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ABSTRACT 

 

FERREIRA, Lucas Borges, D.Sc., Universidade Federal de Viçosa, February, 2022. 
Applications of machine learning for reference evapotranspiration modeling. Adviser: 
Fernando França da Cunha. 
 

Reliable estimates of reference evapotranspiration (ETo) are of great importance in areas such 

as irrigation scheduling, hydrological studies, water resources management, among others. 

However, in scenarios of limited availability of meteorological data, estimating ETo becomes 

challenging. In addition, it is also important to predict future ETo values, which can help, for 

example, in irrigation scheduling. Therefore, in the present thesis, several approaches were 

studied, which were mainly based on machine learning techniques, aiming to estimate ETo 

under limited availability of meteorological data, in addition to predicting future ETo daily 

values. Strategies for evaluating the performance of alternative ETo models when used in 

irrigation management were also evaluated. It was observed that the application of traditional 

machine learning techniques and deep learning models showed great potential for modeling 

ETo in the different conditions evaluated. The use of hourly temperature and relative humidity 

data measured throughout the day, combined with hourly extraterrestrial solar radiation, has 

shown to be a very promising approach to estimate daily ETo. In this approach, 1D 

convolutional neural networks (1D CNN) had better results than the other models evaluated. 

Thus, the combination of hourly data and 1D CNN models resulted in markedly superior 

performances than those observed estimating ETo based on daily data (conventional approach). 

When predicting ETo values for the next seven days, in general, the MIMO (multiple input 

multiple output) prediction strategy was the best alternative, offering good performance and 

lower computational cost. The deep learning models evaluated performed slightly better than 

the traditional machine learning models evaluated, and both approaches resulted in better results 

than using historical monthly means as a prediction of future ETo values. By employing 

machine learning models to estimate ETo and some commonly unavailable meteorological data 

(relative humidity, solar radiation and wind speed), superior performances were observed in 

relation to the performance obtained with traditional methodologies. The use of multi-task 

learning to estimate, in a combined way, missing meteorological data and ETo resulted in 

performances similar to those observed considering individual estimations (single-task 

learning). Finally, it was found that, in addition to using error metrics, such as root mean square 

error (RMSE), the evaluation of ETo models must also consider the behavior of the models 



 

 

throughout the year. Furthermore, simulating the application of ETo models in irrigation 

scheduling can provide valuable information for choosing the most appropriate model. 

 

Keywords: Deep learning. CNN. Irrigation. LSTM. Time series.  



 

 

RESUMO 

 

FERREIRA, Lucas Borges, D.Sc., Universidade Federal de Viçosa, fevereiro de 2022. 
Aplicações de aprendizado de máquina para a modelagem de evapotranspiração de 

referência. Orientador: Fernando França da Cunha. 
 

Estimar a evapotranspiração de referência (ETo) de forma confiável é de grande valia para áreas 

como manejo da irrigação, estudos hidrológicos, gestão de recursos hídricos, dentre outros. No 

entanto, em cenários de limitada disponibilidade de dados meteorológicos, estimar a ETo torna-

se desafiador. Além disso, é também importante prever valores de ETo futuros, o que pode 

auxiliar, por exemplo, na programação das irrigações. Assim, na presente tese, foram estudadas 

diversas abordagens, baseadas, principalmente, em técnicas de aprendizado de máquina, 

visando estimar a ETo sob limitada disponibilidade de dados meteorológicos, além de prever 

valores futuros de ETo diária. Avaliou-se ainda estratégias para a avaliação do desempenho de 

modelos alternativos de ETo quando empregados no manejo da irrigação. Foi observado que a 

aplicação de técnicas de aprendizado de máquina tradicionais e modelos de aprendizado 

profundo apresentou amplo potencial para a modelagem da ETo nas diversas condições 

avaliadas. O uso de dados de temperatura e umidade relativa horários medidos ao longo do dia, 

combinados com a radiação solar no topo da atmosfera horária, mostrou-se uma abordagem 

bastante promissora para estimar a ETo diária. Nesta abordagem, as redes neurais 

convolucionais 1D (1D CNN) apresentaram resultados superiores aos demais modelos 

avaliados. Assim, a combinação de dados horários e modelos 1D CNN resultou em 

desempenhos destacadamente superiores aos observados estimando a ETo com base em dados 

diários (abordagem convencional). Ao prever a ETo dos sete dias futuros, em geral, a estratégia 

de previsão MIMO (multiple input multiple output) foi a melhor alternativa, oferecendo boa 

performance e menor custo computacional. Os modelos de aprendizado profundo avaliados 

apresentaram desempenho ligeiramente superior do que os modelos de aprendizado de máquina 

tradicionais avaliados e, ambas as abordagens, resultaram em performances melhores do que as 

obtidas com o uso de médias mensais históricas como previsão de valores futuros de ETo. Ao 

empregar modelos de aprendizado de máquina para estimar a ETo e alguns dados 

meteorológicos comumente indisponíveis (umidade relativa, radiação solar e velocidade do 

vento), foram observados desempenhos superiores do que os obtidos com metodologias 

tradicionais. O uso de multi-task learning para estimar, de forma combinada, os dados 

meteorológicos faltantes e a ETo resultou em performances similares às observadas realizando 



 

 

as estimativas de forma individual (single-task learning). Por fim, verificou-se que além de 

utilizar métricas de erro, como a raiz do erro quadrático médio (RMSE), a avaliação de modelos 

de ETo deve também considerar o comportamento dos modelos ao longo do ano. Ademais, 

simular a aplicação de modelos ETo no manejo da irrigação pode fornecer informações valiosas 

para a escolha do modelo mais adequado. 

 

Palavras-chave: Aprendizado profundo. CNN. Irrigação. LSTM. Série temporal. 
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General introduction 

Evapotranspiration (ET) is constituted by the sum of the water transferred to the 

atmosphere through the processes of evaporation and plant transpiration. Knowing ET is of 

great importance in several areas, such as irrigation scheduling and design, water resources 

management, hydrological studies and agrometeorology. In irrigation scheduling, ET is used as 

a basis for determining the amount of water that should be applied, via irrigation, to ensure a 

proper crop development. 

There are several alternatives to compute ET, such as the use of lysimeters, Bowen ratio 

method, eddy covariance, among others. However, ET is mostly estimated based on reference 

evapotranspiration (ETo), crop coefficient (Kc) and other adjustment coefficients (Pereira et 

al., 2015). Therefore, it is extremely important to accurately determine ETo, which contributes 

to obtain good ET estimates. 

ETo can be estimated based on meteorological data and mathematical equations. Among 

the methodologies available for this purpose, the FAO-56 Penman-Monteith equation (FAO56-

PM) is one of the best approaches, given its recognized reliability (Pereira et al., 2015). 

However, to use this equation, air temperature, relative humidity, wind speed and solar radiation 

data are needed. Thus, given the common partial or total unavailability of these data in different 

parts of Brazil and the world, the use of the FAO56-PM equation presents certain limitations 

(Hadria et a., 2021; Paredes and Pereira, 2019). 

In order to estimate ETo under conditions of limited availability of meteorological data, 

several empirical equations with reduced data requirements were developed. The use of models 

based on air temperature is especially important, given the greater availability of this 

meteorological variable (Mattar et al., 2016; Paredes and Pereira, 2019). In addition, in relation 

to the other meteorological variables mentioned above, temperature can be measured using less 

expensive sensors. The use of relative humidity, in addition to temperature data, can contribute 

to obtaining better ETo estimates at a low additional cost (Ferreira et al., 2019; Exner-Kittridge, 

2012; Valiantzas, 2012; Valiantzas, 2018). 

In some scenarios, even with the unavailability of solar radiation and wind speed data, 

which normally require higher cost sensors to be measured, temperature and relative humidity 

data measured at a high temporal frequency may be available. In these cases, the potential of 

the data measured in a high frequency, such as on a hourly scale, can be explored to estimate 

daily ETo, which is commonly computed for irrigation management based on data measured 

on a daily scale. It is believed that hourly meteorological data measured throughout the day 

may contain information capable of helping models to estimate daily ETo with better accuracy, 
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even using only on air temperature data as a basis. This hypothesis is raised based on the 

relationship between the variation of air temperature throughout the day and the values assumed 

by other meteorological variables that influence ETo and that are not being used as input for a 

prediction model. In this way, the behavior of air temperature throughout the day could serve 

as information capable of partially supplying the lack of some meteorological data not available 

during the determination of ETo. 

In addition to the traditional empirical equations used to estimate ETo with lower 

meteorological data requirements, machine learning models have been used for this purpose 

(Ferreira et al., 2019; Huang et al., 2019; Kisi and Alizamir, 2018; Yu et al., 2020). In general, 

such models have a high capacity to capture complex patterns between input variables and ETo. 

Thus, machine learning models generally perform better when compared to traditional 

empirical equations. 

In addition to developing models to estimate ETo under limited data availability, it is 

important to create models to predict future ETo values. For example, knowing ahead ETo 

values can help in planning future irrigations. In this context, machine learning models can also 

be explored (Ashrafzadeh et al., 2020; Karbasi, 2018). 

When addressing time-series predictions, such as ETo forecasting, or modeling sequential 

data, such as using hourly data to estimate daily ETo, deep learning models can also be 

employed (Canizo et al., 2019; Gao et al., 2019; Ng et al., 2019). Deep learning is a sub-area 

of machine learning. This field has gained great attention in recent years, being successfully 

used in the modeling of time series and other sequential data, in addition to having important 

applications in areas such as computer vision and natural language processing. 

In addition to the use of good modeling techniques, it is of fundamental importance that 

the models developed to estimate ETo are well evaluated. This step is responsible for indicating 

whether a particular model presents satisfactory performance. In addition to the use of error 

metrics, such as root mean square error (RMSE), mean absolute error (MAE) and coefficient 

of determination (R2), the simulation of the use of ETo models in irrigation scheduling can 

provide information capable of supporting the choice of the most appropriate model for 

irrigation scheduling purposes. 

In view of the foregoing, the objective was to explore the potential of machine learning 

and deep learning techniques to estimate ETo in different scenarios of data availability, as well 

as to estimate future ETo values and to propose a methodology for evaluating alternative ETo 

models when used in irrigation scheduling. Therefore, this thesis was composed of four 

scientific articles, with the following titles: (1) New approach to estimate daily reference 
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evapotranspiration based on hourly temperature and relative humidity using machine learning 

and deep learning; (2) Multi-step ahead forecasting of daily reference evapotranspiration using 

deep learning; (3) Exploring machine learning and multi-task learning to estimate 

meteorological data and reference evapotranspiration across Brazil; and (4) Selecting models 

for the estimation of reference evapotranspiration for irrigation scheduling purposes. 
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Scientific articles 

Article 1: New approach to estimate daily reference evapotranspiration based on hourly 

temperature and relative humidity using machine learning and deep learning 

 

Abstract: Computation of reference evapotranspiration (ETo) poses a challenge under limited 

meteorological data availability. However, even in this case, hourly data may be available since 

low-cost sensors can report hourly measurements. This study evaluates, for the first time, in 

regional and local scenarios, the use of limited hourly meteorological data (temperature and 

relative humidity or only temperature) to estimate daily ETo, employing RF, XGBoost, ANN 

and CNN. The following options were evaluated: (i) use of daily input data (conventional 

approach); (ii) use of hourly data measured during a 24 h period + hourly extraterrestrial 

radiation (Ra) to estimate daily ETo directly; and (iii) the same configuration of the last option, 

but with daily Ra instead of hourly Ra. All options used Ra. To develop and evaluate the 

models, two daily ETo targets were considered: ETod (computed using the daily version of the 

ASCE-PM equation) and ETosoh (computed by summing hourly ETo obtained with the ASCE-

PM equation). Data from 53 weather stations located in the state of Minas Gerais, Brazil, were 

used. For all models, the best results were found using hourly data to estimate daily ETo 

directly. CNN models developed with 24 h hourly data + hourly Ra offered the best 

performance in all cases. In relation to the best models developed with daily data, RMSE 

reduced by up to 28.2% (0.71 to 0.51) and NSE and R2 increased by up to 21.7 (0.69 to 0.84) 

and 11.4% (0.79 to 0.88), respectively, in regional scenario. In local scenario, RMSE reduced 

by up to 22.4% (0.58 to 0.45) and NSE and R2 increased by up to 10.1 (0.79 to 0.87) and 11.3% 

(0.80 to 0.89), respectively. 

Keywords: 1D CNN, convolutional neural network, irrigation scheduling, neural network, 

random forest 

1 Introduction 

Reliable estimates of reference evapotranspiration (ETo) are crucial in tasks such as 

irrigation scheduling, water resource management and hydrological studies. Given the 

complexity involved with the direct measurement of this parameter, it is commonly estimated 

based on meteorological data (Pereira et al., 2015). To accomplish this, the FAO-56 Penman-

Monteith (FAO56-PM) equation (Allen et al., 1998) or the ASCE (American Society of Civil 

Engineers) Penman-Monteith (ASCE-PM) equation (ASCE-EWRI, 2005) can be used. These 

equations, although well accepted in practical applications and academic research, require 

meteorological data (temperature, relative humidity, solar radiation and wind speed) that may 
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be partially unavailable in some locations. Therefore, several studies have investigated 

alternative equations, such as the well-known Hargreaves-Samani equation (Hargreaves and 

Samani, 1985), to estimate ETo with reduced data requirement (Ahooghalandari et al., 2016; 

Almorox et al., 2018; Paredes and Pereira, 2019; Valiantzas, 2018; Zanetti et al., 2019). 

In the last years, machine learning models have been successfully used to estimate ETo 

with fewer meteorological data. These models are capable of capturing complex relationships 

between input and output data, which makes them powerful tools in ETo modeling. Various 

models have been assessed, such as artificial neural network (ANN) (Ferreira et al., 2019; 

Kumar et al., 2011; Nourani et al., 2019; Wu and Fan, 2019), support vector machine (SVM) 

(Ferreira et al., 2019; Mehdizadeh et al., 2017; Nourani et al., 2019), adaptive neuro-fuzzy 

inference system (ANFIS) (Nourani et al., 2019; Wu and Fan, 2019), extreme learning machine 

(ELM) (Abdullah et al., 2015; Fan et al., 2018), multivariate adaptive regression splines 

(MARS) (Mehdizadeh et al., 2017; Wu and Fan, 2019), random forest (RF) (Fan et al., 2019; 

Feng et al., 2017; Wang et al., 2019), extreme gradient boosting (XGBoost) (Fan et al., 2018; 

Wu and Fan, 2019) and light gradient boosting machine (LightGBM) (Fan et al., 2019). In 

general, machine learning models have outperformed conventional equations for estimation of 

ETo, reaching higher performances for the same data requirement (Fan et al., 2019; Ferreira et 

al., 2019; Kiafar et al., 2017; Kumar et al., 2011; Mehdizadeh et al., 2017; Reis et al., 2019). 

In the standard approach to develop a model to estimate daily ETo, daily meteorological 

data are used as input. However, in some cases, even with limited availability of meteorological 

data, hourly data may be available. For instance, a simplified automatic weather station with 

only an air temperature sensor can report hourly measurements. In this situation, only daily 

maximum and minimum temperatures would be used when considering the standard approach, 

losing any possible extra information contained in hourly data. To obtain possible benefits in 

using limited hourly data to estimate daily ETo, models can be developed to estimate daily ETo 

directly using all the hourly data measured during a 24 h time period. However, according to 

our knowledge, so far no study investigated the use of limited hourly data to estimate daily ETo 

directly. 

It should be highlighted that models that can capture additional information from hourly 

data may achieve higher accuracy in estimation of daily ETo. It is especially important for 

temperature-based models due to the following reasons: (i) temperature-based models 

commonly do not exhibit high performances; (ii) temperature sensors are generally cheaper 

than sensors to measure relative humidity, wind speed and solar radiation; (iii) advances in 

estimation of ETo using only air temperature can enable the development of low-cost systems 
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for irrigation scheduling. It is also worth mentioning that the inclusion of relative humidity in 

addition to temperature in ETo models can contribute to achieve higher performance at a low 

additional cost (Exner-Kittridge, 2012; Valiantzas, 2012; Valiantzas, 2018). 

When using hourly data obtained during a 24 h time period, it is possible to employ 

models that can handle sequential data. In this sense, convolutional neural network (CNN) can 

be used. CNN is a deep learning model that has gained a lot of attention in image recognition 

field, including applications in agricultural area (Dyrmann et al., 2016; Ji et al., 2018; Kamilaris 

and Prenafeta-Boldú, 2018a; Kamilaris and Prenafeta-Boldú, 2018b; LeCun et al., 2015). In the 

case of sequential data or time series, like hourly meteorological data, one-dimensional 

convolutional neural network (1D CNN), an especial type of CNN, can be used (Abdeljaber et 

al., 2018; Canizo et al., 2019; Gao et al., 2019; Li et al., 2017; Liu et al., 2018; Ng et al., 2019). 

In hydrology/climatology field, studies using 1D CNN are still very scarce (Haidar and Verma, 

2018). Generally, CNN has outperformed traditional machine learning models in many studies, 

reaching state-of-the-art performances. Despite its high capabilities, deep learning models, such 

as CNN, have not been very explored in hydrological sciences, as reported for Shen (2018) in 

an extensive review study. In estimation of ETo, according to our knowledge, so far CNN was 

not used. 

Considering the importance of reliable estimates of ETo using reduced datasets, the 

objective of the present study is to assess, for the first time, in regional and local scenarios, the 

use of limited hourly meteorological data (temperature and relative humidity or only 

temperature) to estimate daily ETo directly, employing RF, XGBoost, ANN and CNN. 

 

2 Materials and methods 

2.1 Database, study sites and data management 

Hourly data from 53 automatic weather stations of the Brazilian National Institute of 

Meteorology (INMET) were used. All the stations are located in the state of Minas Gerais, 

Brazil. The data length varied according to the stations, given their different epochs of creation, 

with a mean length of 11.7±1.34 years. All the stations have data up to the year 2018. Maximum 

and minimum air temperature, maximum and minimum relative humidity, solar radiation and 

wind speed were collected. Wind speed, measured at 10 m height, was converted to 2 m, 

according to Allen et al. (1998). Days with missing or faulty data were removed. Faulty data 

were identified in daily scale when minimum temperature was higher than maximum 

temperature; relative humidity out of the range 0-100%; minimum relative humidity higher than 
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maximum relative humidity; negative wind speed; negative solar radiation; or solar radiation 

higher than extraterrestrial radiation. 

To perform the analysis, two scenarios were considered: (i) regional, models were trained 

with pooled data from 43 weather stations and evaluated in the 10 remaining stations; and (ii) 

local, models were trained and evaluated using individual data from the 10 weather stations 

used for evaluation in the previous scenario. The 10 stations mentioned were selected in order 

to represent different climatic conditions. In both regional and local scenarios, data up to 2013 

were used in the training process of the models and data from 2014 to 2018 were used to test 

them (Fig. 1). The weather stations split, as well as their locations and climate classification 

(Alvares et al., 2013) can be seen in Fig. 2. Aridity index (IA) (UNEP, 1997) (ratio between 

annual precipitation to annual reference evapotranspiration), annual reference 

evapotranspiration and annual precipitation are presented in Fig. 3. It can be noted that the study 

area covers a wide variety of climatic conditions, with IA ranging from 0.31 to 1.61. 

 

Fig. 1. Flowchart of the data split scheme used. 
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Fig. 2. Location, climate classification and training/test split of the weather stations used. 

 

 

Fig. 3. Aridity index (IA), annual reference evapotranspiration and annual precipitation for the 

weather stations used (2004-2018). 

 

2.2 Input data for the machine learning models 

To explore the potential of hourly limited meteorological data to estimate daily ETo, the 

following approaches were employed to develop the machine learning models: (i) use of daily 

data to estimate daily ETo (conventional approach); (ii) use of hourly data measured during a 

24 h period and hourly extraterrestrial radiation (Ra) to estimate daily ETo directly; and (iii) 

use of hourly data measured during a 24 h period and daily Ra to estimate daily ETo directly. 

Approach i also used Ra, in daily scale. The variation in Ra scale (approaches ii and iii) was 

done in order to verify the effect of Ra scale in the estimation of ETo.  

Two meteorological data availability options were assessed: temperature-based models 

and temperature- and relative humidity-based models. In the first option, maximum 

temperature, minimum temperature and Ra were considered. In the second option, in addition 

to the data of the first option, maximum and minimum relative humidity were used. 
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2.3 Targets for development and evaluation of the machine learning models 

When developing models for estimation of ETo, it is a common practice to use ETo 

estimated by the FAO56-PM equation or ASCE-PM equation, which is used in this study, as 

target. For that, one can estimate daily ETo using the daily version of Penman-Monteith 

equation, here called ETod, or summing hourly ETo obtained with the hourly version of 

Penman-Monteith equation, here called ETosoh. The last option is generally considered more 

accurate under certain scenarios (Allen et al., 1998; Pereira et al., 2015; Althoff et al., 2019). It 

is expect that when using ETosoh as target, machine learning models developed with hourly 

input data will perform better than their versions developed with daily data since hourly data 

were used to calculate the target. Therefore, when considering ETod as additional target, if 

hourly data also provide performance increments for this target, this gain can be associated with 

their capability to better capture climate patterns related to ETo, which may not be as clear as 

when using only ETosoh as target. Thus, in this study, the two types of daily ETo targets (i.e., 

ETod and ETosoh) were employed to develop and evaluate the machine learning models for 

direct estimation of daily ETo (cases i, ii and iii). 

To compute ETo in both hourly and daily scale, the ASCE-PM equation (Allen et al., 

2006) (Eq. 1) was employed. ASCE-PM differs from FAO-PM in the surface resistance values 

adopted for hourly time step. However, Allen et al. (2006) recommended to use FAO-PM with 

the same surface resistance values used in ASCE-PM. The calculation of all parameters 

necessary to use ASCE-PM was done based on FAO-56 paper. 

ETo = 
0.408 ∆ (Rn- G) + γ

Cn

T+273
 u2 (es- ea) 

∆ + γ (1 + Cd u2)
                                                               (1) 

where ETo is the reference evapotranspiration (mm d-1 or mm h-1), Rn is the net solar radiation 

(MJ m-2 d-1 or MJ m-2 h-1), G is the soil heat flux density (MJ m-2 d-1 or MJ m-2 h-1) (considered 

equal to 0 in daily time step and equal to 0.1 Rn and 0.5 Rn for hourly time step during daytime 

(defined as when Rn > 0) and nighttime, respectively), T is the mean daily or hourly air 

temperature (°C), u2 is the mean daily or hourly wind speed at a 2 m height (m s-1), es is the 

saturation vapour pressure (kPa), ea is the actual vapour pressure (kPa) (obtained using 

maximum and minimum relative humidity for daily time step and mean relative humidity for 

hourly time step), ∆ is the slope of the saturation vapour pressure function (kPa ºC-1), and γ is 

the psychrometric constant (kPa ºC-1). Cn and Cd are constants that depend on calculation time 

step, reference type and time of day. For grass ETo, Cn is equal to 900 K mm s3 mg-1 d-1 for 

daily time step and 37 K mm s3 mg-1 h-1 for hourly time step; and Cd is equal to 0.34 s m-1 for 
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daily time step and 0.24 and 0.96 s m-1 for hourly time step during daytime (Rn > 0) and 

nighttime, respectively. 

For Rn computation, the ratio between solar radiation and clear sky solar radiation 

(Rs/Rso), which is used to represent cloud cover, was limited to ≤ 1.0. As it is not possible to 

compute this ratio during nighttime (in this case, defined during computations as when Ra is 

equal to 0), Rs/Rso calculated between 2-3 hours before sunset was adopted. As nighttime 

Rs/Rso (2-3 hours before sunset) from a given day is used in the subsequent nighttime period 

of the next day, it is not possible to obtain Rs/Rso when the previous day is missing. In this 

study, a default value (0.6) was used in this case. This value was selected based on 

recommendations of Allen et al. (1998), which proposes 0.4 to 0.6 in humid and subhumid 

climates and 0.7 to 0.8 in arid and semiarid climates.  

2.4 Machine learning models 

All machine learning models were implemented using the Python programming language, 

with the aid of the following libraries: Scikit-learn, XGBoost, TensorFlow and Keras. 

Computations were performed using a virtual machine from Google Cloud Platform. To train 

CNN models, a virtual machine with a graphics processing unit (GPU) was used. The models 

hyperparameters were defined by grid search. To accomplish this, the data set available to train 

the models was splitted into two subsets, the first one, named training subset (70% randomly 

chosen), was used to train the models, and the second one (30%) was used as a validation subset 

for hyperparameters tuning. Therefore, the hyperparameters values that minimized the error in 

the validation subset were chosen. Finally, the models were tested with data from the test set. 

2.4.1 Random forest (RF) 

Random forest (RF) is a decision tree-based algorithm proposed by Breiman (2001). This 

model combines several decision trees fitted in different subsets of the training data. Each tree 

is considered a weak learner, however, the combination of trees (ensemble) results in a single 

model with high predictive power (Huang et al., 2019). RF also has the advantage of estimating 

the importance of each of the input variables. Regarding the training process, RF generally 

requires less adjustment in hyperparameters. The main hyperparameters to be adjusted, which 

were adjusted in this study, are the number of trees (n_estimators) and the number of features 

considered for splitting at each leaf node (max_features). More information about RF can be 

seen in Tyralis et al. (2019). The following values were tested for the hyperparameters 

mentioned above, respectively: (100, 200, 400 and 500 trees), and (all features, the square root 

of the total number of features and one third of the features).  

2.4.2 Extreme gradient boosting (XGBoost) 
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XGBoost was recently proposed (Chen and Guestrin, 2016) and has gained wide attention 

in machine learning competitions (Adam-Bourdarios et al., 2015). This algorithm, like RF, is 

based on decision trees, differing in the way the tree ensemble is constructed. XGBoost uses 

previous ideas from gradient boosting, creating each tree based on information from previously 

created trees. XGBoost is also able to estimate the importance of input variables and presents a 

higher computational efficiency and better ability to deal with overfitting (Fan et al., 2018). 

More information can be obtained in Chen and Guestrin (2016). In hyperparameters tuning, the 

number of trees (n_estimators) and maximum tree depth (max_depth) were adjusted. The 

number of trees values tested were 100, 200, 400 and 500; and the maximum tree depth values 

tested were 3, 5, 7, 9 and 11. 

2.4.3 Artificial neural network (ANN) 

ANN of the feed-forward multilayer perceptron (MLP) type was used. It is based on a 

network of artificial neurons connected by weights, which are organized in layers. Typically, 

an ANN is composed of an input layer, hidden layers and output layer. Each layer can have a 

different number of neurons. The input layer has the same size as the number of input variables 

used, the number of neurons in hidden layers is defined by trial and error and the number of 

neurons in the output layer depends on the problem, however, for regression tasks, one neuron 

is normally used. An ANN with three input variables, two hidden layers with four and three 

neurons, and one neuron in the output layer is exemplified in Fig. 4. More information can be 

obtained in Ferreira et al. (2019). 

 

Fig. 4. Artificial neural network architecture example. 

 

In this study, the ANN architectures were defined by trial and error. The following 

combinations were evaluated: one and two hidden layers with 10, 15 and 20 neurons in each 

layer for cases that the number of input variables was less than or equal to five (i.e., models 

trained with daily data); and one and two hidden layers with 40, 50 and 60 neurons in each layer 
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for cases that the number of input variables was greater than 5 (i.e., models trained using 24 h 

hourly data). Hyperbolic tangent was used as activation function in hidden layers and linear 

function was used in the output layer. To train the ANN models, the Adam algorithm (Kingma 

and Ba, 2014) was used. Learning rate was set to 0.001, the number of training epochs was 

defined using early stopping with maximum training epochs equal to 300 and patience equal to 

20 epochs, and batch size was set to 512. 

2.4.4 Convolutional neural network (CNN) 

CNN is machine learning model from the deep learning subfield. It is a type of neural 

network that differs from conventional ANN (i.e., MLP) mainly because it has convolution 

layers or convolutional filters (Goodfellow et al., 2016). In these layers, an automatic feature 

extraction process is performed, in which the features of the input data that are really important 

to map the relationship between the input variables and the desired output are extracted. This 

ability makes CNN capable of handling raw data without the need for preprocessing or manual 

feature extraction. Besides convolutional layers, CNN typically has pooling layers, which are 

used to reduce data dimensionality. More detailed information on CNN can be found in LeCun 

et al. (2015) and Goodfellow et al. (2016). 

CNN is generally applied for image processing. Thus, the convolutional filters used have 

two dimensions (2D CNN), like an image. However, for the analysis of sequential data or time 

series, one-dimensional convolutional filters (1D CNN) are used (Li et al., 2017). These filters 

slide over the input data to capture possible patterns contained in the time dimension, in the 

case of time series. Therefore, 1D CNN is used in this study. As convolutional layers require 

input variables with time dimension, this model was used only with the input data combination 

ii (i.e., 24 h hourly data + hourly Ra). 

The CNN architecture used in this study consisted of two convolutional layers, one 

pooling layer and two fully connected layers with a dropout layer between them (Fig. 5). The 

number of filters in each convolutional layer, kernel size, number of neurons in the first fully 

connected layer and dropout rate were defined by trial and error. In each case, the following 

values, for each hyperparameter, respectively, were tested: (48, 64, 96), (3, 5, 7), (20, 40, 60) 

and (0, 0.2, 0.4). In convolutional layers, stride was set to 1, padding was set to “same” and the 

activation function used was relu. In the first fully connected layer, relu was used as activation 

function and, in the last fully connected layer, linear function was used. To train the models, 

the Adam algorithm (Kingma and Ba, 2014) was used. Learning rate was set to 0.001, the 

number of training epochs was defined using early stopping with maximum training epochs 

equal to 150 and patience equal to 10 epochs, and batch size was set to 512. 
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Fig. 5. Convolutional neural network architecture used in the study. 

2.4.5 Data normalization 

To avoid convergence problems during the training of the machine learning models, input 

and output variables were standardized according to Eq. 2. To ensure that the evaluation of the 

models during validation and test steps can reflect their application in a real case, the mean (µ) 

and standard deviation (σ) were computed using only the data of the training subset, not 

including data from validation subset and test set.  

xni = 
xi - μ                                                                                                      (2) 

where xni is the standardized value, xi is the observed value, µ is the mean, and σ is the standard 

deviation. 

2.5 Performance comparison criteria 

The models were evaluated for each weather station by means of root mean square error 

(RMSE), mean bias error (MBE), Nash-Sutcliffe efficiency coefficient (NSE) and coefficient 

of determination (R²), according to the following equations: 

                                                                           (3) 

                                                                                  (4) 

                                                                                     (5) 

                                                                     (6) 
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where Pi is the predicted value (mm d-1), Oi is the observed value (mm d-1),  is the mean of the 

predicted values (mm d-1),  is the mean of the observed values (mm d-1), and n is the number 

of data pairs. 

 

3 Results and discussion 

3.1 Regional scenario 

3.1.1 Temperature-based models 

The results obtained when using ETod and ETosoh as targets (Fig. 6) generally had the 

same behavior. All the machine learning models developed with 24 h hourly data using daily 

or hourly Ra exhibited better performances than their versions developed with daily input data 

(conventional approach), showing lower RMSE and higher NSE and R2 values. The use of 

hourly Ra in relation to daily Ra did not promote significant changes in performance. 
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Fig. 6. Boxplots and mean values of RMSE, NSE and R2 for regional temperature-based models 

developed using ETod and ETosoh as target. 

 

When comparing RF, XGBoost and ANN for all data input combinations evaluated, the 

best performances were generally obtained for ANN, XGBoost and RF, in this order. However, 

when 24 h hourly data with hourly Ra were used as input, CNN peformed better than all the 

models, with expressive reductions in RMSE values and increments in NSE values. In relation 

to ANN, RMSE reduced from 0.59 to 0.52 (11.9%) and from 0.56 to 0.51 (8.9%); and NSE 
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increased from 0.77 to 0.83 (7.8%) and from 0.80 to 0.84 (5.0%), when considering ETod and 

ETosoh as targets, respectively. 

Comparing the best results, which were found using CNN (for both ETod and ETosoh 

targets) developed using 24 h hourly data and hourly Ra, with the results found for the best 

model that used daily data (ANN, for both ETod and ETosoh targets), RMSE reduced from 0.70 

to 0.52 (25.7%) and from 0.71 to 0.51 (28.2%); NSE increased from 0.68 to 0.83 (22.1%) and 

from 0.69 to 0.84 (21.7%); and R2 increased from 0.82 to 0.87 (6.1%) and from 0.79 to 0.88 

(11.4%), when using ETod and ETosoh as targets, respectively. 

3.1.2 Temperature- and relative humidity-based models 

For the regional temperature- and relative humidity-based models, the results obtained 

for ETod and ETosoh targets (Fig. 7) had similar behaviors. Again, the best results were found 

for the models that used 24 h hourly data as input. Comparing the machine learning models, 

ANN was slightly better than RF and XGBoost. However, CNN exhibited the best performance. 

In relation to the ANN models developed with 24 h hourly data and hourly Ra, RMSE reduced 

from 0.50 to 0.47 (6.0%) and from 0.49 to 0.45 (8.2%); NSE increased from 0.83 to 0.85 (2.4%) 

and from 0.84 to 0.87 (3.6%); and R2 increased from 0.90 to 0.91 (1.1%) and from 0.90 to 0.91 

(1.1%), when considering ETod and ETosoh as targets, respectively. 

 



27 

 

 

Fig. 7. Boxplots and mean values of RMSE, NSE and R2 for regional temperature- and relative 

humidity-based models developed using ETod as target. 

 

Comparing the best results, which were found using CNN (for both ETod and ETosoh 

targets) developed using 24 h hourly data and hourly Ra, with the results found for the best 

models that used daily data (XGBoost and ANN for ETod and ETosoh targets, respectively), 

RMSE reduced from 0.56 to 0.47 (16.1%) and from 0.57 to 0.45 (21.1%); NSE increased from 

0.79 to 0.85 (7.6%) and from 0.80 to 0.87 (8.8%); and R2 increased from 0.87 to 0.91 (4.6%) 

and from 0.85 to 0.91 (7.1%), when using ETod and ETosoh as targets, respectively. 
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3.2 Local scenario 

3.2.1 Temperature-based models 

For the temperature-based models developed in local scenario, the results obtained for 

ETod and ETosoh targets (Fig. 8) also generally had the same behavior. The best results were 

found for the models that used 24 h hourly data as input. Comparing the machine learning 

models, ANN performed a little better than RF and XGBoost. However, CNN had the best 

performance among all models, but with slight performance improvements. In relation to the 

ANN models developed with 24 h hourly data and hourly Ra, RMSE reduced from 0.44 to 0.41 

(6.8%) and from 0.47 to 0.45 (4.3%); NSE increased from 0.88 to 0.89 (1.1%) and from 0.86 

to 0.87 (1.2%); and R2 increased from 0.88 to 0.90 (2.3%) and from 0.87 to 0.89 (2.3%), when 

considering ETod and ETosoh as targets, respectively. 
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Fig. 8. Boxplots and mean values of RMSE, NSE and R2 for local temperature-based models 

developed using ETod and ETosoh as target. 

 

Comparing the best results, which were found using CNN (for both ETod and ETosoh 

targets) developed using 24 h hourly data and hourly Ra, with the results found for the best 

model that used daily data (ANN, for both ETod and ETosoh targets), RMSE reduced from 0.53 

to 0.41 (22.6%) and from 0.58 to 0.45 (22.4%); NSE increased from 0.82 to 0.89 (8.5%) and 

from 0.79 to 0.87 (10.1%); and R2 increased from 0.83 to 0.90 (8.4%) and from 0.80 to 0.89 

(11.3%), when using ETod and ETosoh as targets, respectively. 
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3.2.2 Temperature- and relative humidity-based models 

For the local temperature- and relative humidity-based models, for both ETod and ETosoh 

targets the best results were found for the models that used 24 h hourly data as input with hourly 

or daily Ra (Fig. 9). Comparing the machine learning models, all the models showed similar 

performances, with a slight advantage for CNN. In relation to the ANN models developed with 

24 h hourly data and hourly Ra, using CNN, RMSE reduced from 0.40 to 0.37 (7.5%) and from 

0.44 to 0.41 (6.8%); NSE increased from 0.90 to 0.91 (1.1%) and from 0.88 to 0.90 (2.3%); and 

R2 increased from 0.90 to 0.92 (2.2%) and from 0.89 to 0.91 (2.2%), when considering ETod 

and ETosoh as targets, respectively. 
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Fig. 9. Boxplots and mean values of RMSE, NSE and R2 for local temperature- and relative 

humidity-based models developed using ETod and ETosoh as target. 

 

Comparing the best results, which were found using CNN (for both ETod and ETosoh 

targets) developed using 24 h hourly data and hourly Ra, with the results found for the best 

models that used daily data (ANN, for both ETod and ETosoh targets), RMSE reduced from 0.44 

to 0.37 (15.9%) and from 0.50 to 0.41 (18.0%); NSE increased from 0.87 to 0.91 (4.6%) and 

from 0.84 to 0.90 (7.1%); and R2 increased from 0.88 to 0.92 (4.5%) and from 0.85 to 0.91 

(7.1%), when using ETod and ETosoh as targets, respectively. 
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3.2.3 Overall evaluation 

The use of hourly data measured during a 24 h period for estimation of daily ETo provided 

good results in all cases evaluated, outperforming models developed using daily input data 

(conventional approach). The use of hourly Ra in relation to daily Ra in the models that used 

24 h hourly data did not promote large changes in the performance of the models. However, in 

almost all cases, the use of hourly Ra provided results equal or slightly higher than those 

obtained using daily Ra. 

The best machine learning models obtained when daily data and hourly data with hourly 

Ra were considered as input, as well as their performance metrics, are presented in Table 1. It 

should be highlighted that when using temperature-based models developed with 24 h hourly 

data with hourly Ra; RMSE, NSE and R2 values were better than those obtained with the 

temperature- and relative humidity-based models developed with daily data. 

 

Table 1. Best machine learning models and their respective RMSE, NSE and R2 mean values 

obtained when using daily data (Daily) and 24 h hourly data with hourly extraterrestrial 

radiation (Hourly) as input 

Scenario 
Data 

availability 
Target Input Best model RMSE NSE R2 

 

Regional 

T 

ETod Daily ANN 0.70 0.68 0.82  

ETod Hourly CNN 0.52 0.83 0.87  

ETosoh Daily ANN 0.71 0.69 0.79  

ETosoh Hourly CNN 0.51 0.84 0.88  

T+RH 

ETod Daily XGBoost 0.56 0.79 0.87  

ETod Hourly CNN 0.47 0.85 0.91  

ETosoh Daily ANN 0.57 0.80 0.85  

ETosoh Hourly CNN 0.45 0.87 0.91  

Local 

T 

ETod Daily ANN 0.53 0.82 0.83  

ETod Hourly CNN 0.41 0.89 0.90  

ETosoh Daily ANN 0.58 0.79 0.80  

ETosoh Hourly CNN 0.45 0.87 0.89  

T+RH 
ETod Daily ANN 0.44 0.87 0.88  

ETod Hourly CNN 0.37 0.91 0.92  
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ETosoh Daily ANN 0.50 0.84 0.85  

ETosoh Hourly CNN 0.41 0.90 0.91  

T - temperature; RH - relative humidity. 

 

In some cases, lower errors have been found when ETod was used as target instead of 

ETosoh, with RMSE differences ranging from 0.01 to 0.06 (Table 1). However, it is important 

to highlight that when comparing ETod against ETosoh (reference), RMSE values ranging from 

0.24 to 0.32 were obtained (Table 2). Irmak et al. (2005) reported RMSE ranging from 0.25 to 

0.56 (United States of America); Althoff et al. (2019) found mean RMSE equal to 0.22 (Brazil, 

including the study area of this study); and Djaman et al. (2018) found RMSE ranging from 

0.36 to 0.84 (Africa). Therefore, assuming that ETosoh is more accurate than ETod (Allen et al., 

1998; Althoff et al., 2019; Djaman et al., 2018; Irmak et al., 2005; Pereira et al., 2015) and that 

the RMSE differences obtained in this study when ETod and ETosoh were used as targets are 

much smaller than the ETod errors showed above, it is recommended to use the machine 

learning models developed with ETosoh as target. 

 

Table 2. Comparison between ETod and ETosoh (reference) for test weather stations (whole 

dataset). 

 ETosoh ETod RMSE NSE R2 MBE 

Mean 3.83 3.93 0.28 0.95 0.96 0.10 

Median 4.01 4.10 0.28 0.95 0.96 0.11 

Min. 2.94 2.98 0.24 0.94 0.95 -0.06 

Max. 4.47 4.54 0.32 0.96 0.98 0.21 

ETosoh, ETod, RMSE and MBE are expressed in mm d-1. 

 

When ETosoh was used as target, the models developed with 24 h hourly data provided 

performance gains over the models that used daily data (Table 1). This behavior is, to a certain 

extent, already expected since to obtain ETosoh hourly data are needed. However, as the use of 

24 h hourly data also provided gains when ETod was used as target (Table 1), it can be 

concluded that this approach has a real potential to improve the estimation of ETo under limited 

data availability. 

For the same input data, the models developed in local scenario had better performance 

than the models developed in regional scenario (Table 1). This behavior is very common since 

ETo modeling is more complex in regional scenario (Kiafar et al., 2017; Reis et al., 2019; Shiri 
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et al., 2014). However, it is worth mentioning that local models are specific for the climatic 

conditions of the place where they were developed. Therefore, regional models have a key role 

in places without full datasets to use the Penman-Monteith equation or to develop local models. 

Although local models typically perform better, in this study, the regional models developed 

using hourly data outperformed the local models developed with daily data, except in the case 

of the temperature- and relative humidity-based models with ETod target (Table 1).  

In addition to boxplots and mean values of performance metrics, it is also convenient to 

analyze scatter plots of predicted vs observed values and the behavior of the models in space. 

Thus, scatter plots and the distribution of NSE and MBE values in space for the machine 

learning models listed in Table 1 are presented for each test weather station in Figs. 10, 11 and 

12, respectively. It can be noted that, when using 24 h hourly data, more accurate predictions 

were found (Fig. 10). In addition, in general, the use of 24 h hourly data provided performance 

gains, showing higher NSE values and lower MBE absolute values, in all the study region (Figs. 

11 and 12). As the study area includes a wide range of climatic regimes (Figs. 2 and 3), it is 

indicated that the proposed approach performs well under different climatic conditions.  
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Fig. 10. Scatter plots for all test weather stations (pooled data) for the best regional and local 

machine learning models developed using daily data (daily) and 24 h hourly data with hourly 

extraterrestrial radiation (24 h hourly + hourly Ra) as input. 
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Fig. 11. Best regional and local machine learning models and their respective NSE values 

obtained for each weather station when using daily data (daily) and 24 h hourly data with hourly 

extraterrestrial radiation (24 h hourly + hourly Ra) as input. 
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Fig. 12. Best regional and local machine learning models and their respective MBE values 

obtained for each weather station when using daily data (daily) and 24 h hourly data with hourly 

extraterrestrial radiation (24 h hourly + hourly Ra) as input. 

 

It is also important to note that the use of relative humidity generally promoted 

performance increments in all the study area, mainly for the models developed with daily input 

data. Although the role of relative humidity can be more important in arid or semi-arid regions, 

in the present study, this variable also provided performance gains in humid regions (southern 

Minas Gerais). Ferreira et al. (2019) also reported performance improvements when adding 

relative humidity to temperature in machine learning models developed for Brazil. 

The performance gains obtained with the use of 24 h hourly data is probably because the 

models have captured patterns in the data measured along the day that can be associated with 

other variables not used as input. For instance, it is known that the difference between daily 

maximum and minimum air temperatures can be used as a cloud cover indicator, which is 

related to solar radiation (Allen et al., 1998; Hargreaves and Allen, 2003). Therefore, this and 

other patterns useful in ETo modeling can be empirically explored for machine learning models 
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when using 24 h hourly data, improving ETo modeling. This approach can also be evaluated in 

future studies for estimation of other meteorological variables. 

When comparing the traditional machine learning models (i.e., RF, XGBoost and ANN), 

in general, they performed similar, but ANN models exhibited slightly higher performances. 

However, CNN outperformed all the models in all the cases studied, offering the best 

performance to estimate daily ETo. The highest performance gains promoted by the CNN 

models were found for the temperature-based models developed in regional scenario, in which, 

in relation to ANN, RMSE decreased by 11.9 and 8.9%; and NSE increased by 7.8 and 5.0%, 

for ETod and ETosoh targets, respectively. 

The good performance obtained for CNN is probably because it was able to extract 

features from the hourly input data that were not captured by the other models evaluated. The 

automatic feature extraction is a powerful characteristic of CNN, which allow it to identify the 

most useful features, which are discriminative information, from raw data, without the need for 

preprocessing (LeCun et al., 2015; Ng et al., 2019). The findings of this study corroborate other 

studies in which CNN has outperformed traditional machine learning models, reaching the best 

performance (Haidar and Verma, 2018; LeCun et al., 2015; Ng et al., 2019; Shen, 2018).  

The use CNN to estimate daily ETo using 24 h hourly data and hourly Ra promoted great 

performance gains in relation to the use of traditional machine models with daily input data 

(conventional approach) (Table 1). Therefore, the proposed approach can be used to estimate 

ETo at a low cost and with good accuracy. In future studies, other CNN architectures can be 

explored. In addition, other deep learning models, such as Long short-term memory (LSTM) 

and Gated Recurrent Unit (GRU), can be assessed. 

4 Conclusions 

This study assessed, for the first time, in regional and local scenarios, the use of limited 

hourly meteorological data (temperature and relative humidity or only temperature) to estimate 

daily ETo directly, employing RF, XGBoost, ANN and CNN. The following options were 

evaluated: (i) use of daily input data (conventional approach); (ii) use of hourly data measured 

during a 24 h period and hourly Ra to estimate daily ETo directly; and (iii) use of hourly data 

measured during a 24 h period and daily Ra to estimate daily ETo directly. All the options used 

Ra as input. To develop and evaluate the models, two types of targets were considered: ETod 

(daily ETo computed using the daily version of ASCE-PM equation) and ETosoh (daily ETo 

computed by summing hourly ETo obtained with the ASCE-PM equation). 

In all cases, the best results were found using hourly data to estimate daily ETo directly, 

with hourly or daily Ra. The use of limited 24 h hourly data to estimate daily ETo can enable 
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better estimates of ETo at a low cost. This idea can also be assessed in other places and to 

estimate other meteorological variables. 

When compared to the models developed with daily data, in regional scenario, for 

temperature-based models, the use of 24 h hourly data + hourly Ra reduced RMSE by up to 

28.2% and increased NSE and R2 by up to 21.7 and 11.4%, respectively. For temperature- and 

relative humidity-based models, RMSE reduced by up to 21.1% and NSE and R2 increased by 

up to 8.8 and 7.1%, respectively. In local scenario, for temperature-based models, RMSE 

reduced by up to 22.4% and NSE and R2 increased by up to 10.1 and 11.3%, respectively. For 

temperature- and relative humidity-based models, RMSE reduced by up to 18.0% and NSE and 

R2 increased by up to 7.1 and 7.1%, respectively. 

In general, ANN performed slightly better than the other traditional machine learning 

models (i.e., RF and XGBoost), being the best model to estimate ETo with daily input data in 

almost all cases. However, CNN exhibited the best performance when hourly data were used 

as input, offering the most accurate ETo estimates. CNN models provided performance gains, 

in terms of RMSE and NSE, up to 11.9 and 7.8%, respectively, in relation to ANN models with 

the same input data. Future studies can explore the potential of other CNN architectures and 

other deep learning modes, such as LSTM and GRU. The models developed in this study are 

available upon request. 
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Article 2: Multi-step ahead forecasting of daily reference evapotranspiration using deep 

learning 

 

Abstract: Daily reference evapotranspiration (ETo) forecasts can help farmers in irrigation 

planning. Therefore, this study assesses the potential of deep learning (long short-term memory 

(LSTM), one-dimensional convolutional neural network (1D CNN) and a combination of the 

two previous models (CNN-LSTM)) and traditional machine learning models (artificial neural 

network (ANN) and random forest (RF)), in regional and local scenarios, to forecast multi-step 

ahead daily ETo (seven days) using iterated, direct and multiple input multiple output (MIMO) 

forecasting strategies. Three input data combinations were assessed: (1) only lagged ETo; (2) 

lagged ETo + day of the year of each step of the time lag considered; and (3) the same of input 

combination 2 + lagged meteorological variables. Data from 53 weather stations located in 

Minas Gerais, Brazil, were used. Four stations were used as test stations. Two baselines were 

also employed: (B1), all the forecasting horizon is considered equal to the mean ETo measured 

during the last seven days; and (B2), ahead ETo values are considered equal to their respective 

historical monthly means. In general, MIMO was the best forecasting strategy, offering good 

performance and lower computational cost. The deep learning models performed slightly better 

than the machine learning models, and both were better than the best baseline (B2), mainly on 

the first and second forecasting days. Among the deep learning models, CNN-LSTM2 (i.e., 

CNN-LSTM with input combination 2) performed the best in local scenario (mean RMSE over 

the prediction horizon and stations equal to 0.87), and CNN-LSTM3 performed the best in 

regional scenario (mean RMSE equal to 0.88). The regional models are recommended instead 

of the local models since they exhibited similar performances and have higher generalization 

capacity. Finally, although the models developed have not exhibited high accuracies, they can 

be useful tools in places where historical monthly mean ETo is used to forecast ETo. 

Keywords: long short-term memory, one-dimensional convolutional neural network, machine 

learning, time series 

 

1 Introduction 

Computation of evapotranspiration (ET) is required in water resource management, 

hydrological studies, irrigation scheduling and crop modeling studies. In addition, some 

drought indices are computed based on ET (Tian et al., 2020). There are different alternatives 

to estimate ET of a particular crop, however, the use of reference evapotranspiration (ETo) and 

crop coefficient (Kc) is the most common approach (Pereira et al., 2015). ETo can be estimated 
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using the FAO-56 Penman-Monteith (FAO56-PM) equation, which is widely used and accepted 

due to its good performance (Allen et al., 1998; Pereira et al., 2015). 

In addition to estimation of ETo from past and current periods, prediction of ahead ETo 

values (i.e., ETo forecasting) can be useful for irrigation planning. This future information can 

improve real-time irrigation scheduling, allowing to make better decisions. However, ETo 

forecasting studies are not as common in the literature as ETo estimation studies. 

Trajkovic et al. (2003) forecasted monthly ETo based on previous ETo values using 

artificial neural network (ANN). Landeras et al. (2009) employed autoregressive integrated 

moving average (ARIMA) and ANN to forecast weekly ETo. Torres et al. (2011) forecasted 

daily ETo (computed using the Hargreaves-Samani equation) up to seven days ahead using 

ANN and multivariate relevance vector machine (MVRVM). Karbasi (2018) forecasted multi-

step ahead daily ETo using gaussian process regression (GPR) and wavelet-GPR. The author 

observed that by increasing the forecasting time period from 1 to 30 days, the accuracy was 

reduced. Ashrafzadeh et al. (2020) forecasted monthly ETo up to 24 months ahead using 

seasonal autoregressive integrated moving average (SARIMA), group method of data handling 

(GMDH) and SVM. Nourani et al. (2020) forecasted multi-step ahead ETo based on monthly 

lagged meteorological data (up to 12 months). The authors used support vector machine (SVM), 

adaptive neuro fuzzy inference system (ANFIS), ANN and multiple linear regression (MLR) 

individually and in a multi-model approach (ensemble). The multi-model approach provided 

the best performance. In Brazil, Alves et al. (2017) forecasted one-day ahead daily ETo with 

high accuracy using ANN with only mean air temperature from the previous day as input. 

In contrast to the studies presented above, some studies forecast ETo based on forecasted 

meteorological data, such as public weather forecasts (Cai et al., 2007; Perera et al., 2014; 

Traore et al., 2017; Yang et al., 2019), or with a combination of past local meteorological data 

and forecasted meteorological data (Bachour et al., 2016). In this study, ETo is forecasted based 

on past meteorological data. This approach has the advantage of not requiring external data, 

using only data measured on a local weather station. 

The most common approach to forecast ETo with machine learning is to use only lagged 

ETo values as input data (Ashrafzadeh et al., 2020; Landeras et al., 2009; Trajkovic et al., 2003). 

However, the use of meteorological data related to ETo (i.e., temperature, relative humidity, 

solar radiation, wind speed and extraterrestrial radiation) and the day of the year as additional 

input data could provide performance gains. Thus, this is also investigated in the present study. 

As presented above, traditional machine learning models, such as ANN and SVM, have 

been used for ETo forecasting. However, deep learning models can also be used for this task. 
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The deep learning field has gained much attention in recent years and has been applied in 

several areas, outperforming traditional machine learning models and achieving state-of-the-art 

performances (Ferreira and Cunha, 2020; Gao et al., 2019; Haidar and Verma, 2018; Kamilaris 

and Prenafeta-Boldú, 2018; Lecun et al., 2015; Lee et al., 2020; Saggi and Jain, 2019). A review 

of deep learning for water resources scientists is presented by Shen (2018). For time series 

forecasting, long short-term memory (LSTM) (Son and Kim, 2020; Tian et al., 2018; Zhou et 

al., 2019) and one-dimensional convolutional neural network (1D CNN) (Amarasinghe et al., 

2017; Barzegar et al., 2020; Sayeed et al., 2020; Tian et al., 2018) can be used. In addition, 1D 

CNN can be combined with LSTM, creating a hybrid model (CNN-LSTM) (Barzegar et al., 

2020; Kim and Cho, 2019; Huang and Kuo, 2018). Although deep learning has exhibited great 

performance in several cases, it is still poorly explored in the hydrology/climatology field. For 

ETo forecasting, studies using deep learning are very scarce. 

For multi-step ahead forecasting, different modeling strategies can be employed (Taieb 

et al., 2010; Taieb et al., 2012; Ye and Dai, 2019). Iterated and direct strategies are the most 

common alternatives (Ye and Dai, 2019). In iterated strategy, a model is built to perform a one-

step ahead forecasting. The result is fed back as input to predict the following value until the 

desired prediction horizon has been reached. In direct strategy, to predict the H next values of 

the time series, H models are constructed. Each model predicts a specific value of the prediction 

horizon. In contrast to iterated strategy, this method avoids accumulation of prediction errors. 

However, it has higher computational cost since more models are constructed. 

In addition to iterated and direct strategies, multiple input multiple output (MIMO) 

strategy can be used (Taieb et al., 2010; Taieb et al., 2012; Ye and Dai, 2019). In MIMO, all 

the H next values of the time series are predicted at the same time. Thus, instead of a scalar 

value, a vector of future values is predicted. The advantages of MIMO against iterated and 

direct strategies are that it avoids accumulation of prediction errors and requires only a single 

model. In addition, compared to direct strategy, MIMO preserves the stochastic dependency 

characterizing the forecasted time series. However, to use MIMO, models that can predict 

multiple values, such as ANN and random forest (RF), are required. According to our 

knowledge, so far, multiple forecasting strategies have not been compared in ETo forecasting 

studies. 

Considering the importance of ETo forecasts, this study assesses the potential of deep 

learning models (LSTM, 1D CNN and CNN-LSTM) and traditional machine learning models 

(ANN and RF), in regional and local scenarios, to forecast multi-step ahead daily ETo (seven 
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days) using iterated, direct and MIMO forecasting strategies. The use of additional input 

variables to lagged ETo (meteorological data and day of the year) is also assessed.  

 

2 Materials and methods 

2.1 Database, study sites and data management 

Data from 53 automatic weather stations of the Brazilian National Institute of 

Meteorology (INMET) were used. The data length varied according to the stations, with a mean 

length of 11.7±1.34 years. All the stations have data up to the year 2018. Maximum and 

minimum air temperature, maximum and minimum relative humidity, solar radiation and wind 

speed were obtained. Wind speed, measured at 10 m height, was converted to 2 m, according 

to Allen et al. (1998). The data, collected on an hourly timescale, were converted to a daily 

timescale. Days with missing or faulty data were removed. Faulty data were identified on a 

daily timescale when minimum temperature was higher than maximum temperature; relative 

humidity out of the range 0-100%; minimum relative humidity higher than maximum relative 

humidity; negative wind speed; negative solar radiation; or solar radiation higher than 

extraterrestrial radiation. 

To carry out the study, two scenarios were assessed: local and regional (Fig. 1). In local 

scenario, models were trained and evaluated individually in each weather station. In this 

scenario, four stations (test stations) were used. In regional scenario, models were trained using 

pooled data from 49 weather stations (training stations) and evaluated individually in four 

independent weather stations (the same stations evaluated in local scenario). Only four test 

stations were used in both scenarios to allow a detailed presentation of the results obtained for 

each station. To be more representative, stations with different climate conditions were selected. 

In both scenarios, a time split was also considered, using data up to 2014 to train the models 

and data from 2015 to 2018 to test them. The location and aridity index (IA) (UNEP (United 

Nations Environmental Programme), 1997) (ratio between annual precipitation to annual 

reference evapotranspiration), as well as the training/test split of the weather stations, are 

presented in Fig. 2. Detailed information on the stations used is presented in Table 1. 
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Fig. 1. Data management scenarios and training/test split used. 

 

 

Fig. 2. Location, aridity index and training/test split of the weather stations used in the study. 

Test stations are followed by their identification number. 
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Table 1. Mean and standard deviation of daily climate characteristics and data length for the 

weather stations used. 

Training period 

  Ituiutaba (1) Mocambinho (2) Monte Verde (3) Viçosa (4) Other 49 stations 

Period 2006-2014 2007-2014 2004-2014 2005-2014 - 

Samples 2892 2369 2946 2773 125453 

Tmax 31.2 (±3) 32.0 (±2.6) 21.4 (±3.3) 26.2 (±3.4) 28.2 (±3.8) 

Tmin 17.7 (±3.6) 18.7 (±3) 10.0 (±4.2) 14.8 (±3.6) 16.7 (±3.7) 

RHmax 91.0 (±9.2) 88.2 (±8.2) 95.4 (±1.9) 95.5 (±3) 89.6 (±9.4) 

RHmin 38.1 (±15.1) 35.5 (±14.1) 54.6 (±15.2) 50.1 (±13.5) 43.4 (±15.4) 

WS 1.2 (±0.6) 0.9 (±0.3) 1.0 (±0.6) 0.7 (±0.3) 1.5 (±0.7) 

SR 18.9 (±4.9) 21.1 (±4.9) 16.7 (±6.1) 15.6 (±5.7) 18.7 (±5.8) 

ETo 4.2 (±1.2) 4.4 (±1.1) 2.9 (±1.1) 3.0 (±1.1) 4.1 (±1.4) 

Test period 

  Ituiutaba (1) Mocambinho (2) Monte Verde (3) Viçosa (4) Other 49 stations 

Period 2015-2018 2015-2018 2015-2018 2015-2018 - 

Samples 1297 1354 1341 1456 62642 

Tmax 31.5 (±3.1) 33.2 (±2.8) 21.9 (±3.4) 27.4 (±3.5) 28.9 (±4) 

Tmin 17.9 (±3.6) 18.9 (±2.8) 10.2 (±4.2) 15.7 (±3.3) 17.1 (±3.6) 

RHmax 88.2 (±7.9) 85.3 (±7.7) 97.4 (±2.2) 95.4 (±2.5) 88.2 (±10.1) 

RHmin 39.7 (±15.3) 30.4 (±12.6) 54.1 (±16.3) 49.8 (±13.4) 41.7 (±15.1) 

WS 1.1 (±0.5) 0.8 (±0.3) 1.1 (±0.4) 0.6 (±0.3) 1.4 (±0.7) 

SR 18.9 (±4.9) 21.7 (±5.1) 16.7 (±6.2) 16.0 (±5.9) 18.7 (±5.9) 

ETo 4.2 (±1.2) 4.6 (±1.1) 3.0 (±1.1) 3.2 (±1.2) 4.1 (±1.4) 

Tmax - maximum air temperature, °C; Tmin - minimum air temperature, °C; RHmax - maximum relative humidity, 

%; Tmax - maximum relative humidity, %; WS - wind speed, m s-1; SR - solar radiation, MJ m-2 d-1; ETo - daily 

reference evapotranspiration, mm d-1. 

 

2.2 Computation of reference evapotranspiration 

To compute ETo, which was used to develop and evaluate the models under study, the 

FAO56-PM equation was used (Eq. 1). All procedures were performed according to Allen et 

al. (1998). The FAO56-PM equation was employed in the present study because it is widely 

used and accepted due to its good performance (Allen et al., 1998; Pereira et al., 2015). 
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ETo = 
0.408 ∆ (Rn- G) + γ

900

Tavg+273
 u2 (es- ea) 

∆ + γ (1 + 0.34 u2)
                                                               (1) 

where ETo is the reference evapotranspiration (mm d-1), Rn is the net solar radiation (MJ m-2 d-

1), G is the soil heat flux (MJ m-2 d-1) (considered to be null for daily estimates), Tavg is the daily 

mean air temperature (°C), u2 is the wind speed at a 2 m height (m s-1), es is the saturation vapor 

pressure (kPa), ea is the actual vapor pressure (kPa) (obtained using maximum and minimum 

relative humidity), ∆ is the slope of the saturation vapor pressure function (kPa ºC-1), and γ is 

the psychrometric constant (kPa ºC-1). 

2.3 Forecasting scheme and input data combinations 

To train the models and perform the optimization of input data time lag and 

hyperparameters, the data available to train the models were split into two subsets: training 

(data up to December 1, 2013) and validation (December 2, 2013 - December 31, 2014). Finally, 

the performance of the models was evaluated using data from the test set (2015-2018). In this 

study, the use of data from up to 30 lagged days was assessed (described in detail below). Thus, 

to ensure that the models developed with data from different numbers of lagged days are trained, 

validated and tested with the same dataset, the first 30 days from all the datasets (i.e., training, 

validation and test) were reserved to be used as lagged input data. For instance, all the models 

were validated for the period from January 1, 2014 to December 31, 2014, with the data from 

December 2, 2013 to December 31, 2013 reserved to be used as input data. 

To forecast ETo, seven days ahead were considered as prediction horizon. This period 

was considered because it is adequate for irrigation planning. To develop the machine learning 

and deep learning models, three input data combinations were assessed: (1) only lagged ETo; 

(2) lagged ETo + day of the year of each step of the time lag considered; and (3) lagged ETo + 

day of the year of each step of the time lag considered + lagged meteorological variables used 

to compute ETo (maximum and minimum temperature, maximum and minimum relative 

humidity, wind speed, solar radiation and extraterrestrial radiation). The models developed 

using input data combinations 1, 2 and 3 were identified with the input combination number 

after their names (e.g., ANN1, ANN2 and ANN3). 

Input data time lag was selected by trial and error, evaluating the use of data from up to 

30 past days. In the case of traditional machine learning models, 1, 2, 3, 4, 5, 10, 15, 20, 25 and 

30 past days were tested. In the case of deep learning models, 5, 10, 15, 20, 25 and 30 past days 

were tested. The optimal time lag was defined as the lag that promoted the lowest prediction 

error (lowest root mean square error) in the validation subset. 
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Three forecasting strategies were used to develop the models: iterated, direct and multiple 

input multiple output (MIMO) (Fig. 3). In iterated strategy, the first step ahead is forecasted 

and the result is fed back as input to predict the following value. This process is repeated until 

the desired prediction horizon has been reached. In direct strategy, H models are built to predict 

the H values of the prediction horizon. In MIMO, all the H values of the prediction horizon are 

predicted at the same time using a single model. 

 

Fig. 3. Forecasting strategies used in the study. 

2.4 Baselines 

When developing models to forecast ETo, it can be useful to compare their performances 

against some baseline approaches. Therefore, two baselines were defined in this study (Table 

2). The first baseline (B1) considers all the values of the prediction horizon (ETot+1, ETot+2, …, 

ETot+7) equal to the mean ETo obtained during the last seven days (ETot-6, ETot-5, …, ETot); 

and the second baseline (B2) forecasts the prediction horizon considering ahead ETo values 

equal to their respective historical monthly means (computed using the training dataset).  
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Table 2. Baselines used to forecast ETo. 

 
Prediction horizon / Forecasting rule 

Baseline ETot+1 ETot+2 ... ETot+7 

B1 ETom7 ETom7 ... ETom7 

B2 ETomm ETomm ... ETomm 

ETom7 - mean ETo measured during the last seven days (ETot-6, ETot-5, …, ETot); ETomm - 

respective mean monthly ETo for the steps of the prediction horizon.  

 

2.5 Traditional machine learning and deep learning models 

Two traditional machine learning models, RF and ANN, as well as three deep learning 

models, LSTM, 1D CNN and CNN-LSTM, were used. To implement the models, the Python 

programming language was used, employing the following libraries: Scikit-learn 0.22.1 and 

TensorFlow 2.1.0. A virtual machine from Google Cloud Platform was used for computations. 

For deep learning models training, a virtual machine with a graphics processing unit (GPU) was 

used. 

The models were initially trained for all the data input combinations, input data lags and 

forecasting strategies mentioned above without hyperparameter tuning. Finally, the best 

performing models (i.e., models with optimal input data lag and optimal forecasting strategy) 

were submitted to hyperparameter tuning, selecting hyperparameters values that promoted the 

lowest prediction errors in the validation subset. Hyperparameter tuning was performed by grid 

search for machine learning models and by random search for deep learning models. Random 

search with 35 iterations was used to optimize deep learning models due to the higher number 

of hyperparameters to be optimized, which makes grid search highly computationally 

expensive. 

2.5.1 Traditional machine learning models 

2.5.1.1 Random forest (RF) 

RF, proposed by Breiman (2001), is a decision tree-based algorithm. In this algorithm, 

decision trees are fitted in different subsets of the training data. Although each individual tree 

is considered a weak learner, RF combines the prediction of all trees (ensemble), creating a 

powerful model (Huang et al., 2019). An advantage of this model is that it generally requires 

less adjustment in hyperparameters. More details about RF can be found in Silva Júnior et al. 

(2019) and Tyralis et al. (2019). 

To identify the optimal input data lag and optimal forecasting strategy, a RF was trained 

using 200 trees and the default values of the other hyperparameters. During hyperparameter 
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tuning phase, done for the best performing models (i.e., those with optimal input data lag and 

optimal forecasting strategy), the following hyperparameters and their respective values were 

assessed: n_estimators (number of trees) (100, 200, 400 and 600); max_features (number of 

features considered for splitting at each leaf node) (all features, the square root of the total 

number of features, and one third of the features) and min_samples_leaf (minimum number of 

samples required to be at a leaf node) (1, 5, 10 and 15). 

2.5.1.2 Artificial neural network (ANN) 

ANN of the feed-forward multilayer perceptron (MLP) type was used. ANN is capable 

of capturing complex relations between a set of input variables and one or more output 

variables. ANN is composed of artificial neurons organized in layers, which are connected to 

input data and other neurons. All the connections are made using weights, which are defined 

during the training process. More information on ANN can be found in Ferreira et al. (2019). 

To identify the optimal input data lag and optimal forecasting strategy, an ANN with one 

hidden layer composed of 40 neurons was used. The number of neurons in the output layer was 

equal to the number of output variables. Hyperbolic tangent activation function was used in the 

hidden layer, and linear activation function was used in the output layer. The Adam training 

algorithm (Kingma and Ba, 2014) was used. Learning rate was set to 0.001, batch size was set 

to 256 and the number of training epochs was defined using early stopping with maximum 

training epochs equal to 300 and patience equal to 10 epochs. During hyperparameter tuning 

phase, other architectures were assessed: one and two hidden layers with 20, 30, 40 and 50 

neurons. Batch size was also optimized, testing the following values: 128, 256 and 512. The 

other hyperparameters were the same ones described above. 

2.5.2 Deep learning models 

2.5.2.1 Long short-term memory (LSTM) 

LSTM (Hochreiter and Schmidhuber, 1997) is a special type of recurrent neural network 

(RNN), with advantages over traditional RNN, used to handle sequential data. In this algorithm, 

when processing input data from time t, information from previous time steps (t-1, t-2, …) is 

considered. An LSTM network is composed of LSTM blocks (Fig. 4). The LSTM block 

contains forget gate, input gate, output gate, hidden state and cell state. The forget gate decides 

what information should be removed from the cell state, generating a ft value. The input gate 

decides what information from cell state should be updated, generating an it value. The output 

gate is responsible to produce ot, which is used to compute the hidden state ht based on a filtered 

version of the cell state. More information on LSTM can be found in Lee et al. (2020). 
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Fig. 4. LSTM blocks. Ct - cell state at time t, ht - hidden state at time t, xt - input data at time t, 

σ - sigmoid activation function, tanh - hyperbolic tangent activation function, ft - forget gate 

output, it - input gate output, oi - output gate output. 

 

To identify the optimal input data lag and optimal forecasting strategy, an LSTM network 

with two stacked LSTM layers, each one with 30 LSTM units, and two fully connected layers 

was used. The number of neurons in the first fully connected layers was set to 10. The number 

of neurons in the second fully connected layer (output layer) was equal to the number of output 

variables. The hyperparameters of the LSTM layers were kept at their default values. In the first 

fully connected layer, relu activation function was used, and in the last fully connected layer 

(output layer), linear activation function was used. The Adam training algorithm (Kingma and 

Ba, 2014) was used. Learning rate was set to 0.001, batch size was set to 256, and the number 

of training epochs was defined using early stopping with maximum training epochs equal to 

200 and patience equal to 10 epochs. 

During hyperparameter tuning phase, different architectures were assessed: one and two 

LSTM layers with 20, 30 or 40 LSTM units in each one, and none and one fully connected layer 

with 10 neurons before the output layer. To avoid overfitting, a dropout layer was added after 

each LSTM layer. The following dropout rates were assessed: 0, 0.2 and 0.4. Batch size was 

also optimized, testing the following values: 128, 256 and 512. The other hyperparameters were 

the same ones described above. 

2.5.2.2 Convolutional neural network (CNN) 

The main difference between CNN and conventional ANN (i.e., MLP) is the presence of 

convolution layers. These layers are able to perform automatic feature extraction, capturing 

features of the input data that are really important to map the relationship between input and 

output variables. Therefore, CNN can handle raw data without the need for preprocessing or 
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manual feature extraction. More information on CNN can be found in LeCun et al. (2015) and 

Goodfellow et al. (2016). 

CNN is commonly used for image recognition. In this case, as images have two 

dimensions, convolutional filters with two dimensions are used. However, when working with 

sequential data or time series, as in this study, CNN with one-dimensional (1D) convolutional 

filters (1D CNN) are used (Ferreira and Cunha, 2020). A CNN model with one 1D 

convolutional layer and two fully connected layers is presented in Fig. 5.  

 

Fig. 5. 1D CNN model with one convolutional layer and two fully connected layers. 

 

To identify the optimal input data lag and optimal forecasting strategy, a 1D CNN with 

one convolutional layer and two fully connected layers was used (Fig. 5). In convolutional 

layer, the following settings were used: 32 filters, kernel size equal to 3, stride equal to 1, 

padding was set to “same” and relu was used as activation function. The number of neurons in 

the first fully connected layer was set to 10, and the number of neurons in the second fully 

connected layer (output layer) was equal to the number of output variables. In the first fully 

connected layer, relu activation function was used; and in the last fully connected layer, linear 

activation function was used. Training algorithm, learning rate, batch size and number of 

training epochs followed the same configurations described for LSTM. 

During hyperparameter tuning phase, different architectures were assessed: one and two 

convolutional layers, each one with 24, 32 or 48 filters and kernel size equal to 2, 3 or 5; none 

and one pooling layer after convolutional layer(s); and none and one fully connected layer with 

10 neurons before the output layer. To avoid overfitting, a dropout layer was added after each 

convolutional layer. The following dropout rates were assessed: 0, 0.2 and 0.4. Batch size was 
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also optimized, testing the following values: 128, 256 and 512. The other hyperparameters were 

the same ones described above. 

2.5.2.3 CNN-LSTM 

A hybrid deep learning model (CNN-LSTM) was also assessed, combining 1D CNN and 

LSTM. In a CNN-LSTM model, first, one or more convolutional layers are used to extract 

useful features from the input data and, after, the output is used as input to one or more LSTM 

layers. Finally, the output from LSTM layers is passed to fully connected layers, in which the 

results are obtained in the last fully connected layer (output layer). A CNN-LSTM model with 

one convolutional layer, two LSTM layers and two fully connected layers is presented in Fig. 

6.  

 

Fig. 6. CNN-LSTM model with one convolutional layer, two LSTM layers and two fully 

connected layers. 

 

To identify the optimal input data lag and optimal forecasting strategy, a CNN-LSTM 

with one convolutional layer, two LSTM layers and two fully connected layers was used (Fig. 

6). The hyperparameters of convolutional and LSTM layers were the same ones described 

above for CNN and LSTM models, respectively. The fully connected layers also had the same 

configurations presented in the description of CNN and LSTM models. Training algorithm, 

learning rate, batch size and number of training epochs followed the same configurations 

described for LSTM and CNN. 

During hyperparameter tuning phase, different architectures were assessed: one 

convolutional layer with 24, 32 or 48 filters and kernel size equal to 2, 3 or 5; one and two 

LSTM layers with 20, 30 or 40 LSTM units in each one; and none and one fully connected layer 

with 10 neurons before the output layer. To avoid overfitting, a dropout layer was added after 
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convolutional layer and each LSTM layer. The following dropout rates were assessed: 0, 0.2 

and 0.4. Batch size was also optimized, testing the following values: 128, 256 and 512. The 

other hyperparameters were the same ones described above. 

2.6 Data normalization 

To avoid convergence problems and to remove the effect of different scales, input and 

output variables were standardized according to the following equation. The mean and standard 

deviations were obtained using only data from the training subset, not including data from the 

validation subset and test set. To evaluate the models, ETo was reconverted to its original scale. 

xni = 
xi - μ                                                                                                      (2) 

where xni is the standardized value, xi is the observed value, µ is the mean, and σ is the standard 

deviation. 

2.7. Performance comparison criteria 

The models were evaluated in each test weather station using root mean square error 

(RMSE), mean absolute error (MAE), coefficient of determination (R²) and Nash-Sutcliffe 

efficiency coefficient (NSE), according to the following equations. To better evaluate the 

models, all the metrics were computed considering predicted and observed ETo values 

individually obtained on each day of the prediction horizon (ind) and considering ETo values 

accumulated up to each day of the prediction horizon (acc). For RMSE (acc) and MAE (acc), 

the results were divided by the number of accumulated days in order to keep the unit in mm d-

1. 

                                                                           (3) 

                                                                                  (4) 

                                                                     (5) 

                                                                                    (6) 

where Pi is the predicted value, Oi is the observed value,  is the mean of the predicted values, 

 is the mean of the observed values, and n is the number of data pairs. 
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3 Results and discussion 

3.1 Baselines 

Generally, B2 (i.e., baseline based on long-term mean monthly ETo) exhibited better 

performance than B1 (i.e., baseline based on mean ETo from the last seven days) (Table 3). 

Comparing mean RMSE values over the prediction horizon and weather stations, B2 showed 

RMSE (ind) (i.e., RMSE computed considering individual ETo values observed on each day of 

the prediction horizon, mm d-1) equal to 0.93, while B1 had RMSE (ind) equal to 0.98. 

Similarly, for RMSE (acc) (i.e., RMSE computed considering ETo values accumulated up to 

each day of the prediction horizon and also expressed in mm d-1), B2 had RMSE (acc) equal to 

0.72, while B1 showed RMSE (acc) equal to 0.75. However, for the first forecasting day, B1 

performed better. For the second forecasting day, B1 was similar to B2. From the third day 

onwards, B2 performed the best. It is important to highlight that B2 had the same RMSE (ind) 

values for all the days of the prediction horizon since it is based only on long-term mean 

monthly ETo. 
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Table 3. RMSE values (mm d-1) for ETo forecasted for the prediction horizon in the test weather 

stations using the proposed baselines. 

 
Prediction horizon (days) 

Station Model 1 2 3 4 5 6 7 Mean (SD) 

RMSE (ind) 

1 
B1 0.93 0.98 1.01 1.02 1.03 1.05 1.06 1.01 (±0.04) 

B2 0.96 0.96 (±0.00) 

2 
B1 0.81 0.86 0.90 0.93 0.95 0.97 1.00 0.92 (±0.06) 

B2 0.91 0.91 (±0.00) 

3 
B1 0.92 0.97 0.99 1.00 1.00 1.01 1.00 0.98 (±0.03) 

B2 0.90 0.90 (±0.00) 

4 
B1 0.90 0.96 0.99 1.01 1.03 1.04 1.05 1.00 (±0.05) 

B2 0.95 0.95 (±0.00) 

Mean 
B1 0.89 0.94 0.97 0.99 1.00 1.02 1.03 0.98 (±0.05) 

B2 0.93 0.93 (±0.00) 

RMSE (acc) 

1 
B1 0.93 0.82 0.77 0.73 0.71 0.7 0.69 0.77 (±0.08) 

B2 0.96 0.83 0.75 0.7 0.66 0.63 0.6 0.73 (±0.12) 

2 
B1 0.81 0.73 0.7 0.68 0.67 0.67 0.67 0.71 (±0.05) 

B2 0.91 0.81 0.76 0.72 0.69 0.67 0.64 0.74 (±0.09) 

3 
B1 0.92 0.82 0.77 0.74 0.71 0.68 0.67 0.76 (±0.08) 

B2 0.89 0.77 0.69 0.63 0.59 0.55 0.52 0.66 (±0.12) 

4 
B1 0.9 0.82 0.78 0.75 0.73 0.72 0.71 0.77 (±0.06) 

B2 0.95 0.85 0.78 0.73 0.69 0.65 0.63 0.75 (±0.11) 

Mean 
B1 0.89 0.80 0.76 0.73 0.71 0.69 0.69 0.75 (±0.07) 

B2 0.93 0.82 0.75 0.70 0.66 0.63 0.60 0.72 (±0.11) 

RMSE (ind) - computed considering individual ETo values observed on each day of the 

prediction horizon, mm d-1; RMSE (acc) - computed considering ETo values accumulated up 

to each day of the prediction horizon, mm d-1. 

 

3.2 Traditional machine learning models 

The results obtained using the different forecasting strategies (i.e., iterated, direct and 

MIMO) and the different input data combinations (i.e., (1) lagged ETo, (2) lagged ETo + day 



61 

 

of the year, and (3) lagged ETo + day of the year + additional meteorological data) are presented 

in Table 4. Regarding the forecasting strategies, direct and MIMO provided the best results, 

with lower RMSE values in relation to iterated strategy, mainly for RF. Direct and MIMO 

strategies performed similarly. However, MIMO has a much lower computational cost than 

direct strategy since it uses only a single model to forecast all the values of the forecasting 

horizon. 
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Table 4. Mean and standard deviation of RMSE (mm d-1) for ETo forecasted for the prediction 

horizon in the test weather stations using machine learning with iterated, direct and MIMO 

forecasting strategies in local and regional scenarios, as well as the mean optimal input data 

lags. 

  Local Regional 

Model Lag RMSE RMSE (acc) Lag RMSE RMSE (acc) 

Iterated 

RF1 28 0.96 (±0.07) 0.70 (±0.06) 30 0.92 (±0.07) 0.67 (±0.06) 

RF2 12 0.95 (±0.06) 0.70 (±0.06) 30 0.94 (±0.06) 0.69 (±0.06) 

RF3 9 0.94 (±0.06) 0.68 (±0.06) 5 0.95 (±0.07) 0.69 (±0.05) 

ANN1 21 0.93 (±0.06) 0.67 (±0.06) 30 0.91 (±0.06) 0.66 (±0.06) 

ANN2 10 0.89 (±0.05) 0.64 (±0.08) 25 0.91 (±0.06) 0.66 (±0.06) 

ANN3 3 0.89 (±0.05) 0.64 (±0.07) 4 0.90 (±0.06) 0.65 (±0.07) 

Mean - 0.93 (±0.06) 0.67 (±0.07) - 0.92 (±0.06) 0.67 (±0.06) 

Direct 

RF1 25 0.91 (±0.05) 0.66 (±0.07) 30 0.90 (±0.05) 0.65 (±0.07) 

RF2 17 0.91 (±0.05) 0.65 (±0.08) 29 0.91 (±0.06) 0.66 (±0.07) 

RF3 12 0.90 (±0.05) 0.65 (±0.07) 22 0.90 (±0.05) 0.65 (±0.07) 

ANN1 20 0.92 (±0.06) 0.66 (±0.07) 14 0.91 (±0.06) 0.66 (±0.06) 

ANN2 11 0.89 (±0.05) 0.64 (±0.08) 13 0.91 (±0.05) 0.66 (±0.07) 

ANN3 4 0.89 (±0.06) 0.63 (±0.07) 7 0.91 (±0.05) 0.65 (±0.07) 

Mean - 0.90 (±0.05) 0.65 (±0.07) - 0.91 (±0.05) 0.66 (±0.07) 

MIMO 

RF1 26 0.90 (±0.05) 0.66 (±0.07) 30 0.90 (±0.06) 0.65 (±0.06) 

RF2 20 0.90 (±0.05) 0.66 (±0.07) 30 0.91 (±0.05) 0.67 (±0.06) 

RF3 12 0.90 (±0.05) 0.65 (±0.07) 30 0.89 (±0.05) 0.65 (±0.07) 

ANN1 19 0.91 (±0.05) 0.66 (±0.07) 15 0.91 (±0.06) 0.66 (±0.06) 

ANN2 6 0.88 (±0.04) 0.64 (±0.08) 15 0.90 (±0.05) 0.66 (±0.07) 

ANN3 1 0.88 (±0.05) 0.63 (±0.07) 10 0.90 (±0.05) 0.65 (±0.07) 

Mean - 0.90 (±0.05) 0.65 (±0.07) - 0.90 (±0.05) 0.66 (±0.07) 

RMSE (ind) - computed considering individual ETo values observed on each day of the 

prediction horizon, mm d-1; RMSE (acc) - computed considering ETo values accumulated up 

to each day of the prediction horizon, mm d-1. 
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To better explore the potential of the machine learning models, the models developed 

with MIMO strategy and optimal input data lag were submitted to hyperparameter tuning (Table 

5). In general, after hyperparameter tuning, there were no large performance changes. There 

were performance improvements only for RF, with slight RMSE reductions. In local scenario, 

after hyperparameter tuning, the lowest mean RMSE (ind) and mean RMSE (acc) were the 

same ones observed before hyperparameter tuning, 0.88 and 0.63, respectively. In regional 

scenario, the lowest mean RMSE (ind) was the same one (0.89), and the lowest mean RMSE 

(acc) reduced from 0.65 to 0.64. 

 

Table 5. RMSE mean values (mm d-1) for ETo forecasted for the prediction horizon in the test 

weather stations using machine learning models with MIMO forecasting strategy, optimal input 

data lag and hyperparameter tuning in local and regional scenarios. 

  RMSE (Local) 

  ind acc ind acc ind acc ind acc ind acc 

Model Station 1 Station 2 Station 3 Station 4 Mean 

RF1 0.93 0.67 0.85 0.63 0.88 0.63 0.92 0.68 0.90 0.65 

RF2 0.92 0.66 0.84 0.63 0.88 0.63 0.90 0.65 0.88 0.64 

RF3 0.92 0.66 0.83 0.62 0.88 0.62 0.90 0.66 0.88 0.64 

ANN1 0.96 0.70 0.85 0.62 0.91 0.65 0.94 0.69 0.91 0.67 

ANN2 0.91 0.65 0.82 0.61 0.86 0.60 0.93 0.68 0.88 0.64 

ANN3 0.92 0.64 0.82 0.61 0.86 0.60 0.91 0.67 0.88 0.63 

  RMSE (Regional) 

  ind acc ind acc ind acc ind acc ind acc 

Model Station 1 Station 2 Station 3 Station 4 Mean 

RF1 0.94 0.67 0.83 0.61 0.91 0.66 0.92 0.67 0.90 0.65 

RF2 0.93 0.67 0.86 0.64 0.92 0.67 0.92 0.68 0.91 0.66 

RF3 0.92 0.65 0.83 0.61 0.88 0.63 0.92 0.68 0.89 0.64 

ANN1 0.94 0.68 0.84 0.62 0.92 0.67 0.93 0.69 0.91 0.67 

ANN2 0.92 0.66 0.84 0.62 0.94 0.69 0.93 0.68 0.91 0.66 

ANN3 0.94 0.68 0.84 0.61 0.90 0.64 0.92 0.67 0.90 0.65 
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RMSE (ind) - computed considering individual ETo values observed on each day of the 

prediction horizon, mm d-1; RMSE (acc) - computed considering ETo values accumulated up 

to each day of the prediction horizon, mm d-1. 

 

In local scenario, the models developed with lagged ETo + day of the year (RF2 and 

ANN2) and the models developed with lagged ETo + day of the year + additional 

meteorological data (RF3 and ANN3) performed slightly better than their versions developed 

using only lagged ETo (RF1 and ANN1). In regional scenario, for RF models, only RF3 

performed better than RF1, and, for ANN models, ANN2 and ANN3 performed better than 

ANN1. However, it should be highlighted that, in both local and regional scenarios, there were 

only small performance improvements when additional input data were considered. 

Although the best performing model in both local and regional scenarios varied according 

to the station evaluated, overall, in local scenario, ANN3 performed the best, with mean RMSE 

(ind) and mean RMSE (acc) equal to 0.88 and 0.63, respectively. In regional scenario, RF3 

performed the best, with mean RMSE (ind) and mean RMSE (acc) equal to 0.89 and 0.64, 

respectively. Although ANN and RF performed better in local and regional scenarios, 

respectively, the performance differences between the models were small. 

When comparing the machine learning models with the best proposed baseline (B2), 

mean RMSE (ind) reduced from 0.93 to 0.88 (5.4%) and to 0.89 (4.3%), in local and regional 

scenarios, respectively, and mean RMSE (acc) reduced from 0.72 to 0.63 (12.5%) and to 0.64 

(11.1%), in local and regional scenarios, respectively. Although the performance gains found 

for RMSE (ind) were not large, there were reasonable performance gains for RMSE (acc). It is 

worth mentioning that, for irrigation scheduling, it can be more important to know ETo 

accumulated up to a given day of the prediction horizon than individual daily ETo values since 

daily ETo is accumulated in the soil water balance. 

3.3 Deep learning models 

For deep learning models, all the forecasting strategies provided similar results in both 

local and regional scenarios (Table 6). However, in local scenario, direct strategy had a slight 

advantage over the other forecasting strategies, with lower mean RMSE values. 
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Table 6. Mean and standard deviation of RMSE (mm d-1) for ETo forecasted for the prediction 

horizon in the test weather stations using deep learning with iterated, direct and MIMO 

forecasting strategies in local and regional scenarios, as well as the mean optimal input data 

lags.  

  Local Regional 

Model Lag RMSE RMSE (acc) Lag RMSE RMSE (acc) 

Iterated 

LSTM1 18 0.89 (±0.05) 0.64 (±0.07) 25 0.92 (±0.06) 0.67 (±0.06) 

LSTM2 14 0.87 (±0.05) 0.62 (±0.08) 10 0.91 (±0.06) 0.66 (±0.06) 

LSTM3 12 0.95 (±0.07) 0.69 (±0.06) 25 0.88 (±0.05) 0.63 (±0.07) 

CNN1 22 0.90 (±0.05) 0.65 (±0.07) 20 0.92 (±0.06) 0.67 (±0.06) 

CNN2 20 0.89 (±0.05) 0.64 (±0.07) 20 0.90 (±0.05) 0.66 (±0.07) 

CNN3 6 0.91 (±0.06) 0.65 (±0.07) 10 0.90 (±0.06) 0.64 (±0.07) 

CNN-LSTM1 16 0.89 (±0.05) 0.64 (±0.07) 25 0.90 (±0.06) 0.66 (±0.06) 

CNN-LSTM2 16 0.88 (±0.05) 0.63 (±0.07) 30 0.90 (±0.06) 0.65 (±0.07) 

CNN-LSTM3 11 0.91 (±0.06) 0.66 (±0.07) 20 0.90 (±0.06) 0.64 (±0.07) 

Mean - 0.90 (±0.05) 0.65 (±0.07) - 0.90 (±0.06) 0.65 (±0.07) 

Direct 

LSTM1 19 0.91 (±0.06) 0.66 (±0.06) 30 0.90 (±0.05) 0.65 (±0.07) 

LSTM2 12 0.87 (±0.04) 0.63 (±0.08) 26 0.90 (±0.06) 0.65 (±0.06) 

LSTM3 17 0.89 (±0.05) 0.64 (±0.08) 18 0.89 (±0.05) 0.63 (±0.07) 

CNN1 19 0.91 (±0.06) 0.65 (±0.07) 27 0.91 (±0.05) 0.66 (±0.07) 

CNN2 15 0.89 (±0.05) 0.64 (±0.07) 16 0.91 (±0.05) 0.67 (±0.07) 

CNN3 16 0.91 (±0.05) 0.64 (±0.08) 11 0.89 (±0.05) 0.64 (±0.07) 

CNN-LSTM1 20 0.89 (±0.06) 0.64 (±0.07) 27 0.90 (±0.06) 0.65 (±0.07) 

CNN-LSTM2 15 0.88 (±0.05) 0.63 (±0.08) 25 0.91 (±0.06) 0.66 (±0.07) 

CNN-LSTM3 11 0.89 (±0.05) 0.64 (±0.07) 21 0.88 (±0.05) 0.63 (±0.07) 

Mean - 0.89 (±0.05) 0.64 (±0.07) - 0.90 (±0.05) 0.65 (±0.07) 

MIMO 

LSTM1 21 0.89 (±0.05) 0.64 (±0.07) 30 0.90 (±0.05) 0.65 (±0.07) 

LSTM2 12 0.88 (±0.04) 0.64 (±0.08) 20 0.90 (±0.05) 0.66 (±0.07) 

LSTM3 8 0.92 (±0.05) 0.68 (±0.08) 15 0.89 (±0.05) 0.64 (±0.07) 

CNN1 18 0.90 (±0.05) 0.65 (±0.08) 30 0.90 (±0.05) 0.66 (±0.07) 
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CNN2 12 0.88 (±0.05) 0.63 (±0.08) 15 0.90 (±0.05) 0.66 (±0.06) 

CNN3 8 0.89 (±0.04) 0.64 (±0.08) 10 0.88 (±0.05) 0.64 (±0.07) 

CNN-LSTM1 21 0.89 (±0.04) 0.64 (±0.08) 30 0.90 (±0.05) 0.65 (±0.07) 

CNN-LSTM2 10 0.88 (±0.03) 0.64 (±0.08) 20 0.90 (±0.05) 0.66 (±0.07) 

CNN-LSTM3 15 0.93 (±0.03) 0.72 (±0.09) 15 0.89 (±0.05) 0.64 (±0.07) 

Mean - 0.90 (±0.04) 0.65 (±0.08) - 0.90 (±0.05) 0.65 (±0.07) 

RMSE (ind) - computed considering individual ETo values observed on each day of the 

prediction horizon, mm d-1; RMSE (acc) - computed considering ETo values accumulated up 

to each day of the prediction horizon, mm d-1. 

 

To better explore the potential of the deep learning models, the models developed using 

MIMO strategy were submitted to hyperparameter tuning with their optimal input data lag 

(Table 7). MIMO strategy was selected instead of direct and iterated strategies due to the similar 

results, much lower computational cost in relation to direct strategy, and theoretical advantages 

over iterated strategy (i.e., it avoids accumulation of prediction errors).  

In general, after hyperparameter tuning, there were no large performance changes. In local 

scenario, the lowest mean RMSE (ind) (considering MIMO strategy) reduced from 0.88 to 0.87 

after hyperparameter tuning. The lowest mean RMSE (ind) was the same one (0.63). In regional 

scenario, after hyperparameter tuning, the lowest mean RMSE (ind) was the same one (0.88), 

and the lowest mean RMSE (acc) reduced from 0.64 to 0.63. 

 

Table 7. RMSE mean values (mm d-1) for ETo forecasted for the prediction horizon in the test 

weather stations using deep learning models with MIMO forecasting strategy, optimal input 

data lag and hyperparameter tuning in local and regional scenarios. 

  RMSE (Local) 

  ind acc ind acc ind acc ind acc ind acc 

Model Station 1 Station 2 Station 3 Station 4 Mean 

LSTM1 0.94 0.67 0.82 0.61 0.88 0.62 0.92 0.68 0.89 0.64 

LSTM2 0.91 0.65 0.82 0.60 0.88 0.62 0.94 0.72 0.89 0.65 

LSTM3 0.91 0.64 0.82 0.61 0.89 0.63 0.94 0.71 0.89 0.65 

CNN1 0.96 0.69 0.83 0.61 0.91 0.67 0.93 0.69 0.91 0.66 

CNN2 0.92 0.65 0.83 0.61 0.87 0.61 0.91 0.67 0.88 0.63 

CNN3 0.92 0.64 0.82 0.60 0.88 0.63 0.92 0.70 0.89 0.64 
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CNN-LSTM1 0.95 0.68 0.83 0.61 0.88 0.62 0.91 0.66 0.89 0.64 

CNN-LSTM2 0.90 0.64 0.82 0.61 0.87 0.61 0.89 0.65 0.87 0.63 

CNN-LSTM3 0.93 0.66 0.91 0.71 0.89 0.64 0.90 0.66 0.91 0.67 

  RMSE (Regional) 

  ind acc ind acc ind acc ind acc ind acc 

Model Station 1 Station 2 Station 3 Station 4 Mean 

LSTM1 0.93 0.67 0.83 0.61 0.92 0.67 0.93 0.68 0.90 0.65 

LSTM2 0.93 0.67 0.85 0.63 0.92 0.67 0.91 0.67 0.90 0.66 

LSTM3 0.93 0.66 0.82 0.60 0.87 0.61 0.91 0.66 0.88 0.63 

CNN1 0.93 0.66 0.82 0.60 0.92 0.66 0.93 0.68 0.90 0.65 

CNN2 0.92 0.66 0.84 0.62 0.94 0.69 0.93 0.68 0.91 0.66 

CNN3 0.94 0.67 0.83 0.61 0.89 0.64 0.91 0.67 0.89 0.65 

CNN-LSTM1 0.92 0.66 0.82 0.60 0.92 0.66 0.92 0.68 0.90 0.65 

CNN-LSTM2 0.92 0.66 0.84 0.62 0.94 0.69 0.92 0.67 0.90 0.66 

CNN-LSTM3 0.92 0.66 0.81 0.59 0.87 0.61 0.90 0.66 0.88 0.63 

RMSE (ind) - computed considering individual ETo values observed on each day of the 

prediction horizon, mm d-1; RMSE (acc) - computed considering ETo values accumulated up 

to each day of the prediction horizon, mm d-1. 

 

Overall, as observed for the traditional machine learning models, the different input data 

combinations did not provide large performance changes. In local scenario, the models 

developed with lagged ETo + day of the year (input combination 2) generally performed slightly 

better than the ones developed using only lagged ETo (input combination 1) and lagged ETo + 

day of the year + additional meteorological data (input combination 3). In regional scenario, 

the models developed using input combination 3 performed slightly better than their other 

versions. 

In general, in local scenario, the best performance was obtained by the CNN-LSTM2 

model, with mean RMSE (ind) and mean RMSE (acc) equal to 0.87 and 0.63, respectively. In 

regional scenario, LSTM3 and CNN-LSTM3 performed the best, with mean RMSE (ind) and 

mean RMSE (acc) equal to 0.88 and 0.63, respectively. Although LSTM3 and CNN-LSTM3 

obtained the same mean RMSE values over the stations, CNN-LSTM3 had slightly better 

performance since it showed lower RMSE values in stations 1, 2 and 4. 

The combination between CNN and LSTM (i.e., CNN-LSTM models) provided slight 

performance gains over LSTM and CNN individually used in some cases (Tables 6 and 7). In 
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addition, as mentioned above, it was the best option to forecast ETo in both local and regional 

scenarios. However, it also provided worse results than LSTM and CNN individually used in 

some cases (Tables 6 and 7). Therefore, the results obtained in the present study partially 

corroborate Barzegar et al. (2020), Huang and Kuo (2018) and Kim and Cho (2019), who 

reported better performances for CNN-LSTM over CNN and LSTM individually used. It is 

expected that CNN layers extract features from input data and LSTM layers capture time 

patterns, improving the model capability and reaching higher performances. 

When comparing the best deep learning models with the best traditional machine learning 

models, the first ones perform only slightly better. In local scenario, mean RMSE (ind) reduced 

from 0.88 to 0.87 (1.1%), and mean RMSE (acc) was the same one (0.63); in regional scenario, 

mean RMSE (ind) reduced from 0.89 to 0.88 (1.1%), and mean RMSE (acc) reduced from 0.64 

to 0.63 (1.6%). 

3.4 Overall evaluation 

For the traditional machine learning models, direct and MIMO forecasting strategies 

provided the best results (Table 4). For the deep learning models, all the forecasting strategies 

performed similarly, with only a slight advantage for direct strategy in local scenario. (Table 

6). Although direct strategy has been able to provide good results in all cases, it has the highest 

computational cost. MIMO provided the best combination between performance and 

computational cost for the machine learning models and, along with iterated strategy, for the 

deep learning models. As MIMO provided good results and does not require high computational 

cost, it can be considered the most promising forecasting strategy assessed. Taieb et al. (2012), 

comparing five forecasting strategies, recommended MIMO as one of the best options. When 

forecasting all the prediction horizon at the same time, knowledge learned from one step can 

benefit others (Ye and Dai, 2019). However, it is important to highlight that, as observed in the 

present study and typically occurs in machine learning tasks, a given approach does not always 

perform the best in all cases. 

Regarding the different input combinations assessed, they did not provide large 

performance changes, but when using additional data to lagged ETo (input combinations 2 and 

3), there were slight performance gains in some cases (Tables 5 and 7). In addition, the best 

results for both traditional machine learning and deep learning models were obtained using 

additional data to lagged ETo. However, in some cases, slightly poorer results were found when 

additional input data were used. It is also worth mentioning that when using additional input 

data, the input data lag required generally reduced (Tables 4 and 6). 
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The idea of using multiple time series as input can also be treated as a multivariate time 

series forecasting task. It is expected that with more input variables, the algorithm will have 

more information to learn how to estimate the output variable. However, the increase in input 

data dimensionality can also make the modeling task more complex (Gonzalez-Vidal et al., 

2019). Therefore, future studies can explore the potential of feature selection methods to 

remove irrelevant variables, as done by Feng et al. (2017) and Gonzalez-Vidal et al. (2019). 

To better analyze the behavior of the models assessed, the performance of the best local 

and regional traditional machine learning and deep learning models, as well as the best proposed 

baseline (B2), throughout the prediction horizon for each weather station is presented in Figs. 

7 and 8. To accomplish this, ANN3 and CNN-LSTM2 were considered in local scenario, and 

RF3 and CNN-LSTM3 were considered in regional scenario. 
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Fig. 7. RMSE and MAE values for each day of the prediction horizon obtained by the best local 

and regional traditional machine learning and deep learning models, as well as the best proposed 

baseline for each test weather station. ind - computed considering individual ETo values 

observed on each day of the prediction horizon; acc - computed considering ETo values 

accumulated up to each day of the prediction horizon. 
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Fig. 8. R2 and NSE values for each day of the prediction horizon obtained by the best local and 

regional traditional machine learning and deep learning models, as well as the best proposed 

baseline for each test weather station. ind - computed considering individual ETo values 

observed on each day of the prediction horizon; acc - computed considering ETo values 

accumulated up to each day of the prediction horizon. 
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The traditional machine learning and deep learning models exhibited better performances 

throughout the prediction horizon than the best baseline (B2), generally obtaining lower RMSE 

and MAE values and higher R2 and NSE values. Although mean RMSE, MAE, R2 and NSE 

(acc) and mean RMSE, MAE, R2 and NSE (ind) obtained by the machine learning and deep 

learning models for the whole prediction horizon are not much better than those obtained using 

B2, there were higher gains on the first and second forecasting days. 

The more distant the target day, the higher the forecasting error produced by the models 

assessed. In general, for the third day onwards, the machine learning and deep learning models 

provided RMSE, MAE, R2 and NSE (ind) values similar to those obtained using B2, which is 

based only on long-term mean monthly ETo. Therefore, it indicates that it is difficult to forecast 

ETo for large prediction horizons with higher performance than that obtained based only on 

long-term mean monthly ETo. However, by analyzing RMSE, MAE, R2 and NSE (acc), it can 

be noted that they obtained better values with the increase of the number of forecasting days. 

Although it is more difficult to forecast individual ETo values for more distant days ahead, 

accumulated ETo values for longer periods are generally more stable, with fewer oscillations, 

making them easier to forecast. In addition, part of the forecasting errors is probably canceled 

when daily ETo values are summed up.  

The machine learning and deep learning models generally exhibited similar performances 

throughout the prediction horizon, obtaining similar RMSE, MAE, R2 and NSE values (Figs. 7 

and 8). However, the deep learning models performed slightly better than the traditional 

machine learning models. With NSE (Fig. 8) as a comparison basis, in local scenario, when 

using deep learning instead of machine learning, NSE (ind) and NSE (acc) averaged over the 

stations and prediction horizon increased from 0.42 to 0.43 (2.4%) and from 0.61 to 0.62 

(1.6%), respectively. In regional scenario, mean NSE (ind) and mean NSE (acc) increased from 

0.41 to 0.42 (2.4%) and from 0.59 to 0.61 (3.4%), respectively. Due to the higher capabilities 

of deep learning models to handle time series, they are expected to outperform traditional 

machine learning models. Barzegar et al. (2020), Ferreira and Cunha (2020) and Kim and Cho 

(2019) also reported better performance of deep learning over traditional machine learning. 

However, in the present study, the deep learning models provided only slight performance 

gains. Furthermore, deep learning models generally have more hyperparameters to be adjusted, 

requiring more time to train them.  

The local and regional models exhibited similar performances throughout the prediction 

horizon (Figs. 7 and 8). It can also be noted in scatter plots presented in Fig. 9. It is important 

to mention that regional models can be a more flexible approach than local models since they 
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can be applied in any place of a considered region. In addition, in contrast to B2, all the models 

developed in this study do not require long-term ETo data. Thus, they can be applied in areas 

where long-term meteorological data are not available. 

 

Fig. 9. Observed vs predicted ETo (mm d-1) (1, 3 and 7 days ahead) for the test weather stations 

using (a) the best local and regional traditional machine learning (ANN3 and RF3) and (b) deep 

learning (CNN-LSTM2 and CNN-LSTM3) models. 
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Although the models assessed have high modeling capabilities, especially the deep 

learning models, and have exhibited better performance than the simple use of long-term mean 

monthly ETo (i.e., B2), high accuracy in ETo forecasting was not achieved (Figs. 7, 8 and 9). 

Even when forecasting ETo for only one day ahead, NSE (ind) reached at most 0.61 (station 2 

with regional CNN-LSTM3) and NSE (ind) averaged over the stations reached at most 0.56 

(using regional CNN-LSTM3). The same behavior was observed for RMSE, MAE and R2 

metrics. The best results were found when estimating ETo accumulated over all the prediction 

horizon (seven days), in which NSE (acc) reached 0.69 (station 1 using local CNN-LSTM2) 

and NSE (acc) averaged over the stations reached 0.67 (using local CNN-LSTM2). These 

results indicate the high complexity of ETo forecasting. Torres et al. (2011), using ANN to 

forecast ETo up to seven days ahead based on previous ETo (computed using the Hargreaves-

Samani equation with only air temperature and Ra), found NSE (ind) equal to 0.88 on the first 

day ahead and 0.77 on the seventh day ahead. Although NSE values reported by Torres et al. 

(2011) are higher than those found in the present study, in the cited study, ETo was computed 

using only air temperature and Ra, which probably facilitates the forecasting task. Landeras et 

al. (2009), forecasting weekly ETo with ARIMA and ANN, reduced RMSE with respect to 

weekly historical means only by 6–8%. ETo forecasting is a complex task since ETo is affected 

by several meteorological variables, which can vary widely from one day to the next. 

Another alternative to forecast ETo is the use of weather forecasts. This approach can 

achieve good accuracy, but it depends on the forecasting performance of the meteorological 

data used (Cai et al., 2007; Perera et al., 2014; Traore et al., 2017; Yang et al., 2019). A 

drawback is that although there are public weather forecasts, which may be simpler than non-

public ones, some weather forecasts may not be easily and freely available to farmers. 

In the present study, although the models developed have not exhibited high accuracies, 

it is important to highlight that they can be useful tools in places where simpler approaches such 

as long-term mean monthly ETo are used to forecast ETo. In these situations, they can provide 

valuable information to improve tasks such as irrigation planning. In addition, the models 

developed in this study do not depend on external data, requiring only data measured on a local 

weather station, which facilitates their usage and allows their application in farms without 

internet connection. 

 

4 Conclusions 

This study assesses the potential of deep learning models (LSTM, 1D CNN and CNN-

LSTM) and traditional machine learning models (ANN and RF) to forecast multi-step ahead 
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daily ETo (seven days) using different forecasting strategies. Three input data combinations 

were assessed. For comparison purposes, two baselines were also used. 

Although there were no large performance differences between the forecasting strategies, 

for the traditional machine learning models, direct and MIMO performed slightly better. For 

the deep learning models, there was a slight advantage for direct strategy in local scenario. 

Considering computational cost and performance, MIMO was the best option for the machine 

learning models, and iterated and MIMO were the best options for the deep learning models. 

The deep learning models performed slightly better than the traditional machine learning 

models, and both were better than the best baseline (B2), mainly on the first and second 

forecasting days. For the machine learning models, ANN3 (i.e., ANN with input combination 

3) and RF3 performed the best in local and regional scenarios, respectively. For the deep 

learning models, CNN-LSTM2 and CNN-LSTM3 performed the best in local and regional 

scenarios, respectively. As the performances found in local and regional scenarios were similar, 

the regional models are recommended due to their higher generalization capacity. 

The use of additional input data to lagged ETo (input combinations 2 and 3) provided 

slight performance improvements in some cases. In addition, the best performing models used 

additional input data. However, there were only small performance gains, and it did not occur 

in all the cases assessed. The models developed using additional input data also generally 

required lower input data lag. 

The more distant the target day, the higher the error produced by the models. However, 

when analyzing accumulated ETo values up to each day of the forecasting horizon, the models 

obtained better performances with the increase of the forecasting horizon. When forecasting 

ETo for one day ahead, NSE averaged over the stations reached at most 0.56, and when 

forecasting ETo accumulated over all the prediction horizon (seven days), it reached 0.67. 

Finally, although the models developed have not exhibited high accuracies, they can be 

useful tools in places where simple approaches such as long-term mean monthly ETo are used 

to forecast ETo. The models developed can improve tasks such as irrigation planning and do 

not depend on external data, requiring only data measured on a local weather station. The 

models are available upon request. 
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Article 3: Exploring machine learning and multi-task learning to estimate meteorological 

data and reference evapotranspiration across Brazil 

 

Abstract: Reference evapotranspiration (ETo) can be estimated using the FAO56-Penman-

Monteith (FAO56-PM) equation but it requires commonly unavailable meteorological data. 

Therefore, this study assessed different approaches to estimate ETo based on temperature and 

relative humidity, and temperature only across Brazil, as follows: (i) using the FAO56-PM 

equation with missing data estimated based on FAO56 methodologies; (ii) using the FAO56-

PM equation with missing data estimated based on machine learning; and (iii) estimating ETo 

directly using machine learning. The FAO56-PM equation was also calibrated through linear 

regression and by calibrating the methodologies used to estimate missing data. The potential 

benefits of using multi-task learning (MTL) and clustering were also investigated. Data from 

437 weather stations were used. Artificial neural network (ANN), random forest (RF), extreme 

gradient boosting (XGBoost) and multivariate adaptive regression splines (MARS) were 

employed. In both general and clustering scenarios, calibrating the FAO56-PM equation using 

linear regression provided slightly better results than calibrating the methodologies used to 

estimate missing data. In contrast to temperature- and relative humidity-based FAO56-PM 

equation, its temperature-based version performed better before both calibration types assessed. 

The machine learning models performed the best to estimate ETo and missing data. Combining 

the machine learning models with the FAO56-PM equation to estimate ETo performed 

similarly to using them individually. MTL and single-task learning (STL) provided similar 

results. In the general scenario, for the temperature-based models, using PM-ANN-STL 

increased mean NSE from 0.49 to 0.53 in relation to the non-calibrated FAO56-PM equation. 

For the temperature- and relative humidity-based models, using ANN and RF developed with 

STL or MTL increased NSE from 0.56 to 0.67 in relation to the FAO56-PM equation calibrated 

using linear regression. When using the clustering strategy, performance gains were obtained 

in estimating ETo with the temperature-based models, increasing mean NSE up to 0.58. 

Keywords: generalizability, MARS, neural networks, solar radiation, wind speed 

 

1 Introduction 

Knowing evapotranspiration (ET) is essential in hydrological studies, agricultural 

planning, water resource management and irrigation scheduling. Due to the difficulty in 

measuring ET directly, it is commonly obtained based on reference evapotranspiration (ETo) 

and crop coefficient (Kc) (Pereira et al., 2015). ETo can be estimated using the FAO-56 
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Penman-Monteith (FAO56-PM) equation. However, to use this equation, air temperature, 

relative humidity, solar radiation and wind speed measurements are required, which are not 

fully available in some regions. Among the aforementioned data, air temperature is the most 

commonly and easily measured, which justifies the study of ETo models based on this variable 

(Mattar et al., 2016; Paredes and Pereira, 2019). In addition to temperature, the use of relative 

humidity promotes a better estimation of ETo at a low additional cost (Ferreira et al., 2019; 

Exner-Kittridge, 2012; Valiantzas, 2012; Valiantzas, 2018a). 

To estimate ETo under limited meteorological data availability, several empirical 

equations with fewer data requirements have been studied (Ahmadi and Javanbakht, 2020; 

Awal et al., 2020; Cunha et al., 2017; Djaman et al., 2018; Hadria et al., 2021; Valiantzas, 

2013). In addition to alternative equations, the FAO56-PM equation can be used by estimating 

missing data using methodologies proposed in the FAO56 bulletin (Allen et al., 1998; Paredes 

and Pereira, 2019). Overall, this approach has shown good performance in Brazil and other 

parts of the world. Ferreira et al. (2019), in a study carried out in Brazil, reported that the 

FAO56-PM equation with missing data performed better than most of the empirical equations 

assessed. Almorox et al. (2018) found better results for the FAO56-PM equation using only 

measured data on temperature in relation to the well-known Hargreaves-Samani equation. 

Similar results were also reported by Alencar et al. (2015) and Ren et al. (2016). These results 

are possibly related to the physical basis of the FAO56-PM equation, which is partially 

conserved when estimating missing data. However, it is fair to mention that the better 

performance of this equation may be related to the fact that the FAO56-PM equation with full 

data set is commonly used as reference for the assessment of ETo models. 

In addition to empirical equations, several studies have employed machine learning 

models to estimate ETo (Ferreira et al., 2019; Huang et al., 2019; Kisi and Alizamir, 2018; 

Mehdizadeh et al., 2017; Yu et al., 2020). Due to their superior modeling capabilities, machine 

learning models generally show better performances than traditional empirical equations. Other 

alternatives to address meteorological data scarcity include the use of remote sensing data (De 

Bruin et al., 2016) and reanalysis data (Paredes et al., 2018b). 

In Brazil, studies using machine learning to estimate ETo are generally restricted to parts 

of the country (Althoff et al., 2018; Ferreira et al., 2021; Reis et al., 2019; Tangune and 

Escobedo, 2018). According to our knowledge, only Ferreira et al. (2019) used machine 

learning models to estimate ETo based on limited meteorological data considering the entirety 

of Brazil. This study evaluated artificial neural network (ANN) and support vector machine 

(SVM), reporting better results for the first model. Brazil has a large territorial area, 8.516 
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million km², with several climate types. Thus, studies that explore all the Brazilian territory are 

encouraged, since the results tend to have high representativeness. In addition, according to the 

National Water and Sanitation Agency of Brazil (ANA, 2021), Brazil has an irrigated area of 

8.2 million hectares, with a prospect of incorporating 4.2 million hectares by 2040, which 

reinforces the need to develop reliable ETo models, even under data scarcity conditions. 

Therefore, the assessment of state-of-the-art machine learning models deserves special 

attention. 

An important issue for ETo models is their spatial generalization, which refers to the 

ability of a model to perform well outside its development place (Ferreira et al., 2021; Kiafar 

et al., 2017). Many studies fail to address it, since they assess the models using only data of the 

same weather station where the models were developed. To improve the generalization of 

machine learning models, regional models have a key role. In contrast to local models, which 

are developed using data from a single weather station, regional models are developed using 

pooled data from several stations. Thus, they can be applied in any place of a particular region, 

making them more useful. However, most studies have applied only local models. In Brazil, 

only a limited number of studies have investigated the potential of regional models (Ferreira et 

al., 2019; Ferreira et al., 2021; Reis et al., 2019; Zanetti et al., 2019). On the other hand, when 

developing regional models for large areas, such as the whole of Brazil, the high climatic 

variability can lead to poorer performances, given the presence of different patterns between 

input variables and ETo within the same region. In this context, the use of clustering algorithms 

can guide the definition of smaller regions with homogeneous climatic conditions (clusters). 

Thus, specific models can be developed for each region, which can contribute to achieving 

better results, as reported by Ferreira et al. (2019). 

Previous studies have been limited to using machine learning models to estimate ETo 

directly from the available data. However, it is also possible to use machine learning models to 

estimate missing data, which can be used to estimate ETo with the FAO56-PM equation. In this 

case, the physical basis of the FAO56-PM equation could be used to improve the performance 

of the estimation. In addition, it can also make the ETo estimation process clearer in relation to 

the estimation performed using only machine learning models. Another advantage is that the 

meteorological data estimated can be used for other purposes. Despite these possible benefits, 

according to our knowledge, no study has investigated this strategy. 

Another approach that could improve the performance of machine learning models for 

the estimation of ETo is multi-task learning (MTL) (Caruana, 1997; Ng et al., 2019; Nunes et 

al., 2019; Padarian et al., 2019). In MTL, multiple related variables are predicted 
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simultaneously. Thus, the information shared among tasks can improve the overall performance 

in relation to individual predictions (single-task learning (STL)). In this sense, to take advantage 

of the potential of MTL, the ETo estimation task should be reframed, estimating ETo and 

related meteorological variables, such as solar radiation and relative humidity, together. 

Therefore, the information learned by a machine learning model to estimate the related variables 

could improve the estimation of ETo and vice versa. MTL can be used focusing on the 

estimation of ETo or the estimation of missing data for use in the FAO56-PM equation. 

According to our knowledge, no study has investigated the use of MTL to estimate ETo. 

The present study aims to assess different approaches to estimate ETo based on 

temperature and relative humidity, and temperature only across Brazil, as follows: (i) using the 

FAO56-PM equation with missing data estimated based on methodologies proposed in FAO56; 

(ii) using the FAO56-PM equation with missing data estimated based on machine learning 

models; and (iii) estimating ETo directly using machine learning models. In objective (i), two 

additional strategies are evaluated independently: the calibration of the methodologies proposed 

in FAO56 to estimate missing data, and the calibration of the FAO56-PM equation by means 

of linear regression. We also investigated the potential of MTL and clustering to improve the 

estimation of ETo and missing data. 

 

2 Materials and methods 

2.1 Database and study sites 

Hourly data from 437 weather stations of the Brazilian National Institute of Meteorology 

(INMET), distributed across Brazil, were used. The period from 2004-2018 was considered. 

However, the data length varied among stations due to their different epochs of creation, with 

a mean length of 10.5±2.6 years. Data on maximum and minimum air temperature, maximum 

and minimum relative humidity, solar radiation and wind speed were obtained. Hourly data 

were transformed to a daily scale. Wind speed, measured at 10 m height, was converted to 2 m 

based on recommendations of Allen et al. (1998). Daily records with missing or faulty data 

were removed. Faulty data were identified when at least one of the following conditions was 

met: minimum temperature higher than maximum temperature; relative humidity out of the 

range 0-100%; minimum relative humidity higher than maximum relative humidity; negative 

wind speed; negative solar radiation; and solar radiation higher than extraterrestrial radiation.  

The mean values and standard deviations over the entire dataset were 29.5±5.0ºC for 

maximum temperature, 18.6±4.5ºC for minimum temperature, 89.9±9.4% for maximum 

relative humidity, 46.6±16.8% for minimum relative humidity, 1.92±0.52 kPa for actual vapor 
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pressure (computed using maximum and minimum relative humidity), 18.2±6.1 MJ m-2 d-1 for 

solar radiation, 1.53±0.94 m s-1 for wind speed, and 4.13±1.54 mm d-1 for ETo. 

To develop and test the proposed models, the dataset was split into training and test 

datasets. The first one was used to develop the machine learning models and to calibrate the 

FAO56-PM equation (with missing data) through linear regression and through the calibration 

of the FAO methodologies used to estimate missing data. The second dataset was used to assess 

the performance of the models studied. To make the performance assessment more robust, we 

considered data splitting in both time and space. Thus, the training dataset was composed of 

330 weather stations with data up to 2013, and the test dataset was composed of 107 stations 

with data from 2014-2018. The weather stations splitting and the Köppen’s climatic 

classification (Alvares et al., 2013) for the study area are presented in Fig. 1. Test stations were 

manually selected in order to provide a good distribution over the Brazilian territory. 

 

Fig. 1. Location and training/test splitting of the weather stations and climate classification of 

the study area. A - Tropical zone; Af - without dry season; Am - monsoon; Aw - with dry 

winter; As - with dry summer; B - Dry zone; BS - semi-arid; BSh - low latitude and altitude; C 

- Humid subtropical zone; Cf - oceanic climate, without dry season; Cfa - with hot summer; 

Cfb - with temperate summer; Cw - with dy winter; Cwa - and hot summer; Cwb - and temperate 

summer. 

 

To produce models with high generalization ability, the models were 

developed/calibrated using pooled data from all the stations of the training dataset. In addition, 
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after identifying the most promising models, they were developed for specific regions of Brazil 

(clusters) defined based on K-means and data from WorldClim (Fick and Hijmans, 2017). Thus, 

each set of training and test stations contained in each region (cluster) was independently used 

to develop and test the models. The performance assessment of the models was performed 

individually for each weather station of the test dataset. 

To divide Brazil into climatic homogeneous regions, gridded mean monthly historical 

data (1970-2000) from WorldClim dataset version 2.1 (Fick and Hijmans, 2017) were used. 

Data were downloaded with a spatial resolution of 5 minutes. Maximum and minimum air 

temperature, water vapor pressure, solar radiation and wind speed data were collected. Monthly 

vapor pressure deficit, which was used to replace water vapor pressure, was computed from 

maximum and minimum air temperature and water vapor pressure, as suggested by Allen et al. 

(1998). Mean annual data were computed from monthly data. After that, data were normalized 

according to Eq. 1. Then, the mentioned data (i.e, maximum and minimum air temperature, 

vapor pressure deficit, solar radiation and wind speed) were used as input for K-means to define 

five clusters with similar characteristics (climatic homogeneous regions). The mentioned 

variables were selected because they are the base variables used in the FAO56-PM equation to 

estimate ETo. The number of clusters was defined with support of the Elbow Method 

(Kodinariya and Makwana, 2013). After defining clusters, the sieve tool of the rasterio library 

(Python) was used to identify small isolated areas (pixels) and replaces their values with the 

pixel value of the largest neighbor cluster. The procedure followed to define clusters is also 

presented in Fig. 2. 

xni = 
xi - μ                                                                                                      (1) 

where xni is the standardized value, xi is the observed value, µ is the mean, and σ is the standard 

deviation. 
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Fig. 2. Flowchart of the procedure adopted to divide Brazil into clusters (climatic homogeneous 

regions) using K-means and data from WorldClim dataset. Tx - maximum temperature; Tn - 

minimum temperature; VP - water vapor pressure; VPD - vapor pressure deficit; Rs - solar 

radiation; Ws - wind speed. 

 

2.2 Proposed modeling framework 

Different approaches for estimating ETo based on temperature and relative humidity and 

based on temperature only were assessed. The first approach was to use the FAO56-PM 

equation with missing data estimated based on traditional methodologies presented in the FAO 

bulletin (Allen et al., 1998). The equations used to estimate missing data were considered in 

their original and calibrated forms. In addition, a calibration of the FAO56-PM equation using 

simple linear regression, as presented in Allen et al. (1998), was performed. In this case, the 

equations used to estimate missing data were used in their original forms. The second approach 

was similar to the first one, but using machine learning models to estimate missing data. The 

third approach was to estimate ETo from limited data directly using machine learning models. 

All the approaches were developed/calibrated considering Brazil as whole (general scenario) 

and, for the first approach (i.e., FAO56-PM equation with missing data estimated based on 
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traditional methodologies) and for the most promising models of the other approaches, also 

considering individual clusters defined using K-means (clustering scenario). 

To explore the potential of multi-task learning (MTL), auxiliary target variables were 

added when estimating ETo and missing data. Two MTL strategies were considered: MTL1, 

models used ETo, solar radiation, maximum and minimum relative humidity and wind speed 

as output variables, in the case of temperature-based models, and these same variables except 

for maximum and minimum relative humidity, in the case of temperature- and relative 

humidity-based models; MTL2, models used the same output variables considered in MTL1, 

except for wind speed. Proposing these two MTL options is because wind speed has a weak 

relation with the input variables considered in the present study (temperature, relative humidity 

and extraterrestrial radiation). Thus, trying to add it as an auxiliary target variable may decrease 

the performance of the models. Machine learning models based on single-task learning (STL) 

were also assessed by developing individual models to estimate each variable of interest. All 

the machine learning models developed were based on two types of input data: temperature-

based, which considers maximum and minimum temperature and extraterrestrial solar radiation 

as input, and temperature- and relative humidity-based, which consider also maximum and 

minimum relative humidity. An overview of the use of STL and MTL to develop the machine 

learning models is shown in Fig. 3. The following machine learning models were used: artificial 

neural network (ANN), random forest (RF), extreme gradient boosting (XGBoost) and 

multivariate adaptive regression splines (MARS). As MTL requires models that support multi-

output, only ANN and RF were used with MTL. 
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Fig. 3. An overview of the use of single-task learning (STL) and multi-task learning (MTL) to 

develop machine learning models to estimate ETo and missing data. Tx - maximum 

temperature; Tn - minimum temperature; RHx - maximum relative humidity; RHn - minimum 

relative humidity; Ra - extraterrestrial radiation; ML - machine learning model; ETo - reference 

evapotranspiration, Rs - solar radiation, Ws - wind speed. 

2.3 Reference model (FAO56 Penman-Monteith with full data set) 

To develop/calibrate and assess the performance of the models, ETo computed using the 

FAO56-PM equation (Eq. 2) with full data set was used as reference. All calculation procedures 

were performed following the FAO56 bulletin (Allen et al., 1998). 

ETo = 
0.408 ∆ (Rn- G) + γ

900

Tavg+273
 u2 (es- ea) 

∆ + γ (1 + 0.34 u2)
                                                               (2) 

where ETo is the reference evapotranspiration (mm d-1), Rn is the net solar radiation (MJ m-2 d-

1), G is the soil heat flux (MJ m-2 d-1) (considered to be null for daily estimates), Tavg is the daily 

mean air temperature (°C), u2 is the wind speed at a 2 m height (m s-1), es is the saturation vapor 

pressure (kPa), ea is the actual vapor pressure (kPa) (obtained using maximum and minimum 

relative humidity), ∆ is the slope of the saturation vapor pressure function (kPa ºC-1), and γ is 

the psychrometric constant (kPa ºC-1). 

2.4 FAO56 Penman-Monteith with missing data 
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To estimate ETo under limited data availability using the FAO56-PM equation, actual 

vapor pressure was estimated using Eq. 3 (in case of missing data on relative humidity), and 

solar radiation was estimated using Eq. 4, as suggested in the FAO56 bulletin (Allen et al., 

1998). To estimate missing wind speed, in addition to considering the world average wind speed 

value (2.0 m s-1) presented in the FAO56 bulletin, average wind speed over the training dataset 

was considered. Mean wind speed was obtained for Brazil as a whole (general scenario) and 

for individual clusters (clustering scenario). Maximum and minimum relative humidity (which 

are used to compute actual vapor pressure), solar radiation, and wind speed were also estimated 

using machine learning models, as described later. 

ea = e°(Tdew) = 0.611 exp
17.27 (Tmin aT

(Tmin aT +237.3
                                                (3) 

where ea is the actual vapor pressure (kPa), e° is the saturation vapor pressure (kPa), Tmin is the 

minimum air temperature (°C), and aT is a correction factor with a common range of 0-4ºC 

(Paredes and Pereira, 2019). 

Rs = kRs Ra(Tmax-Tmin)
0.5                                                                          (4) 

where Rs is the solar radiation (MJ m-2 day-1), kRs is an empirical radiation adjustment 

coefficient with a common range of 0.16-0.19 (°C−0.5) (Allen et al., 1998); Ra is the 

extraterrestrial radiation (MJ m-2 day-1), Tmax is the maximum air temperature (°C), and Tmin is 

the minimum air temperature (°C).  

 

When estimating actual vapor pressure from temperature, minimum temperature can be 

considered as an approximation of dew point temperature. However, this condition is not 

always met. Thus, to better estimate actual vapor pressure, a correction factor aT can be 

subtracted from minimum temperature (Allen et al., 1998; Paredes and Pereira, 2019). Mean 

temperature can also be used for humid regions (Paredes and Pereira, 2019). However, 

according to our previous tests, for the conditions of the present study, using minimum 

temperature provided better results than using mean temperature (both alternatives were 

evaluated adopting an optimal correction factor). Therefore, the direct use of minimum 

temperature (aT=0) and the use of minimum temperature corrected (aT≠0) were considered in 

the present study. To define the optimal value of aT, an optimization algorithm was used to find 

the aT value that minimizes the estimation error (mean squared error) of actual vapor pressure. 

Actual vapor pressure computed using maximum and minimum relative humidity was used as 

reference. The optimization process was performed using data from the training set. The 

optimization algorithm used was the function “minimize” from the SciPy library for Python. 
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The optimal aT value was defined for Brazil as a whole (general scenario) and for individual 

clusters (clustering scenario). 

To estimate solar radiation, the default value (0.16) of the empirical radiation adjustment 

coefficient (kRs) and a calibrated value of kRs were considered. To calibrate kRs, a procedure 

similar to the one described to calibrate aT in the estimation of actual vapor pressure was 

followed. Thus, kRs value was defined in order to minimize the estimation error of solar 

radiation, using measured solar radiation as reference. The optimal kRs value was defined for 

Brazil as a whole (general scenario) and for individual clusters (clustering scenario). 

The FAO56-PM equation with missing data estimated using the original FAO 

methodologies (i.e., with default parameters) was also calibrated using simple linear regression. 

This type of calibration is suggested by Allen et al. (1998) and is very common in studies 

addressing empirical equations (Ferreira et al., 2019; Feng et al., 2017; Zanetti et al., 2019). To 

perform this calibration, ETo computed using the FAO56-PM equation with full data set was 

used as target variable (y) and ETo computed using the FAO56-PM equation with missing data 

was used as input variable (x). Thus, calibrated ETo is obtained as shown in Eq. 5. This 

calibration was performed for Brazil as a whole (general scenario) and for individual clusters 

(clustering scenario). 

ETo cal = a + b(ETo)                                                                                                   (5) 

where ETo cal is the calibrated reference evapotranspiration (mm d-1), a and b are the calibration 

parameters, and ETo is the reference evapotranspiration estimated using the equation to be 

calibrated (FAO56-PM with missing data) (mm d-1). 

2.5 Machine learning models and multi-task learning 

Four machine learning models, which are presented in detail later, were used: ANN, RF, 

XGBoost and MARS. All the models were used to estimate ETo and missing data on maximum 

and minimum relative humidity (which are used to compute actual vapor pressure), solar 

radiation, and wind speed based on two input data combinations: temperature-based and 

temperature- and relative humidity-based, as shown in Fig. 3. All the models were developed 

considering STL. ANN and RF were developed also using MTL, since, among the models used, 

only these two support MTL. The missing data estimated using machine learning models were 

used to estimate ETo with the FAO56-PM equation. 

The following libraries for the Python programming language were used to develop the 

machine learning models: TensorFlow, Scikit-learn, XGBoost and py-earth. To train the models 

and optimize their hyperparameters, 40% of the training dataset was randomly selected to be 
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used as a validation subset. Thus, hyperparameters were optimized by grid-search, selecting the 

values of the hyperparameters that minimized the prediction errors in the validation subset. 

2.5.1 Artificial neural network (ANN) 

ANN is a machine learning model inspired by the human brain, and it is widely used in 

several applications, including the estimation of ETo. More details on ANN can be found in 

Ferreira et al. (2019). In the present study, ANN of the feed-forward multilayer perceptron 

(MLP) type was used. ANN models were used considering both STL and MTL. In STL, one 

neuron is used in the output layer, which is responsible to predict a single variable. In MTL, as 

multiple variables are predicted simultaneously, the number of neurons in the output layer is 

equal to the number of target variables. An example of using STL and MTL is presented in Fig. 

4. 

 

Fig. 4. Artificial neural network models based on single-task learning and multi-task learning. 

 

During the training of the models, the number of hidden layers (1 and 2) and the number 

of neurons in each hidden layer (5, 10, 20 and 30) were optimized. The Adam training algorithm 

(Kingma and Ba, 2014) was employed to train the models. Hyperbolic tangent was used as 

activation function in hidden layers and linear function was used in the output layer. Learning 

rate was set to 0.001 and batch size was set to 512. The number of training epochs was defined 

using early stopping with maximum training epochs equal to 200 and patience equal to 20 

epochs. The “restore best weights” option was also used, which restores the ANN weights that 

promoted the smallest errors during the last 20 epochs with no performance improvement. 

2.5.2 Random forest (RF) 
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RF is a decision tree-based model. It combines several weak learners (decision trees) to 

produce a strong prediction (ensemble), which is obtained as the average prediction of all the 

decision trees in the case of regression. More details on RF can be found in Tyralis et al. (2019). 

As for ANN, RF models were also developed based on STL and MTL. To allow the estimation 

of multiple target variables, each tree that composes a RF model has to predict all the target 

variables in its leaves instead of a single variable. Thus, when building the decision trees, a 

splitting criterion that considers all the target variables is used. It is worth mentioning that not 

all RF implementations support MTL. In the present study, the implementation of Scikit-learn 

0.23.1 was used. To make the use of MTL in RF clearer, an example of a decision tree with two 

target variables is presented in Fig. 5.  

 

Fig. 5. Decision tree with multi-task learning. X1, X2 and X3 - input variables 1, 2 and 3, 

respectively. Y1 and Y2 - target variables 1 and 2, respectively. 

 

In hyperparameter optimization, the following hyperparameters, with their respective 

candidate values, were optimized: number of trees (100, 200, 400 and 600), number of features 

considered for splitting at each node (all features, two-thirds and one-third of the features), 

maximum tree depth (5, 10, 15 and 20). The minimum number of samples required to be at a 

leaf node was set to 10. 

2.5.3 Extreme gradient boosting (XGBoost) 

As RF, XGBoost is based on decision trees. However, it uses a different strategy to build 

the trees. In this algorithm, trees are created in sequence using a strategy called boosting. More 

information on XGBoost can be found in Chen and Guestrin (2016). In hyperparameter 

optimization, the following hyperparameters, with their respective candidate values, were 

optimized: number of trees (100, 200, 400 and 600), maximum tree depth (3, 5, 7, 9 and 11), 

and learning rate (0.05, 0.1, 0.2, 0.3). 

2.5.4 Multivariate adaptive regression splines (MARS) 
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MARS is a model composed of base functions, which are functions fitted at different 

intervals of the input variables and combined to form a MARS model. Unlike most machine 

learning models, a MARS model is expressed as an algebraic equation, which can simplify its 

use for an end user. More information on MARS can be found in Cheng and Cao (2014) and 

Ferreira et al. (2021). In hyperparameter optimization, the following hyperparameters, with 

their respective candidate values, were optimized: penalty (3, 5, 10 and 20), endspan_alpha 

(0.01, 0.05 and 0.1), and minspan_alpha (0.01, 0.05 and 0.1). The order of interaction 

(max_degree) was set to 3 to avoid extremely complex models. 

2.5.5 Data normalization 

Before training the models, input and output variables were standardized according to Eq. 

1. This process is essential for ANN models. To avoid data leakage from the test dataset to the 

training dataset, the mean (µ) and standard deviation (σ) were computed using only data from 

the training subset, not including data from the validation subset and test set. Data from the 

validation subset and test set were standardized using µ and σ obtained from the training subset. 

2.6 Performance comparison criteria 

For all the variables estimated in the present study (i.e., solar radiation, actual vapor 

pressure, wind speed and ETo), the models were evaluated at each weather station of the test 

dataset employing Nash-Sutcliffe efficiency coefficient (NSE), root mean square error 

(RMSE), mean bias error (MBE) and coefficient of determination (R²), which were calculated 

based on the following equations: 

                                                                                     (6) 

                                                                             (7) 

                                                                                    (8) 

                                                                       (9) 

where Pi is the predicted value, Oi is the observed value,  is the mean of the predicted values, 

 is the mean of the observed values, and n is the number of data pairs. 

NSE indicates the magnitude of the mean square error (RMSE2) in relation to the variance 

of the observed data. RMSE is a general error indicator that gives more weight to large errors. 

MBE is used to represent the general tendency of a model to underestimate or overestimate 

observed values. R2 indicates the association between observed and predicted values. NSE and 
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R2 should be as close to one as possible and RMSE and MBE should be as close to zero as 

possible. 

3 Results and discussion 

3.1 General scenario 

3.1.1 Solar radiation estimation 

The performance of the machine learning models and the original and calibrated FAO-56 

approach to estimate solar radiation is presented in Fig. 6. Overall, all the machine learning 

models performed similarly, with slightly poorer results for the MARS model. In general, the 

use of MTL showed results very close to those obtained using STL. The use of relative humidity 

in addition to air temperature promoted performance gains, increasing NSE and R2 and 

decreasing RMSE and MBE (absolute values). For the temperature-based models, the best 

performing options were the ANN-STL and ANN-MTL2 (NSE: 0.55, RMSE: 3.38 and R2: 

0.65). For the temperature- and relative humidity-based models, the ANN-STL, ANN-MTL1 

ANN-MTL2 exhibited the best performances, both with NSE: 0.61, RMSE: 3.13, and R2: 0.68. 

When compared with the original and calibrated FAO approach, all the machine learning 

models performed better. 
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Fig. 6. Boxplots and mean values of NSE, RMSE, MBE and R2 (for the test dataset) for different 

models used to estimate solar radiation. T - temperature; RH - relative humidity; FAO_cal - 

calibrated FAO; ANN - Artificial neural network; RF - Random forest; XGBoost - Extreme 

gradient boosting; MARS - Multivariate adaptive regression splines; STL - single-task learning; 

MTL - multi-task learning. Means are numerically represented by the values at the top of each 

boxplot and by the black squares. Outliers are represented by the gray lozenges. 

 

Regarding the calibration of the FAO method, in contrast to our initial expectations, the 

original model (NSE: 0.48, RMSE: 3.66, MBE: 0.04 and R2: 0.58) performed slightly better 

than its calibrated version (NSE: 0.47, RMSE: 3.69, MBE: 0.54 and R2: 0.58). The change in 

kRs value was small, from 0.16 to 0.1643. The slight performance loss observed is probably due 

to some random differences between the training and test datasets. Thus, even promoting better 

results in the training dataset, the calibrated kRs performed a little worse in the test dataset. 

The performance improvement observed when adding relative humidity as input data was 

also observed in other studies (He et al., 2020; Quej et al., 2016; Valiantzas, 2018b). Valiantzas 

(2018b) demonstrated empirically that mean relative humidity has an inverse relation with solar 

radiation. Lindauer et al. (2017) provided evidence that relative humidity has a certain relation 

with cloud cover and atmospheric transmissivity, which are directly related to solar radiation at 

the land surface. 

3.1.2 Actual vapor pressure estimation 

The machine learning models showed similar performances to estimate actual vapor 

pressure (computed from maximum and minimum relative humidity estimated by the machine 

learning models), with only slightly poorer results for the MARS model (Fig. 7). When using 

MTL, the results were very close to those obtained using STL. The best performing model was 

the ANN-MTL2 (NSE: 0.40, RMSE: 0.23, MBE: -0.02 and R2: 0.71). However, the other 

models had similar results. Although the FAO approach did not achieve the same performance 

obtained by the machine learning models, it was benefited from the calibration, increasing NSE 

from -1.33 to -0.12, decreasing RMSE from 0.42 to 0.32, and decreasing MBE from 0.32 to 

0.02. It is observed that there was an actual vapor pressure overestimation (MBE: 0.32) before 

the calibration, which was reduced by subtracting 2.21°C from minimum air temperature during 

actual vapor pressure computation (Eq. 3). However, even after the calibration, a negative mean 

NSE value was obtained, which indicates that the overall performance was poor. 
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Fig. 

7. Boxplots and mean values of NSE, RMSE, MBE and R2 (for the test dataset) for different 

models used to estimate actual vapor pressure. FAO_cal - calibrated FAO; ANN - Artificial 

neural network; RF - Random forest; XGBoost - Extreme gradient boosting; MARS - 

Multivariate adaptive regression splines; STL - single-task learning; MTL - multi-task learning. 

Means are numerically represented by the values at the top of each boxplot and by the black 

squares. Outliers are represented by the gray lozenges. 

 

When estimating actual vapor pressure from air temperature, minimum temperature is 

considered an approximation of dew point temperature. However, it should be adjusted 

according to the local climatic conditions by subtracting a constant value (Allen et al., 1998; 

Paredes and Pereira, 2019). According to our study, overall, for Brazil, subtracting 2.21°C 

improved the estimation. However, it is important to note that it is a general recommendation, 

since this value varies according to the local climatic conditions, being lower for humid regions 

and higher for dryer regions. In addition, in humid regions, minimum temperature can be higher 

than dew point temperature (Paredes and Pereira, 2019). 

3.1.3 Wind speed estimation 
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The machine learning models performed similarly when predicting wind speed, with 

slightly poorer results for the XGBoost model (Fig. 8). As observed for the previous variables, 

in general, the use of MTL promoted results similar to those found using STL. The use of 

relative humidity in addition to air temperature promoted performance gains. However, all the 

models were not able to predict wind speed with adequate accuracy, obtaining negative mean 

NSE values. For the temperature-based models, the best performing option was the ANN-STL 

(NSE: -2.24, RMSE: 0.71, MBE: 0.11 and R2: 0.07). For the temperature- and relative 

humidity-based models, the best performing options were the ANN-MTL1 and RF-MTL1 

(NSE: -1.60, RMSE: 0.67, MBE: 0.09 and R2: 0.17). The use of the average wind speed 

obtained at the training stations (1.61 m s-1) promoted better results (NSE: -3.03, RMSE: 0.75 

and MBE: 0.19) than the world average wind speed value (2.00 m s-1) proposed in the FAO 

approach (NSE: -6.68, RMSE: 0.93 and MBE: 0.58). Paredes et al. (2018a) and Popova et al. 

(2006) reported better results when using local/regional average wind speed instead of the 

default value proposed in the FAO approach in estimating ETo. 

 

Fig. 8. Boxplots and mean values of NSE, RMSE, MBE and R2 (for the test dataset) for different 

models used to estimate wind speed. T - temperature; RH - relative humidity; ANN - Artificial 

neural network; RF - Random forest; XGBoost - Extreme gradient boosting; MARS - 
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Multivariate adaptive regression splines; STL - single-task learning; MTL - multi-task learning. 

*As FAO and Mean U2 models provide a constant value as prediction for wind speed, R2 values 

cannot be computed. Means are numerically represented by the values at the top of each boxplot 

and by the black squares. Outliers are represented by the gray lozenges. 

 

The poor performance in estimating wind speed is associated with the low correlation 

between wind speed and the input data considered for developing the models (i.e., air 

temperature, relative humidity and extraterrestrial solar radiation). However, even with the 

aforementioned low correlation, the machine learning models were able to capture some 

patterns between input and output data and produce lower errors than the simple use of a 

constant value (FAO and average wind speed approaches) (Fig. 8). 

3.1.4 Reference evapotranspiration estimation 

3.1.4.1 Machine learning models 

The performance of the machine learning models used to estimate ETo directly from air 

temperature and relative humidity or temperature only is presented in Fig. 9. The models 

performed similarly, with a slight advantage for the ANN and RF models. As previously 

observed, in general, the use of MTL did not provide strong performance changes, showing 

similar results to those obtained with STL. Adding relative humidity as input resulted in 

performance gains. For the temperature-based models, the best performing models were the 

ANN-STL, RF-MTL1 and RF-MTL2 (NSE: 0.53 and RMSE: 0.79). For the temperature- and 

relative humidity-based models, the ANN and RF developed using STL, MTL1 and MTL2 

showed the best performances (NSE: 0.67 and RMSE: 0.65). 
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Fig. 9. Boxplots and mean values of NSE, RMSE, MBE and R2 (for the test dataset) for the 

machine learning models used to estimate ETo. T - temperature; RH - relative humidity; ANN 

- Artificial neural network; RF - Random forest; XGBoost - Extreme gradient boosting; MARS 

- Multivariate adaptive regression splines; STL - single-task learning; MTL - multi-task 

learning. Means are numerically represented by the values at the top of each boxplot and by the 

black squares. Outliers are represented by the gray lozenges. 

3.1.4.2 FAO56-PM equation combined with machine learning models 

The performance of the FAO56-PM equation combined with machine learning models 

(used to estimate missing data) is presented in Fig. 10. All the models had similar performance, 

with a slight advantage for those that used ANN and RF. The models developed employing 

MTL and STL performed similarly. As previously observed, there were also performance gains 

by adding relative humidity as input. For the temperature-based models, the best performing 

option was the PM-ANN-STL (FAO56-PM combined with ANN-STL) (NSE: 0.53, RMSE: 

0.78, MBE: 0.15 and R2: 0.74). For the temperature- and relative humidity-based models, the 

FAO56-PM combined with the ANN models developed with STL, MTL1 and MTL2 performed 

the best (NSE: 0.66, RMSE: 0.65 and R2: 0.80). 
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Fig. 10. Boxplots and mean values of NSE, RMSE, MBE and R2 (for the test dataset) for ETo 

estimated using the FAO56-PM equation with missing data obtained employing machine 

learning models. T - temperature; RH - relative humidity; PM - FAO56-PM equation; ANN - 

Artificial neural network; RF - Random forest; XGBoost - Extreme gradient boosting; MARS 

- Multivariate adaptive regression splines; STL - single-task learning; MTL - multi-task 

learning. Means are numerically represented by the values at the top of each boxplot and by the 

black squares. Outliers are represented by the gray lozenges. 

3.1.5 Overall evaluation 

As presented before, the ANN and RF models used individually or combined with the 

FAO56-PM equation provided the best performances, with a slight advantage for ANN. Thus, 

to better compare the different approaches used to estimate ETo, the performance of the 

FAO56-PM equation with missing data estimated based on traditional methodologies and ANN 

models developed considering single-task and multi-task learning, individually used and 

combined with FAO56-PM equation, is presented in Fig. 11. 
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Fig. 11. Boxplots and mean values of NSE, RMSE, MBE and R2 (for the test dataset) for ETo 

estimated with the best model from each approach assessed (FAO56-PM equation, machine 

learning, and FAO56-PM equation combined with machine learning). T - temperature; RH - 

relative humidity; PM - FAO56-PM equation; PM_ori - PM with missing data estimated using 

original FAO methodologies; PM_cal1 - PM with missing data estimated using calibrated FAO 

methodologies; PM_cal2 - PM with missing data estimated using original FAO methodologies 

and calibrated using linear regression; ANN - Artificial neural network; STL - single-task 

learning; MTL - multi-task learning. Means are numerically represented by the values at the 

top of each boxplot and by the black squares. Outliers are represented by the gray lozenges. 

 

When using only measured data on temperature, the FAO56-PM equation with missing 

data estimated based on FAO methodologies (PM_ori, PM_cal1 and PM_cal2 in Fig. 11) 

performed better before both evaluated calibrations. In contrast, it performed better after the 

calibrations when using temperature and relative humidity as input data. The performance loss 

observed for the temperature-based equation is not expected, since calibrations generally 

promote performance gains. In addition, regarding PM_cal1, when evaluating the estimation of 

missing data after the calibrations, although there was a slight decrease in the performance of 
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the estimation of solar radiation, the estimations of actual vapor pressure and wind speed were 

improved. Thus, both calibration types evaluated (PM_cal1 and PM_cal2) are expected to 

improve the estimation of ETo. 

To better investigate the cause of the performance loss in the temperature-based FAO56-

PM equation after calibrating the methodologies used to estimate missing data (PM_cal1) (Fig. 

11), the performance of the FAO56-PM equation using each one of the variables estimated (i.e., 

solar radiation, relative humidity/actual vapor pressure, and wind speed) as the sole missing 

data was assessed (Fig. 12). After the calibrations, better ETo estimates were obtained when 

considering actual vapor pressure and wind speed as missing data. When considering solar 

radiation as missing data, after the calibration, a similar performance was observed, with only 

a small increase in MBE (0.02 to 0.09) and a small decrease in R2 (0.86 to 0.85). Based on these 

results, the calibrations are expected to improve the performance of the FAO56-PM equation 

when using only measured data on temperature, since only the performance of the estimation 

of solar radiation had a minimal decrease. However, a contrary behavior was observed (Fig. 

11). It is probably justified by the characteristics of the errors in the missing data estimated. 

Probably, although the errors obtained with the non-calibrated FAO methodologies to estimate 

missing data are higher, they were partially canceled out when considering the use of solar 

radiation, actual vapor pressure and wind speed estimates simultaneously, which justify the 

better performance of the FAO56-PM equation with the non-calibrated FAO methodologies 

(PM_ori). 
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Fig. 12. Boxplots and mean values of NSE, RMSE, MBE and R2 (for the test dataset) for ETo 

estimated using the FAO56-Penman-Monteith equation with missing data on solar radiation, 

relative humidity, and wind speed, which were estimated using the original and calibrated FAO 

methodologies. Means are numerically represented by the values at the top of each boxplot and 

by the black squares. Outliers are represented by the gray lozenges. 

 

Calibrating the FAO56-PM equation with missing data estimated using the original FAO 

methodologies through linear regression (PM_cal2) provided slightly better results in relation 

to PM_cal1 in both temperature-based and temperature- and relative-humidity-based settings 

(Fig. 11). Although calibrating individual equations to estimate missing data can have a more 

in-depth effect, the calibration based on linear regression has the advantage of adjusting the 

model with a focus on the estimation of ETo itself. As previously mentioned, in the 

temperature-based setting, even promoting better results than PM_cal1, the PM_cal2 model 

also performed slightly worse than the PM_ori model. It probably occurred due to some random 

difference between data used to calibrate and test the equation. 
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Compared to the FAO56-PM equation with missing data estimated using traditional 

methodologies (i.e., PM_ori, PM_cal1 and PM_cal2 in Fig. 11), the machine learning models 

and their combinations with the FAO56-PM equation performed better to estimate ETo, mainly 

the models based on temperature and relative humidity (Fig. 11). For the temperature-based 

models, when comparing the non-calibrated PM model (PM_ori), which performed better than 

its calibrated versions (PM_cal1 and PM_cal2), with the PM-ANN-STL model, which was the 

best machine learning model, NSE increased from 0.49 to 0.53 (8.2%), RMSE decreased from 

0.83 to 0.78 (6.0%), and R2 increased from 0.73 to 0.74 (1.4%). For the temperature- and 

relative humidity-based models, when comparing the PM_cal2 model, which performed better 

than its other versions, with the ANN-STL, ANN-MTL1 and ANN-MTL2 models or RF-STL, 

RF-MTL1 and RF-MTL2 (Fig. 9), which were the best machine learning models, NSE 

increased from 0.56 to 0.67 (19.6%) and RMSE decreased from 0.74 to 0.65 (12.2%). 

Overall, the use of relative humidity in addition to temperature improved the performance 

of the models studied. However, for the non-calibrated PM model (PM_ori), although adding 

relative humidity decreased RMSE from 0.83 to 0.80 (3.6%), NSE reduced from 0.49 to 0.45 

(8.2%) (Fig. 11). This unexpected behavior observed for the PM_ori model is probably due to 

the actual vapor pressure overestimation, which occurred when using only temperature (Fig. 7 

(MBE: 0.32)), which is, at a certain point, canceled out by the overestimated wind speed (Fig. 

8 (MBE: 0.58)). It occurs since the actual vapor pressure overestimation led to ETo 

underestimation and the wind speed overestimation led to ETo overestimation, canceling out 

part of the errors. Therefore, when relative humidity data were added to the PM_ori model, the 

mentioned condition was no more achieved, which can contribute to increase the errors in the 

estimation of ETo at some weather stations. However, when a better wind speed value was 

considered (i.e., PM_cal1), adding relative humidity was translated into performance gains, 

increasing NSE from 0.44 to 0.55 (25.0%). Similarly, for the model calibrated using linear 

regression (PM_cal2), NSE was increased from 0.46 to 0.56 (21.7%) when adding relative 

humidity. By comparing the best temperature-based and temperature- and relative humidity-

based models to estimate ETo (i.e., PM-ANN-STL and ANN-STL/ANN-MTL1/ANN-MTL2 

(or RF developed with STL, MTL1 and MTL2), respectively), NSE increased from 0.53 to 0.67 

(26.4%) and RMSE decreased from 0.78 to 0.65 (16.7%). 

3.2 Clustering scenario 

As mentioned before, ANN and RF provided the best performances in estimating missing 

data and ETo, with a slight advantage for ANN. Thus, to better explore the potential of ANN 

models and the FAO56-PM equation, we also developed/calibrated them after dividing Brazil 
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into regions with similar climatic conditions (clustering). The clusters obtained using K-means 

and data from WorldClim are presented in Fig. 13. 

 

Fig. 13. Regions (clusters) with similar climatic conditions defined using K-means. 

 

3.2.1 Missing data and reference evapotranspiration 

The performance of the models developed for each cluster to estimate solar radiation, 

actual vapor pressure and wind speed is presented in Fig. 14. As seen in the general scenario, 

the ANN models outperformed the FAO methodologies used to estimate missing data, in their 

original and calibrated forms, and STL and MTL provided similar performances.  
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Fig. 14. Boxplots and mean values of NSE, RMSE, MBE and R2 (for the test dataset) for 

solar radiation, actual vapor pressure and wind speed estimated using different models 

developed for groups of weather stations with similar climatic conditions (clustering). T - 

temperature; RH - relative humidity; FAO_cal - calibrated FAO; ANN - Artificial neural 

network; STL - single-task learning; MTL - multi-task learning. *As FAO and Mean U2 models 

provide a constant value as prediction for wind speed, R2 values cannot be computed. Means 

are numerically represented by the values at the top of each boxplot and by the black squares. 

Outliers are represented by the gray lozenges. 

 

After the clustering, similar results were found for solar radiation (Figs. 6 and 14). For 

actual vapor pressure (Figs. 7 and 14), there were considerable performance improvements, 

increasing the best NSE value from 0.40 to 0.53. However, in the case of the calibrated FAO 

methodology, even increasing NSE from -0.12 to 0.06, the performance was still poor, since 
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NSE was very close to zero. Thus, better approaches to calibrate the FAO methodology used to 

estimate actual vapor pressure for Brazil are necessary. For wind speed (Figs. 8 and 14), 

although the clustering increased NSE and decreased RMSE, all models continued to have 

negative NSE values, which indicates their poor performance. Thus, different approaches 

should be explored in the future to produce more reliable wind speed estimates.  

By evaluating ETo estimated after the clustering (Figure 15), as observed in the general 

scenario, the ANN models used individually and in combination with the FAO56-PM equation 

outperformed the FAO56-PM equation with missing data estimated based on traditional 

methodologies (original and calibrated). Using STL and MTL provided similar results, as found 

in the general scenario. 

 

Fig. 15. Boxplots and mean values of NSE, RMSE, MBE and R2 (for the test dataset) for 

ETo estimated using different models developed for groups of weather stations with similar 

climatic conditions (clustering). T - temperature; RH - relative humidity; PM - FAO56-PM 

equation; PM_ori - PM with missing data estimated using original FAO methodologies; 

PM_cal1 - PM with missing data estimated using calibrated FAO methodologies; PM_cal2 - 

PM with missing data estimated using original FAO methodologies and calibrated using linear 

regression; ANN - Artificial neural network; STL - single-task learning; MTL - multi-task 
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learning. Means are numerically represented by the values at the top of each boxplot and by the 

black squares. Outliers are represented by the gray lozenges. 

 

Regarding the calibration of the FAO56-PM equation, as observed in the general scenario, 

in the temperature-based setting, the original equation performed slightly better than its 

calibrated version. However, in the temperature- and relative humidity-based setting, both 

calibrations strategies promoted performance gains. Although PM_cal1 and PM_cal2 

performed similarly, PM_cal2 showed slightly lower RMSE values. 

The optimal values of the calibration parameters used with the FAO56-PM equation are 

provided in Table 1. Cluster 5 showed the lowest values of aT, kRs and U2. This cluster is located 

mainly in northern Brazil, where Amazon rainforest predominates. This region is characterized 

by Af and Am climates (Fig. 1) and high relative humidity and rainfall, in addition to low wind 

speed. Thus, minimum temperature tends to better approximate dew point temperature, which 

justify the lowest aT value. The high rainfall levels, which are related to high cloud cover, reduce 

the proportion of solar radiation at surface in relation to extraterrestrial solar radiation, which 

corroborates the lower kRs value. On the other hand, cluster 4 showed the highest values of aT 

and kRs. This cluster is located in a dryer region, with Aw, As and BSh climates (Fig. 1). Thus, 

under these conditions, aT is expected to assume a higher value to make minimum temperature 

closer to dew point temperature, as found in this study. In addition, due to the lower rainfall 

levels (lower cloud cover), the proportion of solar radiation at surface in relation to 

extraterrestrial solar radiation is expect to be higher, which increases the kRs value. Clusters 1, 

2 and 3 exhibited similar values of aT, kRs and U2. 

 

Table 1. Optimal values of the calibration parameters used with the FAO56-PM equation for 

each cluster and for the general calibration. 

Input type Parameter Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5 General 

- 

aT 1.91 2.31 1.22 4.21 0.94 2.21 

kRs 0.1574 0.1655 0.163 0.174 0.153 0.1643 

U2 1.14 1.65 1.84 1.79 0.70 1.61 

T 
a 0.6356 0.0739 -0.217 0.9036 -0.327 -0.0671 

b 0.7897 1.0134 1.0588 0.934 0.9407 1.0292 

T and RH 
a 0.2788 -0.1314 -0.2592 -0.0671 -0.3418 -0.1988 

b 0.8231 0.9963 1.0344 1.0326 0.9143 1.0009 
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T - temperature; RH - relative humidity; aT is the minimum temperature correction factor used in actual vapor 

pressure estimation; kRs is an empirical radiation adjustment coefficient; U2 is the mean wind speed at a 2 m height 

(m s-1); a and b are the calibrations parameters used in the calibration based on simple linear regression. 

 

3.3 Comparison of the general and clustering scenarios 

To compare the performance of the models developed to estimate ETo for Brazil as a 

whole and for regions with similar climatic conditions (clusters), mean values of NSE, RMSE, 

MBE and R2 over test stations are presented in Table 2. The temperature-based models 

performed better after the clustering. In general, after the clustering, mean NSE over the models 

assessed increased from 0.50 to 0.54 (8.0%), RMSE reduced from 0.81 to 0.78 (3.7%), MBE 

reduced from 0.17 to 0.14 (17.6%) and R2 increased from 0.73 to 0.74 (1.4%). The best 

performance was obtained by the PM-ANN-STL model, with NSE equal to 0.58 and RMSE 

equal to 0.75. In contrast, the temperature- and relative humidity-based models had similar 

performances in the general and clustering scenarios. Models developed to estimate ETo based 

on limited input data are influenced by the local climatic conditions. Therefore, when 

developing models for regions with more homogeneous characteristics, they tend to better 

capture the relations between input data and ETo, attaining better performance than models 

developed for heterogeneous regions. Ferreira et al. (2019) also found better performances 

when using a clustering strategy in Brazil. These authors reported higher performance gains for 

temperature-based models in relation to temperature- and relative humidity-based models, as 

observed in the present study. In contrast, Althoff et al. (2019) reported only small gains by 

clustering weather stations. However, it may have occurred due to the smaller study area (lower 

climatic variability) considered in the mentioned study in relation to the one considered in the 

present study.   

 

Table 2. Mean values of different error metrics (NSE, RMSE, MBE and R2) for the models 

developed to estimate ETo for Brazil as a whole (General) and for groups of weather stations 

(Clustering). Highlighted values indicate the best error metrics values for each cluster. 

    General Clustering 

Input type Model NSE RMSE MBE R2 NSE RMSE MBE R2 

T 

PM_ori 0.49 0.83 0.10 0.73 0.49 0.83 0.10 0.73 

PM_cal1 0.44 0.86 0.24 0.72 0.46 0.84 0.20 0.72 

PM_cal2 0.46 0.84 0.16 0.73 0.46 0.83 0.15 0.73 

ANN-STL 0.53 0.79 0.16 0.74 0.57 0.75 0.13 0.74 
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ANN-MTL1 0.51 0.79 0.20 0.74 0.57 0.75 0.13 0.74 

ANN-MTL2 0.52 0.79 0.16 0.74 0.57 0.75 0.12 0.74 

PM-ANN-STL 0.53 0.78 0.15 0.74 0.58 0.75 0.12 0.75 

PM-ANN-MTL1 0.51 0.79 0.19 0.74 0.57 0.75 0.13 0.74 

PM-ANN-MTL2 0.52 0.79 0.16 0.73 0.57 0.75 0.13 0.74 

Mean 0.50 0.81 0.17 0.73 0.54 0.78 0.14 0.74 

T and RH 

PM_ori 0.45 0.80 0.38 0.78 0.45 0.80 0.38 0.78 

PM_cal1 0.55 0.76 0.21 0.77 0.55 0.75 0.18 0.77 

PM_cal2 0.56 0.74 0.18 0.78 0.55 0.74 0.16 0.78 

ANN-STL 0.67 0.65 0.10 0.80 0.68 0.64 0.07 0.80 

ANN-MTL1 0.67 0.65 0.11 0.80 0.68 0.64 0.06 0.80 

ANN-MTL2 0.67 0.65 0.11 0.80 0.68 0.64 0.07 0.80 

PM-ANN-STL 0.66 0.65 0.13 0.80 0.67 0.65 0.10 0.80 

PM-ANN-MTL1 0.66 0.65 0.12 0.80 0.67 0.65 0.09 0.80 

PM-ANN-MTL2 0.66 0.65 0.13 0.80 0.67 0.65 0.09 0.80 

Mean 0.62 0.69 0.16 0.79 0.62 0.69 0.13 0.79 

PM - FAO56-PM equation; PM_ori - PM with missing data estimated using original FAO methodologies; 

PM_cal1 - PM with missing data estimated using calibrated FAO methodologies; PM_cal2 - PM with missing data 

estimated using original FAO methodologies and calibrated using linear regression; ANN - Artificial neural 

network; STL - single-task learning; MTL - multi-task learning; NSE - Nash-Sutcliffe efficiency coefficient; 

RMSE - root mean square error; MBE - mean bias error; R2 coefficient of determination. 

 

As the temperature- and relative humidity-based models used to estimate ETo were little 

affected by the clustering, it can indicate that the regions (clusters) created were not efficient to 

overcome the missing of solar radiation and wind speed data. It is also supported by the results 

presented in Figure 6, 7, 8 and 14, in which it can be noted that, in contrast to actual vapor 

pressure, solar radiation estimation was generally not improved after the clustering and, 

although wind speed estimation had some improvement, it continues to obtain poor predictions 

after the clustering. On the other hand, actual vapor pressure estimation had a considerable 

performance increase.  

3.4 Overall evaluation 

In both general and clustering scenarios, the use of MTL did not provide strong 

performance changes in estimating ETo, showing similar results to those found using STL 

(Figs. 9, 10 and 15). The same behavior was observed in estimating the missing data considered 
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(Figs. 6, 7, 8 and 14). However, it is worth mentioning that when in addition to the estimation 

of ETo the estimations of solar radiation, actual vapor pressure (or relative humidity) and wind 

speed are of interest, the use of MTL can reduce the time and computational resources required 

to develop the machine learning models, since only a single model is required to estimate all 

these variables. 

Although some studies have demonstrated performance gains by using MTL (Ng et al., 

2019; Padarian et al., 2019), it does not promote gains in all cases, as found in the present study 

and also for Nunes et al. (2019). Thus, MTL should be considered as a tool with potential 

benefits for some tasks, but it needs to be evaluated for each particular case. Another way to 

explore possible advantages of MTL in the estimation of ETo, which can be assessed in future 

studies, is to add past and/or future ETo values (e.g., 1-day ahead ETo) as auxiliary target 

variables. 

Overall, the combination between machine learning models and the FAO56-PM equation 

performed similarly to the machine learning models individually used in both general and 

clustering scenarios (Figs. 9, 10, 11 and 15). Using machine learning models to estimate missing 

data and the FAO56-PM equation to estimate ETo instead of using machine learning models to 

estimate ETo directly can make the ETo estimation process a little clearer. However, it requires 

the development and use of more models. 

Although the MARS models used in the general scenario to estimate ETo and missing 

data were not so good as the ANN and RF models (Figs. 6, 7, 8, 9, 10), in contrast to most 

machine learning models, they can be used in the form of an algebraic mathematical equation, 

which can simplify its usage for an end user. In addition, the MARS models used individually 

or in combination with the FAO56-PM equation presented better performance to estimate ETo 

than the FAO56-PM equation with the same input data (Figs. 9, 10 and 11). In the temperature- 

and relative humidity-based setting, for the MARS model used individually, in relation to 

PM_cal2, NSE increased from 0.56 to 0.65 (16.1%) and RMSE decreased from 0.74 to 0.67 

(9.5%). For the temperature-based models, in relation to the PM_ori model, the use of MARS 

provided only slight performance gains. To estimate solar radiation, actual vapor 

pressure/relative humidity and wind speed, the MARS models performed better than the FAO 

methodologies, mainly when using temperature and relative humidity as input (Figs. 6, 7 and 

8). To make the MARS models developed in the present study available to the reader, they are 

provided (equations and an example spreadsheet) as supplementary data (Appendix A). 

The distribution of NSE and MBE values over the Brazilian territory, for ETo estimated 

in the general and clustering scenarios, is presented in Fig. 16 for the FAO56-PM equation with 
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missing data estimated using traditional methodologies (original and the best calibrated version) 

and the ANN models developed using STL and their combinations with the FAO56-PM 

equation. Similarly, mean NSE values for each cluster defined using K-means are presented in 

Table 3 for the mentioned models and PM_cal1. As previously observed, using relative 

humidity data in addition to temperature in the non-calibrated FAO56-PM equation (PM_ori) 

resulted in worse ETo estimation (higher MBE values and lower NSE values) at some weather. 

However, it promoted better results (higher NSE values), in both general and clustering 

scenarios, when using the FAO56-PM equation calibrated and the machine learning models 

used individually and in combination with the FAO56-PM equation (Fig. 16 and Table 3). 
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Fig. 16. NSE and MBE values (for the test dataset) distribution over the Brazilian territory for 

different models used to estimate ETo in the general and clustering scenarios. T - temperature; 

RH - relative humidity; PM - FAO56-PM equation; PM_ori - PM with missing data estimated 

using original FAO methodologies; PM_cal2 - PM with missing data estimated using original 
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FAO methodologies and calibrated using linear regression; ANN - Artificial neural network; 

STL - single-task learning; MTL - multi-task learning. 

 

Table 3. NSE values, for each cluster, referring to ETo estimated using the FAO56-PM 

equation with missing data and machine learning models developed in the general and 

clustering scenarios. Highlighted values indicate the best performing model for each cluster. 

Scenario Input type Model C1 C2 C3 C4 C5 

General 

T 

PM_ori 0.37 0.57 0.70 0.30 0.38 

PM_cal1 0.24 0.56 0.65 0.31 0.18 

PM_cal2 0.31 0.57 0.69 0.28 0.33 

ANN-STL 0.36 0.61 0.73 0.46 0.25 

PM-ANN-STL 0.38 0.62 0.73 0.45 0.27 

T+RH 

PM_ori 0.23 0.57 0.75 0.26 0.32 

PM_cal1 0.40 0.62 0.76 0.40 0.41 

PM_cal2 0.43 0.63 0.79 0.38 0.50 

ANN-STL 0.59 0.67 0.85 0.57 0.66 

PM-ANN-STL 0.58 0.67 0.85 0.55 0.66 

Clustering 

T 

PM_ori 0.37 0.57 0.70 0.30 0.38 

PM_cal1 0.52 0.55 0.66 0.02 0.46 

PM_cal2 0.51 0.56 0.70 -0.01 0.45 

ANN-STL 0.60 0.62 0.73 0.31 0.60 

PM-ANN-STL 0.61 0.62 0.72 0.32 0.61 

T+RH 

PM_ori 0.23 0.57 0.75 0.26 0.32 

PM_cal1 0.59 0.61 0.75 0.19 0.50 

PM_cal2 0.60 0.62 0.78 0.16 0.57 

ANN-STL 0.65 0.69 0.85 0.51 0.68 

PM-ANN-STL 0.64 0.67 0.85 0.49 0.68 

C1, C2, C3, C4 and C5 stand for cluster 1 to 5, respectively; PM - FAO56-PM equation; PM_ori - PM with missing 

data estimated using original FAO methodologies; PM_cal1 - PM with missing data estimated using calibrated 

FAO methodologies; PM_cal2 - PM with missing data estimated using original FAO methodologies and calibrated 

using linear regression; ANN - Artificial neural network; STL - single-task learning; NSE - Nash-Sutcliffe 

efficiency coefficient. 
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Overall, the temperature-based models from the general scenario performed poorly in 

northern Brazil (Fig. 16), which is associated with clusters 1 and 5 (Table 3). It is probably 

associated with the lower weather stations density in this region, which makes the models 

developed less adapted to this region. However, when considering the clustering approach, 

better performances were obtained. In this case, the models were able to better capture the 

relations between the input variables and ETo, since they were developed for a more 

homogeneous region. Adding relative humidity data also improved the results found in northern 

Brazil. In the general scenario, the use of relative humidity was an important factor in reducing 

ETo overestimation (high positive MBE values) in northern Brazil and reducing ETo 

underestimation (high negative MBE values) in northeastern Brazil, keeping MBE values closer 

to zero. Overall, the temperature- and relative humidity-based machine learning models and 

their combinations with the FAO56-PM equation provided the best performances, with higher 

NSE values and lower MBE absolute values, in both general and clustering scenarios. The best 

performances were found for clusters 2 and 3 in both general and clustering approaches. After 

the clustering, cluster 4 had its performance reduced in relation to the general scenario, which 

indicates that this cluster was not well defined for ETo estimation purposes.  

Given the high climatic variability in the Brazilian territory, it is hard to develop general 

models to estimate ETo with good accuracy in any part of the country, especially when using 

temperature-based models. To achieve higher performances, future studies could investigate 

the use of extra information as input for the models, such as geographical coordinates, elevation, 

long-term gridded data obtained from ground data interpolation or satellite data, and other 

variables that can help the algorithms to achieve better performances. Defining regions with 

similar climatic conditions can also improve the performance of the models, as found in the 

present study. Future studies can better explore different approaches to apply clustering, such 

as choosing the best input variables and testing different clustering algorithms. 

 

4 Conclusions 

In both general and clustering scenarios, using simple linear regression to calibrate the 

FAO56-PM equation provided slightly better results than calibrating the methodologies used to 

estimate missing data. Unexpectedly, the temperature-based FAO56-PM equation provided 

better ETo estimates before both calibration types assessed, which may be due to some random 

difference between data used to calibrate and test the equation. When using temperature and 

relative humidity data, better results were observed after both calibration types, reducing mean 

RMSE from 0.80 up to 0.74 mm d-1 in the general and clustering scenarios. 
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Overall, the machine learning models performed better than the FAO56-PM equation to 

estimate ETo and better than the original and calibrated FAO methodologies to estimate missing 

data in both general and clustering scenarios. When combining machine learning models with 

the FAO56-PM equation, performance improvements were not observed, obtaining results 

similar to those found using machine learning models individually. Using multi-task learning 

(MTL) to develop ANN and RF models did not provide strong performance changes. Similar 

results were obtained in relation to using single-task learning (STL). 

In the general scenario, for the temperature-based models, PM-ANN-STL performed the 

best to estimate ETo, increasing mean NSE from 0.49 to 0.53 (8.2%) and decreasing mean 

RMSE from 0.83 to 0.78 (6.0%), in relation to the non-calibrated FAO56-PM equation, which 

performed better than its calibrated versions. For the temperature- and relative humidity-based 

models, the ANN and RF models developed using STL and MTL performed the best, increasing 

NSE from 0.56 to 0.67 (19.6%) and decreasing RMSE from 0.74 to 0.65 (12.2%), in relation to 

the FAO56-PM equation calibrated using linear regression, which performed better than its 

other versions. 

When dividing Brazil into five climatically homogeneous groups (clustering), 

performance gains were obtained in estimating ETo for the temperature-based machine learning 

models and the calibrated FAO56-PM equation. The best model (PM-ANN-STL) showed mean 

NSE and RMSE equal to 0.58 and 0.75 mm d-1, respectively. The temperature- and relative 

humidity-based models were little affected by the clustering. Similarly, better estimates of 

actual vapor pressure and wind speed were obtained after the clustering. 

Among the machine learning models assessed, overall, ANN and RF performed the best, 

with a slight advantage for ANN. Although the MARS models showed inferior performance, 

they generally performed better than the original and calibrated FAO approaches to estimate 

ETo and missing data, especially when using temperature and relative humidity data. Thus, the 

MARS models developed are made available as supplementary data (Appendix A) (equations 

and an example spreadsheet). 
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Appendix A. Supplementary data 

 

Exploring machine learning and multi-task learning to estimate 

meteorological data and reference evapotranspiration across Brazil 

 

The multivariate adaptive regression splines (MARS) models developed to estimate 

reference evapotranspiration (ETo), solar radiation, maximum and minimum relative humidity 

and wind speed at 2 m height are provided in this appendix. As the data used to develop the 

models were normalized, before using the models, input variables should be normalized. 

Similarly, output variables predicted by the MARS models should be transformed to their 

normal scale. To normalize a particular input variable, the following equation should be used: 

xni = 
xi - μ                                                                                                      (1) 

where xni is the normalized value, xi is the original value, µ is the mean, and σ is the standard 

deviation. 

 

To transform a particular output variable to its original scale, the following equation 

should be used: 

y
i
 = y

ni
) + μ                                                                                                      (1) 

where yi is the output value in original scale, yni is the normalized output value (output from 

MARS models), µ is the mean, and σ is the standard deviation. 

 

The mean (μ) and standard deviation ( ) referring to each possible input and output 

variables are presented in Table A1. 
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Table A1. Mean (μ) and standard deviation ( ) values referring to each possible input and 

output variables used in the MARS models provided. 

Input variables μ  

Maximum temperature (°C)(Tx) 29.0368 5.0586 

Minimum temperature (°C)(Tn) 18.2566 4.6467 

Maximum relative humidity (%) (RHx) 90.3330 8.9929 

Minimum relative humidity (%) (RHn) 47.2278 16.8098 

Extraterrestrial solar radiation (MJ m-2 d-1) (Ra) 34.4325 6.2931 

Output variables μ  

Reference evapotranspiration (mm d-1) (ETo) 4.1124 1.5575 

Solar radiation (MJ m-2 d-1) (Rs) 18.2045 6.2286 

Wind speed (m s-1) (Ws) 1.6090 0.9842 

Maximum relative humidity (%) (RHx) 90.3330 8.9929 

Minimum relative humidity (%) (RHn) 47.2278 16.8098 

 

MARS MODELS 

In the MARS models, a function h(x) is used, which is defined below: 

h(x) = Maximum(0, x) 

 

Temperature-based models 

Reference evapotranspiration (ETo) 

ETo = -0.0338*Tx2*h(4.77 - Tn) - 0.25*Tx*h(1.57 - Ra) - 0.022*Tx*h(4.77 - Tn) + 

84.9*Tx*h(Tn - 4.77) + 1.38*Tx - 0.0595*Tn2*h(4.77 - Tn) + 0.0171*Tn*Ra2 - 0.227*Tn*Ra 

- 0.0605*Tn*h(3.00 - Tx)*h(4.77 - Tn) - 4.88*Tn*h(4.77 - Tn)*h(Tx - 3.00) - 0.121*Tn*h(4.77 

- Tn) - 50.4*Tn*h(Tn - 4.77) + 0.96*Tn - 0.396*h(1.57 - Ra) + 1370.0*h(Ra - 1.57) + 0.609 

 

Solar radiation (Rs) 

Rs = -0.326*Tx2 + 0.0658*Tx*Tn*h(2.68 - Tn) + 0.173*Tx*Tn - 0.251*Tx*h(1.57 - Ra) + 

1.3*Tx - 0.0768*Tn2*h(2.68 - Tn) + 0.307*Tn*h(1.57 - Ra) - 0.288*Tn*h(2.68 - Tn) - 

0.0401*Ra*h(1.57 - Ra) - 0.504*h(1.57 - Ra) + 0.444*h(2.68 - Tn) - 2.23*h(Tn - 2.68) + 

1800.0*h(Ra - 1.57) - 0.36 

 

Maximum relative humidity (RHx) 
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RHx = 0.0379*Tx2*h(2.98 - Tx) + 0.323*Tx*h(2.98 - Tx) + 0.0385*Ra2 - 0.066*Ra*h(2.98 - 

Tx) + 0.385*Ra + 1.36*h(2.98 - Tx) + 35.0*h(Tx - 2.98) - 3.93 

 

Minimum relative humidity (RHn) 

RHn = -0.0112*Tx*Ra*h(2.68 - Tn) + 0.297*Tx*h(2.68 - Tn) - 0.117*Tx*h(2.98 - Tx) + 

3.59*Tx*h(Tx - 2.98) - 0.152*Tx*h(Tn - 2.68) - 1.69*Tx + 0.108*Tn2 - 0.0408*Tn*Ra2 + 

0.0551*Tn*Ra + 0.935*Tn + 0.0663*Ra - 0.0511 

 

Wind speed at 2 m (Ws) 

Ws = 0.0223*Tx2*Ra + 0.0307*Tx2*h(3.22 - Tn) - 0.0569*Tx2 - 0.0567*Tx*Tn*h(3.22 - Tn) 

- 0.357*Tx*h(3.22 - Tn) + 0.93*Tx + 0.144*Tn*h(1.57 - Ra) - 0.0717*Ra*h(1.57 - Ra) - 

0.206*h(1.57 - Ra) + 0.201*h(3.22 - Tn) - 1.51*h(Tn - 3.22) + 2690.0*h(Ra - 1.57) - 0.449 

 

Temperature- and relative humidity-based models 

Reference evapotranspiration (ETo) 

ETo = 0.0171*Tx2*RHn - 0.0068*Tx*RHx*RHn + 0.211*Tx*RHn + 0.237*Tx - 

0.0588*Tn*RHx - 0.149*Tn*RHn - 0.0902*RHx*RHn - 0.263*RHx + 0.0734*RHn2 + 

0.168*RHn*h(1.57 - Ra) - 0.7*RHn - 0.457*h(1.57 - Ra) + 724.0*h(Ra - 1.57) + 0.805 

 

Solar radiation (Rs) 

Rs = 0.0365*Tx*RHn*h(1.57 - Ra) - 0.0701*Tx*RHn*h(2.33 - Tn) - 0.173*Tx*RHn*h(Tn - 

2.33) + 0.329*Tx*RHn + 0.0196*RHn3 - 0.0164*RHn2 + 0.211*RHn*h(1.57 - Ra) - 1.01*RHn 

- 0.454*h(1.57 - Ra) + 1230.0*h(Ra - 1.57) + 0.844 

 

Wind speed at 2 m (Ws) 

Ws = -0.723*Tx + 0.0831*Tn*h(1.57 - Ra) + 0.143*Tn - 0.0375*RHx2 - 0.137*RHx*RHn + 

0.067*RHx*h(2.33 - Tn) - 0.598*RHx + 0.0409*RHn2 + 0.132*RHn*h(2.33 - Tn) + 

0.405*RHn*h(Tn - 2.33) - 0.59*RHn - 0.0404*Ra*h(1.57 - Ra) - 0.238*h(1.57 - Ra) + 

1660.0*h(Ra - 1.57) + 0.445 
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Article 4: Selecting models for the estimation of reference evapotranspiration for 

irrigation scheduling purposes 

 

Abstract: Alternative models for the estimation of reference evapotranspiration (ETo) are 

typically assessed using traditional error metrics, such as root mean square error (RMSE), 

which may not be sufficient to select the best model for irrigation scheduling purposes. Thus, 

this study analyzes the performance of the original and calibrated Hargreaves-Samani (HS), 

Romanenko (ROM) and Jensen-Haise (JH) equations, initially assessed using traditional error 

metrics, for use in irrigation scheduling, considering the simulation of different irrigation 

intervals/time scales. Irrigation scheduling was simulated using meteorological data collected 

in Viçosa-MG and Mocambinho-MG, Brazil. The Penman-Monteith FAO-56 equation was 

used as benchmark. In general, the original equations did not perform well to estimate ETo, 

except the ROM and HS equations used at Viçosa and Mocambinho, respectively. Calibration 

and the increase in the time scale provided performance gains. When applied in irrigation 

scheduling, the calibrated HS and JH equations showed the best performances. Even with 

greater errors in estimating ETo, the calibrated HS equation performed similarly or better than 

the calibrated JH equation, as it had errors with greater potential to be canceled during the soil 

water balance. Finally, in addition to using error metrics, the performance of the models 

throughout the year should be considered in their assessment. Furthermore, simulating the 

application of ETo models in irrigation scheduling can provide valuable information for 

choosing the most suitable model. 

Keywords: calibration, empirical equations, error metrics, model assessment 

 

1 Introduction 

Irrigation is a very important practice to ensure good agricultural productions in arid and 

semiarid areas. In addition, it can contribute to reduce production risks, even in areas with 

reasonable rainfall levels, and can be used in greenhouse production. However, despite its 

benefits, irrigation should be used properly to avoid excessive or insufficient water application. 

In this sense, irrigation scheduling plays a key role, allowing one to provide water to different 

crops according to their requirements [1]. 

Irrigation scheduling can be performed using different approaches, but it is commonly 

based on reference evapotranspiration (ETo), which is typically computed using meteorological 

data [2–7]. ETo can be used as basis to compute the evapotranspiration of different crops. To 

accomplish this, a crop coefficient (Kc) and a water stress coefficient (Ks) are used to convert 
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ETo to the evapotranspiration of a particular crop, considering its development phase and the 

soil water availability [6,8]. 

ETo can be estimated using the Penman-Monteith FAO-56 (PM) equation, recommended 

by the Food and Agriculture Organization (FAO) [2,8]. This equation performs well in different 

regions of the world. However, in places with low meteorological data availability, its 

application becomes limited, since it requires air temperature, relative humidity, solar radiation 

and wind speed data [9,10]. 

To make it possible to estimate ETo using fewer meteorological data, several studies have 

evaluated the potential of empirical equations and machine learning models to estimate ETo 

under different meteorological data availability scenarios [10–15]. These alternative models 

can be important options for the estimation of ETo, however they typically have a limited 

performance. According to the performance of a particular model, it can be considered suitable 

or not for irrigation scheduling purposes. 

To assess the performance of models for the estimation of ETo, traditional error metrics, 

such as root mean square error (RMSE), mean absolute error (MAE), mean bias error (MBE) 

and coefficient of determination (R2), are typically used [11–14,16]. Overall, these metrics 

compute the dissimilarity (error) or similarity between the estimates provided by a reference 

model, which is commonly represented by the PM equation, and a model under evaluation. 

Based on a single error metric or on a set of error metrics, it is possible to define the most 

efficient model to estimate ETo as the one with lower errors in relation to the reference model. 

However, when selecting models for irrigation scheduling, the use of the strategy mentioned 

above do not provide a direct assessment of the performance of the models for this specific 

purpose. 

In irrigation scheduling, irrigation frequency can have a significant influence on the 

performance of the models since when grouping daily ETo values in longer periods, the 

prediction errors may decrease. In addition, when calculating crop evapotranspiration (ETc) 

using a water stress coefficient (Ks), problems with ETo overestimation, which cause ETc 

overestimation, can be partially reduced during the soil water balance since the estimated soil 

water content will drop faster, promoting higher Ks reduction, which reduces the next ETc 

values calculated. Other important factor is the behavior of the ETo model over time. For 

instance, a model with random errors over time can has its errors partially canceled during the 

soil water balance. Finally, the rainfall distribution over the year can also impact the 

performance of irrigation scheduling performed with alternative ETo models. Given the 
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dynamics of irrigation scheduling, it is highlighted that the simple use of error metrics may not 

be sufficient to select the best ETo model for irrigation scheduling purposes. 

Despite the importance of the development of methodologies for a better assessment of 

models for the estimation of ETo for irrigation scheduling purposes, according to our 

knowledge, so far, this type of study has not been found. Thus, the objective of this study was 

to analyze the performance of three original and calibrated empirical equations, initially 

evaluated using traditional error metrics, for irrigation scheduling, considering the simulation 

of different irrigation intervals. 

 

2 Materials and methods 

Database 

Hourly data from two automatic weather stations (2015-2017) of the Brazilian National 

Institute of Meteorology (INMET) located in the municipalities of Viçosa and Mocambinho, 

which are located in the state of Minas Gerais, Brazil, were used. Maximum and minimum air 

temperature, mean relative humidity, solar radiation, wind speed (10 m) and rainfall data were 

used. Wind speed measured at 10 m height was converted to 2 m height, as suggested by Allen 

et al. [8]. The hourly data were converted to a daily timescale. Days with missing data were 

removed. The weather stations used in this study were selected because they represent relatively 

different climatic conditions. The mean values of the meteorological variables used, in the 

periods considered to calibrate the equations (2015-2016) and to assess their performances 

(2017), are presented in Table 1. The database is available in Supporting information or directly 

from INMET (https://portal.inmet.gov.br/dadoshistoricos). 

 

Table 1. Mean values of the meteorological variables used in the study. 

Viçosa (Latitude: -20.77°, longitude: -42.87° and altitude: 712 m) 

Period Tmax Tmin RH Ws Rs P ETo 

2015-2016 28.1 16.2 78.1 0.7 16.7 1194 3.3 

2017 27.4 15.4 76.7 0.6 16.5 847 3.2 

Mocambinho (Latitude: -15.08°, longitude: -44.00° and altitude: 460 m) 

2015-2016 33.6 19.1 56.7 0.8 21.6 551 4.6 

2017 32.9 18.3 57.1 0.9 21.9 573 4.6 

Tmax - maximum air temperature (°C); Tmin - minimum air temperature (°C); RH - mean relative humidity (%); Ws 

- wind speed (2 m) (m s-1); Rs - solar radiation (MJ m-2 d-1); P - annual rainfall (mm); ETo - reference 

evapotranspiration (mm d-1). 
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Irrigation scheduling - Simulation configurations 

To carry out irrigation scheduling, the soil water inputs (rainfall and irrigation) and output 

(evapotranspiration) were computed. Crop evapotranspiration (ETc) was calculated based on 

Equation 1, as recommended by Allen et al. [8] and Bernardo et al. [17]. Ks coefficient is used 

to adjust ETc for water deficit conditions. When adjusted for water deficit conditions, as 

considered in the present study, it is common to refer to ETc as actual evapotranspiration (ETa) 

or adjusted ETc. In this study, the denotation ETc was maintained. 

                                                                                        (1) 

where ETc - crop evapotranspiration, mm d-1; ETo - reference evapotranspiration, mm d-1; Kc 

- crop coefficient; Ks - water stress coefficient. 

ETo was obtained using different equations, which are presented later. Ks was calculated 

based on Equation 2 [17]. 

                                                                                             (2) 

Where SWC - soil water content, mm; TAW - total available water, mm. 

                                                                                  (3) 

Where TAW - total available water, mm; FC - field capacity, % (water mass over dry soil mass); 

PWP - permanent wilting point, % (water mass over dry soil mass); BD - soil bulk density, g 

cm-3; z - effective rooting depth, cm. 

Once ETc has been obtained, the soil water balance was computed based on Equation 4. 

The initial value of the soil water content (SWC) was equal to TAW. Effective rainfall (rainfall 

stored in the root zone) was considered equal to total rainfall, if total rainfall does not exceed 

the current soil water deficit (TAW – SWC), or equal to the current soil water deficit, otherwise.  

                                                                     (4) 

Where SWCi - soil water content on the current day, mm; SWCi-1 - soil water content on the 

previous day, mm; ETc - crop evapotranspiration, mm; Pe - effective rainfall, mm; I - net 

irrigation depth, mm. 

 

Knowing the current SWC, irrigation was computed in order to return SWC to field 

capacity. Thus, net irrigation depth was obtained by subtracting SWC from TAW (TAW - 

SWC). The parameters used for the simulations were as follows: field capacity (FC) = 30%, 

permanent wilting point (PWP) = 15%, soil bulk density (BD) = 1.1 g cm-3, effective rooting 

depth (z) = 20 cm, and crop coefficient (Kc) = 1.1. Fixed irrigation intervals (1, 2, 4, 6 and 8 
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days) and variable irrigation intervals were considered. For variable irrigation intervals, the 

critical minimum soil water content was defined as 50% of TAW, which is considered by using 

a soil water depletion fraction for no stress (p), also called soil water availability factor (f), 

equal to 0.5. It is assumed that below this water content the crop begins to be affected by water 

deficit. To prevent the soil water content from exceeding the aforementioned critical minimum 

limit, irrigation was carried out when the soil water content was 40% below TAW. The 

simulations were performed using data from the year 2017, with data from 2015-2016 reserved 

to calibrate the empirical equations. 

Estimation of reference evapotranspiration 

Daily ETo estimated using the PM equation (Equation 5) was employed as the standard 

method for calibration and evaluation of the empirical equations. All procedures necessary to 

calculate ETo were performed according to the recommendations of Allen et al. [8]. Although 

the PM equation is also subject to errors, it has good reliability and can be used as a standard 

for the development and calibration of other models [8,9]. 

 = 
0.408 ∆ (Rn- G) + γ

900

Tmean+273
 u2 (es- ea) 

∆ + γ (1 + 0.34 u2)
                                                            (5) 

where ETo - reference evapotranspiration, mm d-1; Rn - net solar radiation, MJ m-2 day-1; G - 

soil heat flux, MJ m-2 day-1 (considered to be null for daily estimates); Tmean - daily mean air 

temperature, °C, u2 - wind speed at a 2 m height, m s-1; es - saturation vapor pressure, kPa; ea - 

actual vapor pressure, kPa; ∆ - slope of the saturation vapor pressure function, kPa ºC-1; and γ 

- psychrometric constant, kPa ºC-1. 

ETo was also estimated using the empirical equations shown in Table 2. 

 

Table 2. Empirical equations used in the study. 

Name / Inputs Equation Reference 

Hargreaves-Samani (T) ETo = 0.0023Ra(Tmean + 17.8) (Tmax - Tmin)
0.5 [18] 

Romanenko (T, RH) ET Tmean  [19] 

Jensen-Haise (T, Rs) ET Rs Tmean   [20] 

T - air temperature, °C; RH – mean relative humidity, %; Ra - extraterrestrial radiation, mm d-1; Tmax - maximum 

air temperature, °C; Tmin - minimum air temperature, °C; Tmean - mean air temperature ([Tmax+ Tmin]/2), °C; Rs - 

solar radiation, MJ m-2 d-1. 

 

To adjust the empirical equations to the local climate conditions, they were calibrated 

based on simple linear regression, as recommended by Allen et al. [8], using data from 2015 to 
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2016. For this, daily ETo values estimated by the equation to be calibrated were used as the 

independent variable and ETo values estimated by the PM equation were used as the dependent 

variable. The intercept (a) and slope (b) values were used as calibration parameters, according 

to the following equation. The values obtained for the calibration parameters “a” and “b” are 

presented in Table 3. 

                                                                                   (6) 

where ETocal - calibrated reference evapotranspiration, mm d-1; “a” and “b” - calibration 

parameters; ETo - reference evapotranspiration estimated by the original (non-calibrated) 

empirical equation, mm d-1. 

 

Table 3. Calibration parameters obtained for the different empirical equations evaluated at 

Viçosa and Mocambinho stations. 

  Viçosa Mocambinho 

Equation a b a b 

Hargreaves-Samani -0.76 0.90 -0.46 0.92 

Romanenko 0.79 0.83 2.26 0.33 

Jensen-Haise 0.35 0.66 0.51 0.61 

 

Performance comparison criteria 

The performance of the empirical equations for the estimation of ETo was evaluated using 

data from the year 2017, the same period considered for irrigation scheduling. For that, ETo 

obtained with the PM equation was used as standard. The empirical equations were evaluated 

in different time scales (1, 2, 4, 6 and 8 days) by summing daily estimates. The error metrics 

listed below were used. Except for coefficient of determination (R2), normalized values of each 

error metric were calculated. For that, the error metrics values were divided by the mean of the 

analyzed variable (mean of the observed values). For time scales equal or greater than 2 days, 

the error metrics, except for R2, were divided by the time scale in order to keep the unit mm d-

1. 

                                                                           (7) 

                                                                                   (8) 

                                                                                   (9) 
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                                                                     (10) 

where RMSE - root mean square error, mm d-1; MAE - mean absolute error, mm d-1; MBE - 

mean bias error, mm d-1; R2 - coefficient of determination; Pi - predicted value, mm d-1; Oi - 

observed value, mm d-1;  - mean of the predicted values, mm d-1;  - mean of the observed 

values, mm d-1; n - number of data pairs. 

To assess the performance of the equations in the simulated irrigation scheduling, total 

ETc, total net irrigation depth and total effective rainfall estimated when using each equation 

were compared. In addition, after the end of the irrigation scheduling carried out with each 

empirical equation, the soil water balance was recomputed considering the irrigations 

recommended over the management period and ETc recalculated using ETo obtained with the 

PM equation (Fig 1). All the computations were performed in a daily basis. ETc and effective 

rainfall obtained in the recomputed soil water balance were denoted as ETc (true) and Pe (true), 

respectively. This procedure was performed to assess the real performance of the irrigation 

scheduling carried out with the different empirical equations. In this way, it is possible to 

analyze ETc that actually occurred during the management period and check the occurrence of 

irrigation excesses or deficits when using the different empirical equations to schedule 

irrigation. 

 

Fig 1. Proposed methodology to assess the performance of different empirical equations for 

irrigation scheduling. 
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Based on the recomputed soil water balance (Fig 1), the irrigation excesses and deficits 

occurred during the management period were calculated. Irrigation excesses were computed as 

the sum of the net irrigation depths that resulted in soil water contents that exceeded field 

capacity. To compute irrigation deficits for the simulations with fixed irrigation intervals, 

deficit was considered as the reduction of ETc (true) observed for each empirical equation in 

relation to ETc observed when using the PM equation to schedule irrigation. It was done 

because water deficit promotes reductions in ETc, which is related to a worse crop development. 

For irrigation scheduling with variable irrigation intervals, the occurrence of deficits was 

computed as the sum of the soil water content deficits in relation to the critical minimum water 

content considered (50% of TAW, f=0.5). Two classes of deficit were defined: (i) cases in 

which deficits were equivalent to 0.5<f≤0.6 (weak deficit), and (ii) f>0.6 (moderate to strong 

deficit). These deficits were calculated according to Equations 11 and 12. 

            (11) 

                                  (12) 

                                                                                                    (13) 

                                                                                                    (14) 

where CL1 - critical limit soil water content referring to f=0.5, mm; CL2 - critical limit soil 

water content referring to f=0.6, mm; SWCi - soil water content value, mm; TAW - total 

available water, mm. 

 

3 Results and discussion 

Estimation of ETo 

Among the non-calibrated equations, the Romanenko equation (ROM) had the best 

performance for the estimation of ETo at Viçosa, with lower RMSE and MAE values in the 

various time scales considered (Table 4). This equation was followed by the Jensen-Haise (JH) 

equation and the Hargreaves-Samani (HS) equation, in that order. However, after calibration, 

the ROM equation exhibited the worst performance. The best performance was obtained by the 

JH equation, followed by the HS equation. 
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Table 4. Performance of the original and calibrated HS, ROM and JH equations for different 

time scales at Viçosa. Values in parentheses indicate the normalized error metrics. 

Equation Scale (d) RMSE (mm d-1) MAE (mm d-1) MBE (mm d-1) R2 

HS 

1 1.30 (41%) 1.21 (38%) 1.20 (38%) 0.84 

2 1.26 (40%) 1.20 (38%) 1.20 (38%) 0.89 

4 1.24 (39%) 1.20 (38%) 1.20 (38%) 0.92 

6 1.22 (39%) 1.19 (38%) 1.19 (38%) 0.94 

8 1.22 (39%) 1.20 (38%) 1.20 (38%) 0.96 

HS_cal 

1 0.47 (15%) 0.36 (11%) 0.01 (0%) 0.84 

2 0.37 (12%) 0.28 (9%) 0.01 (0%) 0.89 

4 0.29 (9%) 0.21 (7%) 0.00 (0%) 0.92 

6 0.25 (8%) 0.19 (6%) 0.00 (0%) 0.94 

8 0.18 (6%) 0.13 (4%) 0.00 (0%) 0.96 

ROM 

1 0.72 (23%) 0.56 (18%) -0.10 (-3%) 0.68 

2 0.65 (20%) 0.52 (16%) -0.09 (-3%) 0.70 

4 0.60 (19%) 0.50 (16%) -0.09 (-3%) 0.69 

6 0.59 (19%) 0.48 (15%) -0.09 (-3%) 0.67 

8 0.58 (18%) 0.49 (15%) -0.09 (-3%) 0.66 

ROM_cal 

1 0.70 (22%) 0.59 (19%) 0.17 (6%) 0.68 

2 0.64 (20%) 0.55 (17%) 0.18 (6%) 0.70 

4 0.60 (19%) 0.53 (17%) 0.18 (6%) 0.69 

6 0.59 (19%) 0.53 (17%) 0.18 (6%) 0.67 

8 0.58 (18%) 0.52 (17%) 0.18 (6%) 0.66 

JH 

1 1.23 (39%) 1.09 (34%) 1.08 (34%) 0.97 

2 1.20 (38%) 1.08 (34%) 1.08 (34%) 0.98 

4 1.17 (37%) 1.08 (34%) 1.08 (34%) 0.98 

6 1.16 (37%) 1.08 (34%) 1.08 (34%) 0.98 

8 1.15 (36%) 1.08 (34%) 1.08 (34%) 0.98 

JH_cal 

1 0.20 (6%) 0.15 (5%) -0.02 (-1%) 0.97 

2 0.18 (6%) 0.14 (5%) -0.02 (-1%) 0.98 

4 0.17 (5%) 0.14 (4%) -0.02 (-1%) 0.98 

6 0.17 (5%) 0.14 (4%) -0.02 (-1%) 0.98 

8 0.16 (5%) 0.14 (4%) -0.02 (-1%) 0.98 
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HS - Hargreaves-Samani; ROM - Romanenko; JH - Jensen-Haise. “_cal” indicates the calibrated version of an 

equation. 

 

At Mocambinho, the HS equation showed the best performance among the non-calibrated 

equations, followed by the JH and ROM equations, in that order (Table 5). After calibration, as 

for Viçosa, the JH equation showed the best performance, followed by the HS and ROM 

equations. Possibly the HS equation obtained the best performance among the non-calibrated 

equations because it was developed for a dry climate region (semiarid) [21], such as 

Mocambinho. 

 

Table 5. Performance of the original and calibrated HS, ROM and JH equations for different 

time scales at Mocambinho. Values in parentheses indicate the normalized error metrics. 

Equation Scale (d) RMSE (mm d-1) MAE (mm d-1) MBE (mm d-1) R2 

HS 

1 1.00 (22%) 0.87 (19%) 0.82 (18%) 0.76 

2 0.95 (21%) 0.83 (18%) 0.82 (18%) 0.81 

4 0.90 (20%) 0.82 (18%) 0.82 (18%) 0.86 

6 0.89 (19%) 0.82 (18%) 0.82 (18%) 0.88 

8 0.88 (19%) 0.82 (18%) 0.82 (18%) 0.88 

HS_cal 

1 0.57 (13%) 0.43 (9%) -0.07 (-2%) 0.76 

2 0.48 (11%) 0.37 (8%) -0.07 (-2%) 0.81 

4 0.39 (9%) 0.32 (7%) -0.07 (-2%) 0.86 

6 0.35 (8%) 0.28 (6%) -0.07 (-2%) 0.88 

8 0.33 (7%) 0.27 (6%) -0.07 (-2%) 0.88 

ROM 

1 2.55 (56%) 2.19 (48%) 2.04 (45%) 0.39 

2 2.52 (55%) 2.19 (48%) 2.05 (45%) 0.39 

4 2.49 (55%) 2.15 (47%) 2.05 (45%) 0.38 

6 2.45 (54%) 2.13 (47%) 2.05 (45%) 0.36 

8 2.43 (53%) 2.12 (46%) 2.05 (45%) 0.34 

ROM_cal 

1 0.90 (20%) 0.77 (17%) -0.11 (-2%) 0.39 

2 0.85 (19%) 0.73 (16%) -0.11 (-2%) 0.39 

4 0.80 (18%) 0.69 (15%) -0.11 (-2%) 0.38 

6 0.79 (17%) 0.67 (15%) -0.11 (-2%) 0.36 

8 0.78 (17%) 0.67 (15%) -0.11 (-2%) 0.34 
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JH 

1 2.10 (46%) 1.94 (43%) 1.94 (43%) 0.91 

2 2.07 (46%) 1.94 (43%) 1.94 (43%) 0.91 

4 2.05 (45%) 1.94 (43%) 1.94 (43%) 0.92 

6 2.04 (45%) 1.94 (43%) 1.94 (43%) 0.92 

8 2.03 (45%) 1.94 (43%) 1.94 (43%) 0.92 

JH_cal 

1 0.36 (8%) 0.26 (6%) -0.07 (-2%) 0.91 

2 0.33 (7%) 0.25 (5%) -0.07 (-2%) 0.91 

4 0.30 (7%) 0.23 (5%) -0.07 (-2%) 0.92 

6 0.28 (6%) 0.21 (5%) -0.07 (-2%) 0.92 

8 0.28 (6%) 0.20 (4%) -0.07 (-2%) 0.92 

HS - Hargreaves-Samani; ROM - Romanenko; JH - Jensen-Haise. “_cal” indicates the calibrated version of an 

equation. 

 

By increasing the time scale, there were performance gains for all the equations at both 

municipalities considered, with reductions in the error metrics (RMSE, MAE and MBE) and 

increase in R2. This is because part of the errors in daily estimates can be canceled when 

considering longer time periods.  

All the non-calibrated equations evaluated, with exception for the ROM equation used at 

Viçosa, showed relatively high MBE values at both studied locations, which indicates that there 

was a systemic overestimation of ETo. These equations obtained only small performance gains 

with the increase of the time scale. Furthermore, they did not reach RMSE and MAE values as 

low as those obtained by the calibrated equations, which showed a low general tendency to 

overestimate or underestimate ETo (low MBE absolute values). 

Calibration promoted large reductions in RMSE and MAE values. After calibration, the 

equations with higher R2 values, with emphasis on the JH equation, even with high RMSE and 

MAE values before calibration, exhibited low errors. It should be noted that equations with 

good structure, which can adequately map the relationship between the input and output 

variables, reaching high R2 values, can be benefited by calibration [16]. 

Based on the metrics presented in Tables 4 and 5, one can easily rank the performance of 

the models, identifying those with the highest performances. However, it can still be difficult 

to infer whether a particular model is suitable or not for irrigation scheduling purposes. 

Irrigation scheduling 

The results of the irrigation scheduling simulations with fixed irrigation intervals for 

Viçosa and Mocambinho are shown in Tables 6 and 7, respectively. The increase in irrigation 
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intervals promoted, in all cases, reductions in ETc values and in the total net irrigation depths 

applied. The decrease in ETc occurs due to the larger reductions in the soil moisture promoted 

by larger irrigation intervals, which reduces Ks values and, consequently, ETc. The reduction 

in the net irrigation depths occurs due to the reduction in ETc and due to the increase in effective 

rainfall, as seen in Tables 6 and 7. Longer irrigation intervals promote greater use of rainfall 

(i.e., more rainwater is stored in the root zone) because they increase the chance of soil having 

less moisture, in relation to shorter irrigation intervals, when rainfall reaches the soil. 

 

Table 6. Information on the irrigation scheduling carried out at Viçosa with the PM equation 

and original and calibrated empirical equations considering different irrigation intervals (II). 

All the variables, except for II, are expressed in mm. 

Equation II (d) ETc ETc (true) NID Pe Pe (true) Deficit Excess 

PM 

1 1204 1204 1014 189 189 - - 

2 1186 1186 958 229 229 - - 

4 1150 1150 863 286 286 - - 

6 1114 1114 767 348 348 - - 

8 1074 1074 697 377 377 - - 

HS 

1 1663 1204 1402 262 189 0 387 

2 1631 1186 1318 314 229 0 360 

4 1561 1150 1187 374 286 0 324 

6 1485 1114 1059 426 348 0 292 

8 1393 1074 930 463 377 0 233 

HS_cal 

1 1206 1192 999 207 214 12 22 

2 1189 1175 941 248 253 11 19 

4 1154 1138 849 305 304 11 14 

6 1120 1105 759 361 358 9 12 

8 1082 1063 686 396 385 11 8 

ROM 

1 1166 1184 1005 160 256 20 77 

2 1149 1168 947 201 289 18 69 

4 1113 1132 853 260 340 17 60 

6 1077 1094 761 316 387 20 53 

8 1035 1054 692 343 407 20 45 

ROM_cal 1 1270 1191 1088 182 232 13 129 
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2 1251 1174 1027 224 270 12 122 

4 1211 1139 928 282 321 11 111 

6 1170 1101 828 342 373 13 100 

8 1122 1061 757 365 398 13 93 

JH 

1 1614 1204 1391 223 189 0 377 

2 1581 1186 1309 271 229 0 352 

4 1508 1150 1166 342 286 0 303 

6 1425 1114 1029 395 348 0 263 

8 1331 1074 899 431 377 0 202 

JH_cal 

1 1196 1197 1011 185 209 6 23 

2 1179 1180 955 224 247 6 22 

4 1143 1144 864 280 300 6 20 

6 1109 1109 769 340 359 5 19 

8 1070 1068 700 370 385 6 17 

NID - total net irrigation depth; Pe - effective rainfall; Deficit - ETc deficit in relation to ETc obtained in the 

irrigation scheduling performed with the PM equation; Excess - excessive irrigation; ETc (true) and Pe (true) - 

ETc and Pe recalculated using ETo obtained with the PM equation. All the variables are expressed in mm. HS - 

Hargreaves-Samani; ROM - Romanenko; JH - Jensen-Haise. “_cal” indicates the calibrated version of an equation. 

 

Table 7. Information on the irrigation scheduling carried out at Mocambinho with the PM 

equation and original and calibrated empirical equations considering different irrigation 

intervals (II). All the variables, except for II, are expressed in mm. 

Equation II (d) ETc ETc (true) NID Pe Pe (true) Deficit Excess 

PM 

1 1809 1809 1651 158 158 - - 

2 1768 1768 1550 213 213 - - 

4 1680 1680 1456 219 219 - - 

6 1569 1569 1292 271 271 - - 

8 1423 1423 1157 259 259 - - 

HS 

1 2133 1808 1935 199 158 1 285 

2 2078 1768 1815 256 213 0 265 

4 1954 1680 1683 264 219 0 227 

6 1788 1569 1459 320 271 0 166 

8 1571 1423 1259 301 259 0 102 
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HS_cal 

1 1781 1764 1606 175 179 44 21 

2 1742 1726 1508 228 228 43 16 

4 1661 1641 1419 236 230 39 15 

6 1559 1538 1266 287 277 31 12 

8 1428 1405 1147 274 261 18 11 

ROM 

1 2619 1807 2465 154 163 2 823 

2 2524 1766 2310 209 214 2 764 

4 2277 1678 2050 214 219 2 597 

6 1917 1567 1621 279 271 3 332 

8 1572 1419 1295 257 259 4 142 

ROM_cal 

1 1765 1744 1609 156 235 65 106 

2 1728 1704 1521 203 270 65 101 

4 1647 1622 1434 209 263 58 91 

6 1548 1519 1288 255 297 50 80 

8 1420 1392 1170 245 273 31 60 

JH 

1 2580 1809 2388 193 158 0 737 

2 2493 1768 2230 254 213 0 680 

4 2279 1680 2006 264 219 0 550 

6 1953 1569 1605 328 271 0 312 

8 1649 1423 1321 308 259 0 164 

JH_cal 

1 1780 1766 1625 155 171 43 29 

2 1741 1727 1525 211 223 41 27 

4 1657 1644 1436 216 226 37 24 

6 1553 1542 1279 269 276 27 19 

8 1418 1411 1155 255 260 13 13 

NID - total net irrigation depth; Pe - effective rainfall; Deficit - ETc deficit in relation to ETc obtained in the 

irrigation scheduling performed with the PM equation; Excess - excessive irrigation; ETc (true) and Pe (true) - 

ETc and Pe recalculated using ETo obtained with the PM equation. All the variables are expressed in mm. HS - 

Hargreaves-Samani; ROM - Romanenko; JH - Jensen-Haise. “_cal” indicates the calibrated version of an equation. 

 

Among the non-calibrated equations, only the ROM equation used at Viçosa obtained 

total net irrigation depth close to that obtained with the PM equation. In all other cases, 

irrigation was overestimated. Thus, such equations promoted excessive water application, 

increasing the soil moisture above field capacity, as seen in the “Excess” column of Tables 6 
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and 7. However, after calibration, all the equations obtained total net irrigation depths close to 

those obtained when using the PM equation. Such behaviors corroborate the reductions in MBE 

absolute values observed for the estimation of ETo (Tables 4 and 5). 

Although the calibrated equations obtained total net irrigation depths close to those 

obtained using the PM equation, it does not mean that they had the same performance of the 

PM equation. It may happen that, over the year, the overestimated irrigations have been 

compensated for the underestimated irrigations, canceling the errors. Thus, irrigation 

scheduling must be evaluated considering its dynamics over time. 

To analyze the performance of the equations considering their time dynamics, it is 

possible to evaluate the occurrence of excessive water applications, as well as reductions of 

ETc under adequate irrigation conditions (i.e., irrigation scheduling using the PM equation) in 

relation to ETc observed under lower water application (i.e., irrigation scheduling using 

alternative equations). In this sense, although most of the calibrated equations resulted in total 

net irrigation depths close to those calculated with the PM equation, there were both irrigation 

underestimation and overestimation during the period evaluated, as shown in columns “Deficit” 

and “Excess” in Tables 6 and 7. However, after calibrating the equations, there were, in general, 

large reductions in the excessive water applications. On the other hand, the calibrated equations 

promoted certain irrigation deficits, slightly reducing total ETc (true) in relation to that observed 

when scheduling irrigation with the PM equation. For both study sites, the calibrated HS and 

JH equations were the best options, promoting low excessive water applications and only small 

reductions in ETc (true). 

When scheduling irrigation using variable irrigation intervals, a critical soil water content 

is adopted to prevent the crop from suffering water deficit. Thus, it is necessary that the current 

soil water content is always above or, at most, slightly below the critical minimum limit 

considered. Thus, alternative models for the estimation of ETo must be able to provide 

sufficiently reliable ETo estimates to meet the condition described above. The results of the 

irrigation scheduling simulations with variable irrigation intervals are shown in Table 8. 

 

Table 8. Information on the irrigation scheduling carried out at Viçosa and Mocambinho with 

the PM equation and original and calibrated empirical equations using variable irrigation 

intervals. All the variables are expressed in mm. 

Station Equation ETc 
ETc 

(true) 
NID Pe 

Pe 

(true) 

Deficit 

(0.5<f≤0.6) 

Deficit 

(f>0.6) 
Excess 



140 

 

Viçosa 

PM 1142 1142 866 276 276 5 (7 days) 0 - 

HS 1580 1162 1252 327 249 0 0 340 (81 days) 

HS_cal 1144 1127 816 327 320 29 (24 days) 0 10 (14 days) 

ROM 1106 1122 835 271 347 36 (23 days) 52 (11 days) 61 (33 days) 

ROM_cal 1204 1133 916 288 324 33 (21 days) 18 (4 days) 108 (41 days) 

JH 1535 1162 1224 311 262 0 0 324 (78 days) 

JH_cal 1134 1134 854 280 299 22 (16 days) 5 (1 day) 19 (26 days) 

Moc. 

PM 1713 1713 1448 256 256 37 (31 days) 0 - 

HS 2029 1736 1739 284 233 5 (12 days) 0 242 (107 days) 

HS_cal 1687 1670 1411 267 261 80 (47 days) 107 (20 days) 12 (14 days) 

ROM 2498 1751 2255 238 233 11 (9 days) 0 742 (127 days) 

ROM_cal 1677 1653 1433 240 298 66 (42 days) 247 (38 days) 91 (42 days) 

JH 2460 1754 2198 254 213 0 0 663 (132 days) 

JH_cal 1686 1672 1431 249 259 64 (46 days) 153 (25 days) 24 (38 days) 

NID - total net irrigation depth; Pe - effective rainfall; Deficit (0.5<f≤0.6) and Deficit (f>0.6) - sum of soil water 

content deficits in relation to the critical level (50% of TAW, f=0.5) in the cases of deficits equivalent to 0.5<f≤0.6 

and f>0.6, respectively (values in parentheses indicate the number of days that the deficits occurred); Excess - 

excessive irrigation (values in parentheses indicate the number of days that the irrigation excesses occurred); ETc 

(true) and Pe (true) - ETc and Pe recalculated using ETo obtained with the PM equation. All the variables are 

expressed in mm. HS - Hargreaves-Samani; ROM - Romanenko; JH - Jensen-Haise. “_cal” indicates the calibrated 

version of an equation. 

 

As previously observed, among the non-calibrated equations, only the ROM equation 

used at Viçosa obtained total net irrigation depth close to that obtained with the PM equation. 

In the other cases, the total net irrigation depths were much higher than those calculated with 

the PM equation. After calibrations, there were, in general, reductions in the irrigation excesses. 

In relation to the irrigation deficits over the period evaluated, accumulated deficits in 

relation to the critical soil water content (f=0.5) were computed in two classes: (i) cases in 

which deficits were equivalent to 0.5<f≤0.6 (weak deficit), and (ii) f>0.6 (moderate to strong 

deficit). Even using the PM equation, there were some weak deficit events (0.5<f≤0.6). This 

behavior is expected because even though the soil has not reached the limit water content for 

irrigation (in this study, irrigation was carried out when the soil water content was 40% below 

TAW) on a particular day, it is possible that, on the next day, the soil water content is already 

below the critical limit adopted (50% of TAW). However, it is expected that this level of stress, 
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which remains for a short period and is of low intensity, does not cause significant damage to 

the crops. 

At Viçosa, the calibrated HS and JH equations performed the best, with similar 

performance to each other. For Mocambinho, these equations also obtained the best 

performances; however, the calibrated HS equation was slightly better than the calibrated JH 

equation since it had lower moderate to strong deficits (f>0.6) and lower irrigation excesses. 

These behaviors partially contradict the results obtained when directly evaluating the equations 

for the estimation of ETo (Tables 4 and 5), since the calibrated JH equation was considered 

better than the calibrated HS equation in all the studied scenarios. To better assess the irrigation 

scheduling carried out with the different equations for the estimation of ETo, the soil water 

content behaviors during the evaluation period at Viçosa and Mocambinho are shown in Figs 2 

and 3, respectively. After the end of the irrigation scheduling simulations with each empirical 

equation, the soil water contents were recalculated based on ETo obtained with the PM 

equation, as shown in Fig 1. The information presented in Figs 2 and 3 is referring to these 

recalculated water contents. On the days when there was irrigation, the water contents presented 

refer to the moment before irrigation. 
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Fig 2. Soil water content (SWC) for irrigation scheduling with variable irrigation intervals at 

Viçosa using the PM equation and the original and calibrated HS, ROM and JH equations. SWC 

values presented were recalculated at the end of the irrigation scheduling (performed with the 

empirical equations) using ETo obtained by the PM equation. Days are numbered according to 

their order throughout the test year. 
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Fig 3. Soil water content (SWC) for irrigation scheduling with variable irrigation intervals at 

Mocambinho using the PM equation and the original and calibrated HS, ROM and JH 

equations. SWC values presented were recalculated at the end of the irrigation scheduling 

(performed with the empirical equations) using ETo obtained by the PM equation. Days are 

numbered according to their order throughout the test year. 
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At Viçosa, both the calibrated HS and JH equations promoted only small water deficits 

below the critical limit (Fig 2). At Mocambinho, when using the calibrated HS and JH 

equations, the soil water content falls considerably in the period of 250 to 300 days, especially 

for the calibrated JH equation (Fig 3). Even though the calibrated JH equation presented better 

metrics than the calibrated HS equation for the estimation of ETo at Mocambinho (Table 5), 

this equation had continuous ETo underestimations in the period around 250-300 days (Fig 4). 

On the other hand, the calibrated HS equation, despite showing, in general, greater deviations 

in relation to ETo obtained with the PM equation, had more alternate ETo underestimates and 

overestimates, which contributes to partially cancel the errors occurred during the irrigation 

scheduling period. Similar behavior was observed for Viçosa (Fig 4). It is also worth 

mentioning that in places with high rainfall levels, problems with ETo underestimation tend to 

be reduced. 
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Fig 4. Deviation of ETo estimated by the calibrated Hargreaves-Samani (HS) and Jensen-Haise 

(JH) equations in relation to ETo obtained with the PM equation at Viçosa and Mocambinho. 

Days are numbered according to their order throughout the test year. 

 

Finally, in addition to evaluating alternative models for the estimation of ETo using error 

metrics such as RMSE, MAE, MBE and R2, it is also important to analyze their behavior 

throughout the year. Furthermore, the simulation of the use of these models for irrigation 

scheduling can help in choosing the best model. Future studies could address the development 

of software, including integration with crop models, for simulating the use of models for the 

estimation of ETo for irrigation scheduling. Thus, it would be possible to evaluate the 

performance of the models considering more specific scenarios of interest. It could be 

considered, for example, the application of an empirical equation only at a certain period of the 

year, irrigation of crops with different cycles, and different types of soil, among other factors. 

Another important issue to be considered in future studies and a limitation of the present study 
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is the use of real field data as benchmark, such as eddy covariance and/or soil water content 

measurements.   

 

4 Conclusions 

Alternative models for the estimation of ETo are typically assessed using error metrics. 

However, the model with the best metrics for the estimation of ETo may not be the best option 

to be used for irrigation scheduling. Despite the importance of the development of 

methodologies for a better assessment of the performance of models for the estimation of ETo 

for irrigation scheduling purposes, according to our knowledge, so far, this type of study has 

not been found. Thus, this study analyzes the performance of three original and calibrated 

empirical equations, initially assessed using traditional error metrics, for irrigation scheduling, 

considering the simulation of different irrigation intervals. Two study sites, Viçosa-MG and 

Mocambinho-MG, Brazil, were used. 

In general, the original empirical equations did not perform well for the estimation of 

ETo, with the exception of the Romanenko and Hargreaves-Samani equations used at Viçosa 

and Mocambinho, respectively. Calibration promoted performance gains, reducing the 

tendency of the equations to overestimate ETo. The increase in the time scale also led to 

reductions in estimation errors. 

When used for irrigation scheduling, the calibrated Hargreaves-Samani and Jensen-Haise 

equations showed the best performances in both Viçosa and Mocambinho stations. Even with 

greater errors when estimating ETo, the calibrated Hargreaves-Samani equation performed 

similarly or better than the calibrated Jensen-Haise equation, as it had errors with greater 

potential to be canceled during the soil water balance. The results obtained are dependent of the 

climate conditions of the study site, thus, the performance of the equations can be very different 

in areas with different climatic conditions. 

Finally, it is suggested that the assessment of models for the estimation of ETo for use in 

irrigation scheduling, in addition to using traditional error metrics, consider the performance of 

the models throughout the year. Furthermore, simulating the application of the models in 

irrigation scheduling can provide valuable information for choosing the most suitable option. 
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General conclusions 

The application of machine learning techniques, which include traditional machine 

learning models and deep learning models, showed great potential for modeling reference 

evapotranspiration (ETo) in the various conditions evaluated. 

The use of hourly temperature and relative humidity data, combined with hourly 

extraterrestrial solar radiation, proved to be a very promising approach to estimate daily ETo in 

scenarios with limited availability of meteorological data. In this approach, 1D convolutional 

neural networks (1D CNN) provided better results than the other models evaluated. 

When predicting ETo for the next seven days, in general, the MIMO (multiple input 

multiple output) prediction strategy was the best alternative, offering good performance and 

lower computational cost. The evaluated deep learning models performed slightly better than 

the traditional machine learning models, and both approaches resulted in better performances 

than those obtained using historical monthly means as a prediction of future ETo values. 

By employing machine learning models to estimate ETo and commonly unavailable 

meteorological data (relative humidity, solar radiation and wind speed), superior performances 

were observed in relation to those obtained with traditional methodologies. The use of multi-

task learning to estimate, in a combined way, missing meteorological data and ETo resulted in 

performances similar to those found when considering individual estimates (single-task 

learning). 

Finally, it was found that in addition to using error metrics, such as root mean square error 

(RMSE), the evaluation of ETo models should also consider the behavior of the models 

throughout the year. Furthermore, simulating the application of ETo models in irrigation 

scheduling can provide valuable information for choosing the most appropriate model. 


