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ABSTRACT 

 

BOTELHO, Margareth Evangelista, D. Sc., Universidade Federal de Viçosa, February, 2020. 
Causal networks, genomic prediction and candidate genes for boar taint compounds. 
Adviser: Renata Veroneze. Co-adviser: Marcos Soares Lopes.  
 

The piglet non-castration may result in the boar taint appearance, which is an unpleasant taste 

and smell in pig meat. Boar taint is caused by the increasing of boar taint compounds 

(androstenone, skatole and indole) levels in adipose tissue. However, the genetic architecture 

and the causal relationship between levels of boar taint compounds in adipose tissue still require 

elucidation. In this sense, firstly, we studied the causal relationship between androstenone, 

skatole and indole levels in carcass adipose tissue samples and animal biopsies using structural 

equations models (SEM). In summary, we verified that using priori information to define the 

causal structure increased the model goodness-of-fit, however, the credibility intervals were 

also increased resulting in several unexpected null genetic correlation. We identified direct and 

indirect effects between boar taint compounds, mainly androstenone in biopsies affect skatole 

in carcass and skatole in carcass affect androstenone in carcass. Posteriorly, we evaluated the 

effects of SNPs weighting strategies on predictive ability and bias of genomic prediction for 

boar taint compounds using a single-line and multi-line populations. In general, SNP weighting 

strategies did not result in better predictive ability for androstenone. On the other hand, 

considering skatole and indole better predictive ability were archived when using weights based 

on gene networks. Due the slightly improvement in prediction accuracy and the increase in the 

number of analyses steps required, the weighting methods may not be advantageous. In 

addition, we verified that multi-line populations improve the prediction for androstenone, while 

for skatole and indole this was not observed. Finally, we performed the identification of QTLs 

and genes associated with boar taint compounds using a weighted single-step genome-wide 

association study. We used a gene network approach to improve the identification of candidate 

genes. In summary, we identified the HSD17B2 gene that was previously describe as linked to 

boar taint appearance. New candidate genes with potential to explain boar taint phenotypes 

were find: CRHBP, CTDSP2, CDK4, CYP27B1 e SDR4E1. These genes were mainly involved 

to biosynthesis, releasing and response to steroid hormones and intestinal absorption. 

 

Keywords: Androstenone. Candidate gene. Genome-wide selection. Causal relationship. 

Indole. Skatole. 



 

 

RESUMO 

 

BOTELHO, Margareth Evangelista, D. Sc., Universidade Federal de Viçosa, fevereiro de 2020. 
Redes causais, predição genômica e genes candidatos para componentes do cheiro do 
varrão. Orientadora: Renata Veroneze. Coorientador: Marcos Soares Lopes.  
 

É desejável evitar a castração de leitões uma vez que ela pode afetar diretamente o bem-estar 

animal, a produção e a qualidade da carne. No entanto, a não castração pode resultar na 

ocorrência do cheiro de varrão, que pode ser definido como sabor e cheiro desagradáveis na 

carne suína, o qual prejudica a aceitação da carne pelo consumidor. O cheiro do varrão é 

detectado especialmente durante o cozimento, sendo causado pelo aumento do teor dos 

compostos lipofílicos androstenona, escatol e indol acumulados no tecido adiposo de suínos. Já 

se sabe que as concentrações destes compostos no tecido adiposo dependem de vários fatores 

como dieta, idade e genética do animal. No entanto, a arquitetura genética e a relação causal 

entre os níveis de compostos ligados ao cheiro do varrão na carcaça ainda requerem elucidação. 

Nesse sentido, na primeira parte desta tese, foram estudadas a relações causais entre os níveis 

de androstenona, escatol e indol em amostras de carcaça e biópsia utilizando equações 

estruturais. Neste estudo, verificou-se que o uso de priori para definir as estruturas causais 

melhora o ajuste do modelo, contudo os paramentos estimados apresentam maior intervalo de 

credibilidade, resultando em correlações genéticas nulas. Foi evidenciado também a existência 

de efeitos diretos e indiretos entre os compostos ligados ao cheiro do varrão medidos em 

carcaças e biópsias, sendo consistente entre os modelos a existência do efeito da androstenona 

medida em biópsia no escatol medido em carcaça e o efeito do escatol em biópsias na 

androstenona da carcaça. Na segunda parte desta tese foram avaliados os efeitos de diferentes 

ponderações de SNPs para a construção da matriz de parentesco na capacidade preditiva e no 

viés da predição genômica dos níveis dos compostos ligados ao cheiro do varrão. Foram usadas 

populações baseadas em uma única linhagem ou em múltiplas linhagens, adicionalmente, foi 

proposto e avaliado uma nova metodologia de ponderação dos SNPs. Foi verificado que, em 

geral, as metodologias de ponderação do SNP avaliadas podem não melhorar a capacidade 

preditiva para androstenona, já para escatol e indol, a ponderação obtida a partir de redes 

gênicas construídas utilizando 5% dos SNPs que explicavam maior parte da variância na 

associação genômica melhorou levemente a capacidade preditiva em relação ao GBLUP em 

passo único. Devido às análises adicionais e as melhorias modestas obtidas, o uso de 

ponderação pode não ser vantajoso. Além disto, o uso de população composta por linhagens 



 

 

múltiplas melhorou a predição para androstenona enquanto para escatol e indol isso não foi 

observado. Na terceira parte desta tese, foi realizada a identificação de QTLs e genes associados 

aos componentes do cheiro do varrão. Além disso, foi construída uma rede gênica com o intuito 

de verificar se os genes identificados na associação de fato estavam ligados a processos 

biológicos relacionados ao cheiro do varrão. Neste estudo foi identificado o gene HSD17B2 

previamente descrito como associado ao cheiro do varrão. Além disso, novos genes candidatos 

também foram identificados: CRHBP, CTDSP2, CDK4, CYP27B1 e SDR4E1, sendo os 

principais processos biológicos em que estes genes estão envolvidos são relacionados a 

produção, liberação e resposta a hormônios esteroides e absorção intestinal. 

 

Palavras-chave: Androstenona. Escatol. Gene candidato. Indol. Predição genômica. Relação 

causal. 
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CHAPTER 1 

 

Review 

 

1.1.Introduction 

Pork is the most consumed meat in many countries. The quality and quantity of meat on 

male pig carcass are substantially influenced by castration, in terms that non-castrated males, 

as an anabolic response to sexual hormones, deposit more muscle than fat in the carcass. 

Moreover, due to pig welfare, the non-castration has been encouraged since many countries are 

abolishing it from farm management (Aldal et al., 2005; Giersing et al., 2006). On the other 

hand, male piglet castration is practiced in production systems to avoid the boar taint 

appearance (Bonneau and Weiler, 2019).  

Boar taint is an unpleasant taste and smell in pork from non-castrate pigs, detected 

especially at cooking. These smell and taste are caused by the increase of some lipophilic boar 

taint compounds accumulated in pig adipose tissue after sexual maturity (Aldal et al., 2005; 

Aluwé et al., 2011; Bridi et al., 2006; Mathur et al., 2014, 2012; Rius et al., 2005). The main 

boar taint compounds are androstenone (5α-androst-16-ene-3-one), skatole (3-methylindole) 

and indoles (4-phenyl-3-butenone, p-cresol and 4-ethylphenol). 

Androstenone is a steroid hormone produced and secreted by testis, which levels increase 

at puberty. This steroid acts as pheromones stimulating sexual behavior in the female pig and 

appears to be easily transferred from plasma to adipose tissue (Andresen, 2006). As other 

steroid hormones, androstenone is metabolized by the liver (Doran et al., 2002), however due 

to be a lipophilic molecule, most of this steroid is accumulated in fat cells (Haugen et al., 2012). 

Differences in androstenone levels in adipose tissue across pigs have been related to differences 

in production rate of androstenone instead of in the catabolism of the steroid (Andresen, 2006).  

Skatole and indoles are produced by bacterial activity in the hind-gut, mainly through 

tryptophan bacterial degradation (Aldal et al., 2005; Aluwé et al., 2011; Babol et al., 2002; 

Claus et al., 1994). The skatole and indoles are absorbed by the intestinal mucosa into the portal 

vein and passes through the liver to be metabolized. Any pig may present skatole and indole 

production in large intestine, however, in non-castrated pigs, these products are not degraded 

by liver due to androstenone antagonism (Andresen, 2006). Authors have been suggested that 

androstenone might inhibit the liver metabolism of skatole by repressing the expression of 

enzymes involved in skatole and indoles metabolism (Doran et al., 2002; Zamaratskaia et al., 
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2004), as consequence, non-castrated pigs will present high levels of skatole and indoles 

deposited in adipose tissues.  

Usually, the boar taint compounds are reported as presenting great genetic variation, 

therefore, genetic selection against boar taint is possible (Campos et al., 2015; Drag et al., 2017; 

Duijvesteijn et al., 2015, 2014, 2010). Generally, the heritabilities and genetic correlations for 

boar taint compounds are moderate-high, moreover, genetic correlations are also positive and 

favorable (Campos et al., 2015; Grindflek et al., 2011; Lee et al., 2005; Mathur et al., 2014; 

Windig et al., 2012). Moreover, using genome-wide selection (GWS) the genetic gain could be 

increased due to higher accuracies for young individuals than in pedigree based genetic 

evaluation. 

Several studies have been carried out in order to improve the knowledge on the genetic 

architecture and parameters for boar taint compounds (Drag et al., 2018, 2017, 2019; 

Duijvesteijn et al., 2015, 2014, 2010; Ramos et al., 2011; Wang and Kadarmideen, 2019). It 

has demonstrated different quantitative trait loci (QTL), genes and markers associated with the 

boar taint compounds (Drag et al., 2017, 2019; Duijvesteijn et al., 2014, 2010; Wang and 

Kadarmideen, 2019).  

The boar taint compounds may be measured in adipose tissue through carcasses sampling, 

at slaughterhouses, in biopsies in live animals (Aluwé et al., 2011; Heyrman et al., 2018) and 

in blood plasma (Moe et al., 2009; Zamaratskaia et al., 2004). Therefore, different measurement 

protocols are used (Ampuero Kragten et al., 2011) resulting in different phenotypes and, as 

consequence, allowing to identification of different genome regions associated with the same 

compound in different studies.  

Despite several studies considering different aspects of boar taint compounds, the genetic 

basis, the causal relationship between them and the modeling approach used in genetic 

evaluation still require elucidation in order to allow a more efficient selection. Studies about 

the causal relationship between androstenone, skatole and indole using structural equations 

(Gianola and Sorensen, 2004), for example, may improve the knowledge about directs and 

indirect effects among boar taint compounds. The genomic prediction may be used and 

strategies using SNP weighting (Wang et al., 2012) need to be evaluated in boar taint 

compounds. In this sense, this thesis aimed: to study the causal relationship among boar taint 

compounds using structural equations models; to evaluate different genomic weighted 

prediction strategies for boar taint compounds and; to identify QTL regions linked to boar taint 

compounds and to investigate the biological functions of genes under these QTLs. 
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1.2. Genomic studies with boar taint compounds 

The new sequencing technologies improved the single nucleotide polymorphisms (SNPs) 

identification across the genome, allowing the use of genomic information under different 

contexts in several framework species as dairy cattle (Fang et al., 2017; Hayes et al., 2009; Sun 

et al., 2014), beef cattle (Aguilar et al., 2019; Piccoli et al., 2014), chicken (Fragomeni et al., 

2014; Wang et al., 2014) and pigs (Campos et al., 2015; Cleveland and Hickey, 2014; Knol et 

al., 2016). The GWS using SNPs information, have been currently widely used in the pig 

breeding industry (Campos et al., 2015; Knol et al., 2016). In pig breeding, GWS studies are 

mainly about productive traits like growth, weight gain, carcass traits (Campos et al., 2015; 

Sarup et al., 2016; Tusell et al., 2019) and reproductive traits (Silva et al., 2014). Studies about 

GWS against boar taint compounds are still scarce. 

Actually, most of genomic studies about boar taint compounds are related to understand 

their relationship with reproductive traits (Grindflek et al., 2011) or to find SNPs linked to 

quantitative trait loci (QTL) (Duijvesteijn et al., 2014; Quintanilla et al., 2003) or to identify 

candidates genes (Drag et al., 2017; Duijvesteijn et al., 2010). Studies have suggested that the 

reduction of androstenone concentration may negatively affect reproductive traits. Because of 

the correlation between androstenone and hormones related to fertility (estrone sulfate, 17β-

estradiol and testosterone) were very high, ranging of 0.80 to 0.95 (Grindflek et al., 2011). On 

the other hand, skatole and indole concentrations are strongly affected by feeding. Thus, it could 

be lightly easy manipulated through the diet (Visscher et al., 2018). Since skatole or indole and 

the main sex hormones (17β-estradiol, and testosterone) are poorly correlated (ranging of 0.09 

to 0.28) (Grindflek et al., 2011), the selection against them may have no negative effects on this 

reproductive traits, although the gonadal hormones influence the prevalence of boar taint 

(Zamaratskaia et al., 2005). 

Genes that play a role in sex steroids hormones pathways were described as candidate 

genes for boar taint compounds. For example, genes from cytochrome P450 (CYP) family were 

cited as candidate genes for boar taint (Grindflek et al., 2011; Zadinová et al., 2016). This gene 

family acts in metabolism and synthesis of cholesterol, steroids and other lipids (Quintanilla et 

al., 2003), additionally they may be indirectly involved in an oxidative phase of skatole 

degradation (Rowe et al., 2014; Zadinová et al., 2016). Genes from hydroxysteroid 

dehydrogenases of the HSD17ß family may be related to boar taint appearance (Duijvesteijn et 

al., 2010; Moe et al., 2009; Rowe et al., 2014) since, in human, it is involved with synthesis of 
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17 beta-hydroxysteroids (Labrie et al., 1995) whose shares the same metabolic pathway to the 

production of androsterone in pigs. These two genes families are the most important cited, 

however several other genes were reported as candidate genes for boar taint (Duijvesteijn et al., 

2010; Moe et al., 2009; Wang and Kadarmideen, 2019; Zadinová et al., 2016) although they 

did not have clear role in the boar taint appearance. 

Candidate genes and markers linked to boar taint diverged throughout the research (Drag 

et al., 2017, 2019; Duijvesteijn et al., 2014, 2010; Wang and Kadarmideen, 2019), this probably 

are due differences in population structure and methodology.  

 

1.3. Genomic wide selection 

At last century, in animal breeding, the estimated breeding values (EBV) was obtained 

by Henderson´s mixed model methodology (Henderson, 1984, 1963) using phenotypes and 

pedigree (Henderson, 1984; Henderson and Quaas, 1976). The simplest animal multi-trait 

model in matrix notation may be described as following: 

 𝐲 = 𝐗𝛃 + 𝐙𝒂 + 𝐞, 

in which: y is an observation vector; β is a vector of fixed effects; 𝒂 is a random vector of 

animal genetic effects; X and Z are matrices of incidence; e is a vector of residual random 

effects. The joint distribution of random effects is given by: 

 [𝒂𝐞] ~𝐍 {[𝟎𝟎] , [𝐆𝟎 ⊗ 𝐀 𝟎 𝟎𝐑𝟎 ⊗ 𝐈]} , 

in which: 𝐆𝟎 is genetic (co)variances matrix; A is pedigree-based relationship matrix; 𝐑𝟎 is 

residual (co)variances matrix; I is the identity matrix.  

This approach uses only phenotypes and pedigree to predict EBV for the selection 

candidates. More recently, at the beginning of the 21st century, due the development of high 

throughput genotyping, thousands of SNP markers densely covering the genome were 

identified in several species, allowing the implementation of the GWS proposed by Meuwissen 

et al. (2001). Genome wide selection assumed that at least part of these SNP are in linkage 

disequilibrium (LD) with QTLs, therefore, these markers may be used to predict genomic 

estimated breeding values (GEBV). The GBLUP is a common procedure used in GWS. In this 

method the SNPs are used to obtained the realized genomic relationship matrix (𝐆) that replace 

the pedigree based  relationship matrix (A) in the Henderson’s mixed model equations 

(VanRaden, 2008). The 𝑮 matrix can be calculated as following: 
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 𝐆 = 𝐌𝐃𝐌′2 ∑ pq, 

in which: M is a centered matrix constructed by subtracting P from X, in which X is a matrix 

that specify which marker alleles each individual inherited and P contain allele frequencies 

expressed as a difference from 0.5 and multiplied by 2, such that column i of P is 2(pi − 0.5); 

D is a identity matrix; p and q are the SNP allele frequencies in each locus.  

A drawback for this method is that it requires all animals to be genotyped, thus the genetic 

evaluation, which usually includes animals with and without genotypes, must be carried out 

through a multiple-step procedure (Hayes et al., 2009; VanRaden, 2008)(Misztal et al., 2009). 

Alternatively, Misztal et al. (2009) proposed the single-step GBLUP (ssGBLUP), in which the   

matrix is replaced by an H matrix in the mixed model equations. The H matrix was elaborated 

considering simultaneously animals with and without genotype information. Summarizing, H 

matrix combining genomic (𝐆) and pedigree based (A) relationship matrices.  

Considering A matrix built as follows: 

 𝐀 = [𝐀𝟏𝟏 𝐀𝟏𝟐𝐀𝟐𝟏 𝐀𝟐𝟐], 

wherein the subsection A11 is composed by the relationship among animals that have only 

pedigree information, A22, is composed by relationship among animals that have genotype 

information, A12, and A12 are composed by relationship among animals considered in matrices 

A11 and A22 (Aguilar et al., 2010).  

The inverse of H matrix (H-1) is given by: 

 𝐇−𝟏 = 𝐀−𝟏 + [𝟎 𝟎𝟎 𝑮−1 − 𝐀𝟐𝟐−𝟏] , 

in which: A-1 is the inverse of A; 𝑮−1is the inverse of 𝑮; 𝐀22−1 is the inverse of A22. 

Recently, an approach to attribute different SNPs weights to build the relationship matrix 

(𝑮) have been evaluated (Wang et al., 2014; Zhang et al., 2016). This SNP weighting may 

increase the genomic prediction accuracy (Marques et al., 2018; Veroneze et al., 2016; Wang 

et al., 2014), however, this procedure may have different impacts on results from different traits 

and under divergent populations structures (Lourenco et al., 2017). 
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1.4.Genetic evaluation for boar compounds 

There are few studies about genetic evaluation for boar taint compounds (Campos et al., 

2015; Luki et al., 2015; Sellier et al., 2000). Generally, these studies evaluate mainly 

androstenone and skatole together to sexual or carcass traits. 

Sellier et al. (2010), studied the responses to index selection for androstenone level in fat 

and sexual (maturity measured as bulbo-urethral gland (BUG) size) in young boar from an 

experimental population across four generations. The experimental design included a control 

and a select line having a Large White–Landrace genetic background .The index combining the 

average thickness of right and left BUG, the log of androstenone level (LAND) from back fat 

sample taken in the neck region of pigs at 117.6 kg body weight (I= 100+4*TBUG-63*LAND). 

The pattern of direct responses to antagonistic selection consisted of no response in fat LAND 

level and a significant positive genetic trend in BUG development. The authors observed that 

the selection index used throughout the experiment partly explains the pattern of direct 

responses to selection. They found evidences for a significant genetic relationship between age 

at sexual maturation of boars and gilts. This research also demonstrated that the join selection 

for sexual maturity and androstenone might have unfavorable effect on sexual development.  

Despite the of the possible association suggested by Sellier et al. (2010), research has 

suggested that low-androstenone haplotype on pig does not unfavorably affect production and 

reproduction traits (Hidalgo et al., 2014). These authors investigated a single nucleotide 

polymorphism marker distinguishing the Asian from European pig haplotypes. They found a 

favorable effect at least one sow line on number of teats and number of spermatozoa per 

ejaculation for the low-androstenone haplotype. Therefore, the unfavorable association between 

reproductive characteristics and androstenone levels may be considered inconsistent. 

Considering the GWS approaches, Luki et al. (2015) evaluated the prediction for skatole 

and androstenone through GBLUP and Bayesian regression methods using phenotypes from 

1000 pigs genotyped for 62.153 SNPs. These authors showed that the Bayesian approach 

present slightly higher predictions accuracies. For androstenone, the GBLUP presented 

accuracy close to the most accurate method, however for skatole, the Bayesian method provided 

significantly higher accuracy and should be preferable. In addition, they also showed that the 

whole-genome evaluation methods gave greater accuracy than using only the detected QTL in 

the model.  

Campos et al. (2015) compared the Ridge Regression BLUP (RR-BLUP) and Bayesian 

LASSO (BL) methods to predict the GEBV for carcass traits and concentrations of 
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androstenone and skatole using information from 622 boars and 2,500 SNPs. The best GEBV 

accuracies for most of the traits were achived by BL. However, the small database size may 

have influenced this result. 

 

1.5.Structural equations models 

The application of structural equations models (SEM) in quantitative genetic was 

proposed by Gianola e Sorensen (2004). The SEM tests the plausibility of a theoretical model 

about causal relationships between variables that supports the studied phenomenon. In this way, 

a trait may be described as function of others studied traits, allowing the elaboration of a 

functional network between them. 

Differently from multi-trait models, the SEM use several types of models to describe the 

relationship between the observed variables. The idea is to provide a quantitative test of a 

theoretical model (Schumacker and Lomax, 2004) to evaluate and estimate the direct, indirect 

and total effects that one variable exert over another (Codes, 2005). SEM allow understanding 

how the values of some traits are affected by (and not only associated with) the values of other 

traits (Valente and Rosa 2013). 

When many traits are evaluated, like in breeding programs, structural equations may be 

used as a differentiated approach of multi-trait models, making possible to combine information 

in cause and effect in order to simplify complex relationships. Generalizing, the structural 

equations can be represented as described by Valente et al. (2010): 

 y𝑗 = f(ypj, ej)  

in which: yj is a dependent variable; ypj are the parent variables of yj, in other words, variables 

that influence yj; ej is a random residual term associated with yj.  

The variables associations are represented by arrows in a structural causal diagram (Pearl, 

2003). In summary, each diagram variable is represented by a vertex and are connected to others 

by edges that indicate a causal association. These edges may be directed edges when the edges 

have arrows in one extremity (→ or ←); symmetrical direct edges, when the edges have arrows 

in both extremities (↔); and undirected edges when the edges have no arrows (─). Two vertexes 

connected by one edge are called adjacent (Valente et al., 2010). When more than two vertexes 

are in sequence a path is formed: if the arrow point in the same direction (ex.: 

A→B→C→D→E) the path is called directed path, on otherwise (ex.: A→B→C←D→E) is 

undirected path. In the example A→B→C←D←E, the variable “C” is called collider.  
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The “parent” variables (which affect other traits) should be defined a priori and a way of 

identifying these variables is using the ICA (Inductive Causation algorithm) (Pearl, 2003). This 

algorithm considers the partial correlations to establish causality relations giving as output a 

causal diagram (Figure 1). Briefly, diagrams are generated in three steps. In the first step, partial 

correlations will be used to identify the non-directed connection between two adjacent variables 

and diagrams are generated in which variables are only linked (eg, y1-y2). In the second step, 

colliders variables are identified and edges previous obtained are oriented. In the third step, 

when possible, non-directed edges will be oriented to new unshielded colliders. This step is 

only necessary when the diagram obtained in step 2 shows non-oriented edges. 

 

 

Figure 1: Representation of a structural causal diagram. 

 

In mixed model context, Gianola and Sorensen (2004) described a two traits structural 

equation system as follow:  

 yi1 = λ12yi2 + x′i1β1 + 𝑎i1 + ei1  yi2 = λ21yi1 + x′i2β2 + 𝑎i2 + ei2  

in which β1 e β2 are fixed effects vectors for trait 1 and 2, with incidence vectors x’i1 and x’i2, 

respectively; ai1 and ai2 are addictive genetic effects; ei1 and ei2 are random residual; 𝜆12 is the 

change on yi1 as function of yi2 and 𝜆21is the change on yi2 as function of yi1. This model can 

be written in matrix notation according to presented by Valente et al. (2010): 

 𝐲 = (𝚲 ⊗ 𝐈)𝐲 + 𝐗𝛃 + 𝐙𝒂 + 𝐞. 

With distribution: 

 [𝒂𝒆] ~𝐍 {[𝟎𝟎] , [𝑮𝟎 ⊗ 𝐀 𝟎 𝟎𝚿𝟎 ⊗ 𝐈]}   

in which y is an observation vector containing all t traits; 𝜦 is a structural coefficient matrix, a 

square matrix of order t; β is a fixed effect vector; X and Z are incidence matrices; 𝒂 is additive 

genetic values vector; e is a random residual vector; G0 is addictive genetic (co)variance matrix 

and; 𝚿𝟎 is a residual diagonal matrix. 
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SEM can be reduced by solving it for the terms containing yi in the right-hand side. This 

can be performed by transforming the model to (𝐈 − 𝚲 ⊗ 𝐈)𝐲 = 𝐗𝛃 + 𝐙𝒂 + 𝐞. Thus, we can 

infer that structural equations model described above is an extension of multi-trait models with 

the advantage of allowing to build functional networks among traits. Using this approach, it 

would be possible describe how each boar taint compound affect the others adding information 

about causality and direction effects that cannot be achived in conventional multi-trait models. 
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CHAPTER 2 

 

Searching for phenotypic causal networks in boar taint compounds measured in biopsies 

and carcasses  

 

2.1. Abstract 

Boar taint compounds (androstenone, skatole and indole) are usually measured in pig 

carcass, after slaughter. Alternatively, subcutaneous adipose tissue biopsies could be used to 

evaluate the content of these compounds in live animals. However, it is necessary to understand 

how the values observed in live animals reflect the values measured in carcass. This 

understanding may be acquired applying an Inductive Causation algorithm (ICA) to study the 

causality relationship among this set of traits. The ICA allows identifying the causality among 

traits and describes them through a functional causal graph. This graph provides causal 

association information to elaborate structural equations model (SEM), allowing the estimation 

of direct and indirect effects between traits by the structural coefficients. Therefore, we aimed 

to search for the causal relationship among boar taint compounds (androstenone, skatole and 

indole) measured in pig adipose tissue from carcasses and biopsies. We used information of 

androstenone, skatole and indole compounds measured in 3,590 adipose tissue samples from 

pig carcasses (AC, SC and IC, respectively) and 397 adipose tissue samples from biopsies (AB, 

SB and IB, respectively). We fitted a multi-trait model and SEM considering causal networks 

graphs obtained by ICA with or without a priori information. The priori considered was: 

biopsies are realized in live animal, before slaughter, therefore consist of previous observations 

exerting effects on carcass observations. The models were compared through the Deviance 

Information Criterion (DIC). The best DIC was obtained in a model with the causal structure 

consisted of SC←AB→AC←SB, however, this structure was built using a priori information 

and the SEM fitted with this priori returned several null genetics correlations among traits well 

described as positive correlated. The best structure returned using only ICA was 

IB→SC←AB←AC←SB: SC→IC, which was obtained with 80% to 70% high probability 

distribution (HPD) interval. This model returned positive genetic correlations and a small loss 

in the model goodness-of-fit was obtained. The use of causal structure to build the SEM 

improved the model goodness-of-fit compared with the multi-trait model in all the cases, 

indicating that the SEM was more plausible. Even using small HPD interval contents to build 

causal networks, we identified causal relationships among boar taint compounds in carcasses 
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and biopsies. The boar taint compounds measured in biopsies exert direct effects on boar taint 

compounds measured in carcasses and are passive to be used in breeding programs, improving 

the model goodness-of-fit in the prediction of these compounds. 

 

Keywords: Biopsies. Carcasses. Causal structure. Structural equation models.  

 

2.2. Introduction 

Boar taint, an unpleasant taste and smell of pork, is caused by the increase of 

androstenone, skatole and indole (boar taint compounds) levels (Aluwé et al., 2011; Mathur et 

al., 2014, 2012; Rius et al., 2005), especially in pig adipose tissue. Non-castrated pigs produce 

androstenone in the testis, which avoids skatole degradation in the liver. Consequently, these 

pigs have greater androstenone and skatole depositions than barrows and gilts (Zamaratskaia 

and Squires, 2009). Similar to skatole, indole is synthesized from the tryptophan metabolism in 

the hindgut (Rius et al., 2005). Both compounds are absorbed and metabolized in the liver and 

the non-metabolized excess is deposited in adipose tissue. 

Boar taint compounds are usually measured in the animal adipose tissue at 

slaughterhouses. In this sense, these traits can only be measured in the relatives of the selection 

candidates, which may decrease the genetic gain. Alternatively, such compounds can be 

measured on live animals through subcutaneous adipose tissue biopsies. Thus, it would be of 

valuable interest to understand how boar taint compounds measured in live animals reflect the 

boar taint compounds measured in carcass.  

It is already known that boar taint compounds in carcass adipose tissue present great 

genetic variability, with heritabilities ranging from 0.46 to 0.72, 0.29 to 0.35 and 0.26 to 0.50 

for androstenone, indole and skatole, respectively (Campos et al., 2015; Grindflek et al., 2011; 

Lee et al., 2005; Mathur et al., 2014; Windig et al., 2012). In addition, studies have reported 

moderate positive and favorable genetic correlations (ranging from 0.30 to 0.62) between 

androstenone and indole/skatole (Campos et al., 2015; Lee et al., 2005; Mathur et al., 2014; 

Windig et al., 2012), and stronger positive and favorable correlations between indole and 

skatole, ranging from 0.71 to 0.78 (Grindflek et al., 2011; Lee et al., 2005). However, to our 

knowledge, there are no studies reporting heritabilities for boar taint compounds measured in 

biopsies, and the genetic correlations between these compounds in carcasses and biopsies.  

A causality relationship study can be performed to help understanding how values 

observed in live animals are related to the values measured in carcass. In this context, Gianola 
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and Sorensen (2004) proposed the application of structural equations in quantitative genetics to 

study the causal relationships among several traits. Structural equations model (SEM) may be 

used as an alternative approach to the multi-trait models (MTM) in animal breeding programs, 

with the advantage of using causal relationship structures to describe the most likely 

relationship between the observed variables. The idea is to provide a quantitative test for a 

theoretical model (Schumacker and Lomax, 2010) to evaluate and estimate direct, indirect and 

total effects that one variable exerts on another variable (Gianola and Sorensen, 2004). The 

SEM allows understanding how the phenotypes for some traits are affected by (and not only 

associated with) other traits (Valente et al., 2011) and has the advantage of allowing to build 

functional networks among traits.  

Fitting SEM, however, requires a priori choice of a causal structure. One way to search 

for recursive causal structures is to apply the Inductive Causation algorithm (ICA) (Pearl, 

2003). As output, this algorithm returns a causal relationship graph in which a vertex represents 

each variable and their associations are represented by arrows. The ICA is constructed based 

on specific assumptions that are not completely fulfilled by multiple phenotypes in genetic 

evaluation, since traits may present unobserved correlated genetic effects that confound the 

search for causal structures (Valente et al., 2011, 2010). In this sense, Valente et al. (2011) 

proposed a methodology based on fitting a Bayesian model and the application of the ICA 

(Pearl, 2003) to the joint distribution of phenotypes conditional on genetic effects. Briefly, the 

partial residual correlations are used to identify the non-directed connection between two 

variables and graphs in which traits (y1 and y2) are linked by edges are generated (e.g., y1-y2). 

Then, collider variables are identified and the edges previous obtained are oriented (e.g., 

y1→y2). Finally, when possible, non-directed edges will be oriented to new unshielded 

colliders. The causal relationship graph obtained by IC provide the priori information to 

elaborate the SEM, allowing estimation of direct and indirect effects between traits by the 

structural coefficients obtained by solving the SEM (Valente et al., 2011, 2010).  

Although genetic parameters have been estimated for boar taint content in carcass, the 

causal relationship between levels of androstenone, skatole and indole in biopsies and carcasses 

still require elucidation. Therefore, we aimed to establish the causal relationship among boar 

taint compounds (androstenone, skatole and indole) measured in adipose tissue from pig 

biopsies and carcasses. 
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2.3. Materials and methods 

The data used for this study were obtained as part of routine data recording in a 

commercial breeding program. Samples collected for DNA extraction were only used for 

routine diagnostic purpose of the breeding program. Data recording and sample collection were 

conducted strictly in line with the rules given by Dutch Animal Research Authorities. 

 

Data 

Data of boar taint compounds (androstenone, skatole and indole) from a Duroc-based sire 

line were used in the present study. These animals belonged to a breeding program whose target 

trait are mainly for growth and production, however, boar taint was not the target of selection. 

The effects of this breeding program on boar taint compounds may be considered no significant. 

The animals were slaughtered at approximately 177 (± 9.9) days of age and boar taint 

compounds were measured in fat samples from the neck collected at the left carcass side, as 

described in Mathur et al. (2014). Boar taint compounds were also measured in fat tissue 

samples from biopsies, which were collected at about 302 (±139.44) days of age. Briefly, 

androstenone concentration was determined using liquid chromatography-mass spectrometry 

(Verheyden et al., 2007), whereas indole and skatole contents were measured using 

fluorescence at 285 and 340 nm (Ampuero Kragten et al., 2011).  

Boar taint compounds levels were submitted to logarithmic transformation (log), since 

the variables approximately followed log-normal distributions (Duijvesteijn et al., 2010; 

Mathur et al., 2014). Therefore, phenotypic information consisted of the log of androstenone 

(AC), skatole (SC) and indole (IC) levels measured in adipose tissue of 3,590 pig carcasses and 

of the log of androstenone (AB), skatole (SB) and indole (IB) levels measured in adipose tissue 

of 397 biopsies. Most of the biopsies were performed in different animals from those carcass 

sampling, existing only 17 animals with biopsy and carcasses observations. The total number 

of animals in the pedigree was 6,401 over four generations. 

 

Searching for phenotypic causal structures 

As described by Valente at al. (2010), SEM fitting was performed in three steps. Firstly, 

the posterior distributions of residual (co)variances were obtained fitting a MTM. In the second 

step, partial residual correlations were computed from the residual (co)variance distributions 

and used to build the causal structural network graphs under a high probability distribution 
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(HPD) interval using the ICA. Finally, the identified causal structures were incorporated in the 

MTM, configuring the SEM. 

 

Fitting a Bayesian multi-trait model 

A Bayesian MTM was fitted according to the following mixed model: 

 𝐲 = 𝐗𝛃 + 𝐙𝒂 + 𝐞, 

wherein: y is a vector containing the logarithm of boar taint compounds in biopsies and 

carcasses; X is the incidence matrix of systematic effects; β is a vector of systematic effects, 

containing the contemporary group (farm-year-month of slaughter), the covariates age at 

sampling and scaled hot carcass weight at slaughter; Z is the incidence matrix of animal additive 

genetic effects; 𝒂 is a vector of additive genetic effects, 𝒂 ~ N (0, 𝑮𝟎 ⊗ 𝑨); 𝒆 is a vector of 

residual effects, 𝒆 ~ N (0, 𝑹𝟎 ⊗ 𝑰); G0 is the additive genetic (co)variance matrix; A is the 

pedigree-based relationship matrix; R0 is the residual (co)variance matrix; I is an identity 

matrix. 

A chain with 2,000,000 iterations was generated considering the following prior 

distribution for model parameters: 

 ρ(𝛃, 𝐮, 𝐆0, 𝐑0) = ρ(𝛃)ρ(𝐮|𝐆0)ρ(𝐆0)ρ(𝐑0) ∝ 𝑁(u|0, 𝐆0 ⊗ 𝐀) × 𝐼𝑊(𝐆0|𝑣𝑔, 𝑺𝑔) ×𝐼𝑊(𝐑0|𝑣𝑟 , 𝑺𝑟), 

wherein ρ(𝛃, 𝐮, 𝐆0, 𝐑0) is the joint prior distribution assumed for the MTM; ρ(𝛃) is the β prior 

distribution; ρ(𝐮|𝐆0) is the u prior distribution conditioned to 𝐆0; ρ(𝐆0) is the 𝐆0 prior 

distribution; ρ(𝐑0) is the 𝐑0 prior distribution; 𝑁(u|0, 𝐆0 ⊗ 𝐀) is a multivariate normal 

density centered at 0 and covariance matrix 𝐆0 ⊗ 𝐀;  𝐼𝑊(𝐆0|𝒗𝑔, 𝑺𝑔) is an Inverse Wishart 

density with vg degrees of freedom and scale matrix 𝑺𝑔; 𝐼𝑊(𝑹0|𝒗𝑟 , 𝑺𝑟) is an Inverse Wishart 

density with vr degrees of freedom and scale matrix 𝑺𝑟. Uniform distribution was assigned as 

priori for β.  

A burn-in of 100,000 and thin of 1,000 iterations were used. The analysis was conducted 

using the BLUPF90 family of programs (Misztal et al., 2015). The convergence was verified 

using Geweke diagnostic criteria from the postgibbsf90 software (Misztal et al., 2015) and 

visual inspection of posterior distributions. 
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Building a causal structural network 

In order to obtain causal network graphs among the traits, the posterior distributions of 

residual (co)variances (R0) generated from MTM were used as input for ICA adapted for 

quantitative analysis by Valente et al. (2012). At the first analyses, the script written in R (R 

Core Team, 2017) estimate the partial correlations, which in turn were used in ICA following 

three steps: 

Step 1: The partial correlations were used to identify the non-directed connection between 

two adjacent traits. If partial correlations between two traits were different from zero, an edge 

was created between them. The output of this step is a graph with traits linked (ex.: y1–y2), 

however, the edges are not directed; 

Step 2: The correlations were also used to identify the edge directions (ex.: y1→y2) and 

collider traits. If two non-adjacent traits (ex.: y1 and y3) present a partial correlation and share 

a common trait (y2), the edges are oriented to the common trait (collider) (ex: y1→y2←y3); 

Step 3: When possible, non-directed edges were oriented to new unshielded colliders. 

This step was only necessary if the graph obtained in step 2 showed non-oriented edges. 

In summary, each graph variable represent a vertex, they are connected to others by edges 

that indicate a causal association. This edges may be directed edges when the edges have arrows 

in one extremity; symmetrical direct edges, when the edges have arrows in both extremities; 

and undirected edges when the edges have no arrows.  

As described by Valente et al. (2011), the application of the ICA involves a set of 

statistical decisions about declaring partial correlations as null or not using a HPD interval. 

Different HPD may indicate the edges and the structures that are more stable, therefore, 

different HPD intervals (95, 90, 85, 80, 75 and 70) were evaluated for the identification of the 

best network. 

 

Fitting the structural equations models  

The oriented networks returned by ICA were used to build a SEM, as presented by 

Gianola and Sorensen (2004). The SEM was fitted as a MTM in which causal parental variable 

(ex.: in the graph y1 → y2, y1 is the causal parental trait and y2 is the child trait) was considered 

as co-variable in each equation attributed to the child traits. In addition, the residual 

(co)variance matrix was diagonal (Ψ0). The structural equations were fitted according to the 

following model:  
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𝐲 = (𝚲 ⊗ 𝐈)𝐲 + 𝐗𝛃 + 𝐙𝒂 + 𝐞, 

in this model, y vector, Z and X matrices are described as in the MTM; β is a vector of 

systematic effects, containing the contemporary group (farm-year-month of slaughter), the 

covariates age at sampling, scaled hot carcass weight at slaughter and the parental variables; 𝒂 

is a vector of additive genetic effects, 𝒂 ~ N (0, 𝑮𝟎∗ ⊗ 𝑨); 𝒆 is a vector of residual effects, 𝒆 ~ 

N (0, 𝑹𝟎∗ ⊗ 𝑰); I is an identity matrix; 𝜦 is a square matrix with dimension equivalent to the 

number of traits under evaluation, the 𝜦 diagonal has zeros and the structural coefficients are 

found out of 𝜦 diagonal; 𝑮𝟎∗  is the SEM genetic (co)variance matrix given by 𝑮𝟎∗ =(𝐈 − 𝚲)−1𝑮0(I − 𝚲)−1; 𝑹𝟎∗  is the residual diagonal variance matrix given by 𝑹𝟎∗ =(𝐈 − 𝚲)−1𝚿0(I − 𝚲)−1;  𝚿0 the SEM residual (co)variance matrix. 

The analysis was performed considering the following prior distribution for model 

parameters: 

 ρ(𝚲, 𝛃, 𝐮, 𝐆0, 𝚿0) = ρ(𝚲)ρ(𝛃)ρ(𝐮|𝐆0)ρ(𝐆0)ρ(𝚿0) ∝ 𝑁(𝒖|0, 𝐆0 ⊗ 𝐀) × 𝐼𝑊(𝐆0|𝑣𝐺 , 𝑮0• ) ×∏ 𝐼𝑛𝑣. 𝒳2(ψj|𝑣𝜓, 𝑠2)tj=1 , 

in which ρ(𝚲, 𝛃, 𝐮, 𝐆0, 𝚿0) is the joint prior distribution was assumed for the SEM; ρ(𝚲) is the 𝚲 prior distribution; ρ(𝛃) is the β prior distribution; ρ(𝐮|𝐆0) is the u prior distribution 

conditioned to 𝐆0; ρ(𝐆0) is the 𝐆0 prior distribution; ρ(𝚿0) is the 𝚿0 prior distribution; 𝑁(𝒂|0, 𝐆0 ⊗ 𝐀) is a multivariate normal density centered at 0 and covariance matrix 𝐆0 ⊗ 𝐀;  𝐼𝑊(𝐆0|𝑣𝐺 , 𝑮0• ) is an Inverse Wishart density with vG degrees of freedom and scale matrix 𝑮0• ; 𝐼𝑛𝑣. 𝒳2(ψj|𝑣𝜓, 𝑠2) is a scaled inverse-chi-square distribution with 𝑣𝜓 degrees of freedom and 

scale parameter s2; ψj is the residual variance for trait j. Uniform distribution were assigned as 

priori for β and for each structural coefficient in Λ.  

Gibbs sampler algorithm was used to obtain the posterior chain through the BLUPF90 

family of programs (Misztal et al., 2015). Chains of 2,000,000 iterations, burn-in of 100,000 

and thin of 1,000 iterations were used. The convergence was verified using Geweke diagnostic 

criteria from the postgibbsf90 software (Misztal et al., 2015) and visual inspection of the 

posterior distributions. 

 

Model comparison 

As different HPD intervals were used to define the causal structures the Deviance 

Information Criterion (DIC) (Spiegelhalter et al., 2002) was applied to verify the models 
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goodness-of-fit. Considering θ as a vector containing the model parameters, the DIC was 

obtained as follows: 

 𝐷𝐼𝐶 = 𝐷(𝜃̅) + 2𝑝𝐷,  

in which 𝐷(𝜃̅) is the likelihood-based deviance estimate of the evaluated model and 𝑝𝐷 is the 

effective number of parameters in the model. The smallest DIC value implies on the best fitting. 

However, DIC only expresses whether one model presented the best goodness-of-fit compared 

with other models, being the magnitude of this difference subjective. In order to complement 

this information, the Model Posterior Probabilities (MPP) presented by Wilberg and Bence 

(2008), were calculated as: 𝑝(𝑀𝑡|𝜃) = exp(−∆𝑡2 )∑ exp(−∆𝑡2 )4𝑡=1  , 

in which 𝑡 are the different models obtained considering the causal structure returned; 𝑝(𝑀𝑡|𝜃) 

is the posterior probability of model 𝑡 be the best among the set of models compared and ∆𝑡 is 

the DIC difference between model 𝑡 and the model that presented the smallest DIC value. The ∆𝑡 for the model with the smallest DIC value is equal to zero.  

 

2.4. Results 

Multi-trait variance components 

The posterior means and 95% HPD intervals for residual and genetics variances for each 

trait, as well as the genetic and residual correlations between traits from the first step of the 

analysis (fitting an MTM), are shown in Table 1. 

High positive residual correlations were observed between AC-SB, AC-IB and SC-IC. 

Null residual correlations were observed between IC-AB, IC-IB and AB-SB. High positive 

genetic correlations were observed between SC-IC, SC-AB, SC-SB and IC-AB. Moreover, null 

genetic correlations were observed between AC-SB, AC-IB, SC-IB, IC-SB, IC-IB, AB-SB, 

AB-IB and SB-IB. We also found moderate genetic and residual correlations between AC-AB, 

SC-SB, IC-IB.  
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Table 1 Posterior means and 95% high probability distribution (HPD) intervals for the 
dispersion parameters fitting a multi-trait model 

Parameter1 
Posterior 

mean 

95% HPD 

Interval 
Parameter2 

Posterior 

mean 

95% HPD 

Interval 𝜎𝑒𝐴𝐶2  0.87 [0.80, 0.95] 𝜎𝑔𝐴𝐶2  0.27 [0.19, 0.37] 𝑟𝑒𝐴𝐶𝑒𝑆𝐶 0.39 [0.33, 0.45] 𝑟𝑔𝐴𝐶𝑔𝑆𝐶 0.28 [0.06, 0.48] 𝑟𝑒𝐴𝐶𝑒𝐼𝐶 0.38 [0.33, 0.43] 𝑟𝑔𝐴𝐶𝑔𝐼𝐶 0.26 [0.03, 0.46] 𝑟𝑒𝐴𝐶𝑒𝐴𝐵 0.53 [0.27, 0.74] 𝑟𝑔𝐴𝐶𝑔𝐴𝐵 0.48 [0.04, 0.81] 𝑟𝑒𝐴𝐶𝑒𝑆𝐵 0.82 [0.62, 0.94] 𝑟𝑔𝐴𝐶𝑔𝑆𝐵 0.13 [-0.46, 0.65] 𝑟𝑒𝐴𝐶𝑒𝐼𝐵 0.61 [0.25, 0.86] 𝑟𝑔𝐴𝐶𝑔𝐼𝐵 -0.40 [-0.79, 0.17] 𝜎𝑒𝑆𝐶2  0.25 [0.22, 0.28] 𝜎𝑔𝑆𝐶2  0.14 [0.10, 0.18] 𝑟𝑒𝑆𝐶𝑒𝐼𝐶 0.68 [0.64, 0.72] 𝑟𝑔𝑆𝐶𝑔𝐼𝐶 0.69 [0.56, 0.81] 𝑟𝑒𝑆𝐶𝑒𝐴𝐵 -0.34 [-0.63, -0.02] 𝑟𝑔𝑆𝐶𝑔𝐴𝐵 0.69 [0.31, 0.92] 𝑟𝑒𝑆𝐶𝑒𝑆𝐵 0.41 [0.09, 0.69] 𝑟𝑔𝑆𝐶𝑔𝑆𝐵 0.59 [0.30, 0.89] 𝑟𝑒𝑆𝐶𝑒𝐼𝐵 0.48 [0.08, 0.78] 𝑟𝑔𝑆𝐶𝑔𝐼𝐵 0.42 [-0.01, 0.78] 𝜎𝑒𝐼𝐶2  0.19 [0.18, 0.21] 𝜎𝑔𝐼𝐶2  0.07 [0.05, 0.09] 𝑟𝑒𝐼𝐶𝑒𝐴𝐵 -0.17 [-0.47, 0.16] 𝑟𝑔𝐼𝐶𝑔𝐴𝐵 0.73  [0.37, 0.93] 𝑟𝑒𝐼𝐶𝑒𝑆𝐵 0.52 [0.18, 0.78] 𝑟𝑔𝐼𝐶𝑔𝑆𝐵 0.09 [-0.43, 0.55] 𝑟𝑒𝐼𝐶𝑒𝐼𝐵 0.31  [-0.15, 0.70] 𝑟𝑔𝐼𝐶𝑔𝐼𝐵 0.34 [-0.11, 0.74] 𝜎𝑒𝐴𝐵2  0.26 [0.15, 0.39] 𝜎𝑔𝐴𝐵2  0.44 [0.29, 0.62] 𝑟𝑒𝐴𝐵𝑒𝑆𝐵 0.19 [-0.07, 0.46] 𝑟𝑔𝐴𝐵𝑔𝑆𝐵 0.36 [-0.01, 0.71] 𝑟𝑒𝐴𝐵𝑒𝐼𝐵 0.34 [0.06, 0.61] 𝑟𝑔𝐴𝐵𝑔𝐼𝐵 0.29 [-0.04, 0.74] 𝜎𝑒𝑆𝐵2  0.76 [0.56, 1.00] 𝜎𝑆𝐵2  0.38 [0.16, 0.67] 𝑟𝑒𝑆𝐵𝑒𝐼𝐵 0.47 [0.24, 0.67] 𝑟𝑔𝑆𝐵𝑔𝐼𝐵 0.37 [-0.04, 0.74] 𝜎𝑒𝐼𝐵2  0.58 [0.38, 0.81] 𝜎𝑔𝐼𝐵2  0.53 [0.28, 0.81] 
1 𝜎𝑒𝑖2  = residual variance of trait i, i=AC (androstenone in carcass), SC (skatole in carcass), IC 
(indole in carcass) AB (androstenone in biopsies), SB (skatole in biopsies), IB (indole in 
biopsies), 𝑟𝑒𝑖𝑒𝑖′= residual correlation between traits i and i'; 
2 𝜎𝑔𝑖2 = additive genetic variance of trait i, 𝑟𝑔𝑖𝑔𝑖′= additive genetic correlation between traits i 
and i’. 

 

The posterior distributions of the heritabilities obtained from the MTM are presented in 

Figure 1. 
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Figure 1 Posterior distributions of heritabilities from the multi-trait model. AC = androstenone 
in carcass; SC = skatole in carcass; IC = indole in carcass; AB = androstenone in biopsies; SB 
= skatole in biopsies, IB = indole in biopsies. 
 

The heritabilities of boar taint compounds measured in carcasses ranged from 0.238 to 

0.360, whereas for boar taint compounds measured in biopsies the heritabilities were higher, 

ranging from 0.332 to 0.623.  

 

Causal structures identification 

Four different graphs were returned, considering 95%, 90% and 85% (Figure 2a-c, 

respectively), from 80 to 70% HPD intervals the same structure was obtained (Figure 2d). 

 

 

Figure 2 Graphs returned by the Inductive Causation algorithm considering high probability 
distribution intervals of 95% (a), 90% (b), 85% (c) and 80 to 70% (d) for the statistical decisions 
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involving the studied traits: AC = androstenone in carcass; SC = skatole in carcass; IC = indole 
in carcass; AB = androstenone in biopsies; SB = skatole in biopsies, IB = indole in biopsies. 

 

Undirected graphs were returned considering 95% and 90% HPD intervals and their 

structures were used as ‘skeleton’ to create oriented graphs applying priori information. We 

oriented their edges considering that boar taint compounds measured in biopsies may be used 

to predict the compounds measured in carcasses, since biopsies are realized in live animals, 

before slaughter, therefore consisting of previous observations exerting effects on subsequent 

(carcass) observations, as presented in Figure 3.  

 

 

Figure 3 Graphs built combining prior information and Inductive Causation  algorithm output 
considering high probability distribution  intervals of 95% (a) and 90% (b) for the statistical 
decisions involving the studied traits: AC = androstenone in carcass; SC = skatole in carcass; 
IC = indole in carcass; AB = androstenone in biopsies; SB = skatole in biopsies, IB = indole in 
biopsies. 
 

The observed causal structures considering 85% (Figure 2c) and 80 to 70% HPD intervals 

(Figure 2d) were used to build SEM85 and SEM80, respectively, and the causal structures 

presented in Figures 3a and 3b were used to build SEM95P and SEM90P, respectively. 

 

Comparing models  

Four distinct SEM were constructed conditionally on the causal structures presented in 

Figures 2c, 2d, 3a and 3b. All SEMs carried unshielded colliders that were supported by data 

evidence, i.e. their presence in the causal structure may improved the models fitting. The 

goodness of fit was verified using DIC values obtained for each studied model (Table 2) as well 

as the MPP comparing the models to SEM90P (MPP1) and to SEM80 (MPP2)  
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Table 2 Models comparison  
Model DIC1 MPP1 MPP2 

MTM2 61,061.67 ≈0.00 ≈0.00 

SEM85
3 1,831.66 ≈0.00 ≈0.00 

SEM80 1,682,45 ≈0.00 ≈0.99 

SEM95P 2,274.78 ≈0.00 ≈0.00 

SEM90P 1,632.92 ≈1.00 - 
1 Deviance Information Criterion values obtained for each model; 
2 Multiple Trait Model (MTM)  
3 Structural Equations Models (SEM85, SEM80, SEM95P, and SEM90P) 
4

 Model Posterior Probabilities comparing the models to SEM90P;  
5 Model Posterior Probabilities comparing the models to SEM80. 
 

The model with best goodness-of-fit was SEM90P, elaborated considering a priori 

information; the second model with best model was SEM80, elaborated considering only IC 

output (Table 2). The SEM90P was the most probable model that presented the best goodness-

of-fit (MPP1 ≈1.00; Table 2), however, in posterior analyses, this model showed several 

unexpected null correlations (Table 3) therefore, the results returned by the second model were 

also evaluated. In this sense, we calculate the MPP2, in which SEM90P was considered and the 

model with best goodness-of-fit was the SEM80. In this analysis, the SEM80 was the most 

probable model that presented the best goodness-of-fit (MPP1 ≈0.99; Table 2).  

The posterior means and 95% HPD intervals for each trait genetic and residual variances 

and correlations obtained fitting SEM80 and SEM90P are shown in Table 3. 
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Table 3 Posterior means and 95% high probability distribution (HPD) intervals for the 
dispersion parameters fitting SEM80 and SEM90P. 

SEM80
1 SEM90P

2 

Parameter3 
Posterior 

mean 
95% HPD Interval Parameter3 

Posterior 

mean 

95% HPD 

Interval ψAC 0.70 [0.64, 0.76] ψAC 0.68 [0.62, 0.74] ψSC 0.08 [0.06, 0.10] ψSC 0.07  [0.05, 0.09] ψIC 0.07 [0.06, 0.09] ψIC 0.07  [0.06, 0.09] ψ𝐴𝐵 0.26 [0.13, 0.38] ψ𝐴𝐵 0.28 [0.17,  0.41] ψ𝑆𝐵 0.31 [0.18, 0.48] ψ𝑆𝐵 0.44 [0.23, 0.63]0 ψ𝐼𝐵 0.39 [0.23, 0.58] ψ𝐼𝐵 0.45 [0.29, 0.58] 𝜎𝑔𝐴𝐶2  0.56 [0.47, 0.66] 𝜎𝑔𝐴𝐶2  0.59  [0.50, 0.70] 𝑟𝑔AC𝑔𝑆𝐶  0.72 [0.66, 0.79] 𝑟𝑔AC𝑔𝑆𝐶  0.71 [0.65, 0.77] 𝑟𝑔AC𝑔𝐼𝐶 0.75 [0.69, 0.80] 𝑟𝑔AC𝑔𝐼𝐶 0.73 [0.67, 0.79] 𝑟𝑔AC𝑔𝐴𝐵 0.61 [0.34, 0.80] 𝑟𝑔AC𝑔𝐴𝐵 0.09 [-0.43, 0.60] 𝑟𝑔AC𝑔𝑆𝐵 0.76 [0.63, 0.87] 𝑟𝑔AC𝑔𝑆𝐵 -0.10 [-0.73, 0.52] 𝑟𝑔AC𝑔𝐼𝐵 0.22 [-0.08, 0.54] 𝑟𝑔AC𝑔𝐼𝐵 -0.26 [-0.62, 0.12] 𝜎𝑔𝑆𝐶2  0.45 [0.41, 0.49] 𝜎𝑔𝑆𝐶2  0.46  [0.42, 0.51] 𝑟𝑔𝑆𝐶𝑔𝐼𝐶 0.92 [0.89, 0.94] 𝑟𝑔𝑆𝐶𝑔𝐼𝐶 0.92 [0.89, 0.94] 𝑟𝑔𝑆𝐶𝑔𝐴𝐵 0.41 [0.18, 0.65] 𝑟𝑔𝑆𝐶𝑔𝐴𝐵 -0.01 [-0.53, 0.49] 𝑟𝑔𝑆𝐶𝑔𝑆𝐵 0.87 [0.74, 0.96] 𝑟𝑔𝑆𝐶𝑔𝑆𝐵 0.22 [-0.43, 0.85] 𝑟𝑔𝑆𝐶𝑔𝐼𝐵 0.53 [0.22, 0.79] 𝑟𝑔𝑆𝐶𝑔𝐼𝐵 0.24 [-0.13, 0.61 ] 𝜎𝑔𝐼𝐶2  0.28 [0.25, 0.31] 𝜎𝑔𝐼𝐶2  0.28 [0.26, 0.31] 𝑟𝑒𝐼𝐶𝑒𝐴𝐵 0.39 [0.08, 0.69] 𝑟𝑒𝐼𝐶𝑒𝐴𝐵 0.01 [-0.56, 0.58] 𝑟𝑔𝐼𝐶𝑔𝑆𝐵 0.70 [0.53, 0.84] 𝑟𝑔𝐼𝐶𝑔𝑆𝐵 -0.01 [-0.67, 0.71] 𝑟𝑔𝐼𝐶𝑔𝐼𝐶 0.44 [0.09, 0.75] 𝑟𝑔𝐼𝐶𝑔𝐼𝐶 0.06 [-0.33, 0.50] 𝜎𝑔𝐴𝐵2  0.47 [0.29, 0.66] 𝜎𝑔𝐴𝐵2  0.42   [0.23, 0.59] 𝑟𝑔𝐴𝐵𝑔𝑆𝐵 0.44 [0.28, 0.62] 𝑟𝑔𝐴𝐵𝑔𝑆𝐵 0.43 [0.23, 0.62] 𝑟𝑔𝐴𝐵𝑔𝐼𝐵 0.51 [0.33, 0.70] 𝑟𝑔𝐴𝐵𝑔𝐼𝐵 0.57 [0.43, 0.71] 𝜎𝑔𝑆𝐵2  1.14 [0.91, 1.38] 𝜎𝑔𝑆𝐵2  0.82 [0.49, 1.14] 𝑟𝑔𝑆𝐵𝑔𝐼𝐵 0.61 [0.47, 0.75] 𝑟𝑔𝑆𝐵𝑔𝐼𝐵 0.72 [0.55, 0.86] 𝜎𝑔𝐼𝐵2  0.79  [0.53, 1.08] 𝜎𝑔𝐼𝐵2  0.73 [0.52, 0.95] 
1 Structural Equations Models (SEM) considering causal structures obtained with 80-70% high 
probability distribution (HPD) interval; 
2 SEM) considering causal structures obtained with 90% high probability distribution HPD 
interval plus priori; 
3 ψ𝑖= residual variance of trait i. i =AC (androstenone in carcass), SC (skatole in carcass), IC 
(indole in carcass), AB (androstenone in biopsies), SB (skatole in biopsies), IB (indole in 
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biopsies), 𝜎𝑔𝑖2 = additive genetic variance of trait i,  𝑟𝑔𝑖𝑔𝑖′= additive genetic correlation between 
traits i and i’. 
 

The residual (ψi) and genetic (𝜎𝑔𝑖2 ) variance estimates obtained by both SEM for all traits 

may be considered equal since there is a large overlap of their HPD intervals. In addition, 

regarding the HPD contents, the SEM90P returned null genetic correlations between most of 

boar taint compounds. On the other hand, in SEM80, only the genetic correlation between AC-

IB was considered null. Moreover, the SEM90P provided genetic correlations between the same 

boar taint compounds measured in carcasses and biopsies null and with large HPD interval, 

while in SEM80 these genetic correlations were positive and with small HPD interval.  

The posteriori means of structural coefficients pertaining to both SEM80 and SEM90P are 

presented in Table 4. 

 

Table 4 Structural coefficients (𝜆) pertaining to SEM80 and SEM90P models. 

Structural coefficient 
SEM90P

1  SEM80
2 

Mean2 SD3  mean SD 𝜆  𝑆𝐶,𝐴𝐵4 -0.0002 0.0001  -0.0006 0.0002 𝜆𝐴𝐶,𝐴𝐵 0.0007 0.0004  - - 𝜆𝐴𝐶,𝑆𝐵 -0.0006 0.0003  0.0002 0.0002 𝜆𝐴𝐵,𝐴𝐶 - -  -0.0002 0.0002 𝜆  𝑆𝐶,𝐼𝐵 - -  0.0004 0.0002 𝜆𝐼𝐶,𝑆𝐶 - -  0.0088 0.00129 
1 Structural Equations Models (SEM) considering causal structures obtained with 80-70% high 
probability distribution (HPD) interval; 
2 SEM considering causal structures obtained with 90% high probability distribution HPD 
interval plus priori; 
2 estimated mean of structural coefficient;  
3 standard deviation; 
4 AC: androstenone in carcass, SC: skatole in carcass, IC: indole in carcass, AB: androstenone 
in biopsies, SB: skatole in biopsies, IB: indole in biopsies. 
 

Regarding the structural coefficients obtained with SEM90P, we can infer that AB has a 

negative effect on SC and a positive effect on AC, while SB has a negative effect on AC. On 

the other hand, the structural coefficients obtained with SEM80 indicate that SB has a positive 

effect on AC, IB has a positive effect on SC and SC has a positive effect on IC, whereas AB 

has a negative effect on SC and AC has a negative effect on AB. 
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2.5.Discussion 

In this research a multi-trait approach were used to evaluate the boar taint compounds 

considering carcasses and biopsies measurements as different traits. In general, boar taint 

compounds presented greater phenotypic variation in biopsies than in carcasses; nevertheless, 

most part of this variation was represented by the genetic variance. For the traits measured in 

carcasses, the genetic to phenotypic variance rate was slightly smaller, resulting in moderate 

heritabilities, while for the traits measured in biopsies, higher heritabilities were found. Our 

findings are in agreement with previously reported boar taint compounds heritabilities, which 

ranged from 0.46 to 0.72, 0.50 to 0.26 and 0.29 to 0.35 for androstenone, skatole and indole 

measured in carcasses, respectively (Campos et al., 2015; Mathur et al., 2012; Windig et al., 

2012). The genetic variance observed for boar taint traits measured in the biopsies were greater 

than the observed for carcass measured traits. Most of biopsies information belongs to older 

animals (302 days-old, on average) than to those used to measure the carcass boar taint 

compounds (177 days-old, on average). The differences among heritabilities and genetic 

variance observed in carcasses and biopsies indicate that higher genetic gain can be obtained 

using biopsy measurements. However, this finding should be confirmed using larger dataset, 

since large HPD intervals were observed for biopsy parameters.  

The genetic correlations between boar taint compounds measured in carcasses are well 

known and described as favorable and positive (Campos et al., 2015; Mathur et al., 2012; Tajet 

et al., 2006; Windig et al., 2012; Zamaratskaia et al., 2004). However, we have found no studies 

reporting the genetic correlations between carcasses and biopsies measurements. The genetic 

correlations among boar taint compounds in biopsies and carcasses found the present study 

suggest that biopsies and carcass measurements may be considered different traits. This may 

justified by difference in the average age at measurements on carcasses and biopsies. The 

biopsies were performed in older animals, which already are in reproductive phase, producing 

sexual hormones in the testis, including androstenone that affect the other boar taint 

compounds. At the average age of carcass measurements, the animals may be at the beginning 

of reproductive phase and not present a full testis activity, presenting phenotypes different from 

those as adults. 

The MTM analyses provided residual correlations between boar taint compounds, which 

were used as input for the ICA to search for causal structures based on different HPD intervals. 

Since we have used several non-null residual correlations as input for ICA, it was able to return 

partially directed or fully directed causal graphs. The edges orientation were supported by the 
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existence of unshielded colliders, which were essential for the orientation of these edges by the 

algorithm (Pearl, 2003; Valente et al., 2011, 2010). Nevertheless, the directed graphs were 

obtained using 85% or less HPD interval.  Undirected graphs returned with 95 and 90% HPD 

intervals were be oriented combining the ICA output and the prior knowledge (Pearl, 2003; 

Valente et al., 2011). 

Small HPD intervals make the analysis more parsimonious (less restrictive / strict), 

enabling the identification of different causal structures and new colliders (Valente et al., 2010) 

that may impose and change the edges direction. We observed changes in edge direction 

between SB and AC (Figure 1c and 1d), which may be justified by the identification of new 

unshielded colliders that redirected the graph and formed a pathway (Pearl, 2003). It seems 

logical that androstenone is the parental variable for skatole due to androstenone antagonism in 

skatole degradation in liver (Zamaratskaia and Squires, 2009). However, biochemically, 

possible feedback between androstenone and skatole has also been reported (Claus et al., 1994; 

Rius et al., 2005; Zamaratskaia et al., 2004). Therefore, the causal relationship indicating the 

effects of skatole on androstenone is also plausible, since edges may have alternative directions 

without contradict known biochemical paths (Bouwman et al., 2014). In addition, the approach 

used allows the identification of causal relationships despite the genetic effects using the 

phenotypes conditional distribution (Valente et al., 2011, 2010). 

The plausibility of all network structures obtained with different HPD intervals was 

verified before fitting the SEM, which incorporated the parental variables into the prediction 

equations of the child variables, resulting in four different SEM that were compared by the DIC. 

The model with the best goodness-of-fit was SEM90P, followed by SEM80, and the simplest 

model (MTM) presented the worst goodness-of-fit among all models. The DIC does not assign 

better scores to complex models if the extra goodness-of-fit achieved do not compensate the 

increase in the number of parameters (Valente et al., 2011). Moreover, MPP showed that 

SEM90P presented the best goodness-of-fit compared to the other models. Therefore, even being 

more parameterized, all SEMs presented better goodness-of-fit than MTM. Based on the given 

causal structure, this indicates that the variability of each boar taint compound can be partially 

explained by the conditioning (parent) boar taint compound resulting in a model that is more 

parsimonious than MTM. 

The differences observed in genetic and residual variance among MTM and SEM may be 

attributed to the model re-parameterization that decreased residual variances and increased 

genetic variances. In this sense, the interpretation of variance components obtained by MTM 
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and SEM should not be the same (Valente et al., 2013), since models specific genetic 

(co)variances refer to the (co)dispersion of the genetic effects of each model, and therefore have 

distinct meanings (Bouwman et al., 2014).  

Conditioning of correlated traits in SEM resulted in greater genetic correlations than those 

obtained in MTM. These posterior means of genetic correlations from SEM refer to the genetic 

covariance that remains after conditioning on the appropriate boar taint compound. In other 

words, genetic correlations estimated from SEM express the causal correlation between direct 

genetic effects for each trait (Bouwman et al., 2014); therefore, all sources of association among 

traits are accounted for by the SEM via the causal connections among phenotypes (Valente et 

al., 2013). 

The posterior means of residual and genetic variances estimated in SEM80 and SEM90P 

may be considered equal due to the overlap of their 95% HPD intervals, indicating class of 

equivalent causal structures (Valente et al., 2010). This was expected, since the different graphs 

used to build the SEM were returned by the ICA and represented classes of equivalent causal 

structures (Pearl, 2003). Despite the HPD overlap, the estimates were consistently more 

accurate in the SEM80 (lower HPD interval content), suggesting better estimates. 

Although high posterior means of residual and genetic variances have been estimated, 

several genetic correlations obtained in the SEM90P may be considered null, since the value zero 

is present in their 95% HPD intervals. It was expected that the same boar taint compound 

(androstenone, skatole or indole) measured in biopsies and in carcasses will had positive genetic 

correlations, however these correlations were not different from zero with the SEM90P. These 

findings indicate that, despite the best goodness-of-fit of SEM90P evidenced by DIC, this model 

may be poorly compatible with data evidences, in terms that posterior dispersion parameters 

intervals were substantially large. 

As previously discussed, the use of SEM allows the identification of parental traits effects 

on their child traits through structural coefficients (Valente et al., 2011, 2010). Nevertheless, 

the studied phenotypes were logarithmically transformed, therefore, it is not possible to declare 

the real magnitude of the effect that each parental boar taint compound exerts on its child, but 

the direction of these effects can be perfectly assessed. 

Although unexpected, in the SEM, some negative effects were observed between some 

boar taint compounds (AB→SC and SB→AC in SEM90P; AB→SC and AC→AB in SEM80). 

This possibly occurs because the SEM enables indirect identification of a second source of 

genetic association in which the set of genes that affect the phenotype of the parental variable 
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may have negative effect on the phenotype of the child variable (Bouwman et al., 2014; Valente 

et al., 2013). Thus, this indirect source of covariation could present an opposite sign to that of 

the covariance between direct genetic effects, indicating that genes affecting a pair of traits 

could actually have “double consequences” (Valente et al., 2013). This is plausible since 

biopsies measurements are performed under different metabolism conditions from those 

observed in carcasses measurement (after slaughter) resulting in different genic mechanism 

involved in the phenotype expression. 

On the other hand, either SEM90P or SEM80 returned positive structural coefficients in 

which biopsies boar taint compounds affect carcasses boar taint compounds (AB →AC in 

SEM90P; SB → AC and IB →SC in SEM80). As previously described, AC and AB were 

considered distinct traits, however, they are the same component measured using different 

methodologies, therefore, a positive effect was expected. In this sense, it was also expected to 

observe direct effects between SC: SB and IC: IB, however the ICA did not report evidence of 

these causalities, probably due to the small size of the biopsy database. The effect of SB on AC 

may be related to possible feedback that skatole exerts on androstenone (Claus et al., 1994; Rius 

et al., 2005; Zamaratskaia et al., 2004). The positive effects of IB on SC as well as SC on IC, 

both verified in SEM80, may be perfectly justified by the similar metabolic origin, synthesis and 

degradation pathways of these two compounds (Aluwé et al., 2011; Claus et al., 1994; Grindflek 

et al., 2011; Jesen et al., 1995). Furthermore, since both compounds are chemically very similar, 

there may be some confusion in their measurements, especially the possibility that indole 

measurements are "inflated" by the skatole measurements (Verheyden et al., 2007), which 

would also justify the positive effects. 

 

2.6.Conclusion 

The multi-trait model reveals that the same boar taint compound in carcass and biopsies 

should not considered the same trait. Causal structure among boar taint compounds in carcasses 

and biopsies were identified indicating that skatole in biopsies is the major trait that exert effects 

in the other boar taint compounds. The best causal structure returned was 

IB→SC←AB←AC←SB: SC→IC, which was obtained with 80% HPD interval, this pathway 

indicates that skatole in carcass exert direct and indirect effects in the other boar taint 

compounds. In addition, androstenone, skatole and indole measured in biopsies exert direct 

effects at least one boar taint compound measured in carcasses and are passive to be used in 
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breeding programs. The goodness-of-fit of the structural equation models were superior to the 

multi-trait model. 
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CHAPTER 3 

 

Applying an association weight matrix in genomic prediction of boar taint compounds  

 

3.1. Abstract 

Genome-wide association studies (GWAS) have identified markers associated with boar taint 

compounds (androstenone, skatole, and indole), which may supply valuable information to 

attribute different weights for SNP markers in genome-wide selection (GWS) to increase the 

predictive ability. A feasible way to approach non-false positive markers could be to explore 

biological information and genetic correlation between traits under a gene network framework 

based on an association weight matrix (AWM). Therefore, we aimed to evaluate the predictive 

ability and the bias achieved using models that allow weighting each SNP in the G matrix 

according to its explained genetic variance, with and without incorporating biological 

information in the weighting procedure. In addition, we also aimed to evaluate the effect of 

different population structures (multi-line and single-line) in the GWS of boar taint compounds. 

Boar taint compounds measured in 4,922 pig carcasses and genotypes (Illumina PorcineSNP60 

BeadChip) from 3,749 animals were available for this study. Firstly, we performed a GWAS in 

which a single- (SL) and a multi-line (ML) population were used to identify SNPs associated 

with boar taint compounds using the single-step GBLUP (ssGBLUP) method. In a second step, 

1%, 2%, 5% and 10% of the markers explaining the highest proportions of the genetic variance 

for each trait were selected to build gene networks via the AWM approach. The total number 

of gene interactions for each gene in the network was used to compute weights for previously 

selected SNP and used to build genomic relationship matrices for ssGBLUP, which we called 

AWM-WssGBLUP approach. In addition, we performed weighted ssGBLUP (WssGBLUP) 

and ssGBLUP analyses as standard scenarios and their predictive ability were compared with 

the ones of the AWM-WssGBLUP approach. The WssGBLUP showed greater predictive 

ability for androstenone in both SL and ML scenarios compared to the other methods. For 

skatole and indole, the AWM-WssGBLUP method using the top 5% SNPs slightly increased 

the predictive ability by up to 4% compared to the traditional ssGBLUP method. However, in 

comparison with the traditional ssGBLUP, the WssGBLUP increased the number of analyses 

steps and the gain obtained in predictive ability may be negligible. Moreover, the ssGBLUP 

resulted in the best predictive abilities and biases  for androstenone using the ML population. 
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On the other hand, in general, the SL population result in better predictive ability in genomic 

prediction for indole and skatole.  

 

Keywords: Androstenone. Gene interactions. Indole. Reference population. Skatole. Weighted 

genomic prediction.  

 

3.2.Introduction 

Boar taint, an unpleasant taste and smell of pork, is detected especially at cooking and it 

is caused by the increase of androstenone and skatole levels in adipose tissue from non-castrated 

male pigs. All pigs present skatole production in the large intestine. However, in non-castrated 

male pigs, the androstenone, which is produced in the testis, avoids skatole degradation 

(Zamaratskaia and Squires, 2009). Consequently, non-castrated male pigs have greater skatole 

deposition than barrows and gilts. In addition, other components, such as the indoles (4-phenyl-

3-butenone, p-cresol and 4-ethylpheno) may also affect boar taint (Aluwé et al., 2011; Rius et 

al., 2005). Similar to skatole, indole is also synthesized from the tryptophan in the hindgut (Rius 

et al., 2005). 

It is already known that androstenone, skatole and indole concentrations in adipose tissue 

show great genetic variability and depend on several factors as diet, age and genetic background 

(Aluwé et al., 2011; Campos et al., 2015; Duijvesteijn et al., 2010; Mathur et al., 2014). In 

addition, positive and favorable genetic correlations between skatole and androstenone levels 

have been described (Campos et al., 2015; Mathur et al., 2014). The variation of androstenone 

and skatole levels has been associated with single nucleotide polymorphism (SNP) markers and 

some candidate genes for boar taint have been reported (Campos et al., 2015; Duijvesteijn et 

al., 2014, 2010). 

Besides being useful to detect potential marker candidates for assisted selection strategies, 

genome-wide association studies (GWAS) results can also contribute to improve the 

predictitive ability of genomic predictions. Several studies have proposed strategies to increase 

the accuracy and predictitive ability of genomic prediction by weighting SNP in the genomic 

relationship (G) matrix according to its relevance for the evaluated trait (Gao et al., 2017; Sarup 

et al., 2016; Veroneze et al., 2016; Wang et al., 2014, 2012; Zhang et al., 2016, 2010). In this 

approach, an iterative procedure is used to build a weighted G matrix based on the explained 

genetic variance by each marker, which can be used in a weighted single-step GBLUP 

(WssGBLUP) (Wang et al., 2012). 
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Despite the increase in the accuracy observed in some studies with WssGBLUP (Wang 

et al., 2012; Zhang et al., 2016), weights may be attributed to false positive markers, since there 

is no verification of the association. A way to increase emphasis on non-false positive markers 

could be to explore biological information, genetic correlations between traits and gene 

networks through an Association Weighted Matrix (AWM) (Fortes et al., 2010).The AWM 

applies gene network theory in GWAS to improve the identification of important set of genes 

explaining a group of phenotypes, which may be useful for deriving SNP weights to be 

posteriorly used to build the weighted G matrix. In brief, AWM methodology involves selecting 

SNPs from GWAS that are associated with genes that potentially explain a key phenotype. The 

SNP effects for n traits are used to build the AWM, which have as many rows as SNPs selected 

and as many columns as the number of evaluated traits. Each cell value of AWM corresponds 

to the normalized additive SNP effect on the trait. The rows are indexed as genes linked to 

SNPs and row-wise Pearson partial correlations are used to explore the correlations between 

SNP effects and to predict gene interactions using a combination of hierarchical clustering, 

weighted gene network, and pathway analyses (Fortes et al., 2011, 2010). 

Despite produce relevant results in GWAS, contributing for the identification of candidate 

genes for complex traits, the incorporation of biological information from AWM into genomic 

prediction still lacks understanding. Therefore, we aimed to evaluate the predictive ability and 

the bias achieved using models that allow weighting each SNP in the G matrix according to its 

explained genetic variance, with and without incorporating biological information in the 

weighting procedure. In addition, we aimed to compare the predictitive ability and the bias 

obtained from weighting approaches with those achieved using the traditional single-step 

GBLUP (ssGBLUP). Finally, we also aimed to evaluate the effect of different reference 

population structures (multi-line and single-line) in the predictitive ability and the bias of boar 

taint compounds. 

 

3.3.Materials and methods 

The data used for this study were obtained as part of routine data recording in a 

commercial breeding program. Samples collected for DNA extraction were only used for 

routine diagnostic purpose of the breeding program. Data recording and sample collection were 

conducted strictly in line with the rules given by Dutch Animal Research Authorities. 
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Data 

Genotypic and phenotypic data of animals from three sire lines (L1: Duroc-based line; 

L2: synthetic line; L3: Pietrain) were evaluated, as described in Table 1. The phenotypic 

information consisted of androstenone, skatole and indole levels measured in the adipose tissue 

of the carcass of 4,922 pigs as described in Mathur et al. (2014). Briefly, androstenone 

concentration was determined using liquid chromatography-mass spectrometry (Verheyden et 

al., 2007), whereas indole and skatole contents were measured using fluorescence at 285 and 

340 nm (Ampuero Kragten et al., 2011).  

Androstenone, skatole, and indole levels were submitted to logarithmic transformation 

(log), since the variables approximately followed log-normal distributions (Duijvesteijn et al., 

2010; Mathur et al., 2014). Genotypic information of 3,749 animals from the three evaluated 

lines was also available for this study. The total number of animals in the pedigree was 13,604. 

 

Table 1. Description of the number of animals with phenotypic and/or genotypic data from three 
sire lines. 

Line1 
Animals 

Phenotyped Genotyped Phenotyped + Genotyped 

L1 3,572 1,316 854 

L2 712 1,080 232 

L3 638 1,353 123 

Total 4,922 3,749 1,209 
1 Duroc-based line (L1), Synthetic line (L2) and Pietrain (L3). 
 

Two different populations were used in the analyses: a multi-line (ML) population with 

all three sire lines (L1, L2 and L3) and a single-line (SL) population composed by sire line L1, 

since it was the line with the greatest amount of genotyped and phenotyped animals. 

 

Genotypes and Quality Control 

The animals were genotyped using the Illumina PorcineSNP60 BeadChip. The genotypic 

data were submitted to quality control, in which we excluded SNPs located in both sex 

chromosomes, with call-rate smaller than 95%, MAF smaller than 1% and/or with strong 

deviations from the Hardy-Weinberg equilibrium (P <10-7). Quality control was performed 

within line, resulting in a final set of 49,977 SNPs for L1, 48,396 for L2 and 50,456 for L3. 

After quality control, the remaining missing genotypes were imputed within population using 

Fimpute v2.2 (Sargolzaei et al., 2014). 
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Models 

The analyses were conducted according to the following single trait mixed model: 

 𝐲 = 𝐗𝛃 + 𝐙𝒂 + 𝐞  

Wherein: 

y is a vector containing the logarithm of androstenone, skatole or indole levels; 

X is the incidence matrix of fixed effects; 

β is a vector of fixed effects, containing the effects of contemporary group (farm-year-month 

of slaughter), the covariates age at slaughter and scaled hot carcass weight at slaughter in each 

line and, additionally, the line effect in the ML population; 

Z is the incidence matrix of animal additive genetic effect; 𝒂 is a vector of animal additive genetic effect, 𝒂 ~ N (0, 𝜎𝑎2H); 𝒆 is a vector of residual effects, e ~ N (0, 𝜎𝑒2I); 𝜎𝑎2 and 𝜎𝑒2 are the additive genetic and residual variances, respectively; 

I is an identity matrix; 

H is the relationship matrix based on both pedigree and genomic information, which inverse 

(H-1) was given by Legarra et al. (2014): 

 𝐇−𝟏 = 𝐀−𝟏 + [𝟎 𝟎𝟎 𝐆−𝟏 − 𝐀𝟐𝟐−𝟏] , 

Wherein: 

A-1 is the inverse of pedigree-based relationship matrix (A); 

G-1 is the inverse of the genomic relationship matrix; 𝐀𝟐𝟐−𝟏 is the inverse of pedigree-based relationship matrix from genotyped animals.  

The G matrix was calculated according to VanRaden (VanRaden, 2008; Wang et al., 2012):  

 𝐆 = 𝐙𝐃𝐙′2 ∑ p𝑖q𝑖 
Wherein: 

Z is a zero-centered matrix obtained by Z = M - P, wherein M is a 𝑚 × 𝑛 (number of markers 

x number of animals) matrix, which specifies each individual genotype and P is a matrix with 

the allele frequencies expressed as a difference of 0.5 and multiplied by 2, i.e. the i column of 

P is given by 2 (pi - 0.5); 

D is a diagonal matrix, which will be better defined below;  
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pi and qi are the SNP allelic frequencies in ith loci. 

 

Scenarios and Weighted Matrix 

The first scenario (S1) is the traditional ssGBLUP (VanRaden, 2008), which will be taken 

as a reference, since it is the most widely used method in animal genomic prediction. In this 

approach, the D matrix corresponds to an identity matrix in which all markers are equally 

important in the construction of the relationship matrix. 

The second scenario (S2) is the WssGBLUP method described by Wang et al. (2012). In 

this method, the breeding values obtained through the ssGBLUP are used to calculate SNP 

effects, which in turn are applied in the computation of the variance explained by each marker; 

then, these variances are used to build the D matrix. We considered the results from the third 

iteration of WssGBLUP, since it has been shown that three iterations are enough to maximize 

genomic predictitive ability and correctly identify major SNPs (Lourenco et al., 2017; Zhang et 

al., 2016). 

Aiming to incorporate biological information in the weighting matrix (D), we have 

proposed the AWM-WssGBLUP method (third scenario - S3). In this scenario, an adaptation 

of the approach presented by Fortes et al. (2010) was carried out to build the AWM and gene 

networks. In Fortes et al. (2010), a traditional single-SNP GWAS was performed and P-values 

were obtained for each SNP effect; then, significant SNP effects were used to build the AWM. 

In the present study, the AWM was built using the explained genetic variance by each SNP for 

each boar taint trait (androstenone, skatole, and indole). We have chosen to use the variance 

explained by each SNP since in a single-step GWAS, performed as backsolving the breeding 

values from ssGBLUP, SNP effects are computed using data from genotyped and non-

genotyped animals. The AWM was built in four sub-scenarios, in which we selected the top 

1%, 2%, 5% or 10% SNPs (top SNPs) that explained the highest proportion of the genetic 

variance for each trait (S3top1%, S3top2%, S3top5%, and S3top10%, respectively). All procedures 

adapted to build the AWM are summarized in Fig. 1 using the top 2% SNPs as an example. 

For each sub-scenario, all markers identified as top SNPs for each trait were selected for 

AWM construction, following the methodology described by Fortes et al. (2010). Androstenone 

was considered the key phenotype in the analyses, since its level in non-castrated pigs directly 

affects skatole and indole depositions in adipose tissue (Moe et al., 2009; Rowe et al., 2014). 

In this way, SNPs identified as top SNPs for androstenone and for one of the other traits (skatole 

or indole) were selected to be used in the AWM. 
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Figure 1: Scheme demonstrating the procedure for SNPs selection to build the Association 

Weight Matrix (AWM). 

 

In order to perform the gene network analyses, we selected the genes closest to each top 

SNP using the Map2NCBI package (Hanna and Riley, 2014) of R software (R Core Team, 

2017). The SNPs were classified as "close" (<2.5 kb), "far" (≥2.5 kb and <400 kb) or "very far" 

(≥ 400 kb) according to the distance of the nearest gene. Definitions for close or very far SNPs 

were based on linkage disequilibrium (LD) estimates in commercial pig lines (Veroneze et al., 

2014), which showed that in several pig populations, including the sire lines used in this study, 

the LD ranges from 0.18 to 0.30 at distances from 200 to 500 kb. SNPs classified as far from 

annotated genes were discarded, since they were located substantially far from any coding 

region and this distance is not enough to justify inter loci interactions, as for very far SNPS 

(Fortes et al., 2010).  
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When more than one SNP was related to the same gene, we considered that this gene 

represented the SNP that met the following criteria: (1) was top in a higher number of traits, (2) 

showed the highest variance explained or (3) was the closest to the gene. After these steps, a 

final set of SNPs was selected and used to build the AWM with as many rows as the identified 

genes and as many columns as traits under study (three). Each cell {i, j} in AWM was 

completed with normalized (z-score) allelic substitution effect of ith SNP in trait j.  

Partial Pearson correlations between columns (three traits) and between rows (selected 

genes) of the AWM were calculated using unsupervised hierarchical clustering (Suppl. Fig. 1 

and 2) in Hierarchical Clustering Explorer 3.5 software (HCE 3.5) (Jinwook Seo and 

Shneiderman, 2002). Significant correlations among AWM rows were identified with the PCIT 

algorithm proposed by Reverter and Chan (2008). The algorithm attributes a zero value for non-

significant correlations and keeps the computed partial correlation for the significant ones. 

Thus, correlations were used as indicators of gene interactions (edges) in gene network 

analyses, which were performed in Cytoscape software (Shannon et al., 2003) (Suppl. Fig. 3 

and 4). The total number of edges for each gene in the network was computed to identify which 

were the most important genes in the network. The number of edges was normalized (z-score) 

and the absolute values were used to build the D matrix previously described. Weight zero was 

given to SNPs that were not included in AWM.  

The number of selected SNPs, identified genes and genes used to build the gene networks 

for each sub-scenario are shown in Table 2. 

 
Table 2: Number of SNPs and genes used to build the Association Weight Matrix (AWM) and 
the gene networks. 

Scenarios1 
Selected SNPs Identified genes Genes in the network 

SL2 ML3 SL ML SL ML 

S3Top1% 489 433 233 409 180 122 

S3Top2% 979 867 452 795 293 163 

S3Top5% 2,447 2,167 1,073 1,764 570 375 

S3Top10% 4,895 4,337 1,992 2,988 973 538 
1 Sub-scenarios of AWM-WssGBLUP method with 1% (S3Top1%), 2% (S3Top2%), 5% (S3Top5%) 
and 10% (S3Top10%) of SNPs that explained the highest proportion of genetic variance. 
2 Single-line;  
3 Multi-line; 

 

Additionally, a fourth scenario (S4) considering the number of edges obtained in S3top2% 

was built. The S3top2% was chosen since it presented the most consistent predictive ability for 
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all traits. In this scenario, each SNP was weighted by the normalized number of edges, 

considering the zero during the normalization. In other words, SNPs not included in AWM 

received the same weight, but it was different from zero.  

The D matrix was used to compute six G matrices (one for S2, one for each S3 sub-

scenario and one for S4). Prediction of genomic breeding values for all scenarios was performed 

using the BLUPF90 family of programs (Misztal et al., 2015). The proportions of variance 

explained by each marker in all scenarios are presented in Suppl. Fig. 5 to 10. 

 

Training and Validation Populations   

Aiming to evaluate the effect of different reference population size and composition in 

the predictitive ability and the bias under all scenarios, marker effects were estimated 

considering two reference populations: a multi-line (ML) population with all three sire lines 

(L1, L2 and L3) and a single-line (SL) population composed by sire line L1. The 215 youngest 

animals from L1 with phenotypic and genotypic information were used as the validation 

population, since it was the line with the greatest amount of genotyped and phenotyped animals. 

The prediction ability was computed as the Pearson correlation between the genomic 

estimated breeding value (GEBV) and the logarithm of phenotypes corrected for fixed effects. 

The prediction bias was computed as the difference between the unit and the linear regression 

coefficient of the phenotype logarithm corrected for fixed effects on the predicted GEBVs in 

each scenario. 

 

3.4.Results 

Variance components and genetic parameters 

Variance components, heritabilities and standard errors of SL and ML populations are 

presented in Table 3. Heritabilities ranging from 0.27 to 0.56 were estimated for all traits using 

both reference population scenarios. 
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Table 3. Variance components and heritabilities estimates for androstenone, skatole, and indole 
estimated using the single (SL) and the multi-line (ML) reference population. 

Populations 1 Boar taint compounds 𝜎𝑎2 (SE)2 𝜎𝑒2  (SE)3 ℎ2  (SE)4 

SL 

Androstenone 0.48 (0.07) 0.79 (0.05) 0.38 (0.04) 

Skatole 0.13 (0.02) 0.26 (0.01) 0.33 (0.04) 

Indole 0.07 (0.01) 0.20 (0.01) 0.27 (0.04) 

ML 

Androstenone 0.69 (0.07) 0.54 (0.04) 0.56 (0.04) 

Skatole 0.25 (0.02) 0.24 (0.01) 0.51 (0.03) 

Indole 0.13 (0.01) 0.20 (0.09) 0.39 (0.03) 
1 Reference population composed by a Single-line (SL) or by Multi-line (ML); 
2 Additive genetic variance and standard error;  
3 𝜎𝑒2 : residual variance and standard error; 
4 ℎ2: heritability and standard error. 
 

Moreover, when evaluating the effects of line in the ML population, we observed that L3 

was the line with the lowest levels of all boar taint compounds, whereas L2 showed the greatest 

effects on androstenone and skatole levels and L1 presented the greatest effect on indole levels 

(data not shown). 

 

Evaluation of Methods 

The AWM-WssGBLUP, ssGBLUP, and WssGBLUP methods were evaluated in SL and 

ML populations. The methods were compared using the predictive ability (Table 4) and bias 

(Table 5). 
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Table 4: Predictive ability for boar taint compounds. 
Populations 1 Scenarios 2 Androstenone 3 Skatole 4 Indole 5 

SL 

S1 0.314 0.472 0.243 

S2 0.273 0.432 0.238 

S3Top1% 0.298 0.471 0.238 

S3Top2% 0.297 0.471 0.255 

S3Top5% 0.283 0.492 0.255 

S3Top10% 0.272 0.462 0.251 

S4 0.297 0.461 0.236 

ML 

S1 0.358 0.467 0.229 

S2 0.322 0.423 0.235 

S3Top1% 0.311 0.469 0.240 

S3Top2% 0.309 0.468 0.244 

S3Top5% 0.286 0.461 0.238 

S3Top10% 0.284 0.469 0.221 

S4 0.346 0.409 0.210 
1 Reference population composed by a Single-line (SL) or by Multi-line (ML); 
2 Scenarios of genomic prediction. S1: ssGBLUP; S2: WssGBLUP; S3Top1%, S3Top2%, S3Top5%, 
S3Top10%: sub-scenarios of S3 (AWM-WssGBLUP method) with 1%, 2%, 5% and 10% top 
SNPs that explained the highest proportion of genetic variance, respectively. S4: AWM-
WssGBLUP method considering zero edges in the normalization;  
3 predictive ability for androstenone genomic prediction; 
4 predictive ability for skatole genomic prediction; 
5 predictive ability for indole genomic prediction. 
 

In ML and SL, ssGBLUP (S1) was the method that provided the best predictive ability 

for androstenone. For skatole and indole, the predictive capacities were similar among 

scenarios. In SL, the AWM-WssGBLUP (S3) slightly increased the predictive capacity by up 

to 4% when using the top 5% SNPs. The S3Top5% also presented the best predictive ability for 

indole and skatole in SL population. In the scenario S4, which the weighting matrix include all 

markers, we observed that for SL the predictive abilities were similar to the scenarios that 

included just markers presented in AWM matrix. While, for ML population the predictive 

ability for androstenone were higher than in S3 scenarios and for skatole and indole the 

predictive ability in S4 was lower than in S3.  
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Table 5: Bias of prediction for boar taint compounds. 
Populations 1 Scenarios 2 Androstenone 3 Skatole 4 Indole 5 

SL 

S1 0.434*6 -0.236* 0.270* 

S2 0.631* 0.170* 0.526* 

S3Top1% 0.393* -0.463* 0.215* 

S3Top2% 0.401* -0.460* 0.157* 

S3Top5% 0.427* -0.498* 0.163* 

S3Top10% 0.457* -0.394* 0.215* 

S4 0.540* -0.061* 0.445* 

ML 

S1 0.324* -0.254* 0.273* 

S2 0.551* 0.186* 0.505* 

S3Top1% 0.408* -0.533* 0.106* 

S3Top2% 0.411* -0.442* 0.114* 

S3Top5% 0.484* -0.328* 0.204* 

S3Top10% 0.474* -0.416* 0.261* 

S4 0.563* 0.905* 0.535* 
1 Reference population composed by a Single-line (SL) or by Multi-line (ML);  
2 Scenarios of genomic prediction. S1: ssGBLUP; S2: WssGBLUP; S3Top1%, S3Top2%, S3Top5%, 
S3Top10%: sub-scenarios of S3 (AWM-WssGBLUP method) with 1%, 2%, 5% and 10% top 
SNPs that explained the highest proportion of genetic variance, respectively. S4: AWM-
WssGBLUP method considering zero edges in the normalization;  
3 bias of prediction for androstenone genomic prediction; 
4  bias of prediction for skatole genomic prediction; 
5 bias of prediction for indole genomic prediction. 
6 significantly non-zero (p<0.01). 
 

The prediction bias presented great variation among scenarios. Prediction for 

androstenone presented lower biases in S1 and S3Top1% in ML and SL, respectively. For skatole, 

lower biases were observed in S2 and S4 in ML and SL, respectively. For indole, lower biases 

were verified for S3top1% and S3top2% in ML and SL, respectively. Moreover, comparing S3Top2% 

and S4, in both populations, the biases for androstenone and indole were lower in S3Top2% than 

in S4 

 

3.5.Discussion 

High heritabilities for androstenone, skatole and indole (0.56, 0.51 and 0.39, respectively) 

in the ML population and somewhat lower (0.38, 0.33 and 0.27, respectively) in SL were found 

in the present study. These differences on the heritabilities may be explained by population size 

and structure. Moreover, our findings are in agreement with previous studies (Campos et al., 
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2015; Mathur et al., 2012; Windig et al., 2012), which reported heritabilities ranging from 0.46 

to 0.72 for androstenone, 0.26 to 0.50 for skatole and 0.29 to 0.35 for indole.  

It has been shown that genetic background affects the levels of boar taint compounds in 

pig carcass, since each breed presents specific deposition patterns of androstenone, skatole and 

indole (Gregersen et al., 2012; Grindflek et al., 2011). For example, Duroc breed presents 

greater deposition of androstenone than Landrace (Grindflek et al., 2011) and also greater 

deposition of skatole and indole than Yorkshire breed (Gregersen et al., 2012). We evaluated 

three different pig sire lines based on Duroc (L1), a synthetic line (L2) and Pietrain (L3) breed 

and observed that L1 and L2 had the greatest levels of all boar taint compounds.  

In the current study, we proposed an adaptation of the AWM methodology described by 

Fortes et al. (2010) to find SNPs closely related to candidate genes for boar taint traits. Since 

androstenone level in non-castrated pigs directly affects the deposition of skatole and indole in 

adipose tissue, androstenone was chosen as a key trait to build the AWM. After the estimation 

of substitution allelic effects, we selected four groups of SNPs that correspond to the 1, 2, 5, or 

10% SNPs that explained the highest proportion of genetic variance for each trait. These groups 

were used in the beginning of the process of building the AWM matrix. As expected, a higher 

initial number of SNPs resulted in a higher number of genes identified and used to build the 

gene networks. Moreover, we observed that when a SL population was used in GWAS, a higher 

number of genes were identified in comparison to ML population. Raven et al. (2014) 

demonstrated that multipopulation GWAS increases QTL mapping precision, since it reduces 

the LD between markers and QTL. However, in ML population, QTLs that are not segregating 

in all populations may be not identified, which could explain in part why a higher number of 

genes were identified in SL.  

A high level of similarity between SNP effects for skatole and indole was observed, which 

may have occurred because skatole and indole are produced in the same metabolic pathway 

(Zamaratskaia and Squires, 2009). Moreover, there is a strong genetic correlation between 

skatole and indole, ranging from 0.71 to 0.78 (Grindflek et al., 2011; Lee et al., 2005). Although 

androstenone acts as an antagonist for skatole degradation (Aluwé et al., 2011; Doran et al., 

2002), in the hierarchical clustering of SNP effects, this trait was located in a different branch 

in the cluster dendrogram. Different genetic mechanisms are probably involved on 

androstenone pathway and skatole and indole catabolism (Zamaratskaia and Squires, 2009), 

since genetic correlations between androstenone and skatole or indole have been described to 

be moderate, around 0.31 and 0.46 (Campos et al., 2015; Lee et al., 2005; Windig et al., 2012). 



55 

 

The ssGBLUP, as the traditional GBLUP, assumes that all markers equally contribute to 

the construction of the genomic relationship matrix (Goddard, 2009), ignoring any available 

information regarding the genetic architecture of the trait. However, it is well known that a 

finite number of genes control quantitative traits (Hayes and Goddard, 2001). Using models 

that allow highlighting SNPs related to candidate genes for a given trait may improve the results 

of genomic prediction compared to ssGBLUP (Wang et al., 2014).  

GWAS have identified several QTL regions for boar taint traits (Campos et al., 2015; 

Duijvesteijn et al., 2015, 2014, 2010), however, there are no studies exploring GWAS results 

in the genomic prediction for boar taint. Using simulated data, Fragomeni et al (2017) showed 

that the inclusion of real quantitative trait nucleotide (QTN) effects as weights in the genomic 

relationship matrix, blending with 1% of identity matrix, resulted in an accuracy of 0.99 in 

genomic prediction. These authors stated that high accuracy could be obtained if realistic 

weights for the causative QTN are used. Thus, direct GWAS results may not be the best way to 

derive weights for WssGBLUP because of false positive associations. Combining GWAS and 

biological information may be a path for realistic weight estimation. 

The AWM, proposed by Fortes et al. (2010), combines multiple traits and is used for 

building gene networks, which allow the identification of the most important regions in the trait 

control. The gene networks help to understand boar taint genetic architecture and consequently 

may provide better weights to be used in WssGBLUP. In our study, the normalized number of 

edges for each gene in the network was used to build the weighting matrix (D). In all S3 sub-

scenarios, most of the genes presented only one edge; however, genes with four or more edges 

were also present, which resulted in different weights for the previously identified SNPs.  

Based on the gene network analyses, we can infer that our findings are robust and 

consistent with the studied traits, since genes previously reported in literature controlling boar 

taint traits were identified. As an example, we can quote the genes CYP2E1 (cytochrome 

P450IIE1), PTPRT (protein tyrosine phosphatase, receptor type T) and HSD17B2 (estradiol 17-

beta-dehydrogenase) that were reported in previous GWAS as being involved with boar taint 

appearance (Moe et al., 2009; Rowe et al., 2014). These genes identification shows that the 

AWM associated with gene networks pinpointed genome regions closely related to boar taint 

traits. 

The predictive ability was higher using the traditional ssGBLUP than using the 

WssGBLUP or AWM-WssGBLUP. Moreover, WssGBLUP and AWM-WssGBLUP presented 

similar predictive capacity and bias in most evaluated scenarios. For androstenone, a reduction 
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in the predictive capacity was observed when a higher number of SNPs were selected after 

GWAS (S3top5% and S3top10%). The better performance of traditional ssGBLUP compared to 

other methods may be explained by the polygenic genetic architecture of the evaluated traits, 

since the predictive ability of methods exploring weighted relationship matrices depends on the 

trait control and it is higher when the trait is controlled by only few QTLs (Fang et al., 2017; 

Gao et al., 2017; Lourenco et al., 2017; Veroneze et al., 2016; Zhang et al., 2010). 

Reducing the number of SNPs used to build the G matrix from more than 40,000 (S1) to 

less than 1,000 SNPs (S3Top10%) resulted in a loss of less than 0.06 points in model predictive 

capacity and small increases in prediction bias. This result shows the robustness of the genomic 

relationship, as previously shown by Lopes et al. (2013). Lenz et al. (2017) reported that in 

structured populations, even using few SNPs (500 to 1,000) spread across the genome to 

elaborate the G matrix, small or no losses in predictitive ability are expected due to family 

structure and LD in the population. Up to 95% of accuracy obtained by using a higher density 

panel can be obtained by using only a small proportion of markers depending on the genetic 

architecture of the trait and the effective population size (Zhang et al., 2011).  

Aiming to verify the effect of not excluding markers to build the genomic relationship 

matrix in S3, we proposed the S4 scenario, wherein the SNPs not included in the top 2% SNPs 

received a non-zero weight. Our findings indicate that non-zero weighting, in most of the cases, 

resulted in decreased predictive abilities and increased biases for both SL and ML populations, 

indicating that SNPs with small effects may be excluded in weighted genomic prediction. 

Assessing the effects of the reference population, we observed that the ML increased the 

prediction bias in most scenarios and traits. The ML reference population improved the 

predictive ability of androstenone, however, skatole and indole, in general, presented better 

predictive ability and bias in the SL reference population. It has been suggested that using multi- 

and larger populations in genomic selection increases the statistical power of the analyses 

(Stranger et al., 2011), since the lower LD, usually observed between markers in those 

populations, increases the ability to map the QTLs (Raven et al., 2014) especially when the 

traits present large SNP effects (Liu et al., 2011). Nevertheless, the prediction for all boar taint 

compounds would be less biased using SL reference population.  

 

3.6.Conclusion 

In summary, using biological information, through AWM matrix and gene networks, to 

derive weights for genomic prediction resulted in slight increase in predictive ability for skatole 
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and indol. However, this approach increased the number of analyses steps. In addition, for 

androstenone the traditional ssGBLUP provided higher predictive ability in comparison to the 

weighted scenarios. Thus, we can conclude that ssGBLUP is most appropriate for the analysis 

of boar taint compounds in comparison to the weighted strategies used in the present work. In 

general, the single-line population result in better predictive ability in genomic prediction for 

indole and skatole. 

 

3.7.References 

Aluwé, M., S. Millet, K.M. Bekaert, F.A.M.M. Tuyttens, L. Vanhaecke, et al. 2011. Influence 
of breed and slaughter weight on boar taint prevalence in entire male pigs. Animal 5(8): 
1283–1289. doi: 10.1017/S1751731111000164. 

Ampuero Kragten, S., B. Verkuylen, H. Dahlmans, M. Hortos, J.A. Garcia-Regueiro, et al. 
2011. Inter-laboratory comparison of methods to measure androstenone in pork fat. 
Animal 5(10): 1634–1642. doi: 10.1017/S1751731111000553. 

Campos, C.F. de, M.S. Lopes, F.F. e Silva, R. Veroneze, E.F. Knol, et al. 2015. Genomic 
selection for boar taint compounds and carcass traits in a commercial pig population. 
Livest Sci 174: 10–17. doi: 10.1016/j.livsci.2015.01.018. 

Doran, E., F.W. Whittington, J.D. Wood, and J.D. Mcgivan. 2002. Cytochrome P450IIE1 ( 
CYP2E1 ) is induced by skatole and this induction is blocked by androstenone in isolated 
pig hepatocytes. Chem Biol Interact 140: 81–92. doi: 10.1016/S0009-2797(02)00015-7. 

Duijvesteijn, N., E.F. Knol, and P. Bijma. 2014. Boar taint in entire male pigs : A 
genomewide association study for direct and indirect genetic effects on androstenone. J 
Anim Sci 92: 4319–4328. doi: 10.2527/jas2014-7863. 

Duijvesteijn, N., E.F. Knol, and P. Bijma. 2015. Direct and associative effects for 
androstenone and genetic correlations with backfat and growth in entire male pigs. J 
Anim Sci: 2465–2475. doi: 10.2527/jas2011-4625. 

Duijvesteijn, N., E.F. Knol, J.W.M. Merks, R.P.M.A. Crooijmans, M.A.M. Groenen, et al. 
2010. A genome-wide association study on androstenone levels in pigs reveals a cluster 
of candidate genes on chromosome 6. BMC Genet 11(42): 1–11. doi: 10.1186/1471-
2156-11-42. 

Fang, L., G. Sahana, P. Ma, G. Su, Y. Yu, et al. 2017. Exploring the genetic architecture and 
improving genomic prediction accuracy for mastitis and milk production traits in dairy 
cattle by mapping variants to hepatic transcriptomic regions responsive to intra-
mammary infection. Genet Sel Evol 49(1): 44. doi: 10.1186/s12711-017-0319-0. 

Fortes, M.R.S., A. Reverter, S.H. Nagaraj, Y. Zhang, N.N. Jonsson, et al. 2011. A single 
nucleotide polymorphism-derived regulatory gene network underlying puberty in 2 
tropical breeds of beef cattle. J Anim Sci 89(6): 1669–1683. doi: 10.2527/jas.2010-3681. 

Fortes, M.R.S., A. Reverter, Y. Zhang, E. Collis, S.H. Nagaraj, et al. 2010. Association 
weight matrix for the genetic dissection of puberty in beef cattle. Pnas 107(31): 1–6. doi: 
10.1073/pnas.1002044107. 

Fragomeni, B.O., D.A.L. Lourenco, Y. Masuda, A. Legarra, and I. Misztal. 2017. 



58 

 

Incorporation of causative quantitative trait nucleotides in single-step GBLUP. Genet Sel 
Evol: 1–11. doi: 10.1186/s12711-017-0335-0. 

Gao, N., J.W.R. Martini, Z. Zhang, X. Yuan, H. Zhang, et al. 2017. Incorporating Gene 
Annotation into Genomic Prediction of Complex Phenotypes. Genetics 207(10): 489–
501. doi: 10.1534/genetics.117.300198/-/DC1.1. 

Goddard, M. 2009. Genomic selection: prediction of accuracy and maximisation of long term 
response. Genetica 136(2): 245–257. doi: 10.1007/s10709-008-9308-0. 

Gregersen, V.R., L.N. Conley, K.K. Sørensen, B. Guldbrandtsen, I.H. Velander, et al. 2012. 
Genome-wide association scan and phased haplotype construction for quantitative trait 
loci affecting boar taint in three pig breeds. BMC Genomics 13(1): 22. doi: 
10.1186/1471-2164-13-22. 

Grindflek, E., T.H.E. Meuwissen, T. Aasmundstad, H. Hamland, M.H.S. Hansen, et al. 2011. 
Revealing genetic relationships between compounds affecting boar taint and 
reproduction in pigs. J Anim Sci 89(3): 680–692. doi: 10.2527/jas.2010-3290. 

Hanna, L.L.H., and D.G. Riley. 2014. Mapping genomic markers to closest feature using the 
R package Map2NCBI. Livest Sci 162: 59–65. doi: 10.1016/j.livsci.2014.01.019. 

Hayes, B.J., and M.E. Goddard. 2001. The distribution of the effects of genes affecting 
quantitative traits in livestock. Genet Sel Evol 33(3): 209–229. doi: 10.1186/1297-9686-
33-3-209. 

Jinwook Seo, and B. Shneiderman. 2002. Interactively exploring hierarchical clustering 
results [gene identification]. Computer (Long Beach Calif) 35(7): 80–86. doi: 
10.1109/MC.2002.1016905. 

Lee, G.J., A.L. Archibald, A.S. Law, S. Lloyd, J. Wood, et al. 2005. Detection of quantitative 
trait loci for androstenone, skatole and boar taint in a cross between Large White and 
Meishan pigs. Anim Genet 36(1): 14–22. doi: 10.1111/j.1365-2052.2004.01214.x. 

Legarra, A., O.F. Christensen, I. Aguilar, and I. Misztal. 2014. Single Step, a general 
approach for genomic selection. Livest Sci 166(1): 54–65. doi: 
10.1016/j.livsci.2014.04.029. 

Lenz, P.R.N., J. Beaulieu, S.D. Mansfield, S. Clément, M. Desponts, et al. 2017. Factors 
affecting the accuracy of genomic selection for growth and wood quality traits in an 
advanced-breeding population of black spruce (Picea mariana). BMC Genomics 18(1): 
1–17. doi: 10.1186/s12864-017-3715-5. 

Liu, Z., F.R. Seefried, F. Reinhardt, S. Rensing, G. Thaller, et al. 2011. Impacts of both 
reference population size and inclusion of a residual polygenic effect on the accuracy of 
genomic prediction. Genet Sel Evol 43(1): 19. doi: 10.1186/1297-9686-43-19. 

Lopes, M.S., F.F. Silva, B. Harlizius, N. Duijvesteijn, P.S. Lopes, et al. 2013. Improved 
estimation of inbreeding and kinship in pigs using optimized SNP panels. BMC Genet 
14(1): 92. doi: 10.1186/1471-2156-14-92. 

Lourenco, D.A.L., B.O. Fragomeni, H.L. Bradford, I.R. Menezes, J.B.S. Ferraz, et al. 2017. 
Implications of SNP weighting on single-step genomic predictions for different reference 
population sizes. J Anim Breed Genet 134(6): 463–471. doi: 10.1111/jbg.12288. 

Mathur, P.K., J. ten Napel, R.E. Crump, H.A. Mulder, and E.F. Knol. 2014. Genetic 
relationship between boar taint compounds, human nose scores, and reproduction traits 
in pigs. J Anim Breed Genet 91(9): 4080–4089. doi: https://doi.org/10.2527/jas.2013-



59 

 

6478. 

Mathur, P.K., J. ten Napel, S. Bloemhof, L. Heres, E.F. Knol, et al. 2012. A human nose 
scoring system for boar taint and its relationship with androstenone and skatole. Meat Sci 
91(4): 414–422. doi: 10.1016/j.meatsci.2012.02.025. 

Misztal, I., S. Tsuruta, D. Lourenco, I. Aguilar, A. Legarra, et al. 2015. Manual for BLUPF90 
family of programs. Univ Georg Athens, USA: 125. 
http://nce.ads.uga.edu/wiki/lib/exe/fetch.php?media=blupf90_all2.pdf. 

Moe, M., S. Lien, T. Aasmundstad, T.H. Meuwissen, M.H. Hansen, et al. 2009. Association 
between SNPs within candidate genes and compounds related to boar taint and 
reproduction. BMC Genet 10(1): 32. doi: 10.1186/1471-2156-10-32. 

R Core Team. 2017. R: A language and environment for statistical computing. 

Raven, L., B.G. Cocks, and B.J. Hayes. 2014. Multibreed genome wide association can 
improve precision of mapping causative variants underlying milk production in dairy 
cattle. BMC Genomics 15(1): 62. doi: 10.1186/1471-2164-15-62. 

Reverter, A., and E.K.F. Chan. 2008. Combining partial correlation and an information theory 
approach to the reversed engineering of gene co-expression networks. Bioinformatics 
24(21): 2491–2497. doi: 10.1093/bioinformatics/btn482. 

Rius, M.A., M. Hortós, and J.A. García-Regueiro. 2005. Influence of volatile compounds on 
the development of off-flavours in pig back fat samples classified with boar taint by a 
test panel. Meat Sci 71(4): 595–602. doi: 10.1016/j.meatsci.2005.03.014. 

Rowe, S.J., B. Karacaören, D.-J. de Koning, B. Lukic, N. Hastings-Clark, et al. 2014. 
Analysis of the genetics of boar taint reveals both single SNPs and regional effects. 
BMC Genomics 15(1): 424. doi: 10.1186/1471-2164-15-424. 

Sarup, P., J. Jensen, T. Ostersen, M. Henryon, and P. Sørensen. 2016. Increased prediction 
accuracy using a genomic feature model including prior information on quantitative trait 
locus regions in purebred Danish Duroc pigs. BMC Genet 17(1): 11. doi: 
10.1186/s12863-015-0322-9. 

Shannon, P., A. Markiel, O. Ozier, N.S. Baliga, J.T. Wang, et al. 2003. Cytoscape : A 
Software Environment for Integrated Models of Biomolecular Interaction Networks. 
Genome Res: 2498–2504. doi: 10.1101/gr.1239303.metabolite. 

Stranger, B.E., E.A. Stahl, and T. Raj. 2011. Progress and Promise of Genome-Wide 
Association Studies for Human Complex Trait Genetics. Genetics 187(2): 367–383. doi: 
10.1534/genetics.110.120907. 

VanRaden, P.M. 2008. Efficient Methods to Compute Genomic Predictions. J Dairy Sci 
91(11): 4414–4423. doi: 10.3168/jds.2007-0980. 

Verheyden, K., H. Noppe, M. Aluwé, S. Millet, J. Vanden Bussche, et al. 2007. Development 
and validation of a method for simultaneous analysis of the boar taint compounds indole, 
skatole and androstenone in pig fat using liquid chromatography–multiple mass 
spectrometry. J Chromatogr A 1174(1–2): 132–137. doi: 10.1016/j.chroma.2007.08.075. 

Veroneze, R., J.W.M. Bastiaansen, E.F. Knol, S.E.F. Guimarães, F.F. Silva, et al. 2014. 
Linkage disequilibrium patterns and persistence of phase in purebred and crossbred pig 
(Sus scrofa) populations. BMC Genet 15(1): 126. doi: 10.1186/s12863-014-0126-3. 

Veroneze, R., P.S. Lopes, M.S. Lopes, A.M. Hidalgo, S.E.F. Guimarães, et al. 2016. 



60 

 

Accounting for genetic architecture in single- and multipopulation genomic prediction 
using weights from genomewide association studies in pigs. J Anim Breed Genet 133(3): 
187–196. doi: 10.1111/jbg.12202. 

Wang, H., I. Misztal, I. Aguilar, A. Legarra, R.L. Fernando, et al. 2014. Genome-wide 
association mapping including phenotypes from relatives without genotypes in a single-
step (ssGWAS) for 6-week body weight in broiler chickens. Front Genet 5(MAY): 1–10. 
doi: 10.3389/fgene.2014.00134. 

Wang, H., I. Misztal, I. Aguilar, A. Legarra, and W.M. Muiir. 2012. Genome-wide 
association mapping including phenotypes from relatives without genotypes. Genet Res 
(Camb) 94(2): 73–83. doi: 10.1017/S0016672312000274. 

Windig, J.J., H.A. Mulder, J. ten Napel, E.F. Knol, P.K. Mathur, et al. 2012. Genetic 
parameters for androstenone, skatole, indole, and human nose scores as measures of boar 
taint and their relationship with finishing traits. J Anim Sci 90(7): 2120–2129. doi: 
10.2527/jas.2011-4700. 

Zamaratskaia, G., and E.J. Squires. 2009. Biochemical, nutritional and genetic effects on boar 
taint in entire male pigs. Animal 3(11): 1508–1521. doi: 10.1017/S1751731108003674. 

Zhang, Z., X. Ding, J. Liu, Q. Zhang, and D.-J. de Koning. 2011. Accuracy of genomic 
prediction using low-density marker panels. J Dairy Sci 94(7): 3642–3650. doi: 
10.3168/jds.2010-3917. 

Zhang, Z., J. Liu, X. Ding, P. Bijma, D.-J. de Koning, et al. 2010. Best Linear Unbiased 
Prediction of Genomic Breeding Values Using a Trait-Specific Marker-Derived 
Relationship Matrix (T. Mailund, editor). PLoS One 5(9): e12648. doi: 
10.1371/journal.pone.0012648. 

Zhang, X., D. Lourenco, I. Aguilar, A. Legarra, and I. Misztal. 2016. Weighting Strategies for 
Single-Step Genomic BLUP: An Iterative Approach for Accurate Calculation of GEBV 
and GWAS. Front Genet 7(AUG): 1–14. doi: 10.3389/fgene.2016.00151. 

 

  



61 

 

3.8. Supplementary material 

 
Supplementary Figure 1: Unsupervised hierarchical clustering of SNP effect in a multi-line 
population. Sub-scenarios (A) S3Top1%, (B) S3Top2%, (C) S3Top5%, (D) S3Top10%, on which 1%, 
2%, 5% and 10% top SNPs that explained the highest proportion of variance were used, 
respectively.  



62 

 

 
Supplementary Figure 2: Unsupervised hierarchical clustering of SNP effect in a single-line 
population. Sub-scenarios (A) S3Top1%, (B) S3Top2%, (C) S3Top5%, (D) S3Top10%, on which 1%, 
2%, 5% and 10% top SNPs that explained the highest proportion of variance were used, 
respectively.  
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Supplementary Figure 3: Gene networks elaborated using genes identified in a multi-line 
population on sub-scenarios (A) S3Top1%, (B) S3Top2%, (C) S3Top5% and (D) S3Top10% based on 
an Association Weight Matrix (AWM), in which 1%, 2%, 5% and 10% top SNPs that explained 
the highest proportion of variance were used, respectively. Circles represent the genes and 
edges represent the interaction between adjacent genes.  
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Supplementary Figure 4: Gene networks elaborated using genes identified in a single-line 
population on sub-scenarios (A) S3Top1%, (B) S3Top2%, (C) S3Top5% and (D) S3Top10%, based on 
an Association Weight Matrix (AWM), in which 1%, 2%, 5% and 10% top SNPs that explained 
the highest proportion of variance were used, respectively. Circles represent the genes and 
edges represent the interaction between adjacent genes. 
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Supplementary Figure 5: Manhattan plots of proportion of explained genetic variance by SNPs 
for androstenone levels in a single-line population in scenarios: (A) S1 (ssGBLUP); (B) S2 
(WssGBLUP) and sub-scenarios based on AWM: (C) S3Top1%, (D) S3Top2%, (E) S3Top5%, (F) 
S3Top10%, in which 1%, 2%, 5% and 10% top SNPs that explained the highest proportion of 
variance were used, respectively; (G) S4 (AWM-WssGBLUP method considering zero edges 
in the normalization).  
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Supplementary Figure 6: Manhattan plots of proportion of explained genetic variance by SNPs 
for androstenone levels in a multi-line population in scenarios: (A) S1 (ssGBLUP); (B) S2 
(WssGBLUP) and sub-scenarios based on AWM: (C) S3Top1%, (D) S3Top2%, (E) S3Top5%, (F) 
S3Top10%, in which 1%, 2%, 5% and 10% top SNPs that explained the highest proportion of 
variance were used, respectively; (G) S4 (AWM-WssGBLUP method considering zero edges 
in the normalization).  
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Supplementary Figure 7: Manhattan plots of proportion of explained genetic variance by SNPs 
for skatole levels in a single-line population in scenarios: (A) S1 (ssGBLUP); (B) S2 
(WssGBLUP) and sub-scenarios based on AWM: (C) S3Top1%, (D) S3Top2%, (E) S3Top5%, (F) 
S3Top10%, in which 1%, 2%, 5% and 10% top SNPs that explained the highest proportion of 
variance were used, respectively; (G) S4 (AWM-WssGBLUP method considering zero edges 
in the normalization).  
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Supplementary Figure 8: Manhattan plots of proportion of explained genetic variance by SNPs 
for skatole levels in a multi-line population in scenarios: (A) S1 (ssGBLUP); (B) S2 
(WssGBLUP) and sub-scenarios based on AWM: (C) S3Top1%, (D) S3Top2%, (E) S3Top5%, (F) 
S3Top10%, in which 1%, 2%, 5% and 10% top SNPs that explained the highest proportion of 
variance were used, respectively; (G) S4 (AWM-WssGBLUP method considering zero edges 
in the normalization).  
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Supplementary Figure 9: Manhattan plots of proportion of explained genetic variance by SNPs 
for indole levels in a single-line population in scenarios: (A) S1 (ssGBLUP); (B) S2 
(WssGBLUP) and sub-scenarios based on AWM: (C) S3Top1%, (D) S3Top2%, (E) S3Top5%, (F) 
S3Top10%, in which 1%, 2%, 5% and 10% top SNPs that explained the highest proportion of 
variance were used, respectively; (G) S4 (AWM-WssGBLUP method considering zero edges 
in the normalization). 
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Supplementary Figure 10: Manhattan plots of proportion of explained genetic variance by SNPs 
for indole levels in a multi-line population in scenarios: (A) S1 (ssGBLUP); (B) S2 
(WssGBLUP) and sub-scenarios based on AWM: (C) S3Top1%, (D) S3Top2%, (E) S3Top5%, (F) 
S3Top10%, in which 1%, 2%, 5% and 10% top SNPs that explained the highest proportion of 
variance were used, respectively; (G) S4 (AWM-WssGBLUP method considering zero edges 
in the normalization). 
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CHAPTER 4 

 

Weighted genome-wide association study reveals new candidate genes related to steroid 

hormones potentially linked to boar taint  

 

4.1. Abstract  

Androstenone (AND), skatole (SKA) and indole (IND) deposition in pig adipose tissue 

may cause the boar taint, an unpleasant taste and smell observed pork at cooking. The single-

step genome-wide association study (WssGWAS) may help to understand the genetic 

mechanisms involved in the boar taint appearance. Therefore, we aimed to search genes 

potentially associated to boar taint appearance that were linked to SNPs identified by 

WssGWAS analyses; further, we aimed to investigate the biological processes relevant to boar 

taint appearance in which these gene are involved through gene network analyses. The 

WssGWAS was performed for AND, SKA and IND, using 4,922 pig phenotypes and 3,749 

genotypes obtained using the Illumina PorcineSNP60 BeadChip. For each boar taint compound 

SNP windows that explained 0.5% or more of the total genetic variance were selected to search 

boar taint candidate genes. Then, the find genes were used to build the gene ontology network. 

Relevant QTL regions were found on SSC1 (SSC for Sus scrofa chromosome), 2, 3, 5, 6, 10, 

12, 13, 15, and 17. We found six candidate genes, which are involved in different biological 

processes that may be related to boar taint appearance. Some of these gene ontologies identified 

were: response to gonadotropin-releasing hormone; steroidal hormone relate process; steroid 

hormone biosynthetic process; regulation of steroid metabolic process; regulation of steroid 

biosynthetic process; response to testosterone; intestinal absorption. These biological processes 

are relevant since skatole and indole produced and absorbed in the hind-gut, moreover, 

androstenone is a steroid hormone that, as other steroidal hormones, affects the skatole and 

indole metabolic degradation in the liver. Summarizing, this study identified the HSD17B2 gene 

that was previously describe as linked to boar taint appearance and five new candidate genes 

with potential to explain boar taint phenotypes: CRHBP, CTDSP2, CDK4, CYP27B1 e 

SDR4E1. These genes were mainly involved to biosynthesis, releasing and response to steroid 

hormones and intestinal absorption and may be possibly associated with boar taint compounds 

in the carcass. 

 

Keywords: Androstenone. Candidate gene. Indol. Skatole. Steroid hormones 
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4.2.Introduction 

The meat from adult non-castrated male pigs may present, at cooking, unpleasant taste 

and smell, which is known as boar taint. It happens because of lipophilic compounds deposited 

in adipose tissue, mainly skatole (3-methylindole), androstenone (5α-androst-16-ene-3-one) 

and indole (4-phenyl-3-butenone, p-cresol and 4-ethylpheno). Androstenone is a steroid 

hormone produced and secreted by testis, while skatole and indole are produced by tryptophan 

bacterial degradation in hind-gut (Aldal et al., 2005; Aluwé et al., 2011; Babol et al., 2002; 

Claus et al., 1994).  

All pigs present skatole and indole production in hind-gut therefore there is a strong 

genetic correlation between then (Grindflek et al., 2011; Lee et al., 2005). In non-castrated pigs, 

skatole and indole are not completely degraded by liver due to androstenone antagonism 

(Aluwé et al., 2011; Doran et al., 2002; Squires and Lundström, 1997; Zamaratskaia and 

Squires, 2009) which increase their deposition in boar adipose tissues. Probably different 

genetic mechanisms, that are not completely elucidated, are involved in the androstenone 

pathway and skatole and indole catabolism (Zamaratskaia and Squires, 2009).  

Associations between boar taint compounds (androstenone, skatole and indole) and SNPs 

(single nucleotide polymorphisms) markers have been previously reported (Campos et al., 

2015; Duijvesteijn et al., 2014, 2010). However, these previous studies identified different 

quantitative trait loci (QTL) regions and/or candidate genes (Drag et al., 2017, 2019; 

Duijvesteijn et al., 2014, 2010; Wang and Kadarmideen, 2019). Usually, genome-wide 

association studies (GWAS) of boar taint compounds have limited number of genotyped and 

phenotyped animals, which reduce its power. Single-step genomic best linear unbiased 

prediction (ssGBLUP) may be an alternative to increase the dataset used in association studies, 

because it allows the use of phenotypes of animals without genotypes. The ssGBLUP approach 

provides genomic estimated breeding values (GEBV) which can be used to estimate the SNP 

effects (Zhang et al., 2016). To improve the use of ssGBLUP for GWAS, Wang et al. (2012) 

proposed the SNPs weighting in the construction of the relationship matrix, according to its 

relevance for the analyzed trait, this methodology was called weighted single-step GWAS 

(WssGWAS). In the WssGWAS the SNP are weighted according to their explained genetic 

variance improving the resolution of GWAS to more precisely identify QTL (Lourenco et al., 

2017). 
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Few studies analyze large datasets to identify novel QTL regions and to provide a deeper 

knowledge of the genes that control boar taint appearance. This may be due to the complexity 

of these traits, or the few phenotyped and genotyped animals or else to the great divergences 

between genetic groups (Lee et al., 2005; Moe et al., 2009; Wang and Kadarmideen, 2019). In 

this sense, the WssGWAS allows increase the boar taint data set and focus on the SNPs that 

actually are important to share for candidate genes.  

Most of GWAS for boar taint end with the identification of the QTL regions and genes. 

Realizing the Gene ontologies (GO) study allows better understand of functional categories 

associated with annotated genes (Tang et al., 2007). The GO study from a set of identified genes 

help to understand GWAS results and elucidate the genetic control of the studied traits (Verardo 

et al., 2016, 2015). Therefore, we aimed to search genes potentially associated to boar taint 

appearance that were linked to SNPs identified by WssGWAS analyses; further, we aimed to 

investigate the biological processes relevant to boar taint appearance in which these gene are 

involved through gene network analyses. 

 

4.3.Materials and methods 

The data used for this study were obtained as part of routine data recording in a 

commercial breeding program. Samples collected for DNA extraction were only used for 

routine diagnostic purpose of the breeding program. Data recording and sample collection were 

conducted strictly in line with the rules given by Dutch Animal Research Authorities. 

 

Phenotypic and genotypic data 

Data from three pig sire lines (L1: Duroc-based line; L2: synthetic line; L3: Pietrain) were 

used in the analyses, as described in Table 1. Boar taint compounds levels approximately 

followed log-normal distributions (Duijvesteijn et al., 2010; Mathur et al., 2014), therefore, the 

phenotypic information consisted of log-transformed levels of androstenone, skatole and indole 

(AND, SKA and IND, respectively) measured in the adipose tissue of 4,922 pig carcasses. The 

animals were slaughtered at approximately 177 (± 9.9) days of age and boar taint compounds 

were measured in fat samples from the neck collected at the left carcass side, as described in 

Mathur et al. (2014). Briefly, androstenone concentration was determined using liquid 

chromatography-mass spectrometry (Verheyden et al., 2007), whereas indole and skatole 

contents were measured using fluorescence at 285 and 340 nm (Ampuero Kragten et al., 2011).  
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Table 1. Description of the number of animals with phenotypic and/or genotypic data from three 
sire lines. 

Line1 
Animals 

Phenotyped Genotyped Phenotyped + Genotyped 

L1 3,572 1,316 854 

L2 712 1,080 232 

L3 638 1,353 123 

Total 4,922 3,749 1,209 
1L1: Duroc-based line, L2: Synthetic line and L3: Pietrain. 
 

Genotypic information of 3,749 animals from the three evaluated lines, genotyped using 

the Illumina PorcineSNP60 BeadChip, was also available for this study (Table 1). The 

genotypic data were submitted to quality control within line, in which we excluded SNPs 

located in both sex chromosomes, with call-rate smaller than 95%, MAF smaller than 1% and/or 

with strong deviations from the Hardy-Weinberg equilibrium (P <10-7). A total of 43,375 SNPs 

were retained for further analysis after quality control. The pedigree included 13,604 animals. 

 

Statistical analyses 

A weighted ssGWAS was performed using the BLUPF90 family of programs (Misztal et 

al., 2002) considering the same genetic and residual parameter as estimated in the chapter three. 

The analyses were conducted according to the following single trait mixed model: 

 𝐲 = 𝐗𝛃 + 𝐙𝒂 + 𝐞, 

wherein: y is a vector containing the logarithm of androstenone, skatole or indole levels;  X is 

the incidence matrix of fixed effects; β is a vector of fixed effects, containing the effects of 

contemporary group (farm-year-month of slaughter), the covariates age at slaughter, scaled hot 

carcass weight at slaughter in each line and the line effect; Z is the incidence matrix of animal 

additive genetic effect; 𝒂 is a vector of animal additive genetic effect, 𝒂 ~ N (0, 𝜎𝑎2H); 𝒆 is a 

vector of residual effects, e ~ N (0, 𝜎𝑒2I); 𝜎𝑎2 and 𝜎𝑒2 are the additive genetic and residual 

variances, respectively; I is an identity matrix; H is the relationship matrix based on both 

pedigree and genomic information, which inverse (H-1) was given by Legarra et al. (2014): 

 𝐇−𝟏 = 𝐀−𝟏 + [𝟎 𝟎𝟎 𝐆−𝟏 − 𝐀𝟐𝟐−𝟏] , 
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wherein A-1 is the inverse of pedigree-based relationship matrix (A); G-1 is the inverse of the 

genomic relationship matrix; 𝐀𝟐𝟐−𝟏 is the inverse of pedigree-based relationship matrix from 

genotyped animals.  

The G matrix was calculated according to VanRaden (2008):  

 𝐆 = 𝐙𝐃𝐙′∑ 2p𝑖(1 − p𝑖)M𝑖=1  

wherein Z is a zero-centered matrix obtained by Z = M - P, wherein M is a 𝑚 × 𝑛 (number of 

markers x number of animals) matrix, which specifies each individual genotype and P is a 

matrix with the allele frequencies expressed as a difference of 0.5 and multiplied by 2, i.e. the 

i column of P is given by 2 (pi - 0.5); D is a diagonal matrix, which will be better defined below;  

pi and qi are the SNP allelic frequencies in ith loci. 

The substitution effects of SNPs were computed using the weighted single-step GWAS 

proposed by Wang et al. (2012). In this method, the breeding values obtained through the 

ssGBLUP are used to calculate SNP effects, which in turn are applied in the computation of the 

variance explained by each marker. Then, these variances are used to build the D matrix 

iteratively. Three iterations were performed since it has been shown that it maximize genomic 

predictitive ability and correctly identify major SNPs (Lourenco et al., 2017; Zhang et al., 

2016).  

The percentage of genetic variance explained by the i-th set of consecutive SNPs ( i-th 

SNP window) was calculated as described by Wang et al. (2014), using a window of 0.4 Mb, 

which is the average haplotype block size in commercial pig lines (Veroneze et al., 2014) 

including the lines considered in the present study; 

For each boar taint compound (AND, SKA and IND), the SNP windows that explained 

0.5% or more of the total genetic variance were selected for candidate genes search. The 

threshold of 0.5% was chosen based on the expected contribution of SNP windows (Marques 

et al., 2018; Sollero et al., 2017). In brief, assuming an equal contribution of the 3,930 windows 

in our data, the expected proportion of genetic variance explained by each window was 0.025%. 

Thus, we used a threshold of 0.5% which is equal to 20 times the expected variance.  

We used the Gene database for Sus scrofa (Sscrofa11.1) available at National Center for 

Biotechnology Information (NCBI, 2019) to identify the genes located inside each selected 

window. Then, we used the Cytoscape software (Shannon et al., 2003) and ClueGO + CluePedia 

plug-in (Bindea et al., 2009) to build the gene ontology network. Briefly, ClueGO takes one or 
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more set of genes and search for related GO terms or Pathways based on hypergeometric test 

and Bonferroni correction. The software establish edges between genes and the chosen term 

based on a human Database. Thus, we were able to obtain gene networks highlighting biological 

roles potentially associated with boar taint.  

 

4.4.Results 

A total of 16 windows explaining 0.5% or more of the genetic variance were identified 

(5, 4 and 7 for AND, SKA and IND, respectively). Together, these five windows for AND 

explained 2.90% of the genetic variance, the four windows identified for SKA explained 2.15% 

of the genetic variance and the seven windows identified for IND explained 4.47% of the 

genetic variance (Figure 1). We found only one overlapping QTL regions between SKA and 

IND in SSC10.  

 

 
Figure 1 Proportion of explained genetic variance by each 0.4 MB windows for androstenone 
(A), skatole (B) and indole (C) 

A 

B 

C 
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The relevant QTL regions were found on SSC1 (SSC for Sus scrofa chromosome), 2, 3, 

5, 6, 10, 12, 13, 15, and 17 (Table 3). We found a total of 128 genes (Suppl. Table 1) located in 

these QTL regions, however, most of these genes have not been previously reported as directly 

associated with boar taint compounds. Using the gene network approach we were able to 

identify six potential candidate genes according to the biological process on which they are 

involved (Table 4).  

 

Table 3 QTL regions identified for boar taint compounds  

Chr1 
QTL region2 

(Mb) 

Nb 

SNP3 

Var (%)4 

AND5 

Var (%) 

SKA 

Var (%) 

IND 
Candidate gene6 

1 11.79 - 12.59 18 0.59 -7 - -8 

2 85.05 - 85.85 11 0.52 - - CRHBP 

3 2.62 - 3.42 23 0.58 - - - 

3 5.04 - 5.84 17 - - 0.53 - 

3 15.21 - 16.01 15 - - 0.63 - 

5 22.34 - 23.14 5 - - 0.56 CDK4/CYP27B1/CTDSP2 

6 5.94 - 6.74 14 - 0.59 - HSD17B2/SDR42E1 

6 7.75 - 8.55 24 - - 0.73 - 

6 157.08 - 157.88 15 - 0.53 - - 

10 8.52 - 9.32 13 - - 0.64 - 

10 8.91 - 9.71 11 - 0.50 - - 

12 9.70 - 10.50 11 0.58 - - - 

12 15.68 -16.48 13 - - 0.55 - 

13 191.88 - 192.68 18 - 0.52 - - 

15 126.99 - 127.79 24 0.63 - - - 

17 4.12 - 4.92 11 - - 0.84 - 
1 Chromosome 
2 Position of QTL region  
3 Number of SNPs within the windows 
4 Percentage of genetic variance explained by the windows 
5 Boar taint compounds: AND: androstenone; SKA: skatole; IND: indole  
6 Candidate gene(s) identified in the region 
7 The percentage of genetic variance explained by the QTL region is < 0.5%. 
8 No candidate genes associated with the trait. 

 

Considering the QTLs regions associated to AND, we found the CRHBP gene involved 

with the response to gonadotropin-releasing hormone. From SKA results, the HSD17B2 gene 

can be highlighted, since it is related to several sexual hormone related process. Finally, in the 

QTL regions for IND, genes related to hormone biosynthetic process, regulation of steroid 
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metabolic process and regulation of steroid biosynthetic process (CTDSP2, CYP27B1) were 

identified. In addition, the CDK4 gene which is involved to response to testosterone and the 

CYP27B1 involved to intestinal absorption were also identified. 

 

Table 4 QTL regions identified for boar taint compounds  

Genes Biological Process 
Gene 

Ontology ID 

CTDSP2; CYP27B1; 
HSD17B2; SDR42E1 

steroid biosynthetic process  GO:0006694 

CTDSP2 C21-steroid hormone biosynthetic process  GO:0006700 

CTDSP2 progesterone biosynthetic process  GO:0006701 

HSD17B2 estrogen biosynthetic process  GO:0006703 

CYP27B1 steroid catabolic process  GO:0006706 

CTDSP2; CYP27B1; 
HSD17B2; SDR42E1 

steroid metabolic process  GO:0008202 

CTDSP2 C21-steroid hormone metabolic process  GO:0008207 

HSD17B2 estrogen metabolic process  GO:0008210 

CYP27B1 negative regulation of steroid biosynthetic process  GO:0010894 

CTDSP2; CYP27B1 regulation of steroid metabolic process  GO:0019218 

CDK4 response to testosterone  GO:0033574 

CTDSP2; HSD17B2 cellular hormone metabolic process  GO:0034754 

CTDSP2; HSD17B2 hormone biosynthetic process  GO:0042446 

CTDSP2 progesterone metabolic process  GO:0042448 

CYP27B1 negative regulation of steroid metabolic process  GO:0045939 

CTDSP2 positive regulation of steroid metabolic process  GO:0045940 

CRHBP negative regulation of hormone secretion  GO:0046888 

CYP27B1 regulation of steroid biosynthetic process  GO:0050810 

CYP27B1 intestinal absorption  GO:0050892 

CRHBP endocrine hormone secretion  GO:0060986 

CRHBP cellular response to estrogen stimulus  GO:0071391 

CRHBP cellular response to estradiol stimulus  GO:0071392 

CDK4 cellular response to fatty acid  GO:0071398 

CRHBP response to gonadotropin-releasing hormone  GO:0097210 

CRHBP cellular response to gonadotropin-releasing hormone  GO:0097211 

 

The genes HSD17B2, CTDSP2, CYP27B1 and SDR4E1 are mainly related to steroid 

biosynthetic process (Figure 2), a very enriched biological processes potentially associated with 

the boar taint.  
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Figure 2 Gene network of biological process. Circle represent the genes and biological process. 
Edges represent the link between genes and biological process. Circle sizes are related to the 
enrichment of biological processes  

 

4.5.Discussion 

Despite the high heritabilities for boar taint compounds estimated before (chapter three), 

the proportion of the additive genetic variance explained by each genome window was small, 

corroborating the highly polygenic profile of these traits (Lee et al., 2005; Quintanilla et al., 

2003; Varona et al., 2005). Therefore, we found only 16 windows explaining more than 0.5% 

of genetic variance at least one boar taint compounds studied here. Previous studies reported 

some markers explaining higher proportion of variance for boar taint, however using only one 

genetic group and different approaches (Drag et al., 2018, 2017, 2019; Duijvesteijn et al., 2010; 

Wang and Kadarmideen, 2019).  

The investigation of these 16 windows allowed the identification of 128 genes, which 

only one was previously reported in the literature as directly associated with boar taint 

compounds. Gene ontology networks may be helpful in the identification of gene candidates 

and for a better understand of the molecular mechanisms behind complex traits (Verardo et al., 

2013) as boar taint. Our gene network analyses of biological processes allowed the 

identification of several candidate gene for boar taint compounds.  

The HSD17B2 (estradiol 17-beta-dehydrogenase) gene was previously reported in 

GWAS as associated with boar taint appearance (Moe et al., 2009; Rowe et al., 2014). This 

gene was linked to biological processes involving steroidal hormones biosynthesis in our gene 

network. The HSD17B2 is located in a region on chromosome 6 that was previously found to 
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be significant for skatole level in Landrace pigs (Ramos et al., 2011) and is abundantly 

expressed in pig liver (Rowe et al., 2014). In addition, the HSD17B2 gene in human, is involved 

with synthesis of 17 beta-hydroxysteroids (Labrie et al., 1995) that partially share same 

androstenone biosynthetic pathway in pigs (Chen et al., 2007). 

We also identified the gene CYP27B1 (cytochrome P450 family 27 subfamily B member 

1) which belongs to the cytochrome P450 (CYP) family that acts directly in several biological 

process as metabolism and synthesis of cholesterol, steroids and other lipids. The CYP family 

also is involved in an oxidative phase of skatole degradation (Rowe et al., 2014; Zadinová et 

al., 2016). The CYP27B1 were also associated to biological processes linked to steroidal 

hormone relate process and intestinal absorption in our gene network. These process may be 

involved to boar taint compounds since skatole and indole are exogenous molecules produced 

by tryptophan degradation in the hind-gut and absorbed by the intestine (Claus et al., 1994; 

Laderoute et al., 2019; Rius et al., 2005; Zamaratskaia et al., 2004; Zamaratskaia and Squires, 

2009). Moreover, androstenone is an steroid hormone that, as other steroidal hormones, affects 

the skatole and indole metabolic clearance by the liver (Zamaratskaia and Squires, 2009). Thus, 

the CYP27B1 is a strong candidate gene for boar taint compounds deposition. 

Our gene network reveled four more potentially genes candidates to boar taint 

compounds. One of these genes is CRHBP (Corticotropin Releasing Hormone Binding Protein), 

which encodes a  protein that inactivates the Corticotropin-releasing hormone and may prevent 

inappropriate pituitary-adrenal stimulation (Perkins et al., 1995). This gene may indirectly act 

on AND levels, since adrenal may convert pregnenolone into androst-16-ene steroids (Meadus 

et al., 1993) and changes gonadotropin release by pituitary gland (e.g. immunocastration) which 

affect testicular function in males (Ayalew, 2019) and consequently affects the AND and SKA 

levels in pig fat (Poulsen Nautrup et al., 2018) 

The genes CYP27B1 and CTDSP2 (C-terminal domain small phosphatase 2) were related 

to Regulation of Steroid Biosynthetic Processes and Regulation of Steroid Metabolic Processes. 

The CTDSP2 gene are C-class phosphatases expressed in diverse organs and induces the 

neuronal differentiation (Han et al., 2012). CTDSP2 activity was described as promoter 

clearance during steroid-activated transcription (Yilmaz et al., 2010) which may justify its 

association to boar taint.  

Another gene linked to steroid hormones identified was CDK4 (Cyclin Dependent Kinase 

4) gene. This gene expression is related to Leydig cells development, being an important 

member of the Ser/Thr protein kinase family indispensable for cell cycle G1 phase progression 
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(DONG et al., 2007) affecting Sertoli cells activity and spermatogenesis in monkeys (Xin-

Chang et al., 2002). Therefore, it is plausible that this gene may be linked to the IND level since 

the AND produced by the Leydig cells together with testicular steroids (Laderoute et al., 2019) 

has antagonistic action to the IND degradation. 

The most enriched biological process linked to boar taint identified was steroid 

biosynthetic process which was sheared by HSD17B2, CTDSP2, CYP27B1 and SDR4E1 (also 

named TSTA3 - tissue specific transplantation antigen P35B). Although IND and SKA are not 

steroid hormones, the association with this biological process is compatible since their 

deposition in adipose tissue are strongly influenced by the androstenone (an steroidal hormone) 

level (Aluwé et al., 2011; Doran et al., 2002; Zamaratskaia and Squires, 2009). Moreover, 

several studies have been demonstrated that genetic correlations between androstenone and 

skatole or indole are moderate, around 0.31 and 0.46 (Campos et al., 2015; Lee et al., 2005; 

Windig et al., 2012) evidencing that some genes may affect these traits. 

 

4.6.Conclusion 

In summary, this study identified the HSD17B2 gene that was previously described as 

linked to boar taint appearance. New candidate genes with potential to explain boar taint 

phenotypes were find: CRHBP, CTDSP2, CDK4, CYP27B1 e SDR4E1. These genes were 

mainly involved to biosynthesis, releasing and response to steroid hormones and intestinal 

absorption and may be possibly associated with boar taint compounds in the carcass. More post-

GWAS studies may be helpful to better understand the genetic mechanisms in which these 

genes are involved with boar taint appearance. 
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4.8. Supplementary material 

Supplementary Table 1. Genes identified under the studied QTLs 

Chromosome 
Position of QTL 

region  (Mb) 
Identified gene 

Gene start 
position (Mb) 

Gene end 
position (Mb) 

1 11.79 - 12.59 

TIAM2 11.65 11.90 
SCAF8 11.89 12.12 

CNKSR3 12.30 12.40 
IPCEF1 12.51 12.60 

LOC110259934 12.44 12.50 
LOC110256595 12.12 12.13 

2 85.05 - 85.85 

CRHBP 85.81 85.83 
F2RL1 85.73 85.75 

F2R 85.64 85.66 
S100Z 85.76 85.77 
F2RL2 85.53 85.54 

LOC106509481 84.99 85.00 
LOC110259403 85.27 85.29 
 LOC110259402 85.49 85.51 

3 2.62 - 3.42 

SDK1 2.81 3.33 
 LOC102158292 3.38 3.48 
 LOC110259838 3.33 3.36 

3 5.04 - 5.84 

NPTX2 5.72 5.73 
BAIAP2L1 5.47 5.57 
TECPR1 5.41 5.44 

BRI3 5.46 5.47 
LMTK2 5.32 5.41 
CCZ1 5.20 5.23 

AIMP2 5.11 5.12 
ANKRD61 5.10 5.10 

 USP42 5.00 5.05 
EIF2AK1 5.08 5.11 

PMS2 5.12 5.15 
BHLHA15 5.41 5.41 

 LOC100516852 5.15 5.20 
LOC102163639 5.23 5.23 
LOC106509627 5.27 5.28 
LOC110259846 5.43 5.44 
LOC110259847 5.58 5.59 
LOC106509632 5.61 5.62 
LOC106509631 5.60 5.61 
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3 15.21 - 16.01 

GALNT17 15.03 15.45 
CALN1 15.48 15.95 
TYW1 15.97 16.16 

5 22.34 - 23.14 

MYO1A 22.34 22.36 
NAB2 22.40 22.41 

 NEMP1 22.37 22.39 
LRP1 22.44 22.52 

 NXPH4 22.52 22.54 
NDUFA4L2 22.54 22.55 

STAC3 22.55 22.56 
 SHMT2 22.54 22.54 

 GLI1 22.74 22.75 
DCTN2 22.80 22.81 
 KIF5A 22.81 22.85 
DDIT3 22.79 22.79 

 MARS1 22.75 22.79 
 PIP4K2C 22.85 22.87 

ARHGAP9 22.75 22.76 
 INHBC 22.72 22.73 

 ARHGEF25 22.87 22.88 
INHBE 22.73 22.73 
DTX3 22.87 22.87 

SLC26A10 22.88 22.89 
MBD6 22.79 22.80 

B4GALNT1 22.89 22.90 
 OS9 22.96 23.00 

 CYP27B1 23.05 23.06 
EEF1AKMT3 23.06 23.09 

CTDSP2 23.11 23.13 
MIR26A 23.11 23.11 

 MARCH9 23.05 23.05 
METTL1 23.06 23.06 

CDK4 23.04 23.04 
 ATP23 23.18 23.28 
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6 5.94 - 6.74 

HSD17B2 6.30 6.36 
CMIP 6.65 6.88 

MPHOSPH6 6.25 6.27 
SDR42E1 6.39 6.40 
PLCG2 6.43 6.60 

 LOC102166616 5.86 6.25 
LOC110260906 6.36 6.38 

6 7.75 - 8.55 

LOC106510465 7.92 8.34 
LOC106510470 8.52 8.53 
 LOC106510467 8.47 8.47 
LOC106510468 8.38 8.39 

6 157.08 - 157.88 - - - 

10 8.52 - 9.32 

 LOC106504446 8.62 8.63 
 LOC110255626 8.52 8.52 
LOC102164422 8.54 8.95 

 LYPLAL1 8.95 9.06 
LOC106507893 9.21 9.22 
 LOC110255627 9.21 9.22 
LOC110255735 9.11 9.11 

10 8.91 - 9.71 

 LYPLAL1 8.95 9.06 
 LOC102164422 8.54 8.95 
LOC110255735 9.11 9.11 
LOC106507893 9.21 9.22 
 LOC110255627 9.20 9.25 

EPRS 9.58 9.65 
LOC102165479 9.66 9.68 

 IARS2 9.69 9.74 
SLC30A10 9.53 9.55 

MIR215 9.70 9.70 

12 9.70 - 10.50 

KCNJ16 10.39 10.54 
KCNJ2 10.35 10.38 

 LOC102166398 10.45 10.46 
 LOC110255979 10.36 10.36 
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12 15.68 -16.48 

TANC2 15.81 15.45 
MARCH10 16.05 15.97 

 TLK2 16.26 16.13 
 EFCAB3 16.37 16.31 

MRC2 16.12 16.06 
 LOC110256166 15.95 15.92 
LOC102158113 15.89 15.89 
LOC110256164 16.05 15.99 
 LOC100737967 16.24 16.23 
 LOC110256160 16.26 16.26 
 LOC102160182 16.45 16.45 
 LOC100516640 16.44 16.39 

13 191.88 - 192.68 

 LOC106505844 192.07 191.96 
N6AMT1 192.27 192.25 

 LTN1 192.36 192.30 
USP16 192.41 192.38 

MAP3K7CL 192.53 192.49 
 CCT8 192.42 192.41 

 RWDD2B 192.37 192.36 
BACH1 192.70 192.66 

15 126.99 - 127.79 

NYAP2 127.30 127.03 
 LOC100512318 127.43 127.43 
 LOC100511416 127.44 127.44 
 LOC110256922 127.56 127.54 

17 4.12 - 4.92 

ZDHHC2 4.93 4.86 
MICU3 4.83 4.72 
 FGF20 4.70 4.69 

LOC102161130 4.76 4.76 
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GENERAL CONCLUSION 

 

In summary, we verified that there is causal relationship regarding boar taint compounds 

in carcasses and biopsies. In general, the causal structure showed that skatole in the carcass is 

directly affected by androstenone and indole measured in biopsies and indirectly affected 

skatole measured in biopsies and androstenone in the carcass. Moreover, only skatole in carcass 

affects directly indole in the carcass.  

The genomic prediction for boar taint compounds in carcass using the traditional single 

step GBLUP obtained slightly worse in predictive ability and bias than weighted methods. 

However, the traditional single step GBLUP resulted in the best predictive abilities and biases 

for androstenone. Despite a small improvement in the prediction was observed, the weighted 

prediction strategies increased the number of analyses steps, which may not justify their 

application.  

Genes associated with steroid metabolism biosynthesis and intestinal absorption may be 

possibly associated with boar taint compounds in the carcass. These genes include the 

HSD17B2, previously reported as a candidate gene to boar taint, and five new candidate 

genes (CDK4, CRHBP, CTDSP2, CYP27B1 and SDR4E1) involved in biological process 

that may be related to boar taint compounds. 


