al., 2016). Studies showed that the harmful 

effects in bees by exposure to agrochemicals resulting from the adverse sublethal impacts on 

behavior and gut physiology and morphology, such as damage to the midgut cells (Farder-

Gomes et al., 2021b, 2021a; Lima et al., 2016; Sgolastra et al., 2019). Assessing these sublethal 

effects are essentials to understand the factors associated with the long-term success of bee 

colonies because changes that compromise the individual, without leading to death, can affect 

the entire dynamics of colonies (Johnson, 2015; Lima et al., 2016). 

This work aimed to develop an AI-based software (Ethoflow) to improve animal 

behavior analyzes. The developed software was applied to assess behavioral changes in 

agrochemical-exposed bees in toxicological studies. The software developed in this work has 

achieved substantial contribution in the animal behavior field being successfully applied in 

other studies (Araújo et al., 2021; Farder-Gomes et al., 2021b; Viana et al., 2021). With 

Ethoflow it was possible to obtain multivariate behavioral data to train AI algorithms that 

predicted the contamination by agrochemicals in bees with high accuracy. Moreover, the 

analyzes enabled holistic assessments of the agrochemical sublethal effects in stingless bee 

species, including behavioral disorders and morphology, protein quantification, and antioxidant 

activity in bees’ midgut. 

The first chapter reports the development, algorithm, and performance of the Ethoflow 

software, which was trained to recognize trophallaxis and applied in bioassays with two species 

of eusocial bees to compute kinematic behavioral variables. In the second chapter, the software 

Ethoflow was used to measure multivariate behavior data of foragers of Melipona 

quadrifasciata exposed to agrochemicals (glyphosate, and imidacloprid), and AI algorithms 

were applied to predicting bees’ agrochemical contamination. Besides, changes in the detection 

pattern of different proteins related to bee gut physiology after exposure to the two types of 

agrochemicals were quantified. The third chapter assesses the sublethal effects of copper sulfate 

(CuSO4; used in crops primarily as foliar fertilizer) in the behavior and midgut physiology of 
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the stingless bee Partamona helleri. The fourth and last chapter evaluates the harmful effects 

of a mixture containing the herbicides mesotrione and atrazine on P. helleri. 

 

AIMS  

• Develop and validate an open-source desktop software (Ethoflow) using AI tools to 

assessing animal behavior in heterogeneous environments, tracking individuals in groups, 

maintaining their identities, and assessing specific behavior. 

• Apply AI algorithms to predicting bees’ agrochemical contamination (glyphosate, and 

imidacloprid) from behavior data and assess the detection pattern of different proteins related 

to bee gut physiology after exposure to the agrochemicals in foragers of M. quadrifasciata. 

• Estimate the lethal concentration at 50% of CuSO4 (LC50; the concentration that led to the 

deaths of 50% of the exposed population) in foragers of P. helleri and assess the walking 

behavior, morphologies of midgut and peritrophic matrix (PM), midgut oxidative stress, and 

immunofluorescence detection of proteins related to midgut physiology after exposure to 

CuSO4. 

• Estimate lethal concentrations at 50% and 10% (LC50 and LC10) for acute oral exposure to a 

mix of herbicides (mesotrione and atrazine), and assess food consumption, behavior, midgut 

epithelium and PM, and the pattern of cells positive for proteins related to the proliferation 

and differentiation of midgut stem cells in forages of P. helleri. 
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Abstract1 

Machine learning (ML) is a branch of artificial intelligence (AI) that enables the analysis of 

complex multivariate data. ML has significant potential in risk assessments of non-target insects 

for modeling the multiple factors affecting insect health, including the adverse effects of 

agrochemicals. Here, the potential of ML for risk assessments of glyphosate (herbicide; 

formulation) and imidacloprid (insecticide, neonicotinoid; formulation) on the stingless bee 

Melipona quadrifasciata was explored. The collective behavior of forager bees was analyzed 

after in vitro exposure to agrochemicals. ML algorithms were applied to identify the 

agrochemicals that the bees have been exposed to based on multivariate behavioral features. 

Changes in the in situ detection of different proteins in the midgut were also studied. 

Imidacloprid exposure leads to the greatest changes in behavior. The ML algorithms achieved 

a higher accuracy (up to 91%) in identifying agrochemical contamination. The two 

agrochemicals altered the detection of cells positive for different proteins, which can be 

detrimental to midgut physiology. This study provides a holistic assessment of the sublethal 

effects of glyphosate and imidacloprid on a key pollinator. The procedures used here can be 

applied in future studies to monitor and predict multiple environmental factors affecting insect 

health in the field.  

 

Keywords: Artificial intelligence, Ecotoxicology, Modelling, Physiological response, 

Pollinators, Risk assessment 

  

 
 

1 List of abbreviations: ML, machine learning; AI, artificial intelligence; ERK1/2, extracellular signal-regulated 
kinase; JNK, c-Jun NH2-terminal kinase; MAPK, mitogen-activated protein kinase; cf, commercial formulation; 
GLM, generalized linear model; ANOVA, analysis of variance; RFE, recursive feature elimination; RF, random 
forest; LDA, linear discriminant analysis; QDA, quadratic discriminant analysis; KNN, k-nearest neighbors; NB, 
naive Bayes; SVM, support vector machine; GB, gradient boosting; MLP, multilayer perceptron; PCA, principal 
component analysis; PERMANOVA, permutational multivariate analysis of variance; AChE, acetylcholinesterase 
enzyme; ACh, acetylcholine. 
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1. Introduction 

Artificial intelligence (AI) based approaches are used to find and predict answers from 

different unknowns in nature with high efficiency and precision in cause-effect relationships 

(Ghahramani, 2015). Machine learning (ML) is a branch of AI that learns complex structures 

(linear or non-linear) in multivariate data without the assumption of a statistical distribution 

(Crisci et al., 2012). Once trained, ML algorithms can accurately predict new independent 

datasets. AI-based tools also enable accurate automatic behavioral measurements in insects 

(Bernardes et al., 2021; Graving et al., 2019). Recent studies have shown the use of these tools 

for toxicological assessment in bees, such as the use of ML to characterize the foraging activity 

of bees in the field (Gomes et al., 2020) and to measure the effect of exposure to insecticides 

(neonicotinoids) on the behavior of honey bees within colonies (Siefert et al., 2020). Therefore, 

ML approaches can also be applied to predict exposure to different agrochemicals in bees 

through automatically measured behavioral features.  

The risk assessment in bees has focused on the possible causes of their colony losses 

worldwide, which has been attributed to different factors, such as climate change, loss of 

habitat, pathogens, parasites, and agricultural practices with increased agrochemical usage 

(Cham et al., 2018; Freitas et al., 2009). The harmful effects of agrochemicals on bees include 

adverse sublethal impacts on behavior and gut physiology and morphology, such as damage to 

the midgut cells, which can impair the survival, nutrient absorption, and long-term success of 

bee colonies (Araújo et al., 2021; Farder-Gomes et al., 2021; Johnson, 2015; Lima et al., 2016; 

Sgolastra et al., 2019).  

Oral exposure to agrochemicals can change the detection pattern of proteins related to 

cell signaling pathways in the midgut of the stingless bee Partamona helleri (Araújo et al., 

2021; Farder-Gomes et al., 2021), including variations in extracellular signal-regulated kinase 

(ERK1/2) and c-Jun NH2-terminal kinase (JNK) proteins, which belong to the mitogen-

activated protein kinase (MAPK) family. This protein family is involved in modulating 

proliferation, differentiation, and programmed cell death in response to a wide range of stimuli, 

including oxidative stress (Biteau and Jasper, 2011; Kockel et al., 2001; Simon et al., 2009). 

Similarly, the Notch protein with the homeodomain transcription factor Prospero and Wingless 

(Wg) protein and the crucial mediator Armadillo protein are involved in vital processes of 

proliferation, differentiation, and death in the insect midgut (Guruharsha et al., 2012; Liu et al., 
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2010; Swarup and Verheyen, 2012; Tian et al., 2018). Nonetheless, these proteins related to 

cell signaling pathways have been poorly studied in bees.  

Glyphosate is a systemic herbicide used to prevent weed growth (Brookes et al., 2017). 

This herbicide acts on the cycle of shikimic acid, inhibiting the biosynthesis of essential 

aromatic amino acids (e.g., tyrosine, phenylalanine, and tryptophan) for plant growth and 

microorganisms (Dill et al., 2010; Herrmann and Weaver, 1999; Maeda and Dudareva, 2012). 

Although this biochemical pathway is not found in animals, the detrimental effects of 

glyphosate on vertebrates and invertebrates, including bees, have already been reported (Battisti 

et al., 2021; Helmer et al., 2015; Luo et al., 2021; Straw et al., 2021; Tomé et al., 2020). The 

potentially harmful effects of glyphosate on honey bees include impaired foraging behavior and 

cognitive ability (Balbuena et al., 2015; Herbert et al., 2014; Luo et al., 2021). 

Neonicotinoid imidacloprid, an agonist of nicotinic acetylcholine receptors (nAChR), is 

one of the most widely used agrochemicals for pest control in crops (Liu et al., 2006), and acts 

on the central nervous system of insects on cholinergic synaptic transmissions, causing 

alterations in sensory and motor systems (Matsuda et al., 2001). In addition to causing high 

mortality, bees treated with imidacloprid showed disturbances in behavior, development of 

mushroom bodies, and learning (Brito et al., 2020; Carrillo et al., 2013; Jacob et al., 2019; Tomé 

et al., 2012). In 2013, the European Commission adopted certain strategies to maintain healthy 

bee colonies and restrict the use of three neonicotinoids, including imidacloprid, in crops in 

open fields owing to high toxicity in bees according to the guidelines on a risk assessment of 

plant protection products on bees (EFSA, 2013). 

Stingless bees (Hymenoptera, Apidae, Meliponini) are important pollinators and are 

more sensitive to agrochemical exposure than honey bees (Arena and Sgolastra, 2014; Cham et 

al., 2018; Tomé et al., 2017) owing to peculiar characteristics, such as small colony size, longer 

development time, and mass provisioning of the larval diet (Boyle et al., 2018; Lima et al., 

2016). Among stingless bees, the genus Melipona stands out because it represents the largest 

group of eusocial bees, including many species of economic importance, which can compete 

with the exotic and Africanized honey bees for pollination sites (Pires et al., 2018; Ramírez et 

al., 2018; Slaa et al., 2006). Furthermore, in recent years, some species of Melipona have been 

endangered in Brazil, which has led to the creation of risk assessment programs by government 

agencies that help preserve these species owing to their important role in ecosystem services 

(ICMBio, 2018; Pires et al., 2018). 
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In this study, the potential of applying ML for agrochemical risk assessment was 

explored in stingless bees. ML algorithms have been proposed to predict agrochemical effects 

in bees based on multivariate behavioral features. Our study included the treatment of the 

stingless bee Melipona quadrifasciata to glyphosate (herbicide, formulation) and imidacloprid 

(insecticide, formulation) using an established protocol for the exposure of caged bees (Botina 

et al., 2020). The collective behavior of bees treated with these two agrochemicals using AI-

based software for an automatic behavior analysis was assessed. Then, feature selection and 

optimization of the hyper-parameters were conducted to improve the predictive performance of 

several ML algorithms. In addition, different metrics associated with the predictive 

performance were evaluated, and the decision boundaries of the trained ML algorithms were 

checked. In addition, the physiological response to agrochemicals was evaluated through the in 

situ detection of different proteins that play a role in the immune response (i.e., ERK1/2 and 

JNK), and in the cell proliferation and differentiation (i.e., Nocht, Prospero, Wg, and Armadillo) 

in the midgut of bees. To the best our knowledge, this is the first effort to predict the 

contamination of a stingless bee by agrochemicals using ML approaches based on multivariate 

behavioral features and an assessment of cellular protein responses related to gut physiology.  

  

2. Materials and methods 

2.1. Exposure bioassay 

The herbicide glyphosate (commercial formulation (cf); Roundup Original DI®, 

Monsanto do Brasil Ltd., São José dos Campos, SP, Brazil) was used at the concentration of 20 

μL cf mL-1 (20,000 ppm), based on the recommendation applied for managing different weeds 

in crops (MAPA, 2021). The insecticide imidacloprid (cf; Evidence®, Bayer CropScience, São 

Paulo, SP, Brazil) was used at the concentration of 2 μg cf mL-1 (2000 ppm). Because 

imidacloprid is highly toxic to bees, a concentration 300-times less than recommended for 

controlling the whitefly Bemisia tabaci (MAPA, 2021) was used, based on the sublethal 

concentration previously reported for M. quadrifasciata (Tomé et al., 2015b). The 

agrochemicals were diluted in a honey solution (50% distilled water, 50% honey) to prepare 

the contaminated diets (i.e., honey solution + agrochemical) at the concentrations mentioned 

above. An uncontaminated diet (i.e., a honey solution without agrochemicals) was offered to 

the control. 
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Foragers of M. quadrifasciata were collected from six unrelated colonies (SISBIO, ID 

46746-1, Chico Mendes Institute for Biodiversity Conservation) and maintained at the 

Experimental Apiary at UFV (Minas Gerais, Brazil; 20° 45' S and 42° 52' W). The foragers 

were collected at the hive entrance using glass jars, transferred to plastic pots kept in an 

incubator, and fasted under conditions similar to those found in their colonies (28 °C and 80% 

relative humidity in total darkness) for 1 h before exposure (Botina et al., 2020). The bees were 

approximately 20–30 days old when workers conducted the foraging activities (Giannini, 1997; 

Kerr and dos Santos Neto, 1956). Bees from different colonies were not mixed, that is, bees 

from the same colony were kept in the same pot. The bees had access to contaminated diets for 

3 h ad libitum. The exposure occurred orally through feeders (2 mL microcentrifuge tubes) 

inserted laterally in holes in the walls of the cages (500 mL plastic pots), where 13 bees were 

kept per cage. After the exposure period, the contaminated diets were replaced with feeders 

with a non-contaminated diet (i.e., honey in water). In the control group, the non-contaminated 

diet was replaced with a new diet (Botina et al., 2020). The mortality of the bees was checked 

24 h after the exposure period, and bees were counted as dead if they were unable to move or 

stand upright. A total of 468 bees were exposed, considering all treatments (13 bees per cage × 

2 cages × 3 treatments × 6 hives).  

To assess the mortality, a generalized linear model (GLM) was fitted with a binomial 

error distribution, considering the treatment with agrochemicals as the explanatory variable and 

the proportion of bees that died as the response variable. The differences among levels of the 

explanatory variable (agrochemical treatments) were determined by gradual simplification of 

the GLM (p < 0.05) (Crawley, 2012). These analyses were conducted in R software using the 

stats package (R Core Team, 2020). 

 

2.2. Collective behavior analysis 

The collective behavior of bees was assessed immediately after exposure (at 0 h) and 24 

h after exposure. Different bees were used at 0 and 24 h after exposure to avoid temporal 

pseudo-replication and increase the robustness of the predictive capacity of the ML algorithms 

(Hendriksma et al., 2011). The bees were recorded within an arena (Petri dish, 15 cm diameter, 

2 cm height) for 15 min with a digital video camera (HDR-XR520V, Sony Corporation) at 30 

fps and high definition (pixel resolution of 1920 × 1080). A microcentrifuge tube cap with 

honey solution was added to each arena to feed the bees during the recording period.. The 
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recordings were conducted in a room at 25 ± 3 °C and 70 ± 5% relative humidity with three red 

LED lights (6 W) placed 50 cm above the arena to avoid phototactic influence on behavior 

monitoring. A group of six bees from the same hive was filmed in each arena. The average 

response of the group was considered a replicate to avoid pseudo-replication owing to the non-

independence of errors among individuals from the same hive (Hendriksma et al., 2011). A 

total of 72 replicates (2 arenas × 6 hives × 3 treatments × 2 times), totaling 432 sampled bees 

(6 bees × 72 replicates) were considered. 

The videos were analyzed using Ethoflow® software, an AI-based software for 

automatic behavior analysis (Bernardes et al., 2021) (Supplementary videos). With this tool, 

the multivariate behavioral data containing the following 17 features were extracted: tracked 

distance (centimeter), max speed (centimeter per second), turn angle (degree, the average angle 

that the individual rotated in each video frame), meandering (degree, the average angle that the 

individual rotated during the video), number of stops, number of mean movements (count 

associated with intermediated activity), number of fast movements, resting, mean movement 

(proportion of time the insects stayed during intermediated activity, tracked distance of > 0.046 

and ≤ 0.53 cm frame-1), fast movement, degree (all interactions of an individual with others of 

the group), network density (the proportion of interaction in the insect group), feeding, 

polarization (the proportion of individuals aligned in a group), milling (the proportion of 

individuals in rotation about the center of mass), swarm (the proportion of individuals having 

disordered movements), and transition (the proportion of individuals not among the states of 

polarization, milling, or swarming). A detailed description of these features is provided in 

Appendix A.  

Behavioral features were extracted as difference of the mean of each feature separately 

divided by the standard deviation to obtain a standard range (a distribution with mean = 0 and 

standard deviation = 1) to avoid the effect of a scale that may generate predominance of a 

specific feature (Singh and Singh, 2020). Behavioral data were univariately analyzed through 

an analysis of variance (ANOVA) and a Tukey post hoc test for multiple comparisons among 

agrochemical treatments using R software with the stats package (R Core Team, 2020). 

 

2.3. Machine learning (ML) approaches 

2.3.1. Feature selection 
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A recursive feature elimination (RFE) was applied to select a subset of the most relevant 

behavioral features. During this procedure, an ML algorithm starts with all dataset features to 

calculate the importance of each feature. The least important features were then pruned from 

the current dataset. This step is recursively repeated until the desired number of features to be 

selected is reached (Guyon et al., 2002). RFE was used along with ML algorithms, i.e., random 

forest (RF), support vector machine (SVM) with a linear kernel, and a linear discriminant 

analysis (LDA). The most relevant features were ranked and selected based on the average 

accuracy obtained from the three algorithms with a three-fold cross-validation. 

 

2.3.2. Hyper-parameter optimization 

Hyperparameters are not directly learned by the model and must be configured in some 

ML algorithms (Bergstra and Bengio, 2012). Therefore, to find a set of hyper-parameters that 

improve the performance of the algorithms, hyperparameter optimization was conducted 

through a grid search. This procedure consists of an exhaustive search over a specified 

hyperparameter space to evaluate the performance of the ML algorithms (Bergstra and Bengio, 

2012). Thus, we set up the RF, quadratic discriminant analysis (QDA), LDA, k-nearest 

neighbors (KNN), Gaussian naive Bayes (NB), support vector machine (SVM), gradient 

boosting (GB), and multilayer perceptron (MLP) algorithms repeatedly three times and used a 

three-fold cross-validation with data randomization for each algorithm. 

 

2.3.2. Algorithm performance 

To train the ML algorithms defined after hyper-parameter optimization (RF, QDA, 

LDA, KNN, NB, SVM, GB, and MLP), we used 70% of the dataset with the most relevant 

features selected (Section 2.3.1). The predictive performance of the trained algorithms was then 

evaluated with the other 30% of the dataset for an independent validation. Thus, confusion 

matrices were constructed to calculate the predictive performance metrics, that is, the accuracy, 

kappa, weighted precision, weighted recall, and F1 score, according to the following formulas: 

 

accuracy = ∑ 𝑥𝑖𝑖𝑘𝑖=1𝑁 , (1) 
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kappa = 𝑁 ∗ ∑ 𝑥𝑖𝑖𝑘𝑖=1 − ∑ 𝑥𝑖⊕𝑘𝑖=1 ∗ 𝑥⊕𝑖𝑁2 − ∑ 𝑥𝑖⊕𝑘𝑖=1 ∗ 𝑥⊕𝑖 , (2) 

precision =  ∑ ( 1𝑁𝑖)𝑘
𝑖=1 ( 𝑥𝑖𝑖𝑥𝑖⊕), (3) 

recall =  ∑ ( 1𝑁𝑖)𝑘
𝑖=1 ( 𝑥𝑖𝑖𝑥⊕𝑖), (4) 

F1 =  2(𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙)𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙 , (5) 

 

where 𝑘 is the number of classes, 𝑥𝑖𝑖 indicates the observations classified within the correct 

population (diagonal of the confusion matrix), 𝑁 is the sample size, 𝑁𝑖 is the sample size of the 

given class i, 𝑥𝑖⊕ is the marginal total of the confusion matrix line i, and 𝑥⊕𝑖 is the marginal 

total of the confusion matrix column i. 

 

Based on the values of kappa (𝐾) and kappa variance (𝜎𝑘2), z-tests were carried out to 

indicate whether the prediction was different from random (𝑍𝑎) and for a statistical comparison 

between the ML algorithms (𝑍𝑏) at a significance level of 5%. 𝑍𝑎 = 𝐾√𝜎𝑘2, (6) 

𝑍𝑏 = 𝐾̂𝑎 − 𝐾̂𝑏√𝜎𝐾̂𝑎2 + 𝜎𝐾̂𝑏2 , (7) 

 

where 𝑎 and 𝑏 are the ML algorithms under analysis. 

Principal component analysis (PCA) was carried out to reduce the data to two 

dimensions (PC1 and PC2) and examine the decision boundaries of the trained ML algorithms 

in terms of the PCA scores. Python language (version 3.6.8) was used in the analyses and 

development of the ML approaches, including Numpy (Harris et al., 2020), Pandas (McKinney, 
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2010), and SciKit-learn (Pedregosa et al., 2011). All analyses were carried out on a machine 

with the following features: Intel i7-9750H CPU @ 2.60 GHz × 12, 8 GB RAM, and an 

NVIDIA® GeForce® GTX 1660 (6 GB) Ti Max-Q GPU. 

 

2.4. Physiological bioassay 

The physiological responses to agrochemical exposures were assessed using 

immunofluorescence to detect proteins (in situ) related to proliferation, differentiation, and 

death in the midgut. After 24 h of exposure to agrochemicals, the bees were dissected in a saline 

solution (0.1 M NaCl, 20 mM KH2PO4, and 20 mM Na2HPO4). The guts were transferred to 

Zamboni’s fixative (2% paraformaldehyde containing 15% picric acid in a 0.1 M sodium 

phosphate buffer) for 1 h at ± 25°C. Then, the guts were washed three times with sterile 

phosphate-buffered saline (PBS; 0.1M, pH 7.2) and incubated at 0.1 M PBS/1% Triton X-100 

(PBST) for 2 h, followed by incubation for 24 h at 4°C in the following primary antibodies: 

rabbit anti-ERK1/2, rabbit anti-Notch (Cell Signaling Technology, Inc., Beverly, MA, USA), 

mouse anti-JNK, mouse anti-Prospero, and mouse anti-Wg and mouse anti-Armadillo 

(Developmental Studies Hybridoma Bank, Iowa City, IA, USA). After incubation, the samples 

were washed three times (10 min each) with PBS and incubated with FITC-conjugated 

secondary antibodies (anti-rabbit; green fluorescence) or TRITC-conjugated secondary 

antibody (anti-mouse; red fluorescence) (Sigma-Aldrich Corp., St Louis, MO, USA) (1:500). 

The cell nuclei were stained with diamidino-2-phenylindole (DAPI; Biotium, Inc., Hayward, 

CA, USA) for 30 min, washed in PBS, and mounted on slides with coverslips in a 30% sucrose 

solution. The slides were analyzed and photographed under a fluorescence microscope (Evos 

M5000; Thermo Fisher Scientific, Carlsbad, CA, USA). The number of labeled cells in five 

guts per treatment was quantified using a 20× objective lens. Five guts from each treatment 

group were prepared without incubation with primary antibodies as negative controls. Because 

the midgut is a large organ, cell counts were conducted separately, considering the anterior, 

middle, and posterior regions of the organ. The total number of cells per organ was determined 

by summing the number of cells detected in each of the three regions. Cell quantification was 

conducted using Image-Pro 4.5 software (Media Cybernetics, Silver Spring, EUA). 

Data from protein detection were subjected to PCA. Because the data were at the same 

scale, the eigenvalues and eigenvectors in the PCA were defined using the covariance matrix. 

The principal components were selected based on eigenvalues higher than the mean values of 
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all eigenvalues. The significance of the groups formed by the PCA was tested using a 

permutational multivariate analysis of variance (PERMANOVA) with 9999 permutations and 

the Euclidean distance. A homogeneity test of multivariate dispersion (PERMDISP) was used 

to check the assumption of the homogeneity of the PERMANOVA (Anderson, 2017). Pairwise 

contrasts among agrochemical treatments were applied with a Bonferroni adjustment. These 

analyses were conducted in R software (R Core Team, 2020) using the factoextra (Kassambara 

and Mundt, 2020) and vegan (Oksanen et al., 2019) packages. 

 

3. Results 

3.1. Mortality 

Oral exposure of foragers to imidacloprid caused significant mortality in comparison to 

foragers exposed to glyphosate and a control (χ2 = 18.2, df =13, p < 0.0001). However, the 

mortality caused by the ingestion of glyphosate was not different from that of the control group 

(χ2 = 1.4, df = 11, p = 0.24) (Figure 1).  

 

Figure 1. Mortality of the stingless bee Melipona quadrifasciata 24 h after exposure to 

glyphosate and imidacloprid agrochemicals. Different letters indicate statistically significant 

differences in GLM (p < 0.05). The bars represent the means, and vertical bars are the standard 

errors. 

 

3.2. Collective behavior  
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There was a significant difference among agrochemicals in all behavioral features 

exhibited by the foragers (p < 0.05, Figure 2). Imidacloprid-exposed bees were more debilitated 

(shortest tracked distance and more significant resting), more disoriented (more significant 

swarm and transition), and fed more than the control (Supplementary video S1). Glyphosate-

exposed bees and the control showed a similar pattern for most features, except that these bees 

interacted more with each other after glyphosate exposure (Supplementary videos S2 and S3).   
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Figure 2. Boxplots with violin distribution of the multivariate behavioral data assessed in 

foragers of Melipona quadrifasciata exposed to glyphosate or imidacloprid. Each feature was 

scaled to the standard range (mean = 0 and standard deviation = 1), subtracting the mean and 
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dividing by the standard deviation. Different letters on the x-axis indicate a significant 

difference based on a Tukey test (p < 0.05); in addition, the statistic output for each feature is 

given. 

 

3.3. Machine learning approaches 

 

3.3.1. Feature selection 

The most parsimonious ML algorithms used in feature selection were prioritized to 

choose the number of relevant features. Thus, the smallest number of variables in which a given 

algorithm reached the highest precision was selected. With the RF, 17 features were selected, 

followed by LDA with 10 features, and SVM with 5 features (Figure 3A). Therefore, following 

the ranking of importance, the five most relevant features were the tracked distance, number of 

stops, transition, meandering, and degree (Figure 3B). 
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Figure 3. Selection of the most relevant behavioral features exhibited by foragers of Melipona 

quadrifasciata exposed to glyphosate or imidacloprid. (A) Establishment of the number of 
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features and (B) feature importance ranking with recursive feature elimination. The ML 

algorithms providing information about the feature importance are random forest (RF), support 

vector machine (SVM), and linear discriminant analysis (LDA). (A) Lines represent the average 

of a 3-fold cross-validation. (B) Bars represent the average ranking among the three ML 

algorithms. 

  

3.3.2. Hyper-parameter optimization 

After the hyper-parameter optimization, the models were trained using the parameters 

listed in Table 1. Because the algorithms QDA and NB have essentially only one hyper-

parameter for tuning, the default in the SciKit-learn library was used (Pedregosa et al., 2011). 

All grid search interactions are shown in Supplementary Table 1. 

 

Table 1. Hyper-parameters use in the machine learning algorithms after hyper-parameter 

optimization through a grid search. The definition of hyper-parameters and values was based 

on the SciKit-learn library (Pedregosa et al., 2011)  

 

Algorithms Hyper-parameters Values 

Random forest 
trees 50 

max features sqrt 

Quadratic discriminant 

analysis 
reg 0 

Linear discriminant analysis 
shrinkage  auto 

solver lsqr (least squares) 

K-nearest neighbors 

metric Euclidean 

neighbors 3 

weight function distance 

Gaussian naive bayes variance smoothing 1x10-9 

Support vector machine 

regularization 10 

kernel polynomial 

gamma scale 



57 
 

 
 
 

Gradient boosting 

learning rate  0.1 

max depth 9 

boosting stages 1000 

subsample 0.7 

Multi-layer Perceptron 

activation function relu 

network layer sizes 100 

solver adam 

 

3.3.3. Algorithm performance 

The algorithms were extremely efficient in discriminating the imidacloprid class with 

100% true positives in all confusion matrices (Figure 4). Although the algorithms somewhat 

confused the glyphosate class with the control class, the MLP algorithm efficiently separated 

these two classes with 87.5% and 85.7% true positives for glyphosate and control, respectively 

(Figure 4). Interestingly, the QDA algorithm had high precision with 100% true positives for 

imidacloprid or control classes (Figure 4). 
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Figure 4. Confusion matrices of machine learning algorithms for predicting the agrochemical 

contamination (glyphosate or imidacloprid) in foragers of Melipona quadrifasciata based on 

behavioral features. The applied algorithms were a random forest (RF), quadratic discriminant 



59 
 

 
 
 

analysis (QDA), linear discriminant analysis (LDA), k-nearest neighbors (KNN), Gaussian 

naive Bayes (NB), support vector machine (SVM), gradient boosting (GB), and multi-layer 

perceptron (MLP). The confusion matrices reveal the number of correct and incorrect 

predictions for each class in percentage. 

 

The ML algorithms were statistically significant in predicting the class of agrochemicals 

in which bees were contaminated (p < 0.001; Figure 5). The algorithms exhibited accuracies 

between 67% and 91% (Figure 5). The MLP algorithm showed significant differences in QDA 

(Z = 1.972, p = 0.048), LDA (Z = 1.961, p = 0.049), and NB (Z = 2.064, p = 0.039). The MLP 

presented the best performance, reaching a kappa value of 0.86 and accuracy of 91% (Figure 

5). 
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Figure 5. Validation of performance metrics (accuracy, kappa, precision, recall, and F1 score) 

of machine learning algorithms: random forest (RF), quadratic discriminant analysis (QDA), 

linear discriminant analysis (LDA), k-nearest neighbors (KNN), Gaussian naive Bayes (NB), 

support vector machine (SVM), gradient boosting (GB), and multi-layer perceptron (MLP). 

These algorithms were tested to predict the type of contamination (with glyphosate or 

imidacloprid) in foragers of Melipona quadrifasciata based on behavioral features. The z-test 

values are provided for each algorithm. 

 

With the data containing the selected behavioral features, the PCA and the first two 

principal components explained 82% of the variation. The distinct separation between the 

glyphosate and control groups was not evident in the PCA scores (Figure 6). However, the 

algorithms that defined the decision boundaries among the classes well were mainly nonlinear 

algorithms (e.g., MLP, GB, and SVM). 
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Figure 6. Decision boundaries of the machine learning algorithms in the principal component 

analysis (PCA) scores. The PCA was applied to the data with the selected behavioral features 
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of foragers of Melipona quadrifasciata, and the principal components (PC1 and PC2) explained 

54% and 28% of the total data variation, respectively. The applied algorithms were random 

forest (RF), quadratic discriminant analysis (QDA), linear discriminant analysis (LDA), k-

nearest neighbors (KNN), Gaussian naive Bayes (NB), support vector machine (SVM), gradient 

boosting (GB), and multi-layer perceptron (MLP). 

 

3.4. Physiological response 

 

The number of positive cells for different proteins in the midgut of forager M. 

quadrifasciata (mean ± standard error) after 24 h of exposure to glyphosate were as follows: 

11.6 ± 0.6 (Armadillo), 148 ± 0.15 (ERK1/2), 31.8 ± 1.30 (JNK), 224 ± 1.7 (Notch), and 109 ± 

0.6 (Prospero), and 4 ± 0.52 (Wg). In addition, the numbers of positive cells for each protein 

after 24 h of exposure to imidacloprid were 9.6 ± 0.74 (Armadillo), 55.6 ± 1.1 (ERK1/2), 37.4 

± 1.18 (JNK), 38.8 ± 0.61 (Notch), 164 ± 1.06 (Prospero), and 9.8 ± 0.4 (Wg). Finally, the 

numbers of positive cells for each protein in the control were 54.4 ± 1.72 (Armadillo), 60.2 ± 

0.8 (ERK1/2), 3.2 ± 0.12 (JNK), 32.8 ± 0.91 (Notch), 94.2 ± 1.02 (Prospero), and 17.4 ± 0.31 

(Wg) (Figures 7 and 8). 
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Figure 7. Number of positive cells for different proteins (Armadillo, ERK1/2, JNK, Notch, 

Prospero, and Wg) in the midgut of foragers of Melipona quadrifasciata 24 h after the treatment 

with glyphosate or imidacloprid, and the control. The axis numbers (from 0 to 280) indicate the 

number of positive cells. The bars are mean ± standard error. 

    

The assumption of homogeneity among samples within each treatment was accepted 

(homogeneous dispersion) (PERMIDISP: F 2, 12 = 0.39, p = 0.69), indicating the suitability of 

PERMANOVA. There was a significant difference in protein detection patterns among 

treatments with agrochemicals (F 2, 12 = 44.9, p < 0.0001, R2 = 0.88, Figure 8B). Both glyphosate 

treatment (F = 55.26, p = 0.015, R2 = 0.87) and imidacloprid treatment (F = 12.13, p = 0.039, 

R2 = 0.6) were different from those of the control. Likewise, glyphosate treatment and 

imidacloprid treatment were different from each other (F = 56.04, p = 0.021, R2 = 0.87). An 
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ordination diagram of the PCA shows the relationship among treatments (Figure 8B) and the 

different proteins sampled through in situ detection (Figure 8C). Two proteins with eigenvalues 

of greater than the mean were selected. Thus, PC1 (first component of PCA) and PC2 (the 

second component of PCA) explained 55.7% and 28.6% of the total variance of the data, 

respectively.  
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Figure 8. Detection (in situ) of positive cells for different proteins in the midgut of foragers of 

Melipona quadrifasciata 24 h after the treatment with glyphosate or imidacloprid, and the 

control. (A) Representative whole mounts of the midgut with positive cells (green or red) for 

Armadillo, ERK1/2, JNK, Notch, Prospero, and Wg. DNA (blue) was stained with DAPI. Scale 

bars: 100 μm. (B) The principal component analysis (PCA) diagram shows the three treatments 

in two-dimensions based on Euclidean distance. Confidence ellipses are based on treatment 

centroids (95%). (C) PC loadings associated with the detection of positive cells for different 

proteins. Axis values (%) indicate how much the components explain the total data variance. 

 

4. Discussion 

According to our results, acute oral exposure to glyphosate did not lead to lethal toxicity 

in M. quadrifasciata when tested at the recommended label concentrations for weed control 

(MAPA, 2021), which corresponds to a higher concentration compared to the residues found in 

the field from this agrochemical (Berg et al., 2018). Low mortality rates have also been reported 

for honeybees exposed to glyphosate either by contact or orally for both label-recommended 

concentrations and field-realistic concentrations (Abraham et al., 2018; Battisti et al., 2021; 

Faita et al., 2020; Helmer et al., 2015; Tomé et al., 2020). Moreover, contact exposure to 

glyphosate (only active ingredient) did not increase the mortality in adult bumblebees; however, 

glyphosate formulations containing surfactants can contribute to increase the mortality (Straw 

et al., 2021). The ingestion of glyphosate during post-embryonic development significantly 

increases the mortality of immature M. quadrifasciata (Seide et al., 2018). Thus, the lethal 

toxicity of glyphosate depends on the route, age, formulation composition, and time of exposure 

to the agrochemical (Battisti et al., 2021; Straw et al., 2021). In contrast to glyphosate, 

imidacloprid ingestion exhibited greater lethal toxicity to M. quadrifasciata even at a highly 

diluted concentration (300-times less concentrated than the field concentration). This 

insecticide has been reported to be highly toxic to bees (Blacquière et al., 2012; EFSA, 2013; 

Pereira et al., 2020). Studies have confirmed the high mortality rate when stingless bees are 

exposed to this insecticide both in immature bees (Tomé et al., 2012) and adults (Costa et al., 

2015; Tomé et al., 2015a; Valdovinos-Núñez et al., 2009). In contrast to our results in adults, 

glyphosate ingestion is more lethal to larvae of M. quadrifasciata than imidacloprid (Seide et 

al., 2018).   
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Changes in locomotor behavior after exposure to agrochemicals are commonly used to 

indicate sublethal effects in bees (Desneux et al., 2007; Thompson and Maus, 2007). 

Imidacloprid led to the greatest changes in locomotor behavior features, unlike glyphosate 

exposure, which only increased the interaction among individuals of M. quadrifasciata. These 

findings may be related to the different modes of action of each agrochemical, whereby 

glyphosate acts on the shikimate pathway, found only in plants and microorganisms, and is 

absent in animals (Dill et al., 2010; Herrmann and Weaver, 1999). Despite the lack of evidence 

that glyphosate has a target site to act on insects, chronic exposure of honeybees to low-

concentration glyphosate decreased the acetylcholinesterase enzyme (AChE) activity (Boily et 

al., 2013), which can modulate nerve impulses, and consequently, alter locomotor behavior. In 

addition, the sublethal effects of this herbicide in bees include impaired learning, disordered 

foraging behavior, and retrieval of memories (Farina et al., 2019; Luo et al., 2021; Vázquez et 

al., 2020).  

Similar to our results, oral exposure to imidacloprid impaired the locomotor behavior of 

foragers of stingless bees and honeybees (Delkash-Roudsari et al., 2020; Jacob et al., 2019). 

Imidacloprid mimics acetylcholine (ACh) action binding on the postsynaptic neuron nAChR in 

insects. AChE cannot break down the imidacloprid, leading to an overstimulation and blocking 

of the nAChR, causing paralysis and death, and consequently affecting behavioral patterns 

(Buckingham et al., 1997; Tomizawa and Casida, 2005). In addition, imidacloprid maintains a 

sustained activation of the Kenyon cell nAChR in the mushroom bodies in bees, causing 

morphological changes in these structures and compromising the learning and sensory 

integration (Palmer et al., 2013; Tomé et al., 2012). Such changes in the behavior of foragers 

exposed to agrochemicals can compromise essential pollination activities in both natural and 

agricultural ecosystems (Ramírez et al., 2018; Schneider et al., 2012). 

The ML algorithms used here to discriminate the sublethal effects of each agrochemical 

on the behavior of bees demonstrated high precision regardless of the different modes of action 

of glyphosate (herbicide) and imidacloprid (insecticide). The most divergent pattern among the 

behavioral features demonstrated by imidacloprid was 100% detected in all ML algorithms. 

Interestingly, the ML algorithms reached 87.5% of true positives for the glyphosate class 

despite the similarity of the behavioral features between the glyphosate and control. Our results 

also emphasize that combining AI-based approaches with multivariate assessment can detect 

patterns of sublethal alterations that are not found in univariate behavioral assessments.  
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In general, the effects of agrochemicals on the behavior of bees have been evaluated in 

a univariate manner (Barbosa et al., 2015; Botina et al., 2019; Tomé et al., 2015b). The 

availability of automated behavioral tools has facilitated multivariate behavioral measurements 

(Bernardes et al., 2021), whereas some irrelevant or less important features can negatively 

impact the performance of ML algorithms (Blum and Langley, 1997), and the assessment of 

highly correlated behavioral features produces multicollinearity (Yoo et al., 2014). When 

dealing with multivariate data, an important step is feature selection to optimize the ML 

performance (Blum and Langley, 1997). Among the 17 features studied here in M. 

quadrifasciata, the models achieved a better performance with the tracked distance, number of 

stops, transition, meandering, and degree. These five most relevant features are computed with 

a low computational demand from the Cartesian coordinates of the collective locomotory 

movement of insects (Bernardes et al., 2021). Therefore, these features can include important 

endpoints to predict the environmental factors influencing bee health, using features from radio-

frequency identification tags, as an example (Nunes-Silva et al., 2020). 

The ML algorithms had satisfactory kappa values, indicating appropriate (0.61< kappa 

< 0.8) and highly suitable (kappa > 0.81) predictive performance (McHugh, 2012). As exhibited 

in the decision boundaries, the non-linear classifiers better fit the separation among treatments, 

highlighting the better performance of MLP and GB. However, GB has over-adjusted 

boundaries of the data, which may affect the ability to generalize to new datasets (Srivastava et 

al., 2014). MLP is an artificial neural network architecture that deals very well with nonlinear 

and complex data modeling (Rossi and Conan-Guez, 2005). The algorithm used here achieved 

a higher accuracy (91%) in the validation dataset, demonstrating a groundbreaking result in 

predicting agrochemical contamination in bees based on behavioral features. 

Microscopy analyses revealed the sublethal effects of the two agrochemicals on the bee 

gut. The increase in Notch and ERK1/2, detected after glyphosate exposure, suggests that this 

compound causes injuries and cell death in the midgut of M. quadrifasciata, despite the absence 

of lethal effects. These proteins are related to cell proliferation, and their production might 

compensate for cell death in exposed foragers (Biteau and Jasper, 2011; Liu et al., 2010; Simon 

et al., 2009). The ingestion of glyphosate or imidacloprid also increased the number of positive 

midgut cells for JNK (9.5-times and 11.5-times, respectively), while decreasing the number of 

positive cells for Wg (−4-times for glyphosate and −1.8-times for imidacloprid) and Armadillo 

(−4.9-times to glyphosate and −5.6-times to imidacloprid) in comparison to the control. Based 
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on these results, it can be speculated that the ingestion of glyphosate or imidacloprid interferes 

with the integrity of the midgut epithelium because a decrease in Wg proteins activates the 

apoptotic pathway mediated by the JNK pathway in Drosophila melanogaster (Kockel et al., 

2001; Tian et al., 2018). Ingestion of imidacloprid increased the number of positive cells for 

Prospero (1.5-times both the control and glyphosate exposure). Prospero, similar to Notch, is 

associated with cell renewal (Simon et al., 2009). Altogether, these changes in the detection of 

proteins in the midgut of M. quadrifasciata may be related to the stress caused by the ingestion 

of agrochemicals, and while some cells die, others proliferate to maintain the midgut 

homeostasis. The variation in the protein detection pattern in the midgut of adult bees after 

agrochemical contamination has already been reported elsewhere (Araújo et al., 2021; Farder-

Gomes et al., 2021), and changes in the biochemical cascades caused by different agrochemicals 

deserve to be investigated in detail as sublethal effects in the future.  

 

5. Conclusions 

This study provides a holistic assessment of the sublethal effects of both glyphosate and 

imidacloprid on the foragers of M. quadrifasciata. Our pioneering study successfully integrated 

multivariate behavioral features with ML algorithms to predict agrochemical contamination in 

bees. ML built using a multivariate behavior dataset achieved a higher accuracy for classifying 

agrochemical contamination in foragers using the MLP algorithm. A multivariate assessment 

also revealed changes in protein detection in the midgut after exposure to glyphosate or 

imidacloprid. Ingestion of imidacloprid caused significant changes in behavior and protein 

detection in the midgut of bees, and the discrimination of bees exposed to this insecticide using 

ML was highly precise. Changes in protein detection in the midgut of glyphosate-exposed 

foragers have not implied changes in survival or in the majority of the behavior features studied, 

and despite this, it is worth mentioning that the ML model was able to classify bees 

contaminated with glyphosate. The method proposed herein can be widely applied to other 

insects, indicating further field applications of ML for predicting the environmental factors 

influencing their behavior and health. 
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 Appendix A 

The tracked distance is measured as the distance that an animal walks during a video 

recording. The max speed is the maximum speed achieved by the animal. The turn angle is the 

average angle that the individual rotates in each videoframe. Meandering is the average angle 

that the individual rotates during the video. The number of stops is the count associated with 

no activity of the animal (the tracked distance of ≤ 0.046 cm frame-1 was counted as a stop). 

The mean number of movements is the number associated with the intermediated activity (the 

tracked distance of > 0.046 and ≤ 0.53 cm frame-1 was counted as the mean movement). The 

number of fast movements is the number associated with high activity (the tracked distance of 

> 0.53 cm frame-1 was counted as fast movement). Resting, mean movement, and fast 

movement were calculated as the proportion of time the animals stayed in each state of activity. 

Degree is the sum of all interactions of an individual with other animals of the group (an 

interaction was considered when the individuals approached a distance of ≤ 1.41 cm). The 

network density is the proportion of interactions in an animal group. Feeding is the proportion 

of time that individuals spent feeding during the video. Polarization is the proportion of 

individuals that are highly aligned in a group. Milling is the proportion of the group with a high 

degree of rotation about its center of mass. Swarm is the proportion of individuals in a group 

that are in a disordered movement. Transition is the proportion of the group that was in a 

transition among the polarization, milling, and swarm states. The mathematical definition of 

these features can be found in Bernardes et al. (2021). 

Supplementary Material 

https://drive.google.com/file/d/1id78fiSnCU3JHvmXKUwgAJ7yKXo7sZkx/view?usp=sharin
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Supplementary videos 

 

Video S1. Representative video showing the collective behavior of Melipona quadrifasciata 

foragers exposed to neonicotinoid imidacloprid. The target letters in the bees are individual 

identities assigned automatically by the software used in the video analyses. 

https://drive.google.com/file/d/1xvLwjElc2NJRPcfNXEUqpEHppuUtIBkf/view?usp=sharing 

 

https://drive.google.com/file/d/1id78fiSnCU3JHvmXKUwgAJ7yKXo7sZkx/view?usp=sharing
https://drive.google.com/file/d/1id78fiSnCU3JHvmXKUwgAJ7yKXo7sZkx/view?usp=sharing
https://drive.google.com/file/d/1xvLwjElc2NJRPcfNXEUqpEHppuUtIBkf/view?usp=sharing
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Video S2. Representative video showing the collective behavior of Melipona quadrifasciata 

foragers exposed to the herbicide glyphosate. The target letters in the bees are individual 

identities assigned automatically by the software used in the video analyses. 

https://drive.google.com/file/d/1arszjtBKh5FulDjUgPbbY-tiq1Rt9sV-/view?usp=sharing 

 

Video S3. Representative video showing the collective behavior of a non-exposed Melipona 

quadrifasciata forager (control). The target letters in the bees are individual identities assigned 

automatically by the software used in the video analyses. 

https://drive.google.com/file/d/17zAWMiQXpQaBbi7Uxnwe-CfWl-

YAjD7V/view?usp=sharing 
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https://drive.google.com/file/d/17zAWMiQXpQaBbi7Uxnwe-CfWl-YAjD7V/view?usp=sharing
https://drive.google.com/file/d/17zAWMiQXpQaBbi7Uxnwe-CfWl-YAjD7V/view?usp=sharing
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Abstract 

Copper sulfate (CuSO4) is widely used in agriculture as a pesticide and foliar fertilizer. 

However, the possible environmental risks associated with CuSO4 use, particularly related to 

pollinating insects, have been poorly studied. In this study, we evaluated the both lethal and 

sublethal effects of CuSO4 on the stingless bee Partamona helleri. Foragers were orally exposed 

to five concentrations of CuSO4 and the concentration killing 50% (LC50) was estimated. This 

concentration was subsequently used in behavioral, midgut morphology, and antioxidant 

activity analyses. We detected increases in bee mortality with the ingestion of increasing 

concentrations of CuSO4. Ingestion at the estimated LC50 (142.95 µg mL-1) resulted in altered 

walking behavior and damage to the midgut epithelium and peritrophic matrix of bees. 

Furthermore, the LC50 caused an increase in the activities of catalase and superoxide dismutase, 

and in levels of the lipid peroxidation biomarker malondialdehyde. Furthermore, the in situ 

detection of caspase-3 and LC3, proteins related to apoptosis and autophagy, respectively, 

revealed that these processes are intensified in the midgut of treated bees. These data highlight 

that the ingestion of CuSO4 can have considerable sublethal effects on the walking behavior 

and midgut of stingless bees, and therefore could pose potential risks to pollinators including 

native bees. 

 

Keywords: Bioassays, CuSO4, heavy metal, LC50, stingless bee, toxicological effects 

  



85 
 

 
 
 

1.      Introduction 

Heavy metals such as copper (Cu), zinc (Zn), and manganese (Mn) are found in 

numerous agrochemical formulations that are used to enhance agricultural production (Deng et 

al. 2007; Worku and Hailu 2018). Depending on the concentration, heavy metals can be toxic 

and have potentially adverse effects on intracellular components, including organelles, cell 

membranes, and enzymes (Peña et al., 1999; Wang and Shi 2001; reviewed by Tchounwou et 

al. 2012). Following their application to crops, agrochemical products based on heavy metals 

can accumulate in the leaves and flowers, and can accordingly be transferred to pollinating 

insects that forage on the treated plants (Hladun et al. 2015, 2016; Cai et al. 2019) or accumulate 

directly in the bodies of insects (Hongxia et al. 2010; Baghban et al. 2014; Botina et al. 2019; 

Goretti et al. 2020).  

The salt copper sulfate (CuSO4) is widely used as a fungicide, insecticide, and foliar 

fertilizer (Michaud and Grant 2003; Rodrigues et al. 2016), and it has been demonstrated that 

chronic intoxication with CuSO4 can reduce the locomotor activity (Bonilla-Ramirez et al. 

2011) and central nervous system neuronal function (Hwang et al. 2014) of the fly Drosophila 

melanogaster. In coccinellid beetles, chronic intoxication with CuSO4 has been found to 

increase the time of development, reduce fertility, and extend the pre-reproductive period of 

females (Michaud and Grant 2003). The ingestion of CuSO4 has been shown to alter the color 

and thickness of the midgut in the flesh fly Sarcophaga peregrina (Wu et al. 2009), and the 

integrity of the peritrophic matrix (PM) in Aedes aegypti larvae (Rayms-Keller et al. 1998). In 

the stingless bees, the ingestion of CuSO4 affects the survival and the walking behavior of the 

workers of Friesella schrottkyi and the respiration rate of Partamona helleri (Rodrigues et al. 

2016; Botina et al. 2019). 
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Debates provoked by recent widespread reductions in pollinator populations, 

particularly bees, have addressed several factors, including both biotic risks (mites, viruses, 

fungi, and bacteria) and abiotic ones (habitat degradation, climate change, and agrochemicals) 

(vanEngelsdorp and Meixner 2010; Lima et al. 2016; Steinhauer et al. 2018; Cham et al. 2019; 

Tomé et al. 2020). Among these, stress attributable to the use of agrochemicals, and its 

consequences, in stingless bees have received prominent attention in recent years, mainly due 

to the associated sublethal effects (Tomé et al. 2015, 2017; Bernardes et al. 2018; Araújo et al. 

2021).  

Among the sublethal effects associated with the exposure of stingless bees to 

agrochemicals, those that stand out are the impairment of locomotor activity (Tomé et al. 2012; 

Barbosa et al. 2015; Bernardes et al. 2017; Marques et al. 2020), changes in the expression of 

genes related to immune response and detoxification (Viana et al. 2021), and damage to cells 

in the nervous ganglion (Jacob et al. 2015; Tomé et al. 2012) and midgut (Araújo et al. 2019). 

In addition, oxidative damage and cell death in the digestive tract have recently been 

investigated (Araujo et al. 2021; Farder-Gomes et al. 2021).  

Stingless bees play essential roles in pollinating a substantial proportion of the flora in 

tropical regions and, depending on the ecosystem, are known to pollinate between 40% and 

90% of native trees (Kerr et al. 2001; Braga et al. 2012; Pedro 2014). P. helleri, for instance, is 

an important pollinator of trees in the Atlantic Forest (Camargo and Pedro 2003; Ramalho 

2004); this species has been widely used as a model for toxicological studies related to stingless 

bees due to its large number and their relative facility of being found in the environment 

(Bernardes et al. 2018; Araújo et al. 2019; Pereira et al. 2020; Fader-Gomes et al. 2021). During 

foraging, workers can be directly exposed to CuSO4 through contact or ingestion. In addition, 

they may collect copper contaminated resources (e.g., pollen, nectar, and resins), since heavy 
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metals can accumulate in different parts of plants (Fageria et al. 2002). The larvae can be 

intoxicated with these collected resources and potentially suffer lethal and sublethal effects 

(Lima et al. 2012) 

Given the knowledge gap about CuSO4 effects in non-target organisms, such as stingless 

bees, and the ecological significance of these bees, we sought to evaluate the lethal and 

sublethal effects of ingested CuSO4 in foragers of the P. helleri.  In the present study, we 

estimated the LC50 and assessed walking behavior in this stingless bee. In addition, we assessed, 

for the first time, the CuSO4 sublethal effects on processes of apoptosis, autophagy, and 

antioxidant activity of the P. helleri midgut. 

2. Material and methods 

2.1. Bees and chemicals 

Five different colonies of P. helleri were collected in Viçosa (MG, Brazil; 20°, 45’ S, 

and 42° 52’ W) with permission from the Chico Mendes Institute for Biodiversity Conservation 

(SISBIO, ID 75536) and established in the experimental apiary at the Universidade Federal de 

Viçosa (UFV) for at least two years before the beginning of the experiment. These number of 

colonies assure the genetic variability, as workers from different colonies are descendants of 

different queens. Foragers were collected at the entrance of the colonies using glass jars when 

they exit the hive to forage, avoiding harm to the original colonies. These bees were between 

20 to 30 days old; age that workers perform most foraging activity (Giannini 1997; Kerr and 

Santos-Neto 1956; Simões and Bego 1979). The collected specimens were taken to the 

laboratory where they acclimatized without food, in an incubator at 28 ± 1ºC and 70% ± 5% 

humidity in the dark for a period of 1 h before experimental exposure. This acclimatization was 
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necessary to standardise the feeding condition of the tested workers and based on an exposure 

protocol for stingless bees (Botina et al. 2020) and previous works (Tomé et al. 2015, 2017).  

Copper sulfate [CuSO4: Penta 24 (240 g kg-1 Cu and 110 g kg-1 S); Multitécnica 

Industrial, Sete Lagoas, MG, Brazil] was diluted in 50% aqueous sucrose solution to obtain the 

concentration of 5000 µg mL-1, which was gradually diluted to obtain the other concentrations 

used in the mortality bioassay (see below). This is the concentration that is routinely used to 

spray the leaves of Brazilian tomato crops (MAPA 2020), and this stock solution was used to 

prepare solutions of different concentrations for use in a mortality bioassay. To prepare the 

solutions for all bioassays, we used 30 mg of copper sulfate and the residue was properly 

discarded following local waste management protocols. After bioassays, contaminated bees 

were also discarded properly. 

2.2. Bee mortality 

The collected foragers were transferred to plastic containers (250 mL) separated 

according to colony (10 bees per colony), each of which was considered an experimental unit 

(Botina et al. 2020). In total, we set up 30 containers with 300 sampled bees (10 bees in each 

container for each of the five colonies, which were exposed to each of the six concentrations of 

the CuSO4, including the control). The control group received a non-contaminated sucrose 

solution (sucrose:distilled water, 1:1). We used the average natural mortality of control bees to 

correct for the mortality recorded in the other treatments (Abbott 1925). Diets were offered in 

1.5 mL feeders constructed from perforated microcentrifuge tubes, which were inserted into a 

hole in the wall of the plastic containers. Maintenance of bees in plastic containers, as well as 

the feeding method used here, followed exposure protocol for stingless bees (Botina et al. 2020) 

and previous works (Araújo et al. 2021; Farder-Gomes et al. 2021). The bees were subjected to 

a 3-h exposure (acute exposure) to the following six concentrations of CuSO4 diluted in 50% 
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sucrose solution: 5000, 1666.7, 554.2, 183.4, 58.4, and 0.0 µg mL-1 (control). To obtain this 

range in concentrations (c), in a preliminary experiment, we identified the concentration that 

caused low mortality (l) (close to 10%) and the one that caused high mortality (h) (close to 

90%). Then we calculate the dilution rate (k) in relation to the concentrations (n) as k = (log10(h) 

- log10(l))/ (n-1), and determinate each concentration (cn) as the previous concentration plus the 

dilution rate (cn = cn-1 + 10k). 

Following exposure, the bees were allowed to feed on 50% uncontaminated sucrose 

solution ad libitum. We evaluated mortality at 24 h after commencing exposure and used these 

data to estimate the mortality curve and determine the 50% lethal concentration (LC50). The 

absence of movement was taken to be indicative of bee mortality (Botina et al. 2020). 

Throughout the experimental period, the foragers were maintained in the aforementioned 

incubator under dark conditions. 

2.3. Bee behavior 

The behavior of bees was monitored 24 h after exposure to the LC50 (142.95 µg mL-1) 

of CuSO4 or the control diet. The bees were exposure in groups during 3 hours (item 2.1). The 

bees were individually transferred to a Petri dish arena (9 cm diameter and 0.8 cm high) 

containing a filter paper base and covered with transparent plastic film to prevent bee escape 

(Botina et al. 2020). The movements of the bees were recorded for 10 min using a digital camera 

operating at 30 frames per second and analyzed using Ethoflow® software (Bernardes et al., 

2021), based on which, we calculated walking distance (cm), mean velocity (cm s-1), resting 

time (s), and the number of stops. The bioassays were carried out between 10:00 and 14:00 

under artificial fluorescent lighting at 25 ± 2°C. In total, we monitored the behavior of 32 bees 

(four bees for each colony exposed to each of the two treatments - in this case, it was used four 

colonies and not five). 
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2.4. Midgut morphology 

From bees exposed (item 2.1) to the LC50 (142.95 µg mL-1) of CuSO4 and control, we 

choose randomly 10 bees to dissect (5 for LC50 and 5 for control) in saline solution for insects 

(0.1 M NaCl, 0.1 M KH2PO4, and 0.1 M Na2HPO4). The midgut of bees was transferred to 

Zamboni’s fixative solution (2% paraformaldehyde, containing 15% picric acid in 0.1 M 

sodium phosphate buffer), and maintained therein for 2 h at 25 ± 2°C. Thereafter, the samples 

were washed three times in 0.1 M phosphate-buffered saline (PBS), dehydrated in a graded 

ethanol series (70% to 95%), and embedded in Historesin (Leica Biosystems, Nussloch, 

Germany). Sections of the embedded material (5 μm thick) were obtained using a Leica RM 

2255 microtome, and were stained with hematoxylin and eosin (HE). Samples were observed 

under an Olympus BX-53 light microscope, coupled with an Olympus DP 73 digital camera 

(Olympus Optical Corp., Tokyo, Japan). 

To detect the PM (glycoconjugates and polysaccharides containing β-1-4 N-

acetylglucosamine residues) in the midgut lumen, other unstained sections were washed twice 

in PBS and incubated for 1 h with 10 g mL-1 fluorescein isothiocyanate (FITC)-conjugated 

lectin [wheat germ agglutinin (WGA)-FITC: L4895; Sigma-Aldrich, Israel] diluted (1:500) in 

0.1M PBS. After a triple wash in PBS, the sections were stained with diamidino-2-phenylindole 

(DAPI: 1:500; Biotium, Inc., Hayward, CA, USA) for 30 min to label the cell nuclei. Sections 

were subsequently washed a further three times and mounted with a 50% sucrose solution. As 

a negative control, sections were stained only with DAPI and mounted with a 50% sucrose 

solution. The slides were observed and photographed using an Olympus BX53 fluorescence 

microscope, coupled with an Olympus XM 10 digital camera (Olympus Optical Corp., Tokyo, 

Japan). 
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2.5. Abdomen antioxidant activity 

The abdomen of bees that had been exposed to LC50 (142.95 µg mL-1) of CuSO4 and 

control were homogenized separately in 1 mL of PBS, using a Tissue Master 125 homogenizer 

(OMNI) and centrifuged at 10000 ×g for 10 min at 4°C (Hearaeus Fresco 16 centrifuge; Thermo 

Scientific). For each of the 10 samples, we prepared a homogenate, collected the supernatant, 

and spectrophotometrically assed antioxidant activity based on the activity of the enzymes 

catalase (CAT), glutathione S-transferase (GST), and superoxide dismutase (SOD), and 

contents of the lipid peroxidation biomarker malondialdehyde (MDA).  

The activity of CAT was measured at 374 nm, based on quantification of the kinetics of 

the decomposition of H2O2 to O2 and H2O (Hadwan and Abed 2016); GST activity was 

determined at 340 nm by monitoring thioester formation, using 1-chloro-2,4-dinitrobenzene 

(CDNB) as a substrate (Habig et al. 1974); SOD activity was assessed at 320 nm using the 

pyrogallol autoxidation method (Marklund and Marklund 1974); and the content of MDA was 

assessed at 535 nm using the thiobarbituric acid reactive substances (TBARS) method (Buege 

and Aust 1978). For each of the 10 samples (five abdomens per two treatments), we performed 

multiple measurements to enhance the variance structure of the data, totaling 60 measurements 

(six measurements for each of the 10 samples). Thereby, in statistical analyses, we carried out 

bootstrap sampling to randomly generate confidence intervals from the observed data (item 2.7) 

(Efron 1992). The results were expressed as kilo units of protein per milliliter (kU protein mL-

1) for CAT activity, units of protein per milliliter (U protein mL-1) for GST and SOD, and 

micromoles of protein per milliliter (μmol protein mL-1) for MDA. 

2.6. Midgut immunofluorescence 

Fixed midguts (see section 2.4) were washed three times and incubated in 0.1 M 

PBS/1% Triton X-100 (PBST) for 2 h. The organs were incubated separately, for 24 h at 4°C, 
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with the PBS-diluted primary antibodies anti-LC3 (1:500: Cell Signaling Technology, Beverly, 

MA, EUA) and anti-caspase-3 cleaved (1:500: Sigma-Aldrich, St. Louis Mo., EUA), indicative 

of autophagy and apoptosis, respectively. Immunostaining was performed using midguts 

obtained from five bees exposed to the LC50 of CuSO4 and the control, totaling 20 individuals 

(five bees for each of the two treatments, analyzed using each of the two primary antibodies). 

After initial incubation with the primary antibodies, the samples were washed three 

times and then re-incubated with secondary antibody conjugated to FITC (Sigma-Aldrich 

Corp., St Louis, MO, USA) in PBS (1: 500) for 24 h at 4°C. After subsequent washing, the 

nuclei of midgut cells were stained with TO-PRO-3 (Life Technologies, Eugene, EUA) for 30 

min and mounted in a Mowiol solution (Fluka, St. Louis, MO, EUA). As a negative control, 

the midguts of five exposed bees and five control bees were treated as described above, 

excluding the step corresponding to incubation with the primary antibody. The samples were 

examined under a Zeiss 510 Meta confocal microscope (Carl Zeiss AG, Oberkochen, Germany) 

at the Núcleo de Microscopia e Microanálise (NMM-UFV). The quantification of cells staining 

positive for LC3 or caspase-3 was performed using Image-Pro 4.5 software (Media Cybernetics, 

Silver Spring, EUA), for which, six images obtained under a ×20 objective lens were randomly 

selected for each sample. 

2.7. Statistical analysis 

All statistical analyses were performed using R software (R Core Team, version 4.0.0, 

2020). For the data obtained in the mortality bioassay, we fitted a concentration-response 

(Probit) model and estimated the LC50 of CuSO4 in P. helleri.  

Principal component analysis (PCA) was performed for variables associated with 

walking behavior (distance, velocity, resting time, and number of stops). Given that these 

variables do not have the same scales, the components were defined based on a correlation 
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matrix. Bartlett’s test was used to assess the suitability of the proposed model. We selected 

principal components (PCs) with eigenvalues that were higher than the mean value of all 

eigenvalues. We fitted generalized linear mixed models (GLMMs) with PC1 and PC2 scores as 

response variables and using Gamma error distribution structure (a suitable distribution for 

continuous data where the variance increases with the square of the mean) (Crawley 2012). The 

colonies were included as random effects in GLMMs to compensate for the identical 

background of bees (Hendriksma et al. 2011).  

Considering the different measurements used for the detection of antioxidant activity 

on the same sample, we carried out bootstrap with 1000 interactions, taking 10 samples per 

treatment in each interaction. Bootstrap sampling enabled us to randomly generate confidence 

intervals from the data observed empirically (Efron 1992). In each bootstrap sample, 

permutation tests were executed with 1,000 interactions to assess differences between 

treatments. A permutation test was necessary to determine statistical inference in the 

distribution of the data generated in each bootstrap interaction (Lunneborg 2014). 

Consequently, the test hypothesis for each variable (CAT, GTS, SOD, and MDA) was based 

on 106 random interactions. 

We fitted generalized linear models (GLMs) with Poisson distribution (a suitable 

distribution for count data) (Crawley 2012) to the immunofluorescence dependent variables 

(i.e., the mean number of cells staining positive for LC3 or caspase-3). In addition, given that 

the measured variables have the same scale, we performed hierarchical cluster analysis using a 

complete linkage method and Euclidean distance. 
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3. Results and Discussion 

3.1. Toxicity of CuSO4  

 The hypothesis assuming the suitability of the model was accepted (F4, 27 = 1.02, p = 

0.42), indicating that the Probit concentration-response model is suitable for analysis of the 

mortality bioassay results. The LC50 (confidence interval) estimated using this concentration-

response model was 142.95 µg mL-1 (69.5–231.76, Fig. 1).  

The exposure to CuSO4 in label rate (5000 µg mL-1) caused 100% mortality on P. 

helleri foragers, as previously reported for P. helleri (Botina et al. 2019) and F. schrottkyi 

(Rodrigues et al. 2016) exposed to this compound. This mortality reflects the oral intoxication 

caused by CuSO4, as heavy metal intoxication reduces the viability of bees (Di et al. 2016). The 

LC50 found in the present study is thirty-five times lower than that recommended for use in the 

field (5000 µg/mL); therefore, CuSO4 may present a risk for these bees when they go out to 

forage. The foragers can also collect pollen, nectar, and resins containing heavy metals, which 

can favor the accumulation of heavy metals in the colonies. These heavy metals can also be 

ingested by the larvae (Desoky et al. 2019; Lima et al. 2016; Yarsan et al. 2007). 
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Figure. 1. Concentration–mortality curve for Partamona helleri foragers exposed to copper 

sulfate (CuSO4). The dots represent the means of five observations at each exposure 

concentration, obtained for a total of 30 bees (including the controls). The dashed lines above 

and below the fitted regression curve indicate the 95% confidence interval. The box plot (right 

panel) shows the variation in mortality data (median, lower, and upper quartiles). 

3.2. Walking activity  

Bartlett’s test indicated the suitability of the selected PCA model (χ2 = 259.47, df = 6, 

p < 0.001). Principal components 1 (PC1) and 2 (PC2) explained 88.9% and 6.4% of the total 

variance in the data, respectively (Fig. 2A). PC1 compared the variables velocity and distance 

with resting time and number of stops. These variables had opposite loadings signals (Fig. 2B), 

thereby enabling us to separate fast from slow individuals. Negative loadings indicate higher 

velocities and distances walked, whereas positive loadings indicate longer resting times and a 

larger number of stops. Significant differences among treatments were detected in PC1, with 
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values obtained for exposed individuals being more positive, which is taken to be indicative of 

slow movements (χ² = 4.6, df = 6, p = 0.032, Fig. 2C, and 2D). PC2 compared the number of 

stops with the other variables (Fig. 2B). However, we found that oral exposure to CuSO4 did 

not result in any significant differences in PC2 (χ² = 0.01, df = 6, p = 0.99, Fig. 2C).  

Our findings indicate that the oral intoxication with the LC50 of CuSO4 reduced the 

walking activity of P. helleri, since the treated individuals presented more positive loadings in 

PC1. This behavioral change could be attributed to physiological changes in the nervous 

system. The exposure to copper and other heavy metal altered the feeding behavior of 

honeybees (Burden et al. 2019). Moreover, copper poisoning was associated with neurological 

changes in D. melanogaster, indicating that the intoxication with copper-based compounds 

leads to disruptions of vital behaviors, such as dispersion and reproduction (Arcaya et al. 2013). 



97 
 

 
 
 

 

Figure. 2. Walking behavior of Partamona helleri foragers 24 h after exposure to CuSO4 (LC50; 

142.95 µg mL-1) for 3 h. (A) An ordination diagram of the principal component analysis 
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categorized according to CuSO4 exposure and control, N = 32 (n = 16 per treatment). The 

percentage values shown in the axis labels indicate the proportion of the total variance explained 

by each component. (B) Loadings of the two principal components associated with each 

behavioral variable. (C) A box plot of the median and range of dispersion (lower and upper 

quartiles and outliers) of the PC1 (top panel) and PC2 (bottom panel) scores. * p < 0.05 in 

GLMM. (D) Individual representative tracks showing the walking behavior of control and 

CuSO4-exposed P. helleri foragers. 

3.3. Morphology of the midgut 

The midgut of P. helleri foragers comprises an epithelium containing digestive and 

regenerative cells (Fig. 3A, C). In foragers that ingested the uncontaminated diet (control), the 

digestive cells have an evident striated border at their apex, and a well-developed PM was 

observed in the gut lumen, as confirmed by WGA-FITC staining (Fig. 3E). In contrast, the 

midgut epithelium of bees that ingested the LC50 of CuSO4 was characterized by collapsed cells 

that lacked a striated border (Fig. 3B, D). Moreover, compared with that of the control foragers, 

the PM was thin (Fig. 3F). 

Cellular disintegration in the midgut epithelium, as observed in the present study, has 

also been reported in adult workers of the honey bee Apis mellifera in response to chronic 

exposure to sublethal doses of calcium oxide nanoparticles and lead oxide (Dabour et al. 2019). 

Similarly, exposure to the heavy metals cadmium and copper has been observed to affect the 

size and thickness of the midgut of the fly Boettcherisca peregrina (Diptera) and even causes 

destruction or condensation of the mitochondria of gut cells (Wu et al. 2009). Collectively, 

these findings indicate that damage caused by nanoparticles (Dabour et al. 2019) or compounds 

containing heavy metals such as cadmium and copper (Wu et al. 2009) (e.g., CuSO4 in the 

present study), have the potential to impair organ function and compromise individual survival. 
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The weak signal we detected for WGA-FITC fluorescence in the gut lumen of treated 

bees indicates that oral intoxication with the LC50 of CuSO4 adversely affects PM synthesis. 

Similar observations of a perturbed PM have been made in larvae of A. aegypti that had ingested 

heavy metals (Hg, Cd, and Cu) (Rayms-Keller et al. 1998). Moreover, oral intoxication with 

heavy metals (Cd, Cu, or Zn) has been reported to impair the digestion of ingested food in the 

third-instar larvae of Helicoverpa armigera (Lepidoptera) (Baghban et al. 2014). Based on these 

observations, we can thus infer that the epithelial degradation induced by CuSO4 reduces PM 

synthesis, thereby confirming that heavy metal intoxication negatively influences the structure 

and homeostasis of the midgut in P. helleri. 
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Figure. 3. Histological sections of the midgut epithelium of Partamona helleri foragers orally 

exposed to a control diet (A, C, E, and G) or to the LC50 of CuSO4 (142.95 µg mL-1) (B, D, and 

F). A-D: Sections stained with hematoxylin and eosin (HE). E-F: Sections stained with wheat 

germ agglutinin-fluorescein isothiocyanate (WGA-FITC) (green). Cell nuclei are stained with 

DAPI (blue). (G) Negative control for WGA staining. DC: Digestive cells; RC: regenerative 

cells; BB: brush border; L: midgut lumen; M: muscle; N: nuclei; PM: peritrophic matrix. 
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3.4. Enzyme activity  

Bees orally exposed to CuSO4 showed a significant increase in CAT (bootstrap = 

0.606, p = 0.005, Fig. 4A) and SOD (bootstrap = 2.21, p = 0.01, Fig. 4C) activities, as well in 

levels of MDA (bootstrap = 0.598, p = 0.003, Fig. 4 D), whereas in contrast, the activity of GST 

was not significantly altered in response to exposure (bootstrap = 0.686, p = 0.11, Fig. 4B). 

Consistently, it has previously been observed that the activities of both CAT and SOD 

increased in the foragers of P. helleri that were exposed to the insecticide fipronil (Farder-

Gomes et al. 2021), indicating that different agrochemicals can induce oxidative stress on these 

bees. Under these circumstances, elevated SOD and CAT activities would perhaps be expected, 

given that these enzymes are among the main endogenous defense-related enzymes of the 

antioxidant system deployed to counter the generation of reactive oxygen species (ROS) 

(Birben et al. 2012; Hsieh and Hsu 2013), which is known to increase in response to exposure 

to CuSO4 (Alaraby et al. 2016; Yang et al. 2019). Moreover, the observed increase in MDA 

levels indicative of the cell membrane damage promoted by CuSO4, as membrane lipids are 

susceptible to peroxidative attack in response to exposure to CuSO4 (Buege and Aust 1978; 

Kalita et al. 2018). 
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Figure. 4. Quantification of the activity of the enzymes catalase (A), glutathione S-transferase 

(B), and superoxide dismutase (C), and of the levels of malondialdehyde (D) in Partamona 

helleri orally exposed to the LC50 of CuSO4 (142.95 µg mL-1). The violin plots (left panel) show 

the distribution of the observed data com bootstrap and dots correspond to amostrated values 

in each 1000 bootstrap interactions in raw dataset (i.e., 6 resamples in each of the 5 replicates 

in each of the 2 treatments). Histogram (right panel) of the probability distribution of the 

random difference (permutational difference) in each of the 1000 permutational tests within 

each of the 1000 bootstrap interaction, totaling 106 interactions. The blue lines represent the 

mean observed difference after all bootstrap interactions. The dashed red lines are the quantiles 

at 2.5 and 97.5% of the distribution of the permutational difference, that is, it shows the region 

of rejection of the null hypothesis (i.e., the treatment and control do not differ) at 5% bilateral 

probability. * p < 0.05 in permutation tests. 

3.5. LC3- and caspase-3-positive cells in the midgut  

Immunofluorescence analysis revealed that the number of LC3-positive cells in the 

midgut of control bees was significantly lower (1.2 ± 0.37; mean ± standard error) than that in 

the midgut of CuSO4-exposed bees (16.8 ± 1.88) (χ2 = 7.95, d.f. = 8, p < 0.001, Fig. 5). These 

data are consistent with the findings of previous studies that have indicated that oral intoxication 

with the insecticide spinosad or an herbicide mixture (Atrazine + Mesotrione) increased the 

number of cells positive for LC3 in the midgut of P. helleri (Araújo et al. 2019, 2021). In this 

regard, the higher proportion of autophagic cells in the midgut of exposed bees compared with 

the controls can be explained in terms of the response to stress induced by the ingestion of 

CuSO4.  

Caspase-3-positive cells were only detected in the midgut of exposed bees (mean 20.4 

± 1.33; Fig. 5), thereby indicating the occurrence of apoptotic cell death in the midgut 
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epithelium can be attributed to the oral intoxication with CuSO4. This type of cell death is 

known to occur in response to multiple stimuli, including the accumulation of ROS and 

oxidative stress (Kannan and Jain 2000; Rost-Roszkowska et al. 2010; Gregorc and Ellis 2011). 
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Figure. 5. Representative whole mounts (top panel) of the midgut of Partamona helleri 

foragers orally exposed to the LC50 of CuSO4 (142.95 µg mL-1), showing LC3- and caspase-3-

positive cells (green). The nuclei are stained with TO-PRO-3 (red). Hierarchical cluster analysis 

and heat map representation (bottom panel) were based on the complete linkage method and 

Euclidean distance of the number of positive cells. N = 10 (five bees for each of the two 

treatments) for each of the two primary antibodies. 

4. Conclusion 

In this study, we demonstrate that the CuSO4 acute ingestion, in a concentration 

(estimated LC50 - 142.95 µg mL-1) lower than that recommended for use in the field, impaired 

walking activity, and disrupted midgut morphology and homeostasis in foragers of the stingless 

bee P. helleri. Furthermore, CuSO4 was found to promote increases in midgut antioxidant 

activity, autophagy, and apoptosis. Collectively, our findings indicate that when applied as a 

pesticide/fertilizer, CuSO4 can have considerable sublethal effects on the midguts of stingless 

bees, and therefore could pose a potential threat to pollinating insects of native trees as stingless 

bees.  
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CHAPTER 4. A mixture containing the herbicides Mesotrione and Atrazine imposes 

toxicological risks on workers of Partamona helleri 
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CONCLUSIONS 

• Ethoflow is an open-source desktop software with a graphical user interface, making it 

easier for the general public due to non-demand for programming. Additionally, Ethoflow is 

suitable for multivariate kinematic evaluations, behavioral assessments in heterogeneous 

environments, tracking individuals in groups maintaining their identities, and can be trained to 

learn specific animal behavior. Finally, Ethoflow is efficient in detecting bees in heterogeneous 

environments and performing different behaviors under no treatment or treated with pesticides 

with satisfactory processing speed and accuracy. 

• The collective behavior of foragers of M. quadrifasciata exposed to glyphosate and 

imidacloprid was monitored automatically with Ethoflow. Integrating multivariate behavioral 

data with AI algorithms, it was obtained up to 91% accuracy for predicting agrochemical 

contamination in bees. Moreover, a multivariate assessment of the in situ detection of different 

proteins that play a role in the immune response, cell proliferation, and differentiation in midgut 

revealed that the agrochemicals differentially impact the midgut, depending on the modes of 

action of the agrochemicals. This effort provides a broad assessment of the adverse sublethal 

effects of glyphosate or imidacloprid on the pollinators. The method proposed can be widely 

applied for other bees, pointing to the field application of AI to predict the environmental factors 

influencing bees’ health. 

• The oral exposure to CuSO4 lead sublethal effects in foragers of P. helleri. The sublethal 

effects caused by this agrochemical included disturbances in the walking behavior, in the 

structure of the midgut epithelium, and in the PM organization. Additionally, the ingestion of 

CuSO4 lead oxidative stress and altered the immunofluorescence detection of proteins that play 

a role in the immune response, cell proliferation, and differentiation in the midgut. Accordingly, 

CuSO4 lead some potential toxicological risks for pollinating insects, such as P. helleri. 

• The LC50 and LC10 were estimated for acute oral exposure to the mix of herbicides 

mesotrione and atrazine in forages of P. helleri. The mix of herbicides interfered in the food 

consumption and behavioral parameters of bees. The exposure also caused damage to the 

epithelium and PM and changed the pattern of cells positive for proteins related to the 

proliferation and differentiation of midgut stem cells. 

• This work presented and validated the AI-based system Ethoflow. This software 

provides a useful tool for technical-scientific applications in the animal behavior field and in 

toxicological assessments of non-target organisms for modeling the multiple factors affecting 



129 
 

 
 
 

bees’ health, including the adverse effects of agrochemicals. With Ethoflow it is possible to 

obtain multivariate behavioral data to train AI algorithms that predict the contamination by 

agrochemicals with high accuracy. Ethoflow also enabled holistic assessments, including 

sublethal effects of different agrochemicals on the behavior and physiology of bees. 

 


