MICHELLE RIGUEIRA OLIVEIRA

ANÁLISES FÍSICO-QUÍMICAS E PERFIL AROMÁTICO DE CERVEJAS PRODUZIDAS COM LÚPULO EM FLOR E PELLET BRASILEIROS E PELLET IMPORTADO

Dissertação apresentada à Universidade Federal de Viçosa, como parte da exigência do Programa de Pós-Graduação em Engenharia Química, para obtenção do título de Magister Scientiae.

Orientador: Alexandre Fontes Pereira

VIÇOSA – MINAS GERAIS
2022
Oliveira, Michelle Rigueira, 1994-
Análises físicos-químicas e perfil aromático de cervejas produzidas com lúpulo em flor e pellet brasileiros e pellet importado / Michelle Rigueira Oliveira. – Viçosa, MG, 2022.
1 dissertação eletrônica (72 f.): il. (algumas color.).

Inclui anexo.
Orientador: Alexandre Fontes Pereira.
Dissertação (mestrado) - Universidade Federal de Viçosa, Departamento de Química, 2022.
Referências bibliográficas: f. 63-68.
DOI: https://doi.org/10.47328/ufvbbt.2022.713

II. Universidade Federal de Viçosa. Departamento de Química. Programa de Pós-Graduação em Engenharia Química. III. Título.

CDD 22. ed. 663.42
MICHELLE RIGUEIRA OLIVEIRA

ANÁLISES FÍSICO-QUÍMICAS E PERFIL AROMÁTICO DE CERVEJAS PRODUZIDAS COM LÚPULO EM FLOR E PELLET BRASILEIROS E PELLET IMPORTADO

Dissertação apresentada à Universidade Federal de Viçosa, como parte da exigência do Programa de Pós-Graduação em Engenharia Química, para obtenção do título de Magister Scientiae.

APROVADA: 12 de agosto de 2022

Assentimento:

Michelle Rigueira Oliveira
Autora

Alexandre Fontes Pereira
Orientador
AGRADECIMENTOS

Agradeço a Deus por me guiar até aqui. Agradeço ao meu avô Waldir, meu anjo da guarda, que ilumina e protege meus passos. Agradeço ao meu pai, Ricardo, por todo apoio emocional, incentivo diário e ajuda na elaboração deste trabalho. A minha mãe, Maria Célia, por sempre me incentivar a correr atrás dos meus sonhos e ser meu conforto nas horas difíceis. A minha madrasta, Lidiane, pelos conselhos e torcida. Aos meus irmãos, Dani e Caio e minha sobrinha Gabi, por serem meu ponto de equilíbrio e deixarem meus dias mais leves. Agradeço a todos os meus familiares que vibram com minhas conquistas. Agradeço ao Gabriel, por estar ao meu lado em todos os momentos, dividindo as alegrias e compartilhando os momentos difíceis. Aos meus sogros e cunhada, pelo apoio e carinho durante este período. Agradeço aos técnicos, professores e funcionários do Departamento de Química e Engenharia Química. Especialmente ao meu orientador, Alexandre, pelas oportunidades de me desenvolver na área de bebidas e pelo incentivo, aos técnicos Luciana e Ricardo, pela disposição em me ajudar a realizar as análises, a professora Patrícia, por toda ajuda e palavras de conforto e incentivo. Ao Ébio, pelos conselhos e todo suporte durante este período. Agradeço a minha melhor amiga e colega de turma, Bruna, pela ajuda, companheirismo e amizade, desde a graduação. A Ana Luíza, que além de compartilhar comigo os momentos de laboratório, se tornou uma amiga. A todos os parceiros de laboratório, aos colegas que encontrei durante esta jornada e que compartilhe momentos e experiências. Agradeço aos meus amigos, os mais antigos e os que fizeram durante este período, que me incentivaram, acreditaram em mim e estiveram ao meu lado durante os momentos que precisei. Grande parte desta conquista eu devo a cada um de vocês.

O presente trabalho foi realizado com apoio da Coordenação de Aperfeiçoamento de Pessoal de Nível Superior – Brasil (CAPES) – Código de Financiamento 001.
RESUMO

A indústria cervejeira teve um grande crescimento em todo o mundo nos últimos vinte anos. Junto com o crescimento do setor de forma geral, houve uma variação no perfil de consumo, o que impulsionou o aumento de pequenas e micros cervejarias. No Brasil, outro fator que deu maior visibilidade ao segmento foi o início do cultivo de lúpulo no país, que apesar de ainda não ter gerado impacto financeiro por estar em fase de desenvolvimento, fomentou as pesquisas acadêmicas envolvendo tanto a matéria-prima em questão quanto o desenvolvimento do processo cervejeiro como um todo. Esse cultivo proporcionou a possibilidade de utilização de flores no processo de produção de pequenas cervejarias, que até então utilizavam apenas os pellets. Com esta nova possibilidade, este estudo buscou utilizar o lúpulo Cascade brasileiro - flor e pellet – e o lúpulo Cascade internacional – americano - para produção de cervejas artesanais Lager, bem como acompanhar os parâmetros da fermentação, que se mostraram satisfatórios e com boa repetibilidade entre as replicatas, caracterizar os produtos finais quanto as principais características físico-químicas, encontrando quantidades bem próximas de teor alcóolico, acidez volátil e coloração para todas as amostras e comparar os perfis aromáticos dos lúpulos brasileiros com o internacional, concluindo que o apesar de algumas diferenças, o perfil sensorial se manteve em todas as análises.

ABSTRACT

OLIVEIRA, Michelle Rigueira, M.Sc., Universidade Federal de Viçosa, August 2022. **Physicochemical analysis and aromatic profile of beers produced with Brazilian flower and pellet hops and imported pellet.** Advisor: Alexandre Fontes Pereira.

The brewing industry has had a great growth worldwide in the last twenty years. Along with the growth of the sector in general, there was a variation in the consumption profile, which drove the increase of small and micro-breweries. In Brazil, another factor that gave greater visibility to the segment was the beginning of hop cultivation in the country, which although it has not yet generated financial impact because it is in the development phase, promoted academic research involving both the raw material in question and the development of the brewing process as a whole. This cultivation provided the possibility of using flowers in the production process of small breweries, which until then used only pellets. With this new possibility, this study sought to use the Brazilian Cascade hops - flower and pellet - and the international Cascade hops - American - for the production of Lager craft beers, as well as to follow the fermentation parameters, which were satisfactory and with good repeatability among the replicates, characterizing the final products as the main physical-chemical characteristics, finding amounts very close to alcohol content, volatile acidity and staining for all samples and compare the aromatic profiles of Brazilian hops with the international one, concluding that despite some differences, the sensory profile remained in all analyses.

Keywords: Brazilian hops. Aromatic profiles. Cascade. Physical-chemical. Characteristics. Lager.
LISTA DE ILUSTRACÕES

Figura 1: Classificação por cor ... 16
Figura 2: Flor de lúpulo .. 19
Figura 3: Estrutura química dos principais hidrocarbonetos do lúpulo 23
Figura 4: Estrutura química do linalol ... 24
Figura 5: Teste do lodo .. 36
Figura 6: Gráfico da variação de TSS ... 37
Figura 7: Gráfico da variação de pH ... 39
Figura 8: Perfis aromáticos - amostras com lúpulo brasileiro em pellet 58
Figura 9: Perfis aromáticos - amostras com lúpulo brasileiro em flor 59
Figura 10: Perfis aromáticos - amostras com lúpulo importado em pellet .. 60
Figura 11: Perfis aromáticos - médias sobrepostas 61
LISTA DE TABELAS

Tabela 1: Temperaturas da rampa de brassagem ... 14
Tabela 2: Classificação por teor alcóolico .. 17
Tabela 3: Principais estilos de cerveja .. 18
Tabela 4: Composição química do lúpulo ... 19
Tabela 5: Variedades de lúpulo e suas funções .. 21
Tabela 6: Composição do lúpulo Cascade ... 27
Tabela 7: Receita da cerveja Lager ... 28
Tabela 8: Tipos de lúpulos por batelada ... 29
Tabela 9: Rampa de brassagem .. 29
Tabela 10: Tempos de adição de lúpulo .. 30
Tabela 11: Condições cromatográficas GC-FID ... 33
Tabela 12: Valores iniciais e finais de TSS .. 38
Tabela 13: Valores iniciais e finais de pH .. 39
Tabela 14: Valores iniciais e finais de densidade .. 41
Tabela 15: Valores de densidade relativa e teor alcóolico 42
Tabela 16: Valores da concentração de ácido acético 44
Tabela 17: Análise de cor .. 46
Tabela 18: Concentração off-flavors ... 48
Tabela 19: Características aromáticas dos compostos voláteis 49
Tabela 20: Índice de Retenção dos compostos voláteis 51
Tabela 21: Área dos compostos voláteis ... 53
Tabela 22: Porcentagem de compostos aromáticos 56
SUMÁRIO

1. INTRODUÇÃO ... 10

1.1 Objetivos Gerais .. 10

1.2 Objetivos Específicos ... 11

2. REVISÃO DE LITERATURA ... 12

2.1 Cerveja ... 12

2.2 Processo de produção da cerveja ... 12

2.2.1 Etapa Quente .. 13

2.2.1.1 Brassagem .. 13

2.2.1.2 Fervura .. 14

2.2.2 Etapa fria ... 14

2.2.2.1 Fermentação .. 14

2.2.2.2 Maturação .. 15

2.3 Classificação das cervejas ... 15

2.3.1 Tipo de fermentação ... 15

2.3.2 Cor .. 16

2.3.3 Teor alcóolico ... 17

2.3.4 Estilos de cervejas ... 17

2.4 Lúpulo .. 18

2.4.1 Características do lúpulo ... 18

2.4.2 Compostos aromáticos do lúpulo .. 22

2.4.2.1 Hidrocarbonetos ... 22

2.4.2.2 Compostos oxigenados ... 23

2.4.2.3 Compostos com enxofre .. 24

2.4.3 Formas comercializáveis de lúpulo .. 24

2.4.3.1 Flor de lúpulo .. 24

2.4.3.2 Lúpulo em pellets ... 25
2.4.3.2.1 Tipo 90 ... 25
2.4.3.2.2 Tipo 45 ... 25
2.4.3.2.3 Pellets isomerizados .. 26
2.4.3.3 Extrato de lúpulo ... 26
2.5 Lúpulo Cascade ... 27
3 MATERIAIS E MÉTODOS .. 28
3.1 Materiais .. 28
3.2 Produção de cerveja .. 28
3.3 Teste do lodo ... 30
3.4 Parâmetros da fermentação ... 31
3.5 Determinação de teor alcóolico .. 31
3.6 Determinação de acidez volátil ... 32
3.7 Determinação de cor ... 32
3.8 Análise de compostos voláteis da fermentação 33
3.9 Análise de compostos aromáticos voláteis 34
4 RESULTADOS E DISCUSSÃO ... 36
4.1 Produção de cerveja ... 36
4.2 Teste do lodo .. 36
4.3 Parâmetros da fermentação ... 37
4.3.1 Teor de sólidos solúveis .. 37
4.5 Acidez volátil ... 43
4.6 Cor .. 45
4.7 Compostos voláteis da fermentação 46
4.8 Compostos aromáticos voláteis 48
5 CONCLUSÃO ... 62
REFERÊNCIAS ... 63
ANEXO ... 69
1. INTRODUÇÃO

Em relação ao cenário brasileiro, segundo dados do Ministério da Agricultura, Pecuária e Abastecimento (MAPA), o crescimento do número de cervejarias registradas no país pode ser considerado constante desde os anos 2000. Este crescimento tão expressivo deve levar em consideração que o perfil de consumo também mudou, já que entre os anos de 2015 e 2017 o número de cervejarias artesanais no país cresceu 91%, ainda segundo o MAPA (2019).

Juntamente com a mudança de perfil de consumo dos brasileiros, aumentou-se a procura por insumos de menor custo e alta qualidade, o que fomentou as pesquisas acadêmicas em todas as áreas do processo produtivo, principalmente sobre o cultivo e a qualidade do lúpulo brasileiro, visto que, hoje, quase 100% desta matéria-prima é importada, o que eleva o custo de produção (MARTINS, ARAÚJO, SANTOS, 2020). O lúpulo nacional ainda não impactou financeiramente no setor produtivo, pois está em fase de desenvolvimento e pesquisa, além de não haver quantidades suficientes para abastecer o mercado (NOVAIS et al., 2019).

A utilização de lúpulo em flor no Brasil é muito limitada, uma vez que o processo de importação restringe a forma com que o insumo é consumido pelos cervejeiros, visto que ao chegar nas cervejarias, grande parte da sua vida útil já está comprometida (HIERONYMUS, 2020). Com o cultivo no país, cresce a possibilidade de utilizar lúpulos em flores e não apenas em pellets, diversificando assim o processo cervejeiro e melhorando as características desejáveis do produto final.

1.1 Objetivos Gerais

Produzir cerveja artesanal, analisar suas características gerais e comparar o perfil aromático variando a forma comercializável de lúpulo.
1.2 Objetivos Específicos

- Produzir cerveja Lager em triplicata, variando o lúpulo Cascade cultivado no Brasil entre flor e pellet;
- Produzir cerveja Lager em triplicata utilizando lúpulo Cascade americano;
- Analisar os parâmetros físico-químicos a fim de classificar as cervejas produzidas;
- Analisar por cromatografia gasosa a presença e quantificar os off-flavors da fermentação;
- Analisar por cromatografia gasosa e semi-quantificar os principais compostos aromáticos.
2. **REVISÃO DE LITERATURA**

2.1 **Cerveja**

De acordo com a Instrução Normativa nº 65 de dezembro de 2019, a cerveja é definida como:

“bebida resultante da fermentação, a partir da levedura cervejeira, do mosto de cevada malteada ou de extrato de malte, submetido previamente a um processo de cocção adicionado de lupulo ou extrato de lupulo, hipótese em que uma parte da cevada malteada ou do extrato de malte poderá ser substituída parcialmente por um adjunto cervejeiro.”

Ainda segundo a IN, 45% do malte de cevada pode ser substituído por adjuntos cervejeiros, como cereais maltados ou não maltados, amidos e açúcares de origem vegetal.

O produto deve conter, obrigatoriamente, água, malte de cevada, lúpulo e levedura. Aproximadamente, 92% a 95% da sua composição é água. O malte de cevada e outros cereais adjuntos são a fonte de carboidratos fermentecíveis, proteínas e minerais que irão compor o mosto. *Saccharomyces cerevisiae* e *Saccharomyces uvarum* são as leveduras usadas para produção de cervejas tipo Ale e Lager, respectivamente, e são elas as responsáveis pela fermentação, ou seja, pela geração de álcool, gás carbônico e diversos outros compostos secundários. O lúpulo agrega ao produto diversos compostos, é deste ingrediente que são extraídos os principais compostos de aroma, presentes nos óleos essenciais, e o amargor característico, vindo das resinas amargas, além de minerais e polifenóis, muito importante para conservação da cerveja, pois possui propriedades antimicrobianas (D’AVILA et al.; 2012).

2.2 **Processo de produção da cerveja**

O processo produtivo da cerveja pode ser dividido em duas grandes etapas, parte quente e parte fria.

A parte quente engloba brassagem e fervura, e tem como produto o mosto lupulado que será submetido a parte fria do processo, que, por sua vez, inclui o resfriamento deste mosto, a fermentação, maturação e envase (WHITE & ZAINASHEFF, 2020).
Antes do início da produção em si, é necessário fazer o preparo da matéria-prima. Os açúcares são os ingredientes que possibilitam a fermentação, pois servem de alimento para as leveduras, sem estes compostos, não há como produzir cerveja. Esses açúcares são fornecidos ao processo pelo malte e outros cereais. Para sua melhor eficiência, o grão precisa ser moído, para que haja a liberação do amido de seu interior (MORATO, 2017). Uma boa moagem, libera o amido mantendo a casca do malte inteira (AMORIM, 2022). Este amido é transformado, durante a brassagem, em açúcares fermentescíveis, como maltose e glicose, que posteriormente serão transformados em álcool e gás carbônico pelas leveduras, durante a fermentação (MORATO, 2017).

2.2.1 Etapa Quente

2.2.1.1 Brassagem

Para iniciar a brassagem, o malte é misturado com água. O aquecimento da mistura possibilita a transformação do amido em açúcares de cadeias menores através das enzimas α e β-amilase (MORATO, 2017). Durante esta etapa, cerca de 65% dos sólidos do malte são dissolvidos na água (D. JUNIOR, VIEIRA, FERREIRA, 2009).

O aquecimento é feito por etapas, denominada rampa de brassagem (ROSA, AFONSO, 2014). As temperaturas da rampa são variáveis, mas devem estar entre 40°C e 78°C, divididas em três ou quatro fases (MORATO, 2017), a definição destas temperaturas deve ser planejada de acordo com os tipos de ingredientes utilizados e da cerveja que se deseja fabricar (D. JUNIOR, VIEIRA, FERREIRA, 2009). A divisão de temperaturas está apresentada na Tabela 1.
Tabela 1: Temperaturas da rampa de brassagem

<table>
<thead>
<tr>
<th>Fase</th>
<th>Temperatura</th>
<th>Função</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ativação Enzimática</td>
<td>40 °C - 45 °C</td>
<td>Início da solubilização do amido; Início da solubilização das enzimas do malte.</td>
</tr>
<tr>
<td>Repouso Proteolítico</td>
<td>50 °C - 55 °C</td>
<td>Quebra de proteínas do malte.</td>
</tr>
<tr>
<td>Repousos de sacarificação</td>
<td>60 °C - 72 °C</td>
<td>Ativação das enzimas alfa e beta amilase.</td>
</tr>
<tr>
<td>Inativação enzimática</td>
<td>76 °C - 78 °C</td>
<td>Inativação das enzimas alfa e beta amilase.</td>
</tr>
</tbody>
</table>

(Fonte: Adaptado de Morato, 2017)

2.2.1.2 Fervura

A próxima etapa é a fervura, quando ocorre a eliminação de alguns compostos voláteis indesejáveis presentes no mosto. A fervura também garante a esterilidade do mosto e a desnaturação das enzimas ativadas na brassagem (MORATO, 2017). Além disso, é neste momento em que ocorre a lupulagem, ou seja, adição dos lúpulos, responsáveis pelo aroma e amargor das cervejas. A etapa também tem efeito sobre a cor e o sabor das cervejas devido à caramelização dos açúcares (MORATO, 2017; KEUKELEIRE, 1999). Por fim, o mosto é resfriado, entrando na etapa fria.

2.2.2 Etapa fria

2.2.2.1 Fermentação

A fermentação é a fase onde ocorre a transformação de açúcares, pelas leveduras, em álcool e gás carbônico, reação apresentada de forma simplificada por:

\[C_6H_{12}O_6 \rightarrow 2CH_3CH_2OH + 2CO_2 \]

Além da reação principal de fermentação, há a formação de diversos outros compostos devido às reações secundárias (MORATO, 2017), entre estes podemos...

Entre todos os fatores influentes na formação de aromas e sabores da cerveja, a temperatura é a variável que demanda maior atenção e monitoramento, pois grandes e descontroladas oscilações afetam gravemente o resultado do produto final, principalmente em pequenas produções. A maior parte destes compostos são formados durante as primeiras 72 horas de ação da levedura, portanto, neste período, o controle deve ser ainda mais rigoroso (WHITE & ZAINASHEFF, 2020).

2.2.2.2 Maturação

A última fase do processamento da cerveja é a maturação, realizada a 0 ºC, onde ocorre a sedimentação de partículas, decantação de leveduras, deixando o mosto mais limpo (ROSA, AFONSO, 2015). Aqui ocorrem pequenas reações que alteram alguns compostos vindos da fermentação, estas reações são importantes para aprimorar as características da bebida (MORATO, 2017). O período de maturação pode durar de 6 a 30 dias, dependendo do estiló da cerveja (ROSA, AFONSO, 2015). Após o tempo de maturação o produto pode ser carbonatado e envasado.

2.3 Classificação das cervejas

As cervejas são classificadas em diversas categorias, considerando várias características de aparência, paladar, aroma, teor alcóolico e composição. Serão apresentados os principais parâmetros para classificação destes produtos (MORATO, 2017).

2.3.1 Tipo de fermentação

Quanto a fermentação, podemos classificar as cervejas em dois grandes grupos, Ale e Lager.

Ale, são as cervejas de alta fermentação. Este processo ocorre em temperatura entre 20 ºC e 25 ºC, variando de acordo com a cepa de levedura utilizada. Estes
microrganismos fermentam o mosto mais rápido, em comparação com o grupo Lager, o que proporciona a cerveja sabor frutado, devido à formação de compostos voláteis, como ésteres, derivados de reações de metabolismo da levedura. É o grupo de cerveja mais produzido pelas cervejarias artesanais e cervejeiros caseiros (PEREIRA, GJORUP, 2017).

O grupo Lager é o de baixa fermentação, ou seja, o processo bioquímico é realizado entre 6 °C e 15 °C, variando de acordo com a cepa da levedura. Em função da baixa temperatura, o processo é mais lento. São características desse grupo, cervejas mais claras, suaves e com mais gás. Cerca de 90% de toda a cerveja produzida no mundo é deste grupo, sendo a sua maior produção em grandes cervejarias (PEREIRA, GJORUP, 2017).

2.3.2 Cor

A cor é uma das características que mais se destacam em primeiro momento, a partir da observação visual o cérebro cria expectativas em relação ao que esperar sensorialmente do produto (PEREIRA, GJORUP, 2017). O que mais afeta esse parâmetro é o tipo de torrefação do malte (MORATO, 2017).

Figura 1: Classificação por cor

```
<table>
<thead>
<tr>
<th>MACRO DIVISÃO</th>
<th>SRM</th>
<th>TONALIDADE</th>
<th>EBC</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pálido</td>
<td>2-3</td>
<td>0-5,91</td>
<td>0-5,91</td>
</tr>
<tr>
<td>Amarelo</td>
<td>3-4</td>
<td>5,91-7,88</td>
<td>0-7,88</td>
</tr>
<tr>
<td>Ouro</td>
<td>4-5</td>
<td>7,88-9,85</td>
<td>0-9,85</td>
</tr>
<tr>
<td>Âmbar</td>
<td>6-9</td>
<td>11,82-17,73</td>
<td>0-17,73</td>
</tr>
<tr>
<td>Profundo Âmbar / Cobre Luz</td>
<td>10-14</td>
<td>19,70-27,58</td>
<td>0-27,58</td>
</tr>
<tr>
<td>Cobre</td>
<td>14-17</td>
<td>27,58-33,49</td>
<td>0-33,49</td>
</tr>
<tr>
<td>Profundo Cobre / Castanho Claro</td>
<td>17-18</td>
<td>33,49-35,46</td>
<td>0-35,46</td>
</tr>
<tr>
<td>Castanho</td>
<td>19-22</td>
<td>37,43-43,94</td>
<td>0-43,94</td>
</tr>
<tr>
<td>Castanho Escuro</td>
<td>22-30</td>
<td>43,94-59,10</td>
<td>0-59,10</td>
</tr>
<tr>
<td>Castanho Muito Escuro</td>
<td>30-35</td>
<td>59,10-68,95</td>
<td>0-68,95</td>
</tr>
<tr>
<td>Preto</td>
<td>35+</td>
<td>68,95-78,80</td>
<td>0-78,80</td>
</tr>
<tr>
<td>Preto Opaque</td>
<td>40+</td>
<td>&gt;78,80</td>
<td></td>
</tr>
</tbody>
</table>
```

(Fonte: Revista Malagueta, 2018)
2.3.3 Teor alcóolico

O álcool quando presente em uma quantidade inferior a 6% não se sobressai no paladar, favorece o sabor e acentua o aroma de substâncias voláteis. Em concentrações maiores, sua presença é mais percebida, podendo até mascarar as características originais do produto (MORATO, 2017). A legislação brasileira classifica o produto em cerveja sem álcool (<0,5%), cerveja com teor alcóolico reduzido (0,5% < ABV < 2,0%) e cerveja (>2,0%) (MAPA, 2019), mas dentro do segmento são divididas entre baixo, médio e alto teor alcóolico, como apresentado na Tabela 2.

Tabela 2: Classificação por teor alcóolico

<table>
<thead>
<tr>
<th>Tipo</th>
<th>ABV</th>
</tr>
</thead>
<tbody>
<tr>
<td>Baixo teor alcóolico</td>
<td>< 4%</td>
</tr>
<tr>
<td>Médio teor alcóolico</td>
<td>4% - 6%</td>
</tr>
<tr>
<td>Alto teor alcóolico</td>
<td>6% - 9%</td>
</tr>
<tr>
<td>Muito alto teor alcóolico</td>
<td>>9%</td>
</tr>
</tbody>
</table>

(Fonte: Adaptado de STRONG, ENGLAND, 2015)

2.3.4 Estilos de cervejas

Existem quatro grandes escolas cervejeiras no mundo, alemã, franco-belga, inglesa e americana, cada uma possui características particulares adquiridas com os anos de história e cultura cervejeira. Todas possuem estilos conhecidos por todo o mundo (AMORIM, 2022). Na Tabela 4 estão apresentados alguns dos estilos mais conhecidos do mundo.
Tabela 3: Principais estilos de cerveja

<table>
<thead>
<tr>
<th>Escola</th>
<th>Estilo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Escola Alemã</td>
<td>Pilsen</td>
</tr>
<tr>
<td></td>
<td>Cervejas de trigo</td>
</tr>
<tr>
<td></td>
<td>Bock</td>
</tr>
<tr>
<td></td>
<td>Dunkel</td>
</tr>
<tr>
<td></td>
<td>Witbier</td>
</tr>
<tr>
<td>Escola Franco-belga</td>
<td>Saison</td>
</tr>
<tr>
<td></td>
<td>Tripel</td>
</tr>
<tr>
<td></td>
<td>Lambic</td>
</tr>
<tr>
<td></td>
<td>Porter</td>
</tr>
<tr>
<td>Escola Inglesa</td>
<td>Stout</td>
</tr>
<tr>
<td></td>
<td>English Pale Ale</td>
</tr>
<tr>
<td></td>
<td>English India Pale Ale</td>
</tr>
<tr>
<td>Escola Americana</td>
<td>American Lager</td>
</tr>
<tr>
<td></td>
<td>American Pale Ale</td>
</tr>
<tr>
<td></td>
<td>American IPA</td>
</tr>
<tr>
<td></td>
<td>India Black Ale</td>
</tr>
</tbody>
</table>

(Fonte: Adaptado de SCIENCE OF BEER INSTITUTE, 2020).

2.4 Lúpulo

2.4.1 Características do lúpulo

O *Humulus Lupulus* é uma planta trepadeira que produz flores ricas em resinas, polifenóis e óleos essenciais (DURELLO, SILVA, BOGUSZ JUNIOR, 2019) e que melhor se desenvolve em locais onde a temperatura média anual é baixa, em torno de 10 °C, e o período de exposição diário ao sol é prolongado. Em relação ao solo, o lúpulo tende a melhores rendimentos em solos férteis, arejados e com pH próximo a neutralidade (HIERONYMUS, 2020). Ainda segundo Hieronymuys (2020), é uma planta que pode se adaptar às condições de cultivo – clima e solo – pois cada uma dessas condições lhes confere um perfil específico. No entanto, essas variações de
perfis são um problema quando levamos em consideração que sua escolha é feita a partir de características previamente estudadas pertencentes a cada variedade.

Apenas as plantas femininas com flores não fertilizadas são interessantes para produção de cerveja, pois nelas é que se encontra a lupulina, pó amarelo que contém diversas substâncias químicas de interesse da indústria cervejeira (DURELLO, SILVA, BOGUSZ JUNIOR, 2019). A representação da flor está apresentada abaixo, na Figura 2.

Figura 2: Flor de lúpulo

(Fonte: Próprio autor, 2022)

A composição química do cone de lúpulo é dada, em média, de acordo com a Tabela 4.

Tabela 4: Composição química do lúpulo

<table>
<thead>
<tr>
<th>Substância</th>
<th>% (m/m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Resinas totais</td>
<td>15 - 30</td>
</tr>
<tr>
<td>Óleos essenciais</td>
<td>0,5 - 3</td>
</tr>
<tr>
<td>Proteínas</td>
<td>15</td>
</tr>
<tr>
<td>Monossacarídeos</td>
<td>2</td>
</tr>
<tr>
<td>Polifenóis</td>
<td>4</td>
</tr>
<tr>
<td>Pectinas</td>
<td>2</td>
</tr>
<tr>
<td>Aminoácidos</td>
<td>0,1</td>
</tr>
<tr>
<td>Ceras e esteroides</td>
<td>Traços – 25</td>
</tr>
<tr>
<td>Cinzas</td>
<td>8</td>
</tr>
<tr>
<td>Água</td>
<td>10</td>
</tr>
<tr>
<td>Celulose/Lignina</td>
<td>43</td>
</tr>
</tbody>
</table>

(Fonte: Adaptado de DURELLO, SILVA, BOGUSZ JUNIOR, 2019)
A composição do cone pode ser complexa, devido às mudanças de condições de cultivo, safra e variedades, principalmente quanto à porcentagem de resinas, óleos essenciais, ceras e esteróis. Os lipídeos, proteínas e celulose são insolúveis no mosto. Já açúcares e aminoácidos são solúveis, porém suas quantidades são muito pequenas, por isso, essas substâncias não agregam ao processo cervejeiro (VENTURINI FILHO, 2016). Os polifenóis têm propriedades antimicrobianas e antioxidantes, sendo interessantes para a indústria não só do setor cervejeiro (HRNCIC et al., 2019). Já as resinas e óleos essenciais, os de maior interesse, são encontrados nas glândulas de lupulina e desempenham diversas funções no processo em questão. As resinas são compostas por α-ácidos e β-ácidos, que são os responsáveis pelo amargor das cervejas, enquanto os óleos essenciais são os responsáveis pelo aroma (QUELHAS, SCHUINA, BIANCHI, 2017).

Além de amargor e aroma, o lúpulo possui outras funções, como estabilização microbiológica e da espuma e é uma importante fonte de antioxidantes, ressaltando mais uma vez que as concentrações das substâncias do insumo variam de acordo com a variedade, condições de cultivo e safra (VENTURINI FILHO, 2016; QUELHAS, SCHUINA, BIANCHI, 2017).

Existem mais de cem variedades de lúpulo no mundo, classificados entre lúpulos de aroma, de amargor e de duplo efeito, ou seja, amargor e aroma (HIERONYMUS, 2020), na Tabela 5 abaixo estão classificadas algumas das variedades mais comuns. Sua inserção no processo varia de acordo com as características desejadas no produto final, podendo ser feitas em diversos momentos (VENTURINI FILHO, 2016).
<table>
<thead>
<tr>
<th>Lúpulo</th>
<th>Origem</th>
<th>Função</th>
</tr>
</thead>
<tbody>
<tr>
<td>Admiral</td>
<td>Reino Unido</td>
<td>Amargor</td>
</tr>
<tr>
<td>Cascade</td>
<td>EUA</td>
<td>Aroma/Amargor</td>
</tr>
<tr>
<td>Chinook</td>
<td>EUA</td>
<td>Amargor</td>
</tr>
<tr>
<td>Columbus</td>
<td>EUA</td>
<td>Aroma/Amargor</td>
</tr>
<tr>
<td>Haultertau</td>
<td>EUA/Alemanha</td>
<td>Aroma/Amargor</td>
</tr>
<tr>
<td>Lublin</td>
<td>Polônia</td>
<td>Aroma</td>
</tr>
<tr>
<td>Nugget</td>
<td>EUA</td>
<td>Aroma/Amargor</td>
</tr>
<tr>
<td>Saaz</td>
<td>República Tcheca/EUA</td>
<td>Aroma/Amargor</td>
</tr>
<tr>
<td>Spalter</td>
<td>EUA/Alemanha</td>
<td>Aroma</td>
</tr>
<tr>
<td>Target</td>
<td>Reino Unido</td>
<td>Amargor</td>
</tr>
</tbody>
</table>

(Fonte: VENTURINI FILHO, 2016)

Lúpulos de amargor devem ser aquecidos para converter os α-ácidos em iso-α-ácidos por um processo denominado isomerização, 90% do amargor da cerveja é obtido nos trinta primeiros minutos da fervura, atingindo seu amargor máximo entre sessenta e setenta minutos do início da ebulição (VENTURINI FILHO, 2016).

Quando o objetivo é uma cerveja com amargor e aroma sutis, além de escolher variedades de lúpulo com menor teor de α-ácidos, esses insumos devem ser adicionados em um único momento, antes dos vinte primeiros minutos de fervura, pois os óleos essenciais são altamente voláteis e cerca de 96% - 98% são volatilizados durante esta etapa (VENTURINI FILHO, 2016).

Para obter uma cerveja mais aromática o lúpulo deve ser adicionado ao final do processo de fervura, quando estiver faltando de dez a trinta minutos para o final da etapa, em razão da alta volatilidade dos óleos essenciais, diminuindo assim a perda destes compostos aromáticos. Há ainda a possibilidade de adição do lúpulo de aroma por um processo denominado Dry Hopping, durante a etapa de maturação – principalmente quando se busca uma cerveja muito aromática, pois assim, os voláteis não são perdidos (VENTURINI FILHO, 2016).

Outro ponto de grande importância que interfere diretamente nas características do produto final é a forma com que o lúpulo é utilizado. Atualmente a planta é comercializada em três formas, flores secas, pellets e extratos (MORATO, 2017). Cada uma das formas de comercialização possui suas vantagens e desvantagens que serão apresentadas a seguir neste estudo.
2.4.2 Compostos aromáticos do lúpulo

Como já dito anteriormente, os óleos essenciais do lúpulo são responsáveis pelo aroma e sabor da cerveja. O cone seco possui de 0,5% a 3% de uma mistura complexa formada por milhares de compostos voláteis, chamados de óleos essenciais. A composição desses óleos está diretamente relacionada à variedade do insumo, as condições de cultivo, as condições de processamento, tempo de vida útil e armazenamento. Apesar de possuir a composição variável devido aos diversos fatores citados, é observado que a mesma variedade, mesmo que cultivada de diversas maneiras, possui certa uniformidade em sua composição (ALMAGUER et al., 2014). Esses componentes podem ser divididos em hidrocarbonetos, compostos oxigenados e compostos com enxofre.

2.4.2.1 Hidrocarbonetos

Os hidrocarbonetos compõem a maior parte dos óleos, são compostos muito voláteis e pouco solúveis em água. Por isso, muitos destes compostos são perdidos durante a produção da cerveja, restando no produto final apenas traços (ALMAGUER et al. 2014).

Deste grupo, o monoterpeno β-mirceno é um dos mais importantes para o aroma e sabor da cerveja, sendo também o composto encontrado em maior quantidade nos óleos, representando de 30% a 60% do total. Além do β-mirceno, outros monoterpenos importantes estão presentes na composição do óleo, como o ocímeno, β-pineno, limoneno e címeno (ALMAGUER et al., 2014).

No subgrupo dos sequiterpenos, os principais compostos são α-humuleno, β-cariofileno, β-farneseno, sendo os dois primeiros os mais abundantes e com maior influência no aroma das cervejas (ALMAGUER et al., 2014).

O β-mirceno, α-humuleno e β-cariofileno são encontrados em praticamente todas as variedades de lúpulo, enquanto o β-farneseno é mais específico de determinadas variações e presente em quantidade inferior (ALMAGUER et al., 2014). A Figura 3 apresenta a estrutura química destes compostos.
Figura 3: Estrutura química dos principais hidrocarbonetos do lúpulo

β-mircono
α-humuleno
β-cariofileno
β-farneseno

(Fonte: Próprio autor, 2022)

2.4.2.2 Compostos oxigenados

A fração de compostos oxigenados é bastante complexa, pois apresenta uma enorme gama de compostos, - aldeídos, cetonas, ésteres, álcoois e ácidos - apesar de sua representação no volume total de óleo ser de apenas 30% do total. Pode-se dividir estes compostos em dois subgrupos, os que possuem ponto de ebulação mais alto e os que possuem ponto de ebulação mais baixo que o α-humuleno (ALMAGUER et al., 2014).

A maioria dos compostos deste grupo possuem ponto de ebulação baixo, portanto, são evaporados durante o processo, quanto presentes no produto final possuem uma concentração muito baixa, o que não afeta o aroma das cervejas (ALMAGUER et al., 2014).

Deste grupo, o principal composto é o linalol, resultado da hidratação do β-mirceno durante a fervura, é um composto quiral presente na forma de dois estereoisômeros como apresentado na Figura 4 e a sua forma R é presente em maior quantidade – de 92% a 94% (ALMAGUER et al., 2014). O linalol agrega a cerveja aroma floral (WELKE, 2012), de rosas (MARCON et al., 2011) e de lavanda (TOKAI et al., 2010).
Figura 4: Estrutura química do linalol

(R) - Linalol

(S) - Linalol

(Fonte: Próprio autor, 2022)

2.4.2.3 Compostos com enxofre

Estes compostos são encontrados apenas em traços no produto acabado, entretanto possuem aromas fortes e de baixo limiar de detecção, por isso podem influenciar fortemente no sabor da cerveja. São em geral off-flavors, ou seja, aromas indesejados, que podem agregar à cerveja odores e sabores de vegetais cozidos, mofo, queijo, enxofre entre vários outros (GRIZOTTO, 2017; ALMAGUER et al., 2014).

Entre estes compostos um se destaca, o 4-mercapto-4-metilpentan-2-um (4MMP). Só é encontrado em variedades específicas de lúpulo e agrega a cerveja aroma e sabor de uva, groselha e urina de gato, podendo ser influenciado também pelas condições de cultivo (ALMAGUER et al., 2014).

2.4.3 Formas comercializáveis de lúpulo

2.4.3.1 Flor de lúpulo

A forma mais simples de se utilizar o lúpulo é a flor fresca, ou in natura. A utilização da matéria-prima fresca tem a vantagem de não perder nenhum componente durante o processamento até que chegue à indústria cervejeira, entretanto, sua vida útil é de 24 a 48 horas, o que torna inviável sua utilização de forma industrial (HIERONYMUS, 2020). Por isso, sempre que se deseja produzir cerveja com a flor de lúpulo, deve-se realizar uma secagem, para aumentar a validade (VENTURINI FILHO, 2016). O processo de secagem retira a água do cone, diminuindo sua degradação. O armazenamento deve ser feito a vácuo, evitando o contato com o oxigênio, para otimizar a vida útil do insumo, além disso, é importante protegê-lo de luz e armazena-lo em temperaturas mais baixas. Para cervejeiros caseiros,
recomenda-se armazená-lo em geladeira, desde que tomando os devidos cuidados para que não congele (HIERONYMUS, 2020).

Como praticamente todo o lúpulo produzido pela indústria do setor é importado, essa forma não é utilizada no Brasil, pois com todo o processo de transporte o produto não chegaria com vida útil viável na indústria. As flores secas são utilizadas somente por cervejeiros artesanais e caseiros com acesso as pequenas plantações de lúpulo cultivados no país (NOVAIS et al., 2019).

2.4.3.2 Lúpulo em pellets

O processo de peletização consiste em moer os cones até formar um pó que posteriormente será compactado, formando os pellets. Produtos de melhor qualidade são feitos em baixas temperaturas, o que reduz a perda de componentes (HIERONYMUS, 2020).

Este processo torna o insumo mais estável, mais homogêneo, aumenta sua validade, diminuindo o volume e os custos de armazenamento e transporte. Pellets de lúpulo são a forma mais utilizada em todo o mundo (SILVA, 2019). Assim como as outras possibilidades, os pellets também têm suas desvantagens, a peletização rompe quase todas as glândulas de lupulina fazendo com que seja necessária uma quantidade maior de pellets do que de flores secas ou extrato para produzir a mesma quantidade de cerveja, além de que, se não forem armazenados corretamente tendem a oxidar de três a cinco vezes mais rápido, se comparado as flores secas (HIERONYMUS, 2020). Os pellets são classificados por tipos conforme apresentado a seguir.

2.4.3.2.1 Tipo 90

É o tipo mais comum, consiste em cones prensados e compactados (VENTURINI FILHO, 2016). Sua composição é muito semelhante à das flores (HIERONYMUS, 2020).

2.4.3.2.2 Tipo 45

Segundo tipo mais utilizado. São pellets enriquecidos com lupulina, onde sua concentração pode chegar a ser duas vezes maior que a concentração do tipo 90 (VENTURINI FILHO, 2016). São utilizados principalmente para lúpulos de aroma com baixo teor de α-ácidos (HIERONYMUS, 2020).
2.4.3.2.3 Pellets isomerizados

Também chamados de isopellets, são os pellets em que os α-ácidos são convertidos em iso-α-ácidos durante o processo de fabricação. Como a conversão já é feita previamente, esses pellets podem ser adicionados no processo nos últimos 10 a 15 minutos da etapa de fervura (HIERONYMUS, 2020).

2.4.3.3 Extrato de lúpulo

Extratos de lúpulo, apesar de pouco conhecidos pelos brasileiros e raramente utilizados no país, não são uma forma nova de utilizar o insumo. A primeira fábrica com capacidade para extrair o suficiente para abastecer grandes empresas foi criada em 1870 nos Estados Unidos (HIERONYMUS, 2020).

Extrações podem ser feitas com diversos solventes, entretanto, solventes orgânicos deixam resíduos tóxicos nos produtos finais, por isso são necessárias etapas de purificação, demoradas e de alto custo, tornando o uso de alguns destes solventes inviáveis para a indústria. A água e o dióxido de carbono são solventes atóxicos, portanto, mais seguros (HRNCIC et al., 2019).

O processo para obtenção do extrato é de alto custo, entretanto, tem-se a redução de custos de transporte e armazenamento, além de redução de volume e massa, vantagens essas que compensam o alto valor de processamento (VENTURINI FILHO, 2016; HIERONYMUS, 2020). Além disso, também é importante destacar que as concentrações dos compostos de interesse são maiores nos extratos do que nos lúpulos em pellets, demandando uma quantidade muito menor do insumo (HIERONYMUS, 2020).

Por último, mas igualmente relevante, deve-se acrescentar que a tendência do mercado vem sendo a obtenção de compostos de aroma e amargor separadamente – separação esta possibilitada pela extração – para que as diferentes substâncias possam ser adicionadas após a etapa de fermentação, aumentando o controle sobre as características desejadas para o produto (SANZ et al., 2019).

Duas desvantagens relacionadas às condições de extração – temperatura e pressão – devem ser destacadas, a primeira é que as condições alteram significativamente a composição do extrato obtido. Por exemplo, para maior recuperação de voláteis deve-se manter condições de temperatura mais brandas, já quando o objetivo é recuperar os ácidos amargos e as resinas deve-se manter condições mais elevadas de pressão e temperatura. Outro fator extremamente
importante é a estabilidade do extrato, se as condições não forem otimizadas e combinadas da maneira correta podem afetar sua vida útil (HRNCIC et al., 2019).

2.5 Lúpulo Cascade

O lúpulo Cascade é uma das variedades americanas mais populares e produzidas nos Estados Unidos, é adequado para produzir diversas cervejas, tanto Ales quanto Lagers, mas é amplamente usada no estilo American Pale Ale (HEALEY, 2016). Na Tabela 6 estão apresentadas as porcentagens dos principais componentes desse lúpulo.

<table>
<thead>
<tr>
<th>Componente</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>α-ácidos</td>
<td>4,5% - 8,9%</td>
</tr>
<tr>
<td>β-ácidos</td>
<td>3,6% - 7,5%</td>
</tr>
<tr>
<td>Cohumulona</td>
<td>33% - 40%</td>
</tr>
<tr>
<td>Óleos totais</td>
<td>0,8 - 1,5 ml (100g)</td>
</tr>
<tr>
<td>Micreno</td>
<td>45% - 60%</td>
</tr>
<tr>
<td>Humuleno</td>
<td>8% - 16%</td>
</tr>
<tr>
<td>Cariofileno</td>
<td>4% - 6%</td>
</tr>
<tr>
<td>Farneseno</td>
<td>4% - 8%</td>
</tr>
</tbody>
</table>

(Fonte: Adaptado de HEALEY, 2016)

É um lúpulo de duplo efeito, ou seja, amargor e aroma, e seus aromas predominantes são florais e cítricos (HEALEY, 2016).
3 MATERIAIS E MÉTODOS

3.1 Materiais

Para a produção da cerveja, utilizou-se lúpulo Cascade brasileiro em flor e pellet da região sul do Brasil (Lupulândia, Brasil - Safra 2021), lúpulo Cascade americano (Yakima Chief, EUA), maltes Pilsen e Cara Clair (Agrária e Castle Malte, Brasil) e levedura W-3470 (Fermentis, França). Baldes plásticos novos de 12 L com sistema de airlock (Lamas Brew Shop, Brasil) foram usados como fermentadores. Durante a produção ainda foi utilizada solução de iodo 2% para acompanhar a hidrólise do amido.

Para realizar a titulação na análise de acidez volátil preparou-se solução de NaOH 0,1 mol L⁻¹ com 99,8% de pureza e fenolftaleína a 1% (m/V) em álcool etílico. Já para a análise cromatográfica de compostos voláteis da fermentação foi usado 4-metil-2-pentanol na concentração de 1g/L como padrão interno. Por fim, para análise cromatográfica de compostos aromáticos voláteis utilizou-se fibra SPME DVB/CAR/PDMS (Sigma-Aldrich) e padrão de carbonos lineares C7 a C30 (Sigma-Aldrich) para cálculo do índice de Retenção.

3.2 Produção de cerveja

As bateladas de 12 litros foram produzidas com a receita apresentada na Tabela 7.

<table>
<thead>
<tr>
<th>Ingrediente</th>
<th>Quantidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>Malte Pilsen</td>
<td>1,92 Kg</td>
</tr>
<tr>
<td>Malte Cara Clair</td>
<td>0,92 Kg</td>
</tr>
<tr>
<td>Água</td>
<td>12,0 L</td>
</tr>
<tr>
<td>Lúpulo</td>
<td>24,6 g</td>
</tr>
<tr>
<td>W-2470</td>
<td>6,0 g</td>
</tr>
</tbody>
</table>

(Fonte: Próprio autor, 2022)

A produção das cervejas foi realizada em triplicata, utilizando as matérias-primas dos mesmos lotes, variando apenas os lúpulos, conforme descrito na Tabela 8.
Tabela 8: Tipos de lúpulos por batelada

<table>
<thead>
<tr>
<th>Lúpulo</th>
<th>Produção</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cascade</td>
<td>P1</td>
</tr>
<tr>
<td>Pellet Brasileiro</td>
<td>P2</td>
</tr>
<tr>
<td></td>
<td>P3</td>
</tr>
<tr>
<td></td>
<td>P4</td>
</tr>
<tr>
<td>Flor Brasileira</td>
<td>P5</td>
</tr>
<tr>
<td></td>
<td>P6</td>
</tr>
<tr>
<td></td>
<td>P7</td>
</tr>
<tr>
<td>Pellet Importado</td>
<td>P8</td>
</tr>
<tr>
<td></td>
<td>P9</td>
</tr>
</tbody>
</table>

(Fonte: Próprio autor, 2022)

O preparo da matéria-prima deu início a produção, o malte foi moído em moedor elétrico de regulagem manual e despejado na cesta apropriada da panela elétrica contendo 10 L de água potável previamente fervida a 45 °C para dar início a brassagem. A rampa seguiu as temperaturas e tempos descritos na Tabela 9.

Tabela 9: Rampa de brassagem

<table>
<thead>
<tr>
<th>Temperatura (°C)</th>
<th>Tempo (min)</th>
</tr>
</thead>
<tbody>
<tr>
<td>R1</td>
<td>45</td>
</tr>
<tr>
<td>R2</td>
<td>67</td>
</tr>
<tr>
<td>R3</td>
<td>72</td>
</tr>
<tr>
<td>R4</td>
<td>76</td>
</tr>
</tbody>
</table>

(Fonte: Próprio autor, 2022)

Após o término da rampa, a cesta contendo o malte foi retirada e o bagaço lavado com 2L de água a 76 °C. A água de lavagem foi adicionada ao mosto e a temperatura aumentada para 100 °C, iniciando a etapa de fervura/lupulagem. Após atingir a ebulição, iniciou a contagem de 60 minutos. Os lúpulos foram inseridos nos tempos descritos na Tabela 10.
Tabela 10: Tempos de adição de lúpulo

<table>
<thead>
<tr>
<th>Tempo (min)</th>
<th>Quantidade (g)</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>8,2</td>
</tr>
<tr>
<td>30</td>
<td>8,2</td>
</tr>
<tr>
<td>50</td>
<td>8,2</td>
</tr>
</tbody>
</table>

(Fonte: Próprio autor, 2022)

Ao final do processo de fervura, a panela foi desligada e o chiller previamente sanitizado foi colocado no mosto, utilizando água como fluido refrigerante, durante 30 minutos para troca de calor, com o intuito de reduzir a temperatura para 25 ºC.

Paralelamente, enquanto o mosto estava sendo resfriado, para inserção do fermento no mesmo, foi realizada a pesagem de 50 g de levedura liofilizada em balança semi-analítica. Em seguida, a levedura foi hidratada utilizando 50 ml de água previamente fervida, ambas resfriadas a 25 ºC. A mistura permaneceu em repouso por 15 minutos para a prévia adaptação da levedura ao mosto diluído, sendo necessária a agitação cuidadosa a cada intervalo de 5 minutos.

Com o fermento hidratado e o mosto resfriado, a inoculação pôde ser feita, iniciando a fermentação, que ocorreu em recipiente plástico fechado com dispositivo airlock que possibilita a saída de gás carbônico gerado, impedindo que o fermentador exploda e ao mesmo tempo bloqueie a entrada de oxigênio. Seguindo as recomendações do fabricante da levedura, a fermentação ocorreu a 14 ± 1 ºC, sendo a temperatura controlada por termostato para garantir a estabilidade e bom desempenho da fermentação.

Em seguida, a temperatura foi diminuída para 0 ± 1 ºC, por um período de 10 dias, iniciando a maturação.

Por fim, a cerveja foi envasada em garrafas âmbar de 600 ml previamente lavadas e sanitizadas, armazenadas em geladeira a 4 ± 1 ºC.

3.3 Teste do lodo

O teste do lodo identifica a presença do amido no mosto cervejeiro durante etapa de brasseagem. O contato do amido com a solução de lodo 2% tornou a amostra de mosto azul escura, enquanto a ausência da molécula deixou o mosto aquoso amarronzado (SANTOS, AFONSO, 2012). As enzimas α e β-amilase agem sob determinadas temperaturas, portanto, ao decorrer da evolução da rampa de
brassagem, as moléculas de amido foram convertidas em açúcares fermentescíveis enquanto a cor azul do mosto desapareceu.

O teste foi realizado adicionando-se uma pequena alíquota de amostra de mostro em uma placa de reação de porcelana juntamente com 2 a 3 gotas de solução de lodo 2%, para observação da mudança de coloração.

3.4 Parâmetros da fermentação

Durante a fermentação foram avaliados o teor de sólidos solúveis (TSS) e pH diariamente, até que fosse atingida a estabilidade, indicando o fim do processo bioquímico. O valor de TSS foi avaliado utilizando refratômetro portátil analógico e o valor de pH determinado por pHmetro de bancada.

A densidade foi medida antes do início da fermentação e após a estabilidade utilizando proveta de 100 ml e densímetro de vidro.

3.5 Determinação de teor alcoólico

Para determinação de teor alcoólico foi realizada destilação simples, partindo de 100 ml de amostra de cerveja. O destilado foi recolhido em proveta de 100 ml e o processo cessado ao atingir 75 ml, depois foi colocado em balão volumétrico de 100 ml, o volume completado com água Milli-Q® e homogeneizado. A temperatura foi resfriada a 20 ºC em banho de gelo (BRASIL, 2005).

Através da amostra obtida na destilação, com o auxílio de uma balança analítica foi pesado um picnômetro de 10 ml vazio, o mesmo picnômetro com água Milli-Q® e depois com a amostra (BRASIL, 2005). A análise foi feita em triplicata.

O cálculo do valor da densidade relativa foi obtido pela relação entre os pesos específicos do destilado e da água, calculada pela Equação 1, ambos a 20ºC.

\[
DR = \frac{(Mp + Mam) - Mp}{(Mp + Mag) - Mp} \quad \text{Equação 1}
\]

Onde:

- \(DR \): Densidade relativa;
- \(Mp \): Massa do picnômetro (g);
- \(Mam \): Massa da amostra (g);
- \(Mag \): Massa da água (g).

3.6 Determinação de acidez volátil

Para determinação de acidez volátil foi utilizado um determinador de acidez volátil (Tecnal, Brasil TE-0871), no qual 10 ml de amostra de cerveja foi colocado no borbuleador do aparelho com o reservatório de água destilada completo. Ligou-se o aparelho e aumentou a temperatura até a água entrar em ebulação, então fechou-se a torneira de vapor para que o vapor d’água arrastasse os voláteis da amostra que passaram por um condensador e foram recolhidos em uma proveta de 100 ml. Completado o volume, o aparelho foi desligado e a torneira de vapor aberta para descarte do restante da amostra. O destilado foi titulado com solução de NaOH a 0,1 mol L⁻¹ usando fenolf taleína como indicador (BRASIL, 1986). As análises foram realizadas em triplicata.

Os resultados finais foram expressos em mg de ácido acético/L de amostra e calculados pelas Equações 2 (BRASIL, 1986) e 3, a última é apenas para conversão de unidades.

\[A = \frac{MM \cdot V_{n\text{aoh}} \cdot N}{10 \cdot V} \] \hspace{1cm} Equação 2

Onde:

\(A \): Acidez volátil (g de ácido acético/100 ml de amostra);
\(MM \): Massa molar de ácido acético (60 g);
\(V_{n\text{aoh}} \): Volume de NaOH utilizado na titulação;
\(N \): Concentração da solução de NaOH;
\(V \): Volume da amostra.

\[AV = A \cdot 10 \cdot 1000 \] \hspace{1cm} Equação 3

Onde:

\(AV \): Acidez volátil (mg de ácido acético/L de amostra).

3.7 Determinação de cor

Para a determinação de cor tomando por base a escala EBC, foi necessário utilizar espectrofotômetro UV-mini – 1240 (Shimadzu, Japão), sendo realizada a
medida de absorbância no comprimento de onda de 430 nm, utilizando água destilada como branco. Para a medição, a amostra foi acondicionada em cubeta de vidro. Os valores obtidos foram multiplicados pelo fator de correção da cubeta e classificados de acordo com a escala de coloração apresentada na Figura 1, conforme Equação 4 (COELHO NETO et al., 2020).

\[EBC = \text{Abs}(430\text{nm}) \times f \times \text{Cub} \quad \text{Equação 4} \]

Onde:
\[\text{Abs}(430\text{nm}): \text{Absorbância da amostra em 430nm}; \]
\[f: \text{Fator de diluição}; \]
\[\text{Cub}: \text{Fator de correção da cubeta}. \]

3.8 Análise de compostos voláteis da fermentação

Para a análise de compostos voláteis da fermentação, foram destilados 100 ml de amostra de cerveja, conforme metodologia do item 3.4. A amostra destilada foi colocada em um balão volumétrico de 10 ml contendo 12,4 µL de padrão interno 4-metil-2-pentanol (1 g/L) e transferida para um vial de vidro de 1,5 ml (SOUZA, 2014).

Foi utilizado um cromatógrafo a gás com detector de ionização em chama GC-17A (Shimadzu, Japão) com coluna Supelco PAG de dimensões 30 m x 0,25 mm de espessura do filme x 0,25 µm de diâmetro interno. Foram utilizados três gases, Hélio como gás de arraste, ar sintético como gás de ignição e manutenção de chama e hidrogênio na chama do detector. As condições utilizadas para realização das análises seguem na Tabela 11 (SOUZA, 2014).

<table>
<thead>
<tr>
<th>Tabela 11: Condições cromatográficas GC-FID</th>
</tr>
</thead>
<tbody>
<tr>
<td>Split</td>
</tr>
<tr>
<td>Temperatura inicial</td>
</tr>
<tr>
<td>Temperatura do injetor</td>
</tr>
<tr>
<td>Temperatura do detector</td>
</tr>
<tr>
<td>Vazão de hélio</td>
</tr>
<tr>
<td>Vazão de ar sintético</td>
</tr>
<tr>
<td>Vazão de hidrogênio</td>
</tr>
</tbody>
</table>

(Fonte: Adaptado de Souza, 2014)
A temperatura inicial das corridas foi mantida por 5 minutos e em seguida aumentada em 10 °C/min até atingir 120 °C, mantendo esta temperatura por 10 minutos. Novamente a temperatura foi aumentada a uma taxa de 10 °C/min até 180 °C, permanecendo por mais 10 minutos. Uma última vez a temperatura foi aumentada seguindo a mesma taxa até 200 °C (SOUZA, 2014).

A concentração de cada composto volátil detectado foi calculada utilizando a Equação 5.

\[C = \frac{c \times h \times I}{H \times I} \quad \text{Equação 5} \]

Onde:
- \(C \): Concentração do composto identificado;
- \(c \): Concentração do composto na solução padrão de referência;
- \(h \): Área do pico do composto na amostra;
- \(I \): Área do pico do padrão interno na solução padrão de referência;
- \(H \): Área do pico do composto na solução padrão de referência;
- \(I \): Área do pico do padrão interno na amostra.

Por último, para as concentrações encontradas foi realizada análise de variância (ANOVA) com teste F a nível de significância de 5% (p<0,05) afim de comparar as médias dos valores encontrados entre os grupos.

3.9 Análise de compostos aromáticos voláteis

Para realização da análise de compostos aromáticos voláteis a amostra foi preparada utilizando a técnica HS-SPME, na qual 150 μL de cerveja foram diluídos em 10 ml de água Milli-Q® e aquecidas sob agitação até 60 °C em frasco vial de vidro de 25 ml com septo de silicone. Ao atingir 60 °C a temperatura foi mantida por 15 minutos, ainda sob agitação, em seguida a fibra DVB/CAR/PDMS foi exposta no headspace do frasco por mais 15 min nas mesmas condições e então, recolhida para análise (CEOLA et al., 2019).

A fibra foi desorvida por 10 minutos a 260 °C em cromatógrafo gasoso acoplado em espectrômetro de massa GCMS-QP2010 Ultra (Shimadzu, Japão) com coluna Rtx-5 de dimensões 30 m x 0,25 mm de espessura x 0,25 μm de diâmetro interno utilizando Hélio como gás de arraste (CEOLA et al., 2019).
A temperatura inicial de 40 ºC da corrida foi mantida por 2 minutos e em seguida aumentada a uma taxa de 5 ºC/min até 100 ºC, depois aumentada novamente a 8 ºC/min até 200 ºC e por fim aumentada uma última vez a taxa de 12 ºC/min até atingir 300 ºC, a temperatura foi mantida por mais 2 minutos, totalizando 36,8 minutos de corrida (CEOLA et al., 2019).

Foi injetado 1 µL de uma mistura de alcanos lineares (C7 a C30) nas mesmas condições acima para o cálculo do Índice de Retenção. Os compostos foram identificados por comparação dos valores do Índice de Retenção tabelado e calculado pela equação 6 (PINHEIRO et al., 2015).

\[
IR = \frac{(100 \times NC) + 100 \times (tR_x - tR_z)}{tR_{x+1} - tR_z}
\]

Equação 6

Onde:
- \(IR \): Índice de Retenção;
- \(NC \): Número de carbonos anterior padrão;
- \(tR_x \): Tempo de retenção do composto avaliado;
- \(tR_z \): Tempo de retenção do hidrocarboneto com tempo de retenção menor que o do composto avaliado;
- \(tR_{x+1} \): Tempo de retenção do hidrocarboneto com tempo de retenção maior que o do composto avaliado.

Por fim, para comparação, para os valores das áreas dos compostos aromáticos encontrados foi realizada análise de variância (ANOVA) com teste F a nível de significância de 5% (p<0,05).
4 RESULTADOS E DISCUSSÃO

4.1 Produção de cerveja

As cervejas foram produzidas conforme metodologia descrita, durante a brassagem foi realizado o teste do lodo e durante a fermentação houve o acompanhamento do teor de sólidos solúveis, pH e densidade inicial e final.

Foram produzidos 12 litros de cerveja por batelada, considerando as perdas durante a produção, o rendimento foi de aproximadamente 7,2 litros, 12 garrafas de 600 ml foram envasadas de cada produção.

4.2 Teste do lodo

O teste do lodo identifica a presença do amido no mosto cervejeiro durante etapa de brassagem. Como explicado anteriormente, esta molécula é quebrada através das enzimas α e β-amilase em açúcares de cadeias menores (MORATO, 2017).

O teste foi realizado para todas as produções e as nove bateladas apresentaram os mesmos resultados, no qual, ao decorrer da evolução da temperatura o amido foi sendo consumido e a coloração azul desaparecendo, como pode ser observado na Figura 5.

Figura 5: Teste do lodo

(Fonte: Próprio autor, 2022)
4.3 Parâmetros da fermentação

4.3.1 Teor de sólidos solúveis

Durante a fermentação das cervejas foram medidos diariamente os valores de teor de sólidos solúveis e os resultados estão apresentados no gráfico da Figura 7, que representa as bateladas P1 até P9.

Figura 6: Gráfico da variação de TSS

(Fonte: Próprio autor, 2022)

Foi observado uma diminuição do valor do TSS ao longo da fermentação, que ocorreu em um período de 8 dias. Pode-se perceber que o decréscimo dos valores ocorre de forma mais expressiva nos cinco primeiros dias e mais lento nos três dias finais, mantendo certa estabilidade. Tal estabilidade confirma o fim da fermentação, indicando que as leveduras não possuem mais açúcares fermentescíveis disponíveis para que ocorra a reação de formação de etanol ou que a quantidade do mesmo presente no mosto está inibindo a ação dos microrganismos, pois, segundo White & Zainasheff (2020) o próprio produto da fermentação pode ser tóxico para as leveduras em concentrações mais elevadas, inibindo a continuação do processo bioquímico.

Pode-se observar que apesar dos valores do gráfico possuírem semelhança proporcional quanto a curva de decréscimo, cada batelada possui variações próprias, as temperaturas e tempos de fermentações foram os mesmos para todas as produções, entretanto, as leveduras são seres vivos e pequenas diferenças sempre estarão presentes, principalmente em produções artesanais.
As bateladas P1 até P6 possuem valores mais próximos de TSS inicial e as bateladas P7 até P9 possuem valores um pouco mais elevados, como a fermentação aconteceu sob as mesmas condições e com a mesma cepa de levedura, era de se esperar, como consequência, que os valores finais de TSS das bateladas P7 até P9 também fossem mais elevados, como confirma o gráfico e a Tabela 12. Um valor mais alto de TSS final significa mais açúcar residual no produto final.

<table>
<thead>
<tr>
<th>Tabela 12: Valores iniciais e finais de TSS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>Lúpulo Pellet Brasileiro</td>
</tr>
<tr>
<td>P1</td>
</tr>
<tr>
<td>P2</td>
</tr>
<tr>
<td>P3</td>
</tr>
<tr>
<td>Lúpulo Flor Brasileiro</td>
</tr>
<tr>
<td>P4</td>
</tr>
<tr>
<td>P5</td>
</tr>
<tr>
<td>P6</td>
</tr>
<tr>
<td>Lúpulo Pellet Importado (USA)</td>
</tr>
<tr>
<td>P7</td>
</tr>
<tr>
<td>P8</td>
</tr>
<tr>
<td>P9</td>
</tr>
</tbody>
</table>

(Fonte: Próprio autor, 2022)

Os erros associados a diferença de TSS inicial podem ser atribuídos à moagem do malte, uma vez que a regulagem do equipamento é manual e pode ter sido alterada. Entretanto, as moagens das replicatas dos tipos de lúpulo foram realizadas no mesmo dia, por isso seus valores foram próximos entre si. É importante salientar que a aferição dos valores é realizada em refratômetro visual, portanto, pode-se ter erros associados também a esta medição.

4.3.2 pH

Os valores de pH foram medidos uma vez ao dia, diariamente, durante os oito dias de fermentação e os valores obtidos estão apresentados na Figura 7.
Figura 7: Gráfico da variação de pH

(Fonte: Próprio autor, 2022)

Os valores de pH determinados através do pHmetro de bancada apresentam valores muito próximos entre todas as bateladas, com maior decréscimo nos primeiros quatro dias e indicando sinais de estabilidade nos dias finais, como pode ser visto na Tabela 13.

Tabela 13: Valores iniciais e finais de pH

<table>
<thead>
<tr>
<th></th>
<th>Inicial</th>
<th>Final</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lúpulo Pellet Brasileiro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P1</td>
<td>5,53 ± 0,01</td>
<td>4,54 ± 0,01</td>
</tr>
<tr>
<td>P2</td>
<td>5,95 ± 0,01</td>
<td>4,5 ± 0,01</td>
</tr>
<tr>
<td>P3</td>
<td>5,66 ± 0,01</td>
<td>4,47 ± 0,01</td>
</tr>
<tr>
<td>P4</td>
<td>5,74 ± 0,01</td>
<td>4,47 ± 0,01</td>
</tr>
<tr>
<td>Lúpulo Flor Brasileiro</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P5</td>
<td>5,85 ± 0,01</td>
<td>4,47 ± 0,01</td>
</tr>
<tr>
<td>P6</td>
<td>5,78 ± 0,01</td>
<td>4,44 ± 0,01</td>
</tr>
<tr>
<td>P7</td>
<td>5,76 ± 0,01</td>
<td>4,48 ± 0,01</td>
</tr>
<tr>
<td>Lúpulo Pellet Importado (USA)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>P8</td>
<td>5,73 ± 0,01</td>
<td>4,54 ± 0,01</td>
</tr>
<tr>
<td>P9</td>
<td>5,70 ± 0,01</td>
<td>4,52 ± 0,01</td>
</tr>
</tbody>
</table>

(Fonte: Próprio autor, 2022)

A estabilidade do pH, assim como dos valores de TSS, indicam o fim da fermentação. A coerência entre os valores obtidos nos gráficos das figuras 7 e 8 foram
os primeiros indicativos de que as fermentações, realizadas em mesmas condições, foram bem sucedidas e com boa repetibilidade.

Como já dito anteriormente, segundo Rosa e Afonso (2015), durante a fermentação ocorre a formação de compostos como ésteres, ácidos e álcoois superiores através das reações secundárias. Estes compostos fazem com que haja diminuição do pH do mosto. Como a formação destes compostos é mais intensa nos primeiros dias (WHITE & ZAINASHEFF, 2020), a queda é mais brusca no início da fermentação, o que pode ser percebido claramente pelo gráfico.

O pH ideal da cerveja é abaixo de 4,5, pois assim é possível inibir a ação de microrganismos que possam comprometer a qualidade e a vida útil do produto (HOFFMAN, 2001). Pela Tabela 13, podemos perceber que os valores encontrados ficaram em torno de 4,5, sendo alguns maiores e outros menores, mas de forma geral, satisfatórios.

Pode-se perceber também que, na série de dados referente a P9, no sétimo dia a leitura do equipamento forneceu um valor discrepante, que a primeiro momento poderia indicar alguma contaminação, por estar mais baixo que o esperado. Entretanto, considerando que foi uma única medida fora da curva, a variação provavelmente está relacionada com erro de determinação inerente ao equipamento, que pode ser explicado pela falta de limpeza correta do eletrodo ou problemas de calibração.

4.3.3 Densidade

Os valores de densidade inicial (OG) e densidade final (FG) foram medidos antes e depois da fermentação e os valores obtidos para essa variável revelaram resultados coerentes com os dados de TSS discutidos anteriormente. As bateladas P1 até P6 apresentaram valores de FG menores que as bateladas P7 até P9. A quantidade de açúcar dissolvida no mosto aumenta sua densidade (WHITE & ZAINASHEFF, 2020), portanto, conforme dados da Tabela 13, os açúcares não fermentescíveis, ou residuais, presentes nas bateladas P7 até P9 foram maiores do que os das bateladas P1 até P6, explicando assim o valor mais alto de FG.
Tabela 14: Valores iniciais e finais de densidade

<table>
<thead>
<tr>
<th></th>
<th>OG</th>
<th>FG</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lúpulo Pellet Brasileiro</td>
<td>P1 1,035 ± 0,001</td>
<td>1,007 ± 0,001</td>
</tr>
<tr>
<td></td>
<td>P2 1,044 ± 0,001</td>
<td>1,005 ± 0,001</td>
</tr>
<tr>
<td></td>
<td>P3 1,047 ± 0,001</td>
<td>1,009 ± 0,001</td>
</tr>
<tr>
<td>Lúpulo Flor Brasileiro</td>
<td>P4 1,044 ± 0,001</td>
<td>1,005 ± 0,001</td>
</tr>
<tr>
<td></td>
<td>P5 1,034 ± 0,001</td>
<td>1,009 ± 0,001</td>
</tr>
<tr>
<td></td>
<td>P6 1,043 ± 0,001</td>
<td>1,012 ± 0,001</td>
</tr>
<tr>
<td>Lúpulo Pellet Importado (USA)</td>
<td>P7 1,053 ± 0,001</td>
<td>1,010 ± 0,001</td>
</tr>
<tr>
<td></td>
<td>P8 1,061 ± 0,001</td>
<td>1,012 ± 0,001</td>
</tr>
<tr>
<td></td>
<td>P9 1,052 ± 0,001</td>
<td>1,017 ± 0,001</td>
</tr>
</tbody>
</table>

(Fonte: Próprio autor, 2022)

A determinação desses resultados foi feita através de densímetro de leitura visual, portanto, é de se esperar que os valores possam ter pequenos erros de leitura associados.

4.4 Teor alcóolico

Para o cálculo do teor alcóolico, as amostras de cerveja foram destiladas em destilador simples segundo metodologia descrita no item 3.4. Com o auxílio de picnômetro e balança analítica foram determinadas as densidades relativas de cada amostra, em triplicata, e os valores de teor alcóolico foram encontrados, por interpolação, na Tabela: Conversão de densidade relativa a 20ºC/20ºC em porcentagem de álcool em peso do Instituto Adolfo Lutz (Brasil, 2005). Por fim, foi feita uma média dos valores das triplicatas para obtenção do teor alcóolico final. Os dados estão presentes na Tabela 15.
<table>
<thead>
<tr>
<th>Lúpulo Pellet Brasileiro</th>
<th>Densidade Relativa</th>
<th>Teor alcóolico tabelado</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td>P1</td>
<td>0.99367</td>
<td>3.52</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.99310</td>
<td>3.86</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.99338</td>
<td>3.69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.99320</td>
<td>3.80</td>
<td></td>
</tr>
<tr>
<td>Lúpulo Pellet Brasileiro</td>
<td>P2</td>
<td>0.99345</td>
<td>3.65</td>
</tr>
<tr>
<td></td>
<td>0.99378</td>
<td>3.48</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.99327</td>
<td>3.76</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.99357</td>
<td>3.58</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.99324</td>
<td>3.77</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.99368</td>
<td>3.52</td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>0.99264</td>
<td>4.15</td>
<td>3.85 ± 0.20</td>
</tr>
<tr>
<td></td>
<td>0.99396</td>
<td>3.88</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.99322</td>
<td>3.78</td>
<td></td>
</tr>
<tr>
<td>Lúpulo Flor Brasileira</td>
<td>P5</td>
<td>0.99394</td>
<td>3.36</td>
</tr>
<tr>
<td></td>
<td>0.99348</td>
<td>3.34</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.99295</td>
<td>3.95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.99376</td>
<td>3.47</td>
<td>3.76 ± 0.20</td>
</tr>
<tr>
<td></td>
<td>0.99309</td>
<td>3.87</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.99328</td>
<td>3.75</td>
<td></td>
</tr>
<tr>
<td>P7</td>
<td>0.99106</td>
<td>5.10</td>
<td>4.04 ± 0.20</td>
</tr>
<tr>
<td></td>
<td>0.99409</td>
<td>3.27</td>
<td></td>
</tr>
<tr>
<td>Lúpulo Pellet Importado</td>
<td>P8</td>
<td>0.99367</td>
<td>3.52</td>
</tr>
<tr>
<td>(USA)</td>
<td>0.99173</td>
<td>4.69</td>
<td>4.16 ± 0.20</td>
</tr>
<tr>
<td></td>
<td>0.99243</td>
<td>4.26</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.99229</td>
<td>4.35</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.99282</td>
<td>4.03</td>
<td>4.05 ± 0.20</td>
</tr>
<tr>
<td></td>
<td>0.99328</td>
<td>3.76</td>
<td></td>
</tr>
</tbody>
</table>

(Fonte: Próprio autor, 2022)
O teor alcoólico das amostras com pellet brasileiro variou entre 3,64 ± 0,20% e 3,7 ± 0,20%, as amostras com flor brasileira entre 3,59 ± 0,20% e 3,85 ± 0,20%, já as amostras com pellet importado entre 4,04 ± 0,20% e 4,16 ± 0,20%. Apesar de próximos, há uma diferença principalmente entre os valores das bateladas P7 até P9 das demais. O álcool é produzido pela reação de fermentação das leveduras, utilizando açúcar como substrato, como a fonte de açúcar do processo é o malte, pode-se concluir que esta diferença na porcentagem de álcool do produto final pode estar relacionada a moagem desse ingrediente. Conforme discutido anteriormente, a regulagem do moedor de malte é manual, o que levou a uma variação significativa no TSS inicial das amostras das bateladas P7 até P9 em comparação as demais, ou seja, estas bateladas possuíam mais açúcares disponíveis, portanto, mais substrato para os microrganismos fermentadores, logo, maior produção de álcool.

4.5 Acidez volátil

A determinação da acidez volátil seguiu metodologia especificada no item 3.5, foi realizada em triplicata e em seguida calculada a média dos valores, os dados estão apresentados na Tabela 16.

Esta análise determina a quantidade de ácido acético presente nas cervejas, tal composto é gerado durante a fermentação e seu valor típico no produto final varia entre 30 e 200 mg/L, seu limiar de detecção no paladar é a partir de 60 mg/L, portanto, todos as amostras possuem ótimos valores, não interferindo no sabor da cerveja, estando bem abaixo dos valores encontrados na literatura mencionados acima, uma vez que a amostra P7, que apresentou o maior valor, possui 30,94 ± 2,97 mg/L de ácido acético (WHITE & ZAINASHEFF, 2020). A presença de ácido acético em concentrações mais elevadas agrega a cerveja sabor de vinagre, o que não é desejável, portanto, consideramos esse composto um off-flavors (ARAUJO, 2019).
<table>
<thead>
<tr>
<th>Lúpulo Pellet Brasileiro</th>
<th>Concentração de ácido acético (mg/L)</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>24,72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23,38</td>
<td>23,93 ± 2,97</td>
</tr>
<tr>
<td></td>
<td>23,69</td>
<td></td>
</tr>
<tr>
<td></td>
<td>22,66</td>
<td></td>
</tr>
<tr>
<td></td>
<td>23,69</td>
<td>24,03 ± 2,97</td>
</tr>
<tr>
<td></td>
<td>24,72</td>
<td></td>
</tr>
<tr>
<td></td>
<td>28,94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27,94</td>
<td>27,94 ± 2,97</td>
</tr>
<tr>
<td></td>
<td>26,95</td>
<td></td>
</tr>
<tr>
<td></td>
<td>27,94</td>
<td>27,94 ± 2,97</td>
</tr>
<tr>
<td></td>
<td>28,94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30,94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29,94</td>
<td>30,27 ± 2,97</td>
</tr>
<tr>
<td></td>
<td>29,94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30,94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>31,94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30,94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>30,94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29,94</td>
<td></td>
</tr>
<tr>
<td></td>
<td>29,94</td>
<td></td>
</tr>
</tbody>
</table>

(Fonnte: Próprio autor, 2022)
4.6 Cor

A cor é um parâmetro de classificação das cervejas que é influenciado pelo malte usado na produção, maltes torrados deixam o mosto mais escuro (MALLETT, 2021). Para a produção das cervejas deste estudo, foram utilizados maltes claros, não torrados, portanto, era esperado que as cervejas fossem claras, o que foi confirmado por análise. A definição da cor foi feita seguindo metodologia do item 3.6, sem diluição, com cálculos realizados a partir da equação 4, com fator de correção da cubeta de vidro igual a 10.

Considerando os dados tabelados das escalas EBC e SRM, os resultados obtidos estão dispostos na Tabela 17 juntamente com a classificação.

Seguindo a escala EBC, adotada no Brasil, para qual a metodologia foi descrita, todas as cervejas foram classificadas na mesma coloração, palha. Já analisando pela escala SRM, as amostras de lúpulo pellet brasileiro e importado apresentaram cor amarela, enquanto as amostras de lúpulo flor brasileira apresentaram coloração dourada, o malte utilizado em todas as amostras foi o mesmo, portanto, era de se esperar que a coloração fosse a mesma, já que esse ingrediente é o responsável pela coloração do produto. Entretanto, a diferença entre as cores encontradas na escala SRM pode estar relacionada a metodologia utilizada.
Tabela 17: Análise de cor

<table>
<thead>
<tr>
<th>Lúpulo Pellet Brasileiro</th>
<th>Cor</th>
<th>Média</th>
<th>EBC</th>
<th>SRM</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3,98 ± 0,01</td>
<td>4,0 ± 0,01</td>
<td>Palha</td>
<td>Amarelo</td>
</tr>
<tr>
<td>P1</td>
<td>3,95 ± 0,01</td>
<td>4,06 ± 0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,79 ± 0,01</td>
<td></td>
<td>Palha</td>
<td>Amarelo</td>
</tr>
<tr>
<td>P2</td>
<td>4,78 ± 0,01</td>
<td>4,09 ± 0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,31 ± 0,01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P3</td>
<td>4,43 ± 0,01</td>
<td>4,17 ± 0,01</td>
<td>Palha</td>
<td>Amarelo</td>
</tr>
<tr>
<td></td>
<td>3,76 ± 0,01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,64 ± 0,01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P4</td>
<td>4,98 ± 0,01</td>
<td>5,25 ± 0,01</td>
<td>Palha</td>
<td>Dourado</td>
</tr>
<tr>
<td></td>
<td>6,12 ± 0,01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lúpulo Flor Brasileira</td>
<td>4,27 ± 0,01</td>
<td>5,23 ± 0,01</td>
<td>Palha</td>
<td>Dourado</td>
</tr>
<tr>
<td>P5</td>
<td>5,23 ± 0,01</td>
<td>6,18 ± 0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5,39 ± 0,01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P6</td>
<td>5,69 ± 0,01</td>
<td>5,73 ± 0,01</td>
<td>Palha</td>
<td>Dourado</td>
</tr>
<tr>
<td></td>
<td>6,12 ± 0,01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,20 ± 0,01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P7</td>
<td>4,45 ± 0,01</td>
<td>4,25 ± 0,01</td>
<td>Palha</td>
<td>Amarelo</td>
</tr>
<tr>
<td></td>
<td>4,1 ± 0,01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,94 ± 0,01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lúpulo Pellet Importado (USA)</td>
<td>4,56 ± 0,01</td>
<td>4,35 ± 0,01</td>
<td>Palha</td>
<td>Amarelo</td>
</tr>
<tr>
<td>P8</td>
<td>4,56 ± 0,01</td>
<td>4,56 ± 0,01</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>4,02 ± 0,01</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>P9</td>
<td>4,09 ± 0,01</td>
<td>4,46 ± 0,01</td>
<td>Palha</td>
<td>Amarelo</td>
</tr>
<tr>
<td></td>
<td>5,26 ± 0,01</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

(Fonte: Próprio autor, 2022)

4.7 Compostos voláteis da fermentação

Como mencionado anteriormente, os microrganismos fermentadores além de produzirem álcool e gás carbônico, produzem também vários outros compostos em reações secundárias. Dentre eles, têm-se alguns que influenciam negativamente o sabor das cervejas, por isso são chamados de *off-flavors*.

A análise por cromatografia gasosa identificou e quantificou os compostos deste grupo presentes na amostra: acetaldeído, propanol, álcool isobutilíco e álcool isoamílico.
O acetaldeído é o aldeído mais encontrado nas cervejas, formado por reações de oxidação do etanol gerado na fermentação, possui concentração média variando entre 2 – 20 mg/L e agrega a cerveja sabor de maçã verde, seu limiar de percepção varia entre 10 - 20 mg/L (ANGELONI, 2016; WHITE & ZAINASHEFF, 2020).

O propanol, assim como o álcool isobutílico e o isoamílico, são álcoois superiores que adicionam a cerveja sabor de solvente (ANGELONI, 2016). A concentração de propanol encontrada na cerveja varia entre 10 – 100 mg/L, valores bem abaixo do limiar de percepção de 800 mg/L (ANGELONI, 2016; WHITE & ZAINASHEFF, 2020). Já o limiar de percepção do álcool isobutílico é de 80 mg/L enquanto a concentração média encontrada varia entre 4 e 60 mg/L (MACHADO, 2020). Por fim, a concentração acima de 70 mg/L de álcool isoamílico pode ser percebida no paladar e os valores encontrados na produção cervejeira podem variar entre 30 e 150 mg/L (ANGELONI, 2016; WHITE & ZAINASHEFF, 2020).

Os valores das concentrações dos compostos identificados pelo método cromatográfico apresentados na Tabela 18, em mg/L, foram calculados a partir da Equação 5 explicada no tópico 3.7.

Observando-se os dados de concentração de acetaldeído pode-se perceber que sete das nove amostras apresentam concentrações dentro da faixa esperada, que tem como limite 20 mg/L, a concentração da amostra P2 está acima, três vezes maior que a ideal, já na amostra P6 não houve identificação do composto.

Em relação a formação de propanol, todos os valores calculados de concentração foram abaixo do valor médio usual que está entre 10 e 100 mg/L, que por sua vez, já foi muito abaixo do limiar de percepção de sabor.

Quanto ao álcool isobutílico, as concentrações obtidas também foram baixas. Com exceção da amostra P3 que apresentou valor abaixo da faixa encontrada usualmente em cervejas, as demais obtiveram valores dentro da média, entre 4 e 60 mg/L, e abaixo do limiar de percepção, não afetando o sensorial da cerveja.

Por fim, temos as concentrações de álcool isoamílico na qual algumas amostras estão dentro da faixa média de concentração, como P1, P7, P8 e P9 e outras estão abaixo da média, como P2 até P6. Entretanto, todas estão bem abaixo do limiar de percepção de sabor, portanto, o composto não afeta sensorialmente a bebida em nenhuma das amostras.
Tabela 18: Concentração off-flavors

<table>
<thead>
<tr>
<th></th>
<th>Concentração (mg/L)</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Acetaldeído</td>
<td>Propanol</td>
<td>Álcool isobutilico</td>
<td>Álcool isoamiloico</td>
</tr>
<tr>
<td>Lúpulo Pellet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brasileiro</td>
<td>P1 14,99 ± 19,03a</td>
<td>9,40 ± 2,52a</td>
<td>11,90 ± 3,53a</td>
<td>36,94 ± 11,82a</td>
</tr>
<tr>
<td></td>
<td>P2 63,78 ± 19,03a</td>
<td>6,10 ± 2,52a</td>
<td>9,09 ± 3,53a</td>
<td>24,43 ± 11,82a</td>
</tr>
<tr>
<td></td>
<td>P3 1,41 ± 19,03a</td>
<td>0,72 ± 2,52a</td>
<td>1,06 ± 3,53a</td>
<td>0,60 ± 11,82a</td>
</tr>
<tr>
<td>Lúpulo Flor</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Brasileira</td>
<td>P4 19,72 ± 19,03a</td>
<td>5,60 ± 2,52a</td>
<td>8,54 ± 3,53a</td>
<td>24,26 ± 11,82a</td>
</tr>
<tr>
<td></td>
<td>P5 7,21 ± 19,03a</td>
<td>8,78 ± 2,52a</td>
<td>9,72 ± 3,53a</td>
<td>25,61 ± 11,82a</td>
</tr>
<tr>
<td></td>
<td>P6 0,00 ± 2,52a</td>
<td>5,24 ± 2,52a</td>
<td>10,34 ± 3,53a</td>
<td>27,65 ± 11,82a</td>
</tr>
<tr>
<td>Lúpulo Pellet</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Importado (USA)</td>
<td>P7 18,52 ± 19,03a</td>
<td>7,39 ± 2,52a</td>
<td>11,33 ± 3,53a</td>
<td>36,15 ± 11,82a</td>
</tr>
<tr>
<td></td>
<td>P8 16,74 ± 19,03a</td>
<td>7,31 ± 2,52a</td>
<td>13,41 ± 3,53a</td>
<td>40,38 ± 11,82a</td>
</tr>
<tr>
<td></td>
<td>P9 8,79 ± 19,03a</td>
<td>6,23 ± 2,52a</td>
<td>11,02 ± 3,53a</td>
<td>33,97 ± 11,82a</td>
</tr>
</tbody>
</table>

Valores seguidos pela mesma letra, na mesma linha, foram significativamente iguais (ANOVA, p<0,05).

(Fonte: Próprio autor, 2022)

Considerando todos os álcoois superiores, suas concentrações foram baixas, tal situação pode ser explicada pelo tipo de microrganismo fermentador, levedura de baixa fermentação, pois de forma geral, leveduras de alta fermentação tendem a gerar mais álcoois superiores (ANGELONI, 2016) enquanto leveduras Lager tendem a formar menos ésteres e menos álcoois superiores (WHITE & ZAINASHEFF, 2020).

Pode-se perceber, através dos valores obtidos de desvio padrão, uma grande discrepância entre os valores das concentrações dos compostos entre as amostras do mesmo grupo. Deve-se considerar que os compostos em questão são formados durante a fermentação, e que esta etapa não é idêntica, mesmo sob as mesmas condições, já que as reações são sintetizadas por microrganismos vivos. Porém, através da ANOVA, com nível de significância de 5%, os valores das médias dos três grupos foram estatisticamente iguais para todos os compostos.

4.8 Compostos aromáticos voláteis

Os principais responsáveis pelo sabor e aroma das cervejas são os óleos essenciais presentes no lúpulo (ALMAGUER et al., 2014), esses óleos são misturas complexas de substâncias extremamente voláteis, por isso, para sua identificação, utilizamos o método de micro extração em fase sólida por headspace (HS-SPME) e
os compostos foram identificados através das bibliotecas NIST11s, NIST08S e WILEY7 do espectrômetro de massas. A grande maioria das substâncias apresenta características aromáticas, que estão descritas na Tabela 19, além da divisão dos compostos voláteis em hidrocarbonetos e compostos oxigenados – ácido carboxílicos, ésteres, álcoois, aldeídos.

Tabela 19: Características aromáticas dos compostos voláteis

<table>
<thead>
<tr>
<th>Classificação</th>
<th>Composto</th>
<th>Descrição</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidrocarbonetos</td>
<td>α-humuleno</td>
<td>Picante, amadeirado (GRIZZOTO, 2017)</td>
</tr>
<tr>
<td></td>
<td>β-mirceno</td>
<td>Herbal (DURELLO, SILVA, BOGUSZ JUNIOR, 2019), floral (JANZANTTI, MONTEIRO, 2014).</td>
</tr>
<tr>
<td></td>
<td>β-citronelol</td>
<td>Cítrico (TAKOI et al., 2010); Citronela (MARCON et al., 2011)</td>
</tr>
<tr>
<td></td>
<td>Ácido acético</td>
<td>Vinagre (SOARES, 2012; WELKE, 2012)</td>
</tr>
<tr>
<td></td>
<td>Ácido decanoácido</td>
<td>Caprino, rancoso (SOARES, 2012)</td>
</tr>
<tr>
<td></td>
<td>Ácido hexadecanoácido</td>
<td>Caprino, rancoso (SOARES, 2012)</td>
</tr>
<tr>
<td></td>
<td>Ácido octanóico</td>
<td>Rancoso (WELKE et al., 2014), caprino (SOARES, 2012)</td>
</tr>
<tr>
<td></td>
<td>Álcool isoaamílico</td>
<td>Solvente (WHITE & ZAINASHEFF, 2020)</td>
</tr>
<tr>
<td></td>
<td>Álcool fenilético</td>
<td>Rosas (PIRES et al., 2014)</td>
</tr>
<tr>
<td></td>
<td>Butan-1-ol</td>
<td>Solvente (WHITE & ZAINASHEFF, 2020)</td>
</tr>
<tr>
<td></td>
<td>Dec-9-enoato de etila</td>
<td>Frutado (ORTIZ, MELO, AGUIAR, 2019)</td>
</tr>
<tr>
<td></td>
<td>Decanal</td>
<td>Cítrico (AZEVEDO et al., 2007)</td>
</tr>
<tr>
<td></td>
<td>Decanoato de etila</td>
<td>Frutado (WELKE, 2012)</td>
</tr>
<tr>
<td></td>
<td>Dodecanoato de etila</td>
<td>Floral (SIMÕES, WASZCZYSNJKYJ, WOSIACKI, 2009)</td>
</tr>
<tr>
<td>Compostos</td>
<td>Dodecanol</td>
<td>Caramelo (JANZANTTI, MONTEIRO, 2014)</td>
</tr>
<tr>
<td>Oxigenados</td>
<td>Hexadec-9-enoato de etila</td>
<td>n.a</td>
</tr>
<tr>
<td></td>
<td>Hexadecanoato de etila</td>
<td>n.a</td>
</tr>
<tr>
<td></td>
<td>Hexanoato de etila</td>
<td>Maçã (PIRES et al., 2014), frutado (WELKE, 2012)</td>
</tr>
<tr>
<td></td>
<td>Linalol</td>
<td>Lavanda (TAKOI et al., 2010), rosas (MARCON et al., 2011), floral (WELKE, 2012)</td>
</tr>
<tr>
<td></td>
<td>Nonadecanol</td>
<td>n.a</td>
</tr>
<tr>
<td></td>
<td>Nonanal</td>
<td>Eucalipto, verde, cítrico, quente, doce (BASTOS et al., 2002)</td>
</tr>
<tr>
<td></td>
<td>Octanoato de etila</td>
<td>Maçã, anis (PIRES et al., 2014), frutado (WELKE, 2012)</td>
</tr>
<tr>
<td></td>
<td>Tetradecanoato de etila</td>
<td>n.a</td>
</tr>
<tr>
<td></td>
<td>Tetradecatri-4,8,12-enal</td>
<td>n.a</td>
</tr>
</tbody>
</table>

(Fonte: Próprio autor, 2022)
Para calcular o índice de retenção e confirmar da identificação dos compostos, foi injetado no GC-MS a cadeia de carbonos lineares (C7 – C30) para obtenção dos dados necessários para os cálculos da equação 6, os valores encontrados foram comparados aos valores tabelados obtidos do livro *Identification of essential oil components by gas chromatography/mass spectrometry* (ADAMS, 2017) e estão apresentados na Tabela 22.

Para os compostos álcool isoamílico e butan-1-ol não foi possível calcular o índice de retenção, pois suas cadeias possuem menos de oito carbonos. Para os compostos ácido acético, hexadec-9-enoato de etila, nonadecanol e tetradecatri-4,8,12-enal não foram encontrados os valores de IR tabelado. Além disso, alguns compostos foram identificados em apenas algumas amostras, portanto, não há valores de índice de Retenção (IR) calculado para todas as bateladas.
<table>
<thead>
<tr>
<th>Classificação</th>
<th>Composto</th>
<th>IR</th>
<th>Tab</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>P7</th>
<th>P8</th>
<th>P9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidrocarbonetos</td>
<td>α-humuleno</td>
<td>1452</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>1460</td>
<td>1460</td>
<td>1460</td>
</tr>
<tr>
<td></td>
<td>β-mírceno</td>
<td>988</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>991</td>
<td>991</td>
<td>991</td>
</tr>
<tr>
<td></td>
<td>β-citronelol</td>
<td>1223</td>
<td>1230</td>
<td>1230</td>
<td>1230</td>
<td>1230</td>
<td>1230</td>
<td>1230</td>
<td>1229</td>
<td>1229</td>
<td>1230</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ácido acético</td>
<td>-</td>
<td>1259</td>
<td>1259</td>
<td>1259</td>
<td>1259</td>
<td>1259</td>
<td>1259</td>
<td>1258</td>
<td>1258</td>
<td>1258</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ácido decanóico</td>
<td>1364</td>
<td>1367</td>
<td>1367</td>
<td>1367</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ácido hexadecanóico</td>
<td>1959</td>
<td>1958</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Ácido octanóico</td>
<td>1167</td>
<td>1182</td>
<td>1181</td>
<td>1182</td>
<td>1181</td>
<td>1181</td>
<td>1180</td>
<td>1181</td>
<td>1183</td>
<td>1183</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Álcool isoamílico</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Álcool feniletilícico</td>
<td>-</td>
<td>1115</td>
<td>1116</td>
<td>1117</td>
<td>1117</td>
<td>1117</td>
<td>1118</td>
<td>1118</td>
<td>1116</td>
<td>1115</td>
<td>1115</td>
</tr>
<tr>
<td></td>
<td>Butan-1-ol</td>
<td>-</td>
</tr>
<tr>
<td>Compostos Oxigenados</td>
<td>Dec-9-enóato de etila</td>
<td>1380</td>
<td>1385</td>
</tr>
<tr>
<td></td>
<td>Decanal</td>
<td>1201</td>
<td>1204</td>
<td>1205</td>
<td>1204</td>
<td>1204</td>
<td>1204</td>
<td>1204</td>
<td>1204</td>
<td>1204</td>
<td>1204</td>
<td>1204</td>
</tr>
<tr>
<td></td>
<td>Decanoato de etila</td>
<td>1395</td>
<td>1393</td>
<td>1593</td>
<td>1593</td>
<td>1393</td>
<td>1392</td>
<td>1392</td>
<td>1392</td>
<td>1392</td>
<td>1392</td>
<td>1392</td>
</tr>
<tr>
<td></td>
<td>Dodecanoato de etila</td>
<td>1594</td>
<td>1590</td>
<td>1590</td>
<td>1590</td>
<td>1590</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Dodecanol</td>
<td>1469</td>
<td>1472</td>
<td></td>
<td>-</td>
<td>-</td>
<td>1472</td>
<td>1472</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Hexadec-9-enóato de etila</td>
<td>-</td>
<td>1970</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Hexadecanoato de etila</td>
<td>1992</td>
<td>1989</td>
<td>1989</td>
<td>1988</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Hexanoato de etila</td>
<td>1003</td>
<td>1001</td>
<td>1001</td>
<td>1001</td>
<td>1002</td>
<td>1001</td>
<td>1001</td>
<td>1001</td>
<td>1001</td>
<td>1001</td>
<td>1001</td>
</tr>
<tr>
<td></td>
<td>Linalol</td>
<td>1095</td>
<td>1099</td>
<td>1100</td>
<td>1100</td>
<td>1100</td>
<td>1099</td>
<td>1100</td>
<td>1099</td>
<td>1099</td>
<td>1099</td>
<td>1099</td>
</tr>
<tr>
<td></td>
<td>Nonadecanol</td>
<td>-</td>
<td>2081</td>
<td></td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Nonanal</td>
<td>1100</td>
<td>1104</td>
<td>1105</td>
<td>1105</td>
<td>1104</td>
<td>1104</td>
<td>1104</td>
<td>1104</td>
<td>1104</td>
<td>1104</td>
<td>1104</td>
</tr>
<tr>
<td></td>
<td>Octanoato de etila</td>
<td>1196</td>
<td>1196</td>
<td>1196</td>
<td>1197</td>
<td>1196</td>
<td>1196</td>
<td>1196</td>
<td>1196</td>
<td>1196</td>
<td>1196</td>
<td>1196</td>
</tr>
<tr>
<td></td>
<td>Tetradecanoato de etila</td>
<td>1795</td>
<td>1789</td>
<td>-</td>
<td>1788</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>Tetradecatri-4,8,12-enal</td>
<td>-</td>
<td>1841</td>
<td>-</td>
<td>1841</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
</tbody>
</table>

(Fonte: Próprio autor, 2022)
Pode-se observar que o ácido decanoico foi identificado apenas nas amostras P1 a P3 e o ácido hexadecanoico apenas na amostra P1, preparadas com lúpulo em *pellet* brasileiro, ambos são considerados *off-flavors*, pois agregam aroma rançoso (SOARES, 2012) ao produto.

Em relação aos álcoois, pode-se perceber que o dodecanol foi observado nas amostras P1, P5 e P6 e o nonadecanol foi detectado apenas na amostra P1. Ao primeiro foi atribuído aroma de caramelo (JANZANTTI, MONTEIRO, 2014), enquanto no segundo não houve identificação de aroma relacionada. Estes compostos foram encontrados apenas em amostras brasileiras, *pellet* e flor.

Atentando-se aos ésteres, pode-se observar que o dodecanoato de etila, composto que agrega aroma floral (SIMÕES, WASZCZYNSKYJ, WOSIACKI, 2009) ao produto, não foi encontrado nas amostras P5 e P6. Hexadec-9-enoato de etila foi identificado apenas na amostra P1, hexadecanoato de etila nas amostras de *pellet* brasileiro, P1 a P3 e tetradecanoato de etila nas amostras P1 e P3, aos três não foram atribuídas característica aromáticas, portanto, não interferem no aroma do produto final.

O aldeído tetradecatri-4,8,12-enal foi identificado apenas nas amostras P1 e P3 não há aroma relacionado a ele.

Por fim, segundo Almaguer *et al.* (2014), α-humuleno, β-mirceno e β-cariofileno são os compostos mais influentes no aroma das cervejas, podendo representar até 80% do total de óleos essenciais do lúpulo (VERZELE, 1986, KATSIOTS *et al.*, 1989), portanto, era esperado que fossem encontrados em todas as amostras, no entanto, o β-cariofileno não foi encontrado em nenhuma e α-humuleno e β-mirceno foram encontrados apenas nas amostras produzidas com lúpulo importado.

Através da análise foram obtidos os dados de área relativa dos compostos identificados, que estão apresentadas na Tabela 23. Para estes dados foi realizado o tratamento estatístico pela *ANOVA* e teste *F*, para comparação dos valores das áreas com o objetivo de identificar diferenças significativas entre os dados.
<table>
<thead>
<tr>
<th>Classificação</th>
<th>Composto</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>P7</th>
<th>P8</th>
<th>P9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hidrocarbonetos</td>
<td></td>
</tr>
<tr>
<td>α-humuleno</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0,87±</td>
<td>0,54±</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,34±</td>
<td>0,34±</td>
</tr>
<tr>
<td>β-mirceno</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>1,19±</td>
<td>0,41±</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0,45±</td>
<td>0,45±</td>
</tr>
<tr>
<td>β-citronelol</td>
<td>0,4±</td>
<td>0,86±</td>
<td>0,67±</td>
<td>0,23±</td>
<td>0,52±</td>
<td>0,18±</td>
<td>0,57±</td>
<td>0,61±</td>
<td>0,67±</td>
<td>0,22±</td>
</tr>
<tr>
<td></td>
<td>0,22a</td>
</tr>
<tr>
<td>Ácido acético</td>
<td>0,91±</td>
<td>1,14±</td>
<td>1,67±</td>
<td>0,9±</td>
<td>1,04±</td>
<td>0,78±</td>
<td>1,33±</td>
<td>1,33±</td>
<td>0,92±</td>
<td>0,28a</td>
</tr>
<tr>
<td></td>
<td>0,28a</td>
</tr>
<tr>
<td>Ácido decanóico</td>
<td>0,88±</td>
<td>0,33±</td>
<td>0,38±</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>0,31</td>
<td>0,31</td>
<td>0,31</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Ácido hexadecanóico</td>
<td>2,22</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Compostos Oxigenados</td>
<td></td>
</tr>
<tr>
<td>Ácido octanóico</td>
<td>2,77±</td>
<td>2,49±</td>
<td>2,67±</td>
<td>0,96±</td>
<td>1,92±</td>
<td>0,75±</td>
<td>0,75±</td>
<td>-</td>
<td>0,66±</td>
<td>1,03b</td>
</tr>
<tr>
<td></td>
<td>1,03a</td>
<td>1,03a</td>
<td>1,03a</td>
<td>1,03a</td>
<td>1,03a</td>
<td>1,03a</td>
<td>1,03a</td>
<td>1,03b</td>
<td>1,03b</td>
<td>1,03b</td>
</tr>
<tr>
<td>Álcool isoamílico</td>
<td>16,71±</td>
<td>21,24±</td>
<td>16,33±</td>
<td>9,12±</td>
<td>14,18±</td>
<td>15,96±</td>
<td>23,59±</td>
<td>20,76±</td>
<td>13,93±</td>
<td>4,42a</td>
</tr>
<tr>
<td></td>
<td>4,42a</td>
</tr>
<tr>
<td>Álcool fenilético</td>
<td>3,06±</td>
<td>3,56±</td>
<td>4,13±</td>
<td>1,76±</td>
<td>2,08±</td>
<td>1,67±</td>
<td>2,48±</td>
<td>1,89±</td>
<td>1,61±</td>
<td>0,91a</td>
</tr>
<tr>
<td></td>
<td>0,91a</td>
</tr>
<tr>
<td>Butan-1-ol</td>
<td>25,35±</td>
<td>30,66±</td>
<td>30,66±</td>
<td>33,41±</td>
<td>22,39±</td>
<td>30,58±</td>
<td>35,67±</td>
<td>32,94±</td>
<td>34,62±</td>
<td>4,33a</td>
</tr>
<tr>
<td></td>
<td>4,33a</td>
</tr>
<tr>
<td>Dec-9-enoato de etila</td>
<td>0,79±</td>
<td>1,2±</td>
<td>0,89±</td>
<td>1,03±</td>
<td>0,87±</td>
<td>0,82±</td>
<td>0,72±</td>
<td>0,49±</td>
<td>0,42±</td>
<td>0,24a</td>
</tr>
<tr>
<td></td>
<td>0,24a</td>
</tr>
<tr>
<td>Decanal</td>
<td>1,19±</td>
<td>1,36±</td>
<td>0,98±</td>
<td>1,03±</td>
<td>1,23±</td>
<td>0,69±</td>
<td>0,37±</td>
<td>0,24±</td>
<td>0,5±</td>
<td>0,41b</td>
</tr>
<tr>
<td></td>
<td>0,41a</td>
<td>0,41a</td>
<td>0,41a</td>
<td>0,41b</td>
<td>0,41b</td>
<td>0,41b</td>
<td>0,41b</td>
<td>0,41b</td>
<td>0,41b</td>
<td>0,41b</td>
</tr>
<tr>
<td></td>
<td>3,77 ±</td>
<td>3,59 ±</td>
<td>4,17 ±</td>
<td>4,6 ±</td>
<td>1,67 ±</td>
<td>1,73 ±</td>
<td>3,27 ±</td>
<td>2,65 ±</td>
<td>2,77 ±</td>
<td></td>
</tr>
<tr>
<td>---------------------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td>--------</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,02^a</td>
<td>1,02^a</td>
<td>1,02^a</td>
<td>1,02^a</td>
<td>1,02^a</td>
<td>1,02^a</td>
<td>1,02^a</td>
<td>1,02^a</td>
<td>1,02^a</td>
<td></td>
</tr>
<tr>
<td>Decanoato de etila</td>
<td></td>
</tr>
<tr>
<td></td>
<td>3,07 ±</td>
<td>1,74 ±</td>
<td>1,83 ±</td>
<td>1,17 ±</td>
<td></td>
<td></td>
<td>1,09 ±</td>
<td>1,09 ±</td>
<td>0,68 ±</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,96^a</td>
<td>0,96^a</td>
<td>0,96^a</td>
<td>0,96^a</td>
<td></td>
<td></td>
<td>0,96^b</td>
<td>0,96^b</td>
<td>0,96^b</td>
<td></td>
</tr>
<tr>
<td>Dodecanoato de etila</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,8 ±</td>
<td></td>
<td></td>
<td></td>
<td>0,95 ±</td>
<td>0,95 ±</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,45^a</td>
<td></td>
<td></td>
<td></td>
<td>0,45^a</td>
<td>0,45^a</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dodecanol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexadec-9-enoato de etila</td>
<td>1,17 ±</td>
<td>0,76 ±</td>
<td>0,94 ±</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,49</td>
<td>0,49</td>
<td>0,49</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Hexadecanoato de etila</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8,85 ±</td>
<td>7,15 ±</td>
<td>9,31 ±</td>
<td>8,16 ±</td>
<td>8,22 ±</td>
<td>7,02 ±</td>
<td>9,01 ±</td>
<td>7,04 ±</td>
<td>7,12 ±</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,93^a</td>
<td>0,93^a</td>
<td>0,93^a</td>
<td>0,93^a</td>
<td>0,93^a</td>
<td>0,93^a</td>
<td>0,93^a</td>
<td>0,93^a</td>
<td>0,93^a</td>
<td></td>
</tr>
<tr>
<td>Hexanoato de etila</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,53 ±</td>
<td>0,84 ±</td>
<td>1,48 ±</td>
<td>1,49 ±</td>
<td>0,98 ±</td>
<td>0,73 ±</td>
<td>1,6 ±</td>
<td>1,1 ±</td>
<td>1 ± 0,33^a</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,33^a</td>
<td>0,33^a</td>
<td>0,33^a</td>
<td>0,33^a</td>
<td>0,33^a</td>
<td>0,33^a</td>
<td>0,33^a</td>
<td>0,33^a</td>
<td>0,33^a</td>
<td></td>
</tr>
<tr>
<td>Linalol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,97</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nonadecanol</td>
<td></td>
</tr>
<tr>
<td></td>
<td>1,44 ±</td>
<td>1,3 ±</td>
<td>1,19 ±</td>
<td>0,79 ±</td>
<td>0,8 ±</td>
<td>0,6 ±</td>
<td>0,63 ±</td>
<td>0,17 ±</td>
<td>0,53 ±</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,41^a</td>
<td>0,41^a</td>
<td>0,41^a</td>
<td>0,41^b</td>
<td>0,41^b</td>
<td>0,41^b</td>
<td>0,41^b</td>
<td>0,41^b</td>
<td>0,41^b</td>
<td></td>
</tr>
<tr>
<td>Nonanal</td>
<td></td>
</tr>
<tr>
<td></td>
<td>15,97 ±</td>
<td>13,05 ±</td>
<td>15,51 ±</td>
<td>18,51 ±</td>
<td>12,3 ±</td>
<td>13,04 ±</td>
<td>16,73 ±</td>
<td>12,76 ±</td>
<td>16,23 ±</td>
<td></td>
</tr>
<tr>
<td></td>
<td>2,18^a</td>
<td>2,18^a</td>
<td>2,18^a</td>
<td>2,18^a</td>
<td>2,18^a</td>
<td>2,18^a</td>
<td>2,18^a</td>
<td>2,18^a</td>
<td>2,18^a</td>
<td></td>
</tr>
<tr>
<td>Octanoato de etila</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,97 ±</td>
<td></td>
<td></td>
<td>0,85 ±</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,08</td>
<td></td>
<td></td>
<td>0,08</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetradecanoato de etila</td>
<td>0,8 ±</td>
<td></td>
<td></td>
<td>0,99 ±</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,40</td>
<td></td>
<td></td>
<td>0,40</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tetradecatri-4,8,12-enal</td>
<td></td>
</tr>
</tbody>
</table>

Valores seguidos por letras diferentes, na mesma linha, foram significativamente diferentes (ANOVA, p<0,05). Para os compostos identificados em apenas uma amostra não foi possível calcular o desvio padrão.

(Fonte: Próprio autor, 2022)
Como descrito anteriormente, a ausência de β-cariofileno e a presença de α-humuleno e β-mirceno em apenas três das nove amostras é um resultado inesperado, uma vez que representam grande parte dos óleos essenciais do lúpulo (ALMAGUER et al., 2014, VERZELE, 1986, KATSIOTS et al., 1989), entretanto, ainda segundo Almaguer et al. (2014), estes compostos são extremamente voláteis e pouco polares, portanto, durante a produção da cerveja, na etapa de fervura, diversos compostos são volatilizados, restando no produto final apenas traços. Segundo Janish (2019), há estudos que relatam que o β-mirceno volatilizou totalmente em 60 minutos de fervura. A concentração muito pequena destes compostos pode ter sido insuficiente para que fosse detectada na metodologia de análise utilizada. Possivelmente, a quantidade de α-humuleno e β-mirceno no lúpulo importado era mais expressiva, por isso, para essas amostras, apesar das perdas, os compostos foram identificados. Conforme descrito na Tabela 21, a área correspondente a estes compostos é bem pequena, indicando baixas concentrações.

Um ponto importante desta análise é a presença do composto linalol nas amostras, que garante a presença de β-mirceno em todos os lúpulos, apesar de não identificados na cerveja, pois este composto é formado a partir da hidratação do β-mirceno durante a fervura (ALMAGUER et al., 2014). Com isso, pode-se concluir que a maior parte do β-mirceno presente nos lúpulos foi convertida à linalol ou evaporada durante a fervura, restando na cerveja, concentrações muito baixas.

Além dos supracitados, os únicos compostos aromáticos que não foram identificados em todas as amostras foram o dodecanoato de etila – aroma floral – e o dodecanol – aroma de caramelo –, aos demais não foram atribuídos aroma, portanto, não interferem no sensorial dos produtos.

A fração de compostos oxigenados, apesar de menor, contribui fortemente para a formação do aroma e sabor das cervejas, uma vez que corresponde a uma mistura muito complexa de substâncias, que apesar da baixa concentrações, são menos voláteis e resistem ao aquecimento prolongado da etapa de fervura (JANISH, 2019). Como pode ser observado pelas Tabelas 22 e 23, a presença da grande maioria desse grupo de compostos é similar, o que indica um perfil sensorial muito parecido para todas as amostras.

Apesar de atribuídas características aromáticas individuais para os compostos, apresentadas na Tabela 21, deve-se considerar que há o efeito sinérgico entre os compostos, no qual a combinação de duas ou mais destas substâncias pode gerar um
novo aroma ou sabor (JANISH, 2019). A partir destas informações e dos valores de área da Tabela 21 foi construída a Tabela 22 onde estão apresentadas as porcentagens de cada um dos aromas das cervejas produzidas. As porcentagens foram obtidas pela razão entre a área da soma dos compostos do aroma em questão e a área total de compostos aromáticos identificados.

Tabela 22: Porcentagem de compostos aromáticos

<table>
<thead>
<tr>
<th>Aroma</th>
<th>P1</th>
<th>P2</th>
<th>P3</th>
<th>P4</th>
<th>P5</th>
<th>P6</th>
<th>P7</th>
<th>P8</th>
<th>P9</th>
</tr>
</thead>
<tbody>
<tr>
<td>Citrico</td>
<td>7,41 ± 10,16</td>
<td>7,07 ± 5,29</td>
<td>8,61 ± 5,36</td>
<td>4,07 ± 3,52</td>
<td>5,16 ± 2,18</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Floral</td>
<td>18,74 ± 17,72</td>
<td>18,53 ± 11,40</td>
<td>10,33 ± 8,75</td>
<td>16,51 ± 15,49</td>
<td>12,57 ± 3,76</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mentolado</td>
<td>0,00 ± 0,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Picante/Herbal</td>
<td>0,00 ± 0,00</td>
<td>0,00 ± 0,00</td>
<td>0,00 ± 0,00</td>
<td>0,00 ± 0,00</td>
<td>0,00 ± 5,35</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Caramelo</td>
<td>1,96 ± 1,49</td>
<td>0,00 ± 0,00</td>
<td>3,21 ± 1,49</td>
<td>3,46 ± 1,49</td>
<td>0,00 ± 0,00</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Amadeirado</td>
<td>0,00 ± 0,00</td>
<td>0,00 ± 0,00</td>
<td>0,00 ± 0,00</td>
<td>0,00 ± 0,00</td>
<td>0,00 ± 2,21</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Verde</td>
<td>3,52 ± 1,01</td>
<td>2,96 ± 1,01</td>
<td>2,04 ± 1,01</td>
<td>2,70 ± 1,01</td>
<td>1,64 ± 0,98</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Frutado</td>
<td>71,89 ± 4,19</td>
<td>72,12 ± 4,19</td>
<td>83,31 ± 4,19</td>
<td>77,85 ± 4,19</td>
<td>77,16 ± 4,19</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Valores seguidos por letras diferentes, na mesma linha, foram significativamente diferentes (ANOVA, p<0,05).

(Fonte: Próprio autor, 2022)

Pode-se observar a predominância do aroma frutado em todas as amostras, com frações superiores a 70%, seguida de aromas florais, cíticos, picantes/herbais, verde, caramelo e amadeirado. Houve também a ausência de mentolado em todas as amostras.

Analisando a tabela acima como um todo, através da ANOVA, pode-se perceber algumas diferenças estatísticas entre as amostras. Em relação ao aroma cítico, não há diferenças significativas entre os grupos, ou seja, estatisticamente os valores das médias são iguais. Já em relação ao aroma floral, as amostras com lúpulo brasileiro em pellet são as que possuem mais quantidade dos compostos desta categoria e são estatisticamente diferentes das demais amostras.

O aroma picante/herbal foi obtido apenas nas amostras de lúpulo importado, portanto, para este grupo não foi calculada a ANOVA. Os compostos com aroma de caramelo foram encontrados em algumas amostras contendo lúpulo brasileiro, e foram
considerados estatisticamente iguais. Já os compostos de aroma amadeirado foram
identificados somente nas amostras com lúpulo importado, então não houve cálculo
de ANOVA.

Em relação ao aroma verde, as amostras com lúpulo brasileiro, tanto pellet
quanto flor foram significativamente diferentes das amostras com lúpulo importado.
Por fim, a porcentagem relacionada ao aroma frutado, foi significativamente maior nas
amostras com lúpulo brasileiro em pellet e em flor do que nas amostras com lúpulo
importado.

Partindo destes dados, foram gerados gráficos de radar para formar o perfil
aromático das cervejas produzidas e de cada repetição foi feito um gráfico sobreposto,
para fins de comparação.

Na Figura 8 pode-se perceber pelos gráficos sobrepostos que os perfis das três
amostras produzidas com lúpulo brasileiro em pellet foram semelhantes, na
sobreposição ambos tiveram o mesmo formato, sendo diferenciados apenas pelas
quantidades de cada categoria aromática.
Observando a Figura 9, assim como nas três primeiras amostras, pode-se afirmar que os perfis das três amostras produzidas com lúpulo brasileiro em flor foram similares, através dos gráficos sobrepostos pode-se perceber que há também diferença entre as quantidades.
Por fim, pela Figura 10, pode-se perceber que os perfis aromáticos das cervejas produzidas com lúpulo importado também foram semelhantes, assim como os outros. Pelo gráfico sobreposto pode-se conformar esta observação.
Figura 10: Perfis aromáticos - amostras com lúpulo importado em pellet

Um último gráfico foi feito com o objetivo de comparar as médias entre os três tipos de lúpulo. A imagem está apresentada na Figura 11.

Pode-se confirmar que os perfis são semelhantes, pois pela sobreposição dos gráficos é observado que as categorias de aromas seguem um padrão, apesar das pequenas diferenças em porcentagem de área de cada composto.
Figura 11: Perfis aromáticos - médias sobrepostas

Sobreposição das Médias

(Fonte: Próprio autor, 2022)
5 CONCLUSÃO

De acordo com os resultados descritos acima, pode-se concluir através do teste de iodo, e das análises feitas durante a fermentação - teor de sólidos solúveis, pH e densidade - além do monitoramento da temperatura durante todas as etapas, que a produção ocorreu da forma desejada, sem interferentes, apresentando boa repetibilidade dos dados e seguindo os valores esperados.

As análises físico-químicas realizadas afim de classificar as cervejas mostraram que os teores alcólicos das cervejas produzidas com lúpulo brasileiro as categorizaram como sendo de baixo teor alcólico e as cervejas produzidas com lúpulo importado como sendo de médio teor alcólico. É importante lembrar que o álcool é proveniente da fermentação dos açúcares do malte, portanto, o resultado desta análise não teve relação direta com o tipo de lúpulo utilizado e sim com a moagem do malte, como já discutido anteriormente. A análise de cor classificou todas as amostras como sendo de cor Palha pela escala EBC, utilizada no Brasil e recomendada para a metodologia utilizada.

A análise de acidez volátil, que determina o teor de ácido acético, identificou que a quantidade do composto produzido na fermentação foi insignificante do que diz respeito a interferência sensorial, pois os valores encontrados estavam abaixo do limiar de detecção. Os outros off-flavors identificados por cromatografia gasosa, acetaldeído, propanol, álcool isobutilico e álcool isoamilico, de forma geral, também foram identificados com baixas concentrações nas amostras, não afetando o sabor das cervejas.

Por fim, foi realizada a análise cromatográfica para identificação e comparação do perfil aromático. Apenas das amostras apresentarem pequenas diferenças em alguns compostos, a principal discrepância foi a ausência de α-humuleno e β-mircreno nas amostras de lúpulo brasileiro, tanto flor quanto pellet. No entanto, de forma geral o perfil se manteve, o aroma frutado sobressaiu, sendo mais de 70% do aroma em todas as cervejas.

Diante de todas as informações descritas até aqui, pode-se afirmar que o perfil aromático dos lúpulos brasileiros, tanto em pellet quanto em flor, apesar das diferenças já discutidas, é semelhante ao do lúpulo importado americano, confirmando assim que as amostras de cultivo solo nacional analisadas estão atendendo aos padrões da variedade.
REFERÊNCIAS

GRIZOTTO, Pamela Aparecida. Perfil sensorial do aroma de lúpulos (Humulus Lupulus) brasileiros. 2017. 65 f. TCC (Graduação) - Curso de Química, Química e Física Molecular, Universidade Federal de São Paulo, São Carlos, 2017.

HEALEY, Julian. The hops list: 265 beer hop varieties from around the world. [S.i.]: Blurb, 2016. 390 p.

PINTO, Mariana Barreto Carvalhal. Isomerização de ácidos amargos de lúpulo cascade cultivado no Brasil e seu desempenho durante a fermentação da cerveja. 2018. 82 f. Dissertação (Mestrado) - Curso de Tecnologia de Alimentos, Engenharia de Alimentos, Universidade Estadual de Campinas, Campinas, 2018.

SOUZA, Michelle Izolina Lopes de. *Caracterização físico-química de vinhos de uvas viníferas e uvas americanas e avaliação do processo oxidativo por ozonização*. 2014. 69 f. Dissertação (Mestrado) - Curso de Ciência e Tecnologia de Alimentos, Tecnologia de Alimentos, Universidade Federal de Viçosa, Viçosa, 2014.

TAKOY, Kiyoshi; ITOGA, Yutaka; KOIE, Koichiro; KOSUGI, Takayuki; SHIMASE, Masayuki; KATAYAMA, Yuta; NAKAYAMA, Yasuyuki; WATARI, Junji. The Contribution of Geraniol Metabolism to the Citrus Flavour of Beer: synergy of geraniol and β-citronellol under coexistence with excess linalool. *Journal Of The Institute Of Brewing*, [S.L.], v. 116, n. 3, p. 251-260, 2010. Wiley. http://dx.doi.org/10.1002/j.2050-

ANEXO

Cromatogramas das análises realizadas por HS-SPME em GC-MS.

Figura A1: Amostra P1

1-Álcool isoamilico; 2- Butanol; 3- Hexanoato de etila; 4- Linalol; 5- Nonanal; 6- Álcool feniletilico; 7- Ácido octanoico; 8- Octanoato de etila; 9- Decanal; 10- β-citronelol; 11- Ácido acético; 12- Ácido decanoico; 13- Dec-9-enoato de etila; 14- Decanoato de etila; 15- Dodecanol; 16- Dodecanoato de etila; 17- Tetradecanoato de etila; 18- Tetradecatri-4,8,12-enal; 19- Ácido hexadecanoico; 20- Hexadec-9-enoato de etila; 21- Hexadecanoato de etila; 22- Nonadecanol

Figura A2: Amostra P2

1-Álcool isoamilico; 2- Butanol; 3- Hexanoato de etila; 4- Linalol; 5- Nonanal; 6- Álcool feniletilico; 7- Ácido octanoico; 8- Octanoato de etila; 9- Decanal; 10- β-citronelol; 11- Ácido acético; 12- Ácido decanoico; 13- Dec-9-enoato de etila; 14- Decanoato de etila; 15- Dodecanoato de etila; 16- Hexadecanoato de etila.
Figura A3: Amostra P3

1-Álcool isoamílico; 2- Butanol; 3- Hexanoato de etila; 4- Linalol; 5- Nonanal; 6- Álcool feniletilílico; 7- Ácido octanoico; 8- Octanoato de etila; 9- Decanal; 10- β-citroneol; 11- Ácido acético; 12- Ácido decanoico; 13- Dec-9-enoato de etila; 14- Decanoato de etila; 15- Dodecanoato de etila; 16- Tetradecanoato de etila; 17- Tetradecatri-4,8,12-enal; 18- Hexadecanoato de etila.

Figura A4: Amostra P4

1-Álcool isoamílico; 2- Butanol; 3- Hexanoato de etila; 4- Linalol; 5- Nonanal; 6- Álcool feniletilílico; 7- Ácido octanoico; 8- Octanoato de etila; 9- Decanal; 10- β-citroneol; 11- Ácido acético; 12- Dec-9-enoato de etila; 13- Decanoato de etila; 14- Dodecanoato de etila.

Figura A5: Amostra P5

1-Álcool isoamílico; 2- Butanol; 3- Hexanoato de etila; 4- Linalol; 5- Nonanal; 6- Álcool feniletilílico; 7- Ácido octanoico; 8- Octanoato de etila; 9- Decanal; 10- β-citroneol; 11- Ácido acético; 12- Dec-9-enoato de etila; 13- Decanoato de etila; 14- Dodecanol.
Figura A6: Amostra P6

1-Álcool isoamílico; 2- Butanol; 3- Hexanoato de etila; 4- Linalol; 5- Nonanal; 6- Álcool feniletílico; 7- Ácido octanoico; 8- Octanoato de etila; 9- Decanal; 10- β-citronelol; 11- Ácido acético; 12- Dec-9-enooato de etila; 13- Decanoato de etila; 14- Dodecanol.

Figura A7: Amostra P7

1-Álcool isoamílico; 2- Butanol; 3- β-mirceno; 4- Hexanoato de etila; 5- Linalol; 6- Nonanal; 7- Álcool feniletílico; 8- Ácido octanoico; 9- Octanoato de etila; 10- Decanal; 11- β-citronelol; 12- Ácido acético; 13- Dec-9-enooato de etila; 14- Decanoato de etila; 15- α-humuleno; 16- Dodecanoato de etila.

Figura A8: Amostra P8

1-Álcool isoamílico; 2- Butanol; 3- β-mirceno; 4- Hexanoato de etila; 5- Linalol; 6- Nonanal; 7- Álcool feniletílico; 8- Octanoato de etila; 9- Decanal; 10- β-citronelol; 11- Ácido acético; 12- Dec-9-enooato de etila; 13- Decanoato de etila; 14- α-humuleno; 15- Dodecanoato de etila.
Figura A9: Amostra P9

1- Álcool isoamílico; 2- Butanol; 3- β-mirceno; 4- Hexanoato de etila; 5- Linalol; 6- Nonanal; 7- Álcool feniletílico; 8- Ácido octanoico; 9- Octanoato de etila; 10- Decanal; 11- β-citronelol; 12- Ácido acético; 13- Dec-9-enoato de etila; 14- Decanoato de etila; 15- α-humuleno; 16- Dodecanoato de etila.

Figura A10: Branco

*Não foi encontrado nenhum composto