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Resumo

GOMES, André Herkenhoff, D.Sc., Universidade Federal de Viçosa, Julho de 2014.
Algumas contribuições ao estudo de uma eletrodinâmica quântica com
violação da simetria de Lorentz. Orientador: Daniel Heber Theodoro Franco.
Co-orientadores: Olivier Piguet e Oswaldo Monteiro Del Cima.

Nesta tese, estudamos diferentes aspectos de uma eletrodinâmica quântica

(EDQ) para um único férmion com violação da simetria de Lorentz baseada no ar-

cabouço teórico do Modelo Padrão Estendido, onde a quebra da simetria de Lorentz

é controlada por coeficientes com ı́ndices de Lorentz — campos de fundo que sele-

cionam direções preferenciais no espaçotempo — acoplados a campos convencionais.

Desenvolvemos dois estudos separados, o primeiro motivado pelos aspectos teóricos do

modelo e o outro pela busca experimental de sinais da violação da simetria de Lorentz.

A renormalizabilidade da extensão mı́nima da EDQ com quebra da simetria de

Lorentz — no sentido de ser renormalizável por contagem de potências — é primeira-

mente investigada. Empregamos o método algébrico de renormalização para enfatizar

a procura por anomalias de calibre. Observamos que a quebra da simetria de Lorentz

introduz novas posśıveis estruturas anômalas além das convencionais. Na prática,

identidades de calibre convencionais são estendidas para incluir efeitos da perda da in-

variância de Lorentz e não são mais automaticamente satisfeitas pois recebem correções

que violam a simetria de Lorentz, sendo cada uma dessas correções controladas pelos

chamados coeficientes de anomalia, que devem ser explicitamente calculados para uma

resposta definitiva sobre esses candidatos a anomalia serem caracteŕısticas reais do

modelo ou não. Em primeira ordem na expansão em loops, verificamos que o modelo

é livre de anomalias e fornecemos argumentos sugerindo que ao menos alguns desses
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coeficientes devem ser nulos a todas as ordens, mas ainda há a questão sobre os coefi-

cientes restantes desenvolverem valores não-nulos ou não devido a correções de vários

loops. Por outro lado, encontramos modelos mais restritos, onde a simetria C ou PT

é exigida, que são completamente livres de anomalias de calibre a todas as ordens em

teoria de perturbação.

Uma vez que nenhuma anomalia é encontrada — o que vimos ser garantido ao

menos para os casos invariantes sob C ou PT — a prova da renormalizabilidade do

modelo a todas as ordens é conclúıda se os parâmetros livres introduzidos pela renor-

malização puderem ser fixados por condições de renormalização adequadas. Análise

expĺıcita deste último ponto exige a determinação das correções radiativas finitas dos

diagramas divergentes e nós apresentamos resultados preliminares baseados na análise

a um loop da autoenergia do férmion. Contra as nossas expectativas, contribuções

de alguns coeficientes que violam a simetria de Lorentz parecem falhar em ser renor-

malizadas adequadamente uma vez que os parâmetros livres que estas introduzem

aparentemente não podem ser consistemente fixados pelas condições de renormalização.

Por outro lado, encontramos coeficientes, cujas contribuições são adequadamente re-

normalizadas, que geram novos fenômenos f́ısicos onde, em espećıfico, suas correções

radiativas modificam a propagação livre de férmions — um efeito ausente na EDQ

convencional — e discutimos as consequências para medições experimentais conforme

observamos existir a possibilidade de efeitos radiativos serem tão relevantes quanto

efeitos em ńıvel de árvore dados ajustes experimentais adequados.

Passando de uma análise motivada por questões teóricas da extensão mı́nima da

EDQ para uma investigação orientada por questões experimentais, estendemos nosso

modelo para incluir contribuições não-mı́nimas — motivadas pelo status de teoria

efetiva do Modelo Padrão Estendido — e o aplicamos no contexto de experimentos

medindo g ✁ 2 de muons. Após uma breve revisão destes experimentos que proveem

medidas de alta precisão do momento magnético anômalo do muon, usamos um ferra-

mental adequado à descrição de férmions com operadores de dimensões arbitrárias que

violam a simetria de Lorentz para discutir sinais da quebra de simetria a serem procura-

dos experimentalmente — especificamente, comparações entre a frequência anômala de

xiv



muons e antimuons, assim como variações siderais e anuais desta quantidade. Usando

dados dispońıveis na literatura, apresentamos limites inéditos em coeficientes de quebra

de simetria e também estimamos a sensibilidade aos efeitos da violação da simetria de

Lorentz de futuros experimentos.
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Abstract

GOMES, André Herkenhoff, D.Sc., Universidade Federal de Viçosa, July, 2014. Some
contributions to the study of a quantum electrodynamics with Lorentz
symmetry violation. Adviser: Daniel Heber Theodoro Franco. Co-advisers:
Olivier Piguet and Oswaldo Monteiro Del Cima.

In this thesis, we study different aspects of a single-fermion Lorentz-violating

quantum electrodynamics (QED) based on the framework of the Standard Model Ex-

tension, where Lorentz symmetry breaking is controlled by coefficients with Lorentz

indices — constant background fields selecting preferred directions in spacetime —

coupled to conventional fields. We develop two separate studies, the first motivated by

theoretical aspects of the model and the other by the experimental search of Lorentz-

violating signals.

Renormalizability of the minimal Lorentz-violating QED extension — in the

sense the model is power-counting renormalizable — is first investigated. We employ

the algebraic approach of renormalization to emphasize the search for gauge quan-

tum anomalies. The breaking of Lorentz symmetry is found to introduce new possible

anomalous structures besides the conventional ones. In practice, conventional gauge

identities are extended to include effects of Lorentz violation and are no longer auto-

matically satisfied as they receive Lorentz-violating corrections, each of them controlled

by so-called anomaly coefficients which have to be explicitly calculated for a definite

answer as to whether these candidate anomalies are real features of the model or not.

To one-loop order, we verify the model is free of anomalies and we provide arguments

suggesting at least some of the anomaly coefficients may vanish to all orders, but there

is still the question as to whether or not the remaining coefficients can develop nonva-
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nishing value under multiloop radiative corrections. On the other hand, we find more

restricted models, where C or PT symmetry is enforced, are completely free of gauge

anomalies to all orders in perturbation theory.

Once no anomaly is found — which we verified it is the case at least for the C

or PT invariant models — proof of renormalizability to all orders is concluded if free

parameters introduced by renormalization can be fixed by suitable renormalization con-

ditions. Explicit analysis of this last point demands determination of finite radiative

corrections from divergent diagrams and we present preliminary results based on anal-

ysis of the one-loop fermion self-energy. Against our expectations, contribution from

specific Lorentz-violating coefficients appear to fail to be properly renormalized once

their introduced free parameters apparently cannot be consistently fixed by renor-

malization conditions. On the other hand, we find coefficients, whose contributions

are adequately renormalized, that can lead to new physical phenomena, namely, their

radiative corrections modify the free propagation of fermions — an effect absent in

conventional QED — and implications for experimental measurements are discussed

as we find there is the possibility of radiative effects may be as relevant as tree-level

ones under adequate experimental set up.

Departing from a theory-motivated analysis of the minimal Lorentz-violating

QED and moving on to an experiment-oriented investigation, we then extend our frame-

work to include nonminimal contributions — motivated by the status of the SME as an

effective field theory — and apply it in the context of muon ♣g✁2q experiments. After a

brief overview of such experiments providing high precision measurements of the muon

anomalous magnetic moment, we use a framework suitable for fermions with Lorentz-

violating operators of arbitrary dimension to discuss Lorentz-violating signatures to

be experimentally searched for — namely, comparisons between muon and antimuons

anomaly frequency, as well as sidereal and annual variations of this quantity. Us-

ing data available in the literature, we present new bounds on coefficients controlling

the symmetry breaking and also estimate the sensitivity of upcoming experiments to

Lorentz violation.
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Introduction

One of the deepest currently open problems of particle physics deals with the

nature of spacetime itself and how fundamental particles feel it at extremely high ener-

gies — possibly of the Planck scale EP ✒ 1019 GeV — where gravitational interaction

is expected to play a fundamental role even for quantum phenomena.

In our comparatively low energy world, considering currently attainable ener-

gies, at the microscopic scale where a quantum-based description of Nature is required,

the Standard Model (SM) has achieved unprecedented success in describing the way

fundamental particles behave and interact. At the macroscopic scale, the classical

framework of General Relativity (GR) describes in a beautiful way how spacetime and

massive bodies influence each other. Both theories are paramount in describing what

they were initially conceived for. Nevertheless, as we understand it, Nature has one

continuum, seamless line connecting principles governing microscopic and macroscopic

universes. Our description of Nature is then expected to reflect this behavior. How-

ever, our two best approaches, the principles underlying the SM and GR, seem to be

incompatible with each other. A long sought and yet unknown consistent quantum

description of gravity — or maybe a unified model describing all physical interactions

— insists in frustrating our expectations. Several attempts have been devised — string

theory and loop quantum gravity, to name two current popular approaches — but none

of them are fully developed or well-understood to the point of making unique, definite

testable predictions.

Although a “top to bottom” approach to the search for fundamental models

pushes our creativity to the extreme — usually leading to highly interesting new ideas

and to the development of formidable new mathematical tools — we are in a period in

1



Introduction

the history of physics where experimental access to natural energy scales where those

models play dominant roles is not expected for any near future. Nevertheless, we may

expect that any new physics beyond Standard Model originating in higher energy scales

would leave accessible clues in our current low energy Universe. Discovery of such clues

would inevitably lead to drastic paradigm changes in our understanding of Nature.

Standard Model and General Relativity physics work extremely well, neverthe-

less so far their principles seem to be incompatible with each other. Changing focus

from a top-down search for fundamental models to a bottom-up approach may be re-

warding. As our expectations dictate something new — possibly radically different

from our conventional principles — may reveal itself as we approach the Planck scale,

the match of a so far unknown fundamental physics to our conventional low energy

description of Nature may suggest some pillars of modern physics could be only ap-

proximately valid in the low energy limit. Lorentz and CPT symmetries, for instance,

are so fundamental to our conventional description of Nature that they have to be

tested. If any deviation from exact invariance were ever found, our whole concep-

tion of fundamental physics would drastically change. Testing the very basic building

blocks, in the search for any minuscule deviation, can teach us a lot about paths to

follow for more fundamental descriptions of Nature.

It turns out, an “anti-CPT” theorem [1] states, under mild hypotheses, that

violation of CPT symmetry has to be accompanied by Lorentz symmetry violation

— although the converse is not true. Therefore, tests of Lorentz invariance may also

test CPT symmetry. So far, no experiment has ever found any deviation from exact

Lorentz symmetry. Violations of Lorentz invariance, if realized in Nature at (currently)

attainable energy scales, are expected to be suppressed by the ratio of the characteristic

energy of the experiment and the Planck energy, therefore they should be dimmingly

small. For instance, at the electroweak scale EEW ✓ 246GeV, signals of Lorentz

noninvariance may become weaker by a factor of 1017. The fact that current high

precision experiments can achieve such sensitivity (or even better ones [2]) opens up

an amazing perspective for probing Lorentz and CPT violation away from the Planck

scale.
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Introduction

A natural question arises as how to investigate consequences of the hypothesis

that Lorentz symmetry is not exact in Nature but rather may be broken by tiny contri-

butions outside conventional SM and GR physics? Without the aid of any known viable

underlying theory, a reasonable approach is to build a framework as general as possible

and possibly independent of details of an underlying model. A fundamental feature

must be the inclusion of all known Lorentz invariant physics. As the “bottom to top”

idea suggests, availability of connection to present or near-future experimental tech-

niques where the hypothesis of Lorentz violation can be tested is another cornerstone

of this approach.

A powerful framework for systematic investigations of Lorentz symmetry vio-

lation is the Standard Model Extension (SME). In flat spacetime, this framework is

based on the quantum field theory formalism for point particles in four dimensions and

is devised as the most general Lorentz-violating extension of the Standard Model [3,4].

Inclusion of gravitational phenomena further extends this framework by a Lorentz-

violating generalization of General Relativity in Riemann-Cartan geometries [5]. For-

mulated in the Lagrangian formalism, the SME comprises all possible coordinate scalars

involving Standard Model fields, gravitation, and Lorentz-violating background fields

— coefficients with Lorentz indices, selecting preferred spacetime directions — con-

trolling the extent to which Lorentz symmetry is broken. Among other possibilities,

these background fields could emerge after spontaneous breaking of Lorentz symmetry

as vacuum expectation values of tensorial degrees of freedom in string models [6,7], for

instance. Although the SME framework is independent of the underlying fundamental

physics, the existence of different mechanisms leading to Lorentz symmetry violation

further motivates its study.

The SME’s comprehensive framework allows for construction of realistic sub-

models such that theoretical issues — such as causality, stability, and renormalizability,

for example — can be fully investigated, and precise Lorentz-violating signals can be

predicted in a formalism suitable for experimental search. As the SME encompasses

all conventional physics, its framework can be used to reanalyse data of a variety of

already performed high precision experiments while focusing on what it tells about

3



Introduction

Lorentz violation, therefore placing bounds on SME coefficients — for instance, com-

parison between masses of meson particle and antiparticle [8] — and, naturally, to

the analysis of experiments specifically devised to test Lorentz invariance — resonant

cavities aboard the International Space Station [9] is an example. A great advantage

of the SME framework is that it reveals several accessible ways of testing Lorentz

invariance [10]. As a considerable amount of Lorentz violating coefficients remain un-

bounded, there exists the possibility of Lorentz symmetry violation may be lurking at

plain sight, but invisible to our eyes as long as particular experiments have not been

performed yet.

The main scope of this thesis is twofold. First, we investigate the theoretical con-

sistency of Lorentz symmetry violation under quantum corrections, namely, we study

the renormalizability of a single-fermion (minimal) QED limit of the SME. Although

the SME can be regarded as an effective field theory, the importance of this study lies

in the fact that it could nevertheless indicate when the effective theory approach breaks

down — whether due to a loss of renormalizability at some loop order or because of

quantum anomalies. Our second aim concerns the application of this framework to the

experimental search of Lorentz violation. We employ the (nonminimal) QED limit of

the SME for muons in the context of ♣g ✁ 2q experiments. Measurement of the muon

g ✁ 2 is accomplished to enormous precision, and the natural high sensitivity of the

muon g✁ 2 to effects from high energy scales makes this type of experiment a valuable

venue for testing Lorentz symmetry. Although, our two main goals seem to be unre-

lated at first, an intermediate link between them is pursued — and here is presented

as preliminary results. Investigation of radiative corrections to the fermion self-energy

reveals that Lorentz-violating corrections alter the physics of fermion free propagation

— an effect not present in the conventional QED — and implications of this result may

be experimentally searched, for instance, in muon g ✁ 2 physics.

This thesis is divided as follows. In Chapter 1, we give a brief introduction

to the ideas behind the Standard Model Extension and Lorentz symmetry violation,

introducing some of its general features, implementation of Lorentz violation, model

construction and typical experimental signals. Chapter 2 will be based on Refs. [11,12]
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where we investigated the renormalizability of the minimal Lorentz-violating QED

extension coming from the SME framework, with main focus on the issue of gauge

anomalies. In Chapter 3, as a natural continuation of the previous chapter, we start an

investigation of one-loop finite radiative corrections to this extended QED — in partic-

ular, those coming from the fermion self-energy. The chapter is based on preliminary

results, and provides a link between the theoretical aspects investigated in Chapter 2

and the experimental search for Lorentz violation in the last chapter. Accordingly, the

last chapter is based in Ref. [13], where we investigated the nonminimal QED sector

of the SME for muons in the context of ♣g ✁ 2q experiments. An overall summary of

the works composing this thesis is presented at the Conclusion, along with perspec-

tives for future works. Additionally, Appendix A is devoted to the transformations

between Earth-based laboratory frames and nonrotating Sun-centered frames, which

were fundamental for deriving the results of Chapter 4.
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Chapter 1

A very brief overview of the SME

Aiming at a better understanding of the Standard Model Extension (SME) and

Lorentz symmetry violation itself, in this chapter we give a very brief overview of this

topic. To the reader, we suggest Refs. [14,15] for an excellent introduction on the

subject. In what follows, we first discuss what we ean by “Lorentz noninvariance” of a

model, and how this can be implemented. Afterwards, we mention possible mechanisms

for breaking Lorentz symmetry, with emphasis on spontaneous symmetry breaking,

and the following sections deal with construction of the SME. We close this chapter by

presenting some experimental tests of Lorentz noninvariance in different SME sectors.

1.1 Lorentz Violation and the SME

As briefly mentioned in the Introduction, a framework suitable for systematic

investigations of Lorentz and CPT symmetry violation called the Standard Model Ex-

tension has been devised by Colladay and Kostelecký in 1997 and 1998 [3,4] as a

Lorentz-violating extension of the Standard Model (SM), and further extended in 2004

to include General Relativity [5]. It is constructed, by definition, as the most gen-

eral Lorentz-violating effective model based on the framework of quantum field theory

for point particles in four dimensions. It was initially motivated by former results on

string-based models featuring the possibility of spontaneous breaking of Lorentz and

CPT symmetry [6,7] and further motivated by the high precision to what CPT sym-

metry could be tested at that time [8]. Spontaneous breaking of Lorentz symmetry
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leads to a nontrivial vacuum permeated by background tensorial-like fields which select

preferred directions and positions in spacetime, breaking its isotropy and homogene-

ity. Nevertheless, Lorentz and CPT symmetries are observed as exact in Nature to a

great degree of precision in a number of experiments, therefore deviations from these

symmetries, if any, should be dimmingly small, requiring high precision tests to be

observed. Such high precision requirement is naturally desirable as it may lead to sen-

sitivity to Planck-suppressed phenomena — indeed, muon experiments, for instance,

do achieve such sensitivities [2] — representing a formidable venue for the search of

new physics. To date, no Lorentz violation has been observed in Nature [10], but the

question whether it really occurs in accessible energy scales or not can only be answered

by means of experimental search, and thus even from a theoretical point of view, we

need realistic models to predict where and how to look for it, and the SME provides

an adequate framework for that.

1.2 What is meant by Lorentz symmetry violation?

In the SME framework — in flat spacetime, for simplicity — Lorentz symmetry

is broken in the sense that coordinate scalars in its action are not invariant under parti-

cle Lorentz transformation. Coordinate transformations, also called observer Lorentz

transformations, implement changes among coordinate systems describing the same

physical situation and, in this sense, they carry no physical meaning, as illustrated in

Fig. 1.1. On the other hand particle Lorentz transformations have physical meaning

as they probe the way particles and fields behave along different directions and po-

sitions in spacetime, as in Fig. 1.2. If spacetime is isotropic and homogeneous, both

transformations are symmetries of the model, and the two are (inversely) related. If

Lorentz symmetry1 is broken, this relation is lost as a consequence, and particle trans-

formations are expected to reveal the inequivalence of physical phenomena in different

directions or positions in spacetime, independently of the coordinate system used.

1When the context allows no confusion, we may omit the word “particle” when referring to particle

Lorentz transformations or symmetry. On the other hand, observer Lorentz transformations will be
mostly referred as coordinate transformations.
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Figure 1.1: Coordinate (or observer) transformations. There is no change in the physics
observed as the coupling angle θ between the particle momentum p and the background field
b remains the same after the transformation.

Figure 1.2: Particle transformations. Different spacetime directions are probed as the cou-
pling angle θ between the particle momentum p and the background field b changes after the
transformation.

Construction of coordinate scalars are based on how we connect different ref-

erence frames. As coordinate systems per se have no physical significance, invariance

under changes among those are fundamental. Adopting a structure to spacetime, i.e.,

specifying the way we measure spacetime intervals between different events, allows con-

struction of transformation operations to connect different frames. Describing physical

quantities as geometrical structures — like tensors and spinors — and looking at how

they behave under such transformations tell us how to construct quantities that do not

feel those transformations — invariants, scalars under such transformations.

The SME is based on a Lorentzian spacetime structure, global for Minkowski

spacetime [3,4] and local for the Riemann-Cartan geometrical framework used to con-

sider violations of local Lorentz symmetry in the context of gravity [5]. Nevertheless,
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although the spacetime structure is conventional, the SME vacuum is nontrivial in the

sense that locally it has preferred spacetime directions as it is permeated by Lorentz-

violating background fields. Therefore, coordinate and particle transformations are

both implemented by means of conventional Lorentz boosts and spatial rotations —

locally implemented for the case of curved spacetimes — but particle Lorentz symmetry

is no longer a feature of our description.

Formulated on the basis of quantum field theory for point particles in four di-

mensions, the SME action contains all conventional Lorentz invariant physics, and is

additionally constructed by coordinate scalars that are not invariant under Lorentz

transformations. Background fields are described by particle Lorentz scalars repre-

sented by coefficients with Lorentz indices, which we call Lorentz-violating coefficients,

SME coefficients, or just “coefficients” when the context allows no confusion. To illus-

trate this point, consider a coordinate transformation acting on the 4-momentum pµ as

p ✶
µ ✏ Λµ

νpν and a particle transformation acting as p✷µ ✏ Λµ
νpν . Considering a Lorentz-

violating coefficient bµ ✏ ♣b0; bq, it transforms as a coordinate vector, b ✶µ ✏ Λµνb
ν , but

it behaves as set of 4 scalars under particle transformations, b✷µ ✏ bµ. In this sense,

the contraction p ☎ b ✑ pµb
µ is a coordinate scalar, p ✶ ☎ b ✶ ✏ p ☎ b, but it is not invariant

under particle transformations, p✷ ☎ b ✏ p ☎ b, thus violating Lorentz symmetry.

1.3 A mechanism for Lorentz symmetry violation

As will be made clear soon, construction of the SME is independent of fun-

damental models originating Lorentz symmetry violations. Nevertheless, existence of

such models is an extra factor to motivate investigation of this possibility and further

testify on its plausibility. Known approaches allowing for breaking of Lorentz symmetry

include strings, spacetime-foam models, nontrivial spacetime topology, loop quantum

gravity, noncommutative field theory, cosmologically varying scalars, among others —

see Ref. [16] for a brief overview of such possibilities. In particular, a surprising result

adds extra interest in models allowing for spontaneous breaking of Lorentz symmetry.

In Ref. [5], it was shown that explicit Lorentz symmetry breaking — when SME coef-
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ficients are externally prescribed — is not compatible with either Riemann geometry

or General Relativity nor its extension to Riemann-Cartan geometry, but spontaneous

breaking of Lorentz symmetry is. This result further opens up two questions: (i) what

other geometries can be made compatible with explicit Lorentz violation? Pseudo-

Riemann-Finsler geometries in the context of Lorentz violation [17,18] is a newborn

research field and looks promising as it was discovered that fermions experiencing ex-

plicit Lorentz violation follow geodesics in this geometry instead of pseudo-Riemann

ones; and (ii) in the case of spontaneous breaking, what is the fate of Nambu-Goldstone

bosons? Interesting results [19–22] show gravitons and photons can be interpreted as

Nambu-Goldstone bosons originating from spontaneous breaking of Lorentz invariance.

Due to the popularity and desirable features of spontaneous symmetry breaking

— and the mentioned result suggesting it is the sole mechanism for Lorentz violation

compatible with General Relativity — it is worth a brief explanation in the context of

Lorentz violation (restricted to flat spacetime, for simplicity).

The central idea is that the vacuum in Lorentz-violating models is no longer

trivial, i.e, it is permeated by nonvanishing vacuum expectation values (VEV) of ten-

sorial fields, as this is the energetically most favorable field configuration instead of a

symmetric state with vanishing field VEV. The underlying Hamiltonian is still Lorentz

invariant — Nambu-Goldstone bosons are generated so as to restore the spontaneously

broken symmetry — but the vacuum is no longer.

Differently from the spontaneous breaking of gauge symmetry in the electroweak

model, where the VEV of a scalar field (the Higgs) permeates the vacuum, in Lorentz-

violating models new degrees of freedom with tensorial structure coming from under-

lying fundamental theories — strings, for instance, see [6,7] — acquire nonvanishing

VEV. For instance, a potential V of the form

V ♣T µq ✏ ♣T µTµ ✁ tµtµq2

has zero as its lowest energy, but this vacuum configuration is characterized by a non-

vanishing VEV of the field T µ, namely T µvacuum ✏ ①T µ② ✏ tµ, where tµ is a tensor-like

constant — in the case, vector-like, but tensors with higher rank can also be considered.

10
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The vector-like VEV acts as background field giving the vacuum preferred spacetime

directions, ultimately breaking its isotropy. Coupling between the background and

dynamical conventional Standard Model fields introduces Lorentz-violating behavior.

Clearly, coordinate invariance, in the sense of symmetry under observer Lorentz trans-

formations, is kept intact, but particle Lorentz invariance is no longer respected.

Spontaneous Lorentz symmetry breaking generates SME coefficients dynami-

cally, thereby ensuring compatibility with the underlying spacetime structure. This

is to be contrasted with explicit Lorentz violation, where SME coefficients are exter-

nally prescribed and it turns out, in the context of curved spacetimes, equations of

motion are incompatible with Bianchi identities of General Relativity or its extension

to Riemann-Cartan geometry.

1.4 Construction of the SME

Constructed as a Lorentz-violating extension of our current description of Nature

based on conventional physics, the SME Lagrangian can be written as

LSME ✏ LSM � LEH � δLLV, (1.1)

where LSM represents the Standard Model Lagrangian — describing conventional elec-

tromagnetic, weak and strong interactions — LEH is the Einstein-Hilbert Lagrangian

responsible for gravitational phenomena, and δLLV introduces couplings between con-

ventional fields and Lorentz-violating background fields. Since Lorentz symmetry is so

far measured as an exact symmetry, Lorentz-violating corrections δLLV are expected

to be small in any frame moving nonrelativistically with respect to Earth — the so

called concordant frames. Naturally, in the limit where all Lorentz-violating coefficients

vanish, conventional Lorentz-symmetric physics is recovered.

Let us consider Lorentz-violating corrections comprised by the SME in flat

spacetime, which we denote simply by δLLV — discussion of the gravity sector [5]

is more involved and is beyond our scope. By definition, the SME contains all possible

hermitian Lorentz-violating structures constructed from contractions of known parti-
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cle fields — electromagnetic Aµ, fermionic ψ, gravitational hµν , etc. — and Lorentz-

violating coefficients such that coordinate scalars are formed. As an example, consider

the field operators

ψ♣iγµ❇νqψ, F µνF ρσ, ψ♣❇µ❇νqψ. (1.2)

The first one, if contracted with the metric tensor ηµν leads to a conventional kinetic

term ψ♣i❇④qψ of a massless fermion, but if contracted with a coefficient cµν it breaks

Lorentz invariance. Similarly, the second term can be contracted with a four-indices

coefficient ♣kF qµνρσ to break Lorentz symmetry in the gauge sector. Both of them

are operators of mass dimension four and lead to superficially renormalizable interac-

tions. Nevertheless, the third operator, if contracted with a coefficient mµν , introduces

a nonrenormalizable coupling, a nonrenormalizable version of a fermion mass term.

In this way, Lorentz-breaking extensions for the whole Standard Model can be con-

structed, containing both renormalizable and nonrenormalizable field operators. The

full SME, by definition, contains all possible field operators constructed in similar

fashion. Characterization of operators of arbitrary dimension have been done for the

neutrino sector [23], electrodynamics [24], and free massive fermions [25].

The above approach allows construction of all possible coordinate scalar terms

breaking Lorentz symmetry, but one could ask about construction of CPT violating

terms. It turns out a rigorous result by Greenberg [1], often called the “anti-CPT

theorem”, demonstrates that any local, unitary, relativistic point particle field theory

violating CPT also violates Lorentz symmetry. On the other hand, is important to

emphasize the converse is not true, i.e., Lorentz noninvariance does not imply CPT

noninvariance. Therefore, only a subset of all Lorentz-violating terms in the SME also

violates CPT symmetry.

SME coefficients are naturally divided into CPT even and CPT odd ones, in

the sense of the behavior of their associated field operator under CPT2. For example,

consider the Lorentz-breaking terms bµψγ5γµψ and Hµνψσ
µνψ. In the first term, bµ

2Typically, the number of Lorentz indices of a coefficient indicates the behavior of its associated
field operator under CPT. Coefficients with even number of indices are associated with CPT even
operators and coefficients with odd number of indices with CPT odd operators.
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does not feel any of the transformations C, P, or T as it is an inaccessible background

field, and the field operator ψγ5γµψ is C even and PT odd, therefore CPT odd, thus

mnemonically we say bµ is a CPT odd coefficient. For the second term, Hµν also does

not feel any discrete transformation and ψσµνψ is a CPT even field operator, therefore

we call Hµν a CPT even coefficient. Behavior under discrete transformations gives

a first information on whether or not a particular experiment is sensitive to effects

of specific coefficients — for instance, experiments involving parity are insensitive to

P even coefficients. Other information — behavior under rotations and boosts, for

example — can be used to further improve knowledge on the sensitivity to different

SME coefficients.

1.5 The SME as a framework

The SME is a framework for investigation of Lorentz symmetry violations. The

approach for its construction reveals it is independent of fundamental models lead-

ing to Lorentz violation. In this sense, some fundamental models with mechanisms

for breaking Lorentz invariance may be expected to constitute subsets of the SME

in adequate limits — see, for example, models with noncommutative fields [26] and

spacetime-varying couplings [27–29]. In a similar fashion, subsets of the SME may

contain other Lorentz-violating theories — as studied in Ref. [24], for instance, for

proposals of isotropic violations in the electromagnetic sector, or in Ref. [25], for the

connection of the Robertson-Mansouri-Sexl formalism to the SME.

Subsets of the SME are often viewed as or used for construction of effective

field theories and frequently further conditions are imposed on its structures to pro-

duce models with often desired features. For instance, the minimal Standard Model

Extension (mSME) demands the Standard Model SU♣3q ✂ SU♣2q ✂ U♣1q gauge struc-

ture, translation invariance — effectively enforcing the SME coefficients are spacetime

constants — and power-counting renormalizability — restricting the model to field

operators of mass dimension less than or equal to four. Eventually, conventional quan-

tization, microcausality and stability, etc., may be imposed, further constraining the
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set of Lorentz-violating coefficients under consideration.

Theoretically, several aspects of the SME have been investigated. To cite a few,

we mention stability and causality of the minimal QED fermionic sector was studied

in [30], and for the electromagnetic sector in [31–34], and in [35] for SO♣3q Yang-

Mills. Analysis of SME fermion dispersion relation have been done in [36,37], and for

massive photons in [38]. The Källén-Lehmann representation has been investigated for

particular Lorentz-violating models in [39]. One-loop renormalizability of the minimal

QED was verified in flat spacetimes in [40] and in curved spacetimes in [41], and

in [42] asymptotic states were also analysed for models with particular Lorentz-violating

coefficients. One-loop renormalizability in flat spacetime was also performed for pure

Yang-Mills and QCD [43], and the whole one-loop renormalization process for Lorentz-

violating Yukawa field theories was accomplished in [44]. Renormalizability to all orders

of the minimal QED and the determination of one-loop finite radiative corrections will

be the topic of Chapters 2 and 3 of this thesis.

1.6 Experimental searches for Lorentz violation

An advantage of the SME is the possibility of constructing realistic models

for Lorentz violation, in the sense that they can predict unique signals that can be

looked for in very specific experiments. Currently, Lorentz symmetry has shown itself

standing strong on solid grounds, and this observational fact allows for bounds on

Lorentz-breaking coefficients of the SME. Often high precision experiments are used in

the search for Lorentz violation, and for that reason stringent upper limits are placed

on SME coefficients. A comprehensive list of current bounds can be found in Ref. [10],

which contains references to all experiments associated to each bound. For a review

on tests of Lorentz invariance in the SME framework and in other formalisms, see

Ref. [45]. For the status of current searches for Lorentz violation, the reader is directed

to Ref. [46]. Below we give a very brief overview of some bounds listed in Ref. [10].

Some sectors of the SME have been better bounded than others. For instance,

the photon sector has been intensively investigated for a number of years now. Its mini-
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mal sector contains two Lorentz-violating contributions coming from coefficients ♣kAF qµ
and ♣kF qµνρσ. Experimental signals of the first include vacuum birefringence creating

a change of the polarization plane of light as it travels in space — the two polarization

modes are now distinct as Lorentz symmetry is broken. Observation of light coming

from astrophysical sources — extremely far quasars, for instance — enforces strong

bounds on ♣kAF qµ of order 10✁43 GeV as no Lorentz violation was found. The sec-

ond coefficient results in a greater number of experimental signals and its components

can be accessed by astrophysical observation, light resonators, collider experiments,

among others, with bounds ranging from 10✁9 to 10✁38. The nonminimal photon sec-

tor predicts signals analogous to the ones from the minimal sector, and also has a wide

range of bounds, explicitly written in [10] for coefficients associated to operators with

dimension up to nine.

The minimal electron sector has also been widely investigated. Typical tests

are related to atomic spectroscopy as Lorentz symmetry violation may introduce shifts

in energy levels or remove degeneracies analogously to the Zeeman effect due to an

external magnetic field. Primarily devised as CPT tests, Lorentz-violating coefficients

are also accessed in comparisons between particles and antiparticles, therefore spec-

troscopy of different atoms is also a venue for testing the electron sector. Synchrotron

and inverse Compton radiation from ultrarelativistic electrons in astrophysical sources

also provide access to Lorentz-violating coefficients as their presence may enforce ex-

istence of maximum attainable energies for subluminal electrons. Maybe unexpected

at first sight, experiments with macroscopic samples of spin-polarized matter based on

electrons — for instance, set up as a torsion pendulum experiment — actually offer the

best constraints on coefficients with dimension of mass, with bounds from 10✁28 GeV to

10✁31 GeV. The same coefficients for the positron have much weaker bounds, of order

10✁22 GeV, coming from Penning traps. Dimensionless coefficients, on the other hand,

have competitive bounds typically of order 10✁15 coming from astrophysical sources,

resonators, atomic spectroscopy, among others. The nonminimal electron sector, on

the other hand, has been much less explored experimentally. Current bounds come

from astrophysical highly energetic electrons and constrain only a subset of isotropic
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coefficients.

Intense investigation in the past few years has placed the neutrino sector among

the ones with the greater number of bounds, only behind the photon sector, which is

also stronger bounded. Other sectors — the proton, neutron, charged leptons, quark,

electroweak, gluon, and gravity sectors — have varying number of bounds, and almost

none in the nonminimal sector.

Of particular interest for this thesis is the muon sector, which so far has not

been very explored experimentally. Currently, the minimal sector has most bounds

coming from muon ♣g ✁ 2q experiments, and two others from muonium spectroscopy

and astrophysical sources, and the nonminimal sector has two bounds on isotropic co-

efficients also from astrophysical observation. Bounds coming from ♣g✁2q experiments

on minimal coefficients are of order 10✁23 GeV, and, in Chapter 4, we use data from

these experiments to set up bounds on a wide range of nonminimal coefficients as well.
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Chapter 2

Renormalizability of the minimal

QED extension

Consistency under quantum corrections of different sectors of the SME has been

regularly studied in the past years, for instance, investigation of the one-loop diver-

gence structure of the Lorentz-violating quantum theory have been performed for the

QED in Minkowski spacetime [40] as well as for curved spacetimes [41], and for pure

Yang-Mills and QCD [43], the whole one-loop renormalization process was studied for

Lorentz-violating Yukawa field theories in [44], several works investigated the radiative

generation of a Chern-Simons-like term for the QED sector of the SME — to name

a few, see Refs. [4,47–50] — and investigation of asymptotic states in the context of

renormalization can be found in Ref. [42]. In this chapter we discuss our contribu-

tion [11,12] to the literature, and study the renormalizability of the minimal single-

fermion QED extension. At one-loop order, a proof of multiplicative renormalizability

was given in [40]. Here, renormalizability will be studied to all orders in perturbation

theory in the algebraic approach [51], a regularization-independent method with focus

on verifying the absence of gauge anomalies.

Despite being rendered as an effective model, analysis of renormalizability of the

SME is important because it inevitably looks at its unitarity and, if we are to expect

the high energy behavior of the underlying (yet unknown) fundamental model to be

unitary, any non-unitarity appearing in the low energy effective regime would signal

a limit of the domain of validity of the approximation. In this sense, the search for
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anomalies and matters of renormalizability prove themselves worth investigating.

In our analysis, we encounter a Lorentz-violating generalization of the Adler-

Bardeen-Bell-Jackiw (ABBJ) anomaly structure [52–54] for the three-photon vertex,

and we also find that the Ward-Takashi identity (relating the vertex and fermion self-

energy diagrams) and the transversality of the photon self-energy tensor (vacuum po-

larization) are generalized to include Lorentz-violating tensors such that conventional

gauge conditions are not automatically enforced as in conventional QED, thus new

anomaly structures besides the usual ABBJ are allowed in a Lorentz-violating QED.

By explicit loop calculation of the three-photon vertex diagram, along with computa-

tion of other diagrams done elsewhere [40], we verify that all candidate anomalies vanish

to one-loop order, but although the vanishing of the generalized ABBJ anomaly may

remain under control to all orders thanks to the Adler-Bardeen non-renormalization

theorem [55], the remaining potential anomalies can be dangerous at higher loop orders

since no analogous theorem for the vanishing of their coefficients is known — although

we present arguments that may prevent at least some of them to receive higher order

corrections. On the other hand, we show that requiring the Lorentz-violating QED to

be C or PT invariant automatically removes the potential anomalies to all loop orders.

This chapter is presented as follows. In Section 2.1, we introduce a QED exten-

sion allowing for Lorentz violation along with considerations for one-loop evaluations.

Sec. 2.2 begins with a brief review of the Quantum Action Principle, which will be

used to characterize general violations of gauge symmetry. In Sec. 2.3, we identify the

diagrams related to each potential anomaly, and verify that all anomaly coefficients

vanish to first order in loop expansion. Multiloop and higher order Lorentz-violation

for the photon self-energy, and three-photon vertex are also briefly discussed.
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2.1 Framework for a Lorentz-violating QED

2.1.1 The model

The action S of the minimal Lorentz- and CPT violating extension of QED for

a single Dirac fermion is given by [4]

S ✏
➺
d 4x

✑
i ψ♣γµ � Γµ1qDµ ψ ✁ ψ♣m�M1qψ ✁ 1

4
F µνFµν

✁ 1
4
♣kF qµνρσF µνF ρσ � 1

2
ǫµνρσ♣kAF qµAνFρσ

✙
, (2.1)

where the covariant derivativeDµ ✏ ❇µ✁ieAµ introduces the minimal coupling between

fermions and electromagnetism, with the electromagnetic field strength tensor defined

as F µν ✑ ❇µAν ✁ ❇νAµ. Action (2.1) also includes Lorentz breaking terms whose

coefficients have the form of constant background fields — see the last two terms in

the photon sector1 and the following definitions for the fermionic coefficients:

Γµ1 ✑ cλµγλ � dλµγ5γλ � eµ � ifµγ5 � 1
2
gκλµσκλ,

M1 ✑ im5γ5 � aµγ
µ � bµγ5γ

µ � 1
2
Hµνσ

µν , (2.2)

where terms with coefficients of even (odd) number of indexes respect (do not respect)

CPT symmetry. As we are dealing with the minimal Lorentz-violating extension,

introduction of new terms are based on requirements of hermiticity, classical U(1)

symmetry, translation invariance and power-counting renormalizability.

Coefficients ♣kF qµνρσ and those appearing in Γµ1 are dimensionless, while ♣kAF qµ
and the ones in M1 have dimension of mass. The trace part of cµν and dµν is Lorentz

invariant and only yields a redefinition of the fermion field, so we take it to be zero; Hµν

and the first two indices of gκλµ are antisymmetric; ♣kF qµνρσ have the symmetries of

the Riemann tensor and, analogous to cµν , can be taken as double traceless otherwise

it leads to a mere redefinition of the photon field; at last, in the absence of chiral

1A linear operator Aµ coupled with a background field ♣kAqµ could also be present but would in-
troduce linear instabilities in the potential and is therefore assumed to vanish at tree-level — radiative
corrections to this term are not expected to be present, see Ref. [4].
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anomalies, m5 can be eliminated by a chiral rotation ψ Ñ exp
�✁ i

2
γ5 tan

✁1 m5

m

✟
ψ.

Along with action (2.1), we may add

SGF�IR ✏
➺
d 4x

✑
✁ 1

2α
♣❇µAµq2 � 1

2
λ2AµA

µ
✙
, (2.3)

i.e., a gauge-fixing term and an infrared (IR) regulator, introduced in order to avoid

infrared singularities by means of a mass term for the photon field, respectively.

2.1.2 Classical Symmetries

Not only CPT symmetry is broken, but none of the discrete operations C, P, or

T is a symmetry of the model — see Table 2.1, where the coefficients represent the asso-

ciated field operators — and since Lorentz symmetry is also violated, invariance under

U(1) gauge transformations is the only exact symmetry of the extended QED classical

action (2.1). Variations under this transformation are functionally implemented by a

local vector gauge operator wg♣xq, defined as

wg♣xq ✏ ✁❇ µ δ

δAµ
� ie

✄ÐÝ
δ

δψ
ψ ✁ ψ

ÝÑ
δ

δψ

☛
. (2.4)

This symmetry is verified for the action (2.1),

wg♣xqS ✏ 0, (2.5)

and the gauge-fixing and IR regulator (2.3) linearly breaks it,

wg♣xqSGF�IR ✏ ✁
✂
❧

α
� λ2

✡
❇µAµ♣xq, (2.6)

but due to this linearity, the right-hand side of this expression does not receive quantum

corrections during the renormalization procedure, remaining a classical breaking.

When dealing with the issue of quantization of the model, one asks whether or

not its symmetries survive after the process of quantization. If they do not, one says

that there are anomalies. In the following, we study this issue for the U(1) vector gauge

symmetry of the action (2.1) within the algebraic method of renormalization [51]. The
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2. Renormalizability of the minimal QED extension

Table 2.1: Discrete-symmetry properties of the field operators associated with Lorentz-
violating coefficients.

C P T CP CT PT CPT

c00, ♣kF q0j0k,
cjk, ♣kF qjklm, � � � � � � �
c0j, cj0, ♣kF q0jkl � ✁ ✁ ✁ ✁ � �
bj, gj0l, gjk0, ♣kAF qj � � ✁ � ✁ ✁ ✁
b0, gj00, gjkl, ♣kAF q0 � ✁ � ✁ � ✁ ✁
a0, e0, fj ✁ � � ✁ ✁ � ✁
aj, ej, f0 ✁ ✁ ✁ � � � ✁
Hjk, d0j, dj0 ✁ � ✁ ✁ � ✁ �
H0j, d00, djk ✁ ✁ � � ✁ ✁ �

issue of anomalies, in the case of local gauge symmetries, is physically crucial because

of its well known link to the unitarity of the corresponding quantum theory. As we

will see, the Lorentz-violating QED (2.1) allows for anomaly structures not present in

the conventional case, but we find the coefficient controlling these vanish to one-loop

order in perturbation theory. The question whether or not these coefficients can receive

higher order corrections remains open, but there are some indications at least some of

them do not.

2.1.3 Setup for one-loop evaluations

On experimental grounds, precision experiments place very stringent upper

bounds on coefficients for Lorentz violation of various sectors of the SME in any Earth-

based reference frame or other inertial frame with low velocity relative to Earth [10].

To avoid spurious enlargement of these coefficients, we restrict our analysis to these

frames, called concordant frames. Also, higher order Lorentz violation effects may be of

the same order of magnitude as higher loop corrections and, for consistency of the ap-

proach, since we perform analyses to all orders in perturbation theory, we also consider

contributions of arbitrarily high orders in these coefficients.
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2. Renormalizability of the minimal QED extension

As those upper bounds place Lorentz violation several orders of magnitude be-

low the fine structure constant α ✓ 1④137, and as we are interested in one-particle

irreducible diagrams, where external legs are cut off, the Lorentz-violating pieces of

(2.1) can be regarded as new interaction vertices, small perturbations to the conven-

tional QED. Therefore, we have conventional QED Feynman rules and propagators

along with new rules for Lorentz-violating vertices entering as propagator or vertex

insertions. Propagator insertions for fermions of momentum pµ read

✏ ✁iM1, (2.7)

✏ iΓµ1pµ, (2.8)

and for photons of momentum kµ

µ ν ✏ ✁2ikκkλ♣kF qκµλν , (2.9)

µ ν ✏ 2♣kAF qκǫκµλνkλ, (2.10)

and the extra interaction vertex is given by

✏ ✁ieΓµ1 . (2.11)

Separation of (2.1) into a Lorentz invariant free action and a noninvariant interaction

piece will also be important when discussing the applicability of the Quantum Action

Principle in Sec. 2.2.2.

2.2 Searching for anomalies

In this section, we first review some basics of the Quantum Action Principle

(QAP) [56–58], along with a general all orders recursive proof of gauge invariance and

discuss the possible appearance of anomalies under the view of our approach. Then we

consider the application of the QAP to the Lorentz-violating QED (2.1) and identify all

anomaly candidates of our model. At the end of this section, before a deeper analysis
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of the general case, we also consider the special C or PT invariant case based on (2.1),

which shows the interesting feature of being anomaly-free to all orders.

2.2.1 Quantization

The algebraic renormalization approach is based on two fundamental steps: (i)

application of the QAP, along with the Wess-Zumino consistency condition, in order

to verify that the quantization of the model does not destroy any continuous classical

symmetry, and (ii) the analysis of the stability of the action, guaranteeing that it is

the most general power-counting renormalizable action obeying the symmetries of the

model, ensuring that all counterterms will be properly reabsorbed by a redefinition of

the parameters of the starting action. Verification of both proves the existence of a

renormalized theory fulfilling symmetry identities — for instance, gauge identities (2.5)

and (2.6) in our case — together with suitable renormalization conditions fixing the

free parameters [51,59].

In order to define a perturbative expansion, we have to split the classical action

(2.1) in a free and an interacting part. Since Lorentz breaking terms are supposed to

be small on physical grounds, it appears reasonable to consider all of them, including

the ones which are quadratic in the quantum fields, as interactions. We shall also limit

the power in these external fields to a fixed finite number for the same physical reason.

The practical consequence of the latter assumption is that it avoids occurrence of an

infinite number of Feynman graphs having the same number of loops. We can therefore

define as usual the expansion order as the number of loops, equivalent to the power in

the Planck constant ~.

Another important consequence of the Lorentz invariance of the free action,

hence of the free propagators, is that it is an essential assumption in the proofs of

the Quantum Action Principle (QAP) available in the literature [56–58,60–63], which

are given for Poincaré invariant theories. The presence of Lorentz breaking interaction

vertices does not spoil these proofs, thus we can apply the QAP to the present case.

Naturally, we have to suppose we are using some subtraction scheme of the UV sin-

gularities, for instance, such as the Bogoliubov-Parasiuk-Hepp-Zimmermann (BPHZ)
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2. Renormalizability of the minimal QED extension

renormalization scheme, dimensional regularization, or Epstein-Glaser renormalization,

for which the QAP has been proved [56–58,60–63].

2.2.2 Quantum Action Principle

In general lines, the QAP states that any variation of the vertex functional Γ —

the generating functional of one-particle irreducible (1PI) graphs — due to a variation

of the fields is equivalent to the insertion of a local field polynomial of dimension

bounded by 4. For concreteness, to illustrate the meaning of this statement, consider

the variation of a classical action Srφs under the field transformation φÑ φ�δφ, where
φ represents the transforming fields (for instance, the photon Aµ and the fermion ψ

fields),

δφSrφs ✏
➺
d4x δφ

δS

δφ
. (2.12)

Also, consider the expansion of Γ in powers of ~, Γ ✏ ➦
~
nΓn, such that the classical

action Srφs coincides with the zeroth-order vertex function Γorφs, i.e., Srφs ✑ Γorφs.
The QAP provides a quantum extension of identity (2.12), i.e.,

δφΓrφs ✏
➺
d4x δφ

δΓ

δφ
✏
➺
d4x∆ ☎ Γ

✏
➺
d4x r∆♣xq �O♣~∆qs. (2.13)

The second equality in the first line is due to the QAP, and represents possible violations

of the symmetry implemented by δφ, comprised at zeroth order by ∆♣xq, a polynomial

of the classical field φ. ∆ ☎Γ is the generating functional of 1PI graphs with an insertion

∆, such that it coincides with ∆♣xq at zeroth order, as represented by the last equality

of (2.13), which remains valid at any order, i.e., ~n∆ ☎ Γ ✏ ~
n∆�O♣~n�1∆q.

The QAP was first established using BPHZ renormalization scheme — see

Refs. [51,59] and references therein — but may be viewed as a general result of pertur-

bative renormalization theory, once it was verified in other schemes such as dimensional

regularization [60] and, more recently, the Epstein-Glaser scheme [62]. A fundamental

assumption of these proofs is the Lorentz invariance of the free action, and thus of the

free propagators. The action (2.1) is not Lorentz invariant, but due to the experimen-
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tally observed smallness of Lorentz-breaking coefficients it is reasonable to consider the

noninvariant pieces of (2.1) as interaction vertices which do not spoil the proofs of the

QAP as free particle propagation is then governed by Lorentz invariant propagators.

With such considerations, the QAP is applicable even for Lorentz noninvariant actions

such as (2.1).

2.2.3 Algebraic proof of gauge invariance to all orders and

anomalies

For a consistent quantum theory of (2.1), gauge symmetry must be verified for

the vertex functional Γ. If not, the model is called anomalous and its renormalizability

may be seriously jeopardized. To study this latter possibility, in this section we first

discuss a recursive general proof of gauge invariance and how the presence of anomalies

may spoil it — for more details, see Sec. 3.4.1 of Ref. [51] and Sec. 5 of Ref. [59]. An

important point is we are considering here only symmetry transformations that are

linear in the transforming fields and will not be discussing nonlinear ones.

Suppose gauge invariance holds to order ~
n✁1, i.e., there exists an order ~

n✁1

vertex functional Γ♣n✁1q such that

wg♣xqΓ♣n✁1q ✏ O♣~nq. (2.14)

Applied to this case, the QAP states that

wg♣xqΓ♣n✁1q ✏ ~
n∆g♣xq ☎ Γ

✏ ~
n∆g♣xq �O♣~n�1∆gq, (2.15)

where ~
n∆g♣xq is a local Lorentz covariant field polynomial with UV dimension (dUV)

equal or less than four, representing potential2 violations of gauge symmetry of order

2“Potential” in the sense that the violation of the correspondent conservation law is parameterized
by a factor called “the anomaly coefficient”, and this coefficient may or may not vanish. The numerical
value of these coefficients may be found, for instance, by means of explicit calculation of Feynman
diagrams, thus even if a coefficient vanishes to one-loop order it can be nonvanishing due to higher
loop corrections.
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~
n. Anomalies are certainly absent when ∆g♣xq satisfies

∆g♣xq ✏ wg♣xq∆̂g, (2.16)

with ∆̂g an integrated polynomial of the fields, and we call such ∆g♣xq a “triv-

ial solution.” For such solution we can redefine a new order ~
n vertex functional

Γ♣nq ✏ Γ♣n✁1q ✁ ~
n∆̂g, where the second term is understood as comprising noninvari-

ant counterterms. Note, we also have the freedom to add invariant counterterms Γct

(wgΓct ✑ 0) to this redefinition, whose coefficients are to be fixed by renormalization

conditions. The redefinition of the vertex functional can be understood as a change of

regularization – for instance, from a gauge noninvariant regularization to an invariant

one [64]. Gauge symmetry is then proven to hold to the next order, i.e.,

wg♣xqΓ♣nq ✏ O♣~n�1q. (2.17)

Recursively, gauge invariance is shown to be true to all orders. Note that each nonin-

variant counterterm is cancelled in the next order of ~, leaving no physically measurable

effect — to verify this, expand Γ in powers of ~ (such that it coincides with the classical

action in the classical limit), operate with wg and apply the QAP,

wgΓ ✏ wgΓo � ~wgΓ1 � ~
2wgΓ2 � ☎ ☎ ☎

✏ ♣~∆̂g � ~
2∆̂g � ☎ ☎ ☎ q � ~wg♣Γct ✁ ∆̂gq � ~

2wg♣Γct ✁ ∆̂gq � ☎ ☎ ☎
✏ 0, (2.18)

where we have explicitly included invariant counterterms Γct as they are required for

the removal of UV divergences.

The previous scenario is to be contrasted with the case in which ∆g♣xq cannot
be written as (2.16), and thus it represents, in a regularization-independent way, a

potential anomaly because it cannot be reabsorbed by the vertex functional, and a

algebraic evaluation of its anomaly coefficient may be necessary to see whether or

not a real anomaly is present. Therefore, identifying candidate anomalies amounts to
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listing all possible field polynomials that cannot be written in the form (2.16). In the

following section we will see that some extra conditions may be imposed on ∆g♣xq
further restricting the form of candidate anomalies.

2.2.4 Conditions to be satisfied by ∆g♣xq

The field polynomials contained in ∆g♣xq cannot be completely arbitrary. Power

counting renormalizability requires mass dimension equal or less than four. Also, if

the left-hand side of (2.15) has a definite symmetry under discrete transformations,

∆g♣xq will also behave accordingly because discrete symmetries of the classical action

are not affected by the quantization procedure and are extended to the whole vertex

functional. Lastly, polynomials appearing in ∆g♣xq must satisfy the so called Wess-

Zumino consistency condition,

wg♣xq∆g♣yq ✁ wg♣yq∆g♣xq ✏ 0, (2.19)

which is derived after applying to Γ the commutation rule satisfied by the local gauge

operator, rwg♣xq, wg♣yqs ✏ 0, and using the QAP (2.15). Note the solution (2.16)

trivially satisfies the Wess-Zumino condition (2.19).

2.2.5 Candidate anomalies in a Lorentz-violating QED

For what follows, we return to the Lorentz-violating extension of QED (2.1), to

one-loop order, for which application of the QAP gives

wg♣xqΓ ✏ ✁
✂
❧

α
� λ2

✡
❇µAµ♣xq � ~∆g♣xq �O♣~2∆gq, (2.20)

which is to be understood as the quantum version of the sum of (2.5) and (2.6).

Identification of all polynomials composing ∆g♣xq reveals all potential anomalies in

the model. This task is reduced to, first, listing all polynomials of the fields Aµ and ψ
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composing ∆g♣xq, with the restriction of dUV ↕ 4. Symbolically, these are of the form

A4, ❇A3, ❇ 2A2, ❇ 3A,A3, ❇A2, ❇ 2A,

A2, ❇A,A, ❇ ψ ψ,Aψ ψ, ψ ψ, (2.21)

where we consider all possible contractions among indexes, possibly using γ matri-

ces, Levi-Civita symbols ǫµνρσ, background fields, and all possible ways of acting with

derivatives ❇µ. Because the classical action (2.1) has no definite symmetry under dis-

crete transformations, ∆g♣xq may violate C, P, T, and any combination of these. The

second step amounts to verifying which polynomials satisfy the Wess-Zumino condi-

tion. The final step is to check which of the remaining polynomials, or combinations

among these, can be written in the form of a trivial solution (2.16).

Investigation reveals that polynomials involving derivatives can be cast as trivial

solutions as long as there are no antisymmetric contractions with ❇αAβ; denoting the

Levi-Civita symbol simply as ǫ, we find A4, ǫ❇A3, A3, ǫA ❇A, A2, A, and Aψ ψ also do

not satisfy the Wess-Zumino condition (2.19) and are immediately excluded from the

list (2.21). Therefore, ∆g♣xq is given by

∆g♣xq ✏
✦
ψ ψ, ǫ❇A❇A, ǫ❇A

✮
. (2.22)

If no extra conditions are imposed to remove these polynomials, they represent potential

anomalies.

In conventional QED, discrete symmetries play a crucial role, ruling out all

polynomials that are not of the form (2.16)3. The Lorentz-violating QED (2.1) has no

definite discrete symmetries and as the field polynomials (2.22) cannot be written in

the trivial form (2.16), they are candidates for anomalies. Therefore, writing (2.22)

3The gauge operator (2.4) is odd under C and odd under PT. For the conventional QED, this
implies, by means of the QAP (2.20), that ∆g♣xq must also be odd under each of these operations.
This removes all C or PT even terms from ∆g♣xq. Since there is no C or PT odd polynomial to be
included in ∆♣xq, the conventional QED is free of anomalies. More details on the algebraic method
of renormalization for conventional QED can be found, for instance, on Section 5 of [59].
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explicitly, the quantum gauge identity (2.20) reads

wg♣xqΓ ✏✁
✂
❧

α
� λ2

✡
❇µAµ � λ♣1qψψ � iλ♣2qψγ5ψ � λ♣3q

µ ψγµψ

� λ♣4q
µ ψγµγ5ψ � λ♣5q

µνψ σ
µνψ � λ♣6q

µνF
µν � λ♣7q

µνρσF
µνF ρσ � O

�
~
2λ
✟
. (2.23)

This expression states all possible ways gauge symmetry could be violated in the

Lorentz-violation QED (2.1). The first term at the right-hand side of (2.23) is a linear

breaking, coming from the gauge-fixing and photon mass term for the IR control in

(2.1), it is zeroth order in ~ and receives no quantum corrections in the quantization

process. The others represent candidate anomalies, with associated order ~ anomaly

coefficients λ♣iq as functions of parameters and Lorentz-violating coefficients appear-

ing in (2.1). Although we have written the above expression to one-loop order, its

structure remains exactly the same to all orders in perturbation theory, i.e., multiloop

corrections only (possibly) modify the value of the anomaly coefficients.

Each anomaly coefficient can be individually calculated, for instance, from (2.23)

after convenient application of functional derivatives of fields and setting them to zero.

In Sec. (2.3) we show that evaluation of coefficients λ♣1q to λ♣5q hinges on the computa-

tion of the vertex correction and fermion self-energy diagrams, the photon self-energy

diagram for λ♣6q, and the three-photon vertex diagrams4 for λ♣7q. We show that all

potentially anomalous structures appearing come from gauge identities of conventional

QED but generalized to consider possible violations due to new tensor structures com-

ing from Lorentz noninvariance and the lack of discrete symmetries.

Before computing anomaly coefficients, we first consider an anomaly-free model

that comes as a special case of the Lorentz-violating QED (2.1) when at least one

discrete symmetry is respected. In Sec. (2.3) we return to the task of investigating all

anomaly coefficients of (2.23) for the full model (2.1).

4Note that the Adler-Bardeen-Bell-Jackiw (ABBJ) anomaly structure is a special case of the sev-

enth anomaly term, with λ
♣7q
µνρσ containing a contribution proportional to the Levi-Civita tensor ǫµνρσ

— see Sec. 2.3.3.
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Discrete symmetries C or PT

Now we turn our attention to the possibility of removing these potential anoma-

lies by requiring the action (2.1) to satisfy C or PT symmetry, or both, but separately

enforced. For definiteness, henceforth we choose PT symmetry — the other two cases

go analogously. As can be checked in Table I, imposing this invariance requires the

absence of the coefficients bµ, dµν , gαβµ, Hµν , and ♣kAF qµ. The reason this model is

anomaly-free is as follows. Because these background fields are not present, the ac-

tion recovers PT invariance. Along with the fact the gauge operator (2.4) is PT odd,

from the QAP (2.20) it follows ∆g♣xq must also be PT odd. From the start, fields

and coefficients in our PT invariant action only allow construction of PT invariant

field polynomials as well, therefore there is no available PT odd polynomial to be con-

structed and included in ∆♣xq. The requirement of PT invariance for (2.1) removes

all candidate anomalies (2.22) from ∆g♣xq, and therefore the PT invariant model is

guaranteed to be anomaly-free — all coefficients at the right-hand side of (2.23) now

vanish.

In passing we also remark that besides C and/or PT invariance no other discrete

symmetry combining C, P or T could be imposed on the action (2.1) so that it would be

free of any potential anomalies and still Lorentz-violating. Requirement of coordinate

invariance while keeping particle Lorentz violation allows imposition of only C, PT, or

CPT symmetries. Demanding only CPT symmetry turns out to be not enough to rule

out all terms from (2.22), therefore only separate imposition of C or PT can ultimately

remove such anomaly candidates.

As a side note, it is important to deal with care the requirement of discrete

symmetries even if the gauge identity (2.23) turns out to be truly anomalous. When

considering the full QED extension, with all fermion families, the possibility of anomaly

cancellations may emerge — see Sec. V A of Ref. [4] — and this could avoid the

necessity of requiring the vanishing of individual fermion contributions to the anomaly

coefficients.

30



2. Renormalizability of the minimal QED extension

Stability

In the present context, once gauge invariance is proven to hold to all orders

— e.g., thanks to one of the discrete symmetries already mentioned — “stability”

means that radiative corrections can be absorbed by redefinition of parameters of the

theory. For definiteness, we keep on with PT symmetry, as before. It is well-known

that stability of the quantum perturbative theory is guaranteed if the classical theory,

i.e., classical action together with classical gauge identities, is itself stable under small

perturbations of dUV ↕ 4 [51]. We therefore perform such a perturbation, ε rS (ε ✦ 1)

on the (PT invariant) action, S Ñ S � ε rS, and by requiring this perturbed action to

satisfy the classical gauge identity,

wg♣xq♣S � ε rSq ✏ wg♣xqS � εwg♣xq rS ✑ ✁
✂
❧

α
� λ2

✡
❇µAµ, (2.24)

we conclude that all possible corrections must be gauge invariant, wg
rS ✑ 0, and

also PT even in order to guarantee the absence of anomalies. This selects all linearly

independent PT invariant terms Pi that can be constructed with the fields and Lorentz-

violating coefficients of the classical action (2.1),

P1 ✏ iψ γµDµψ, P2 ✏ iψ ❝
µνγνDµψ, P3 ✏ iψ ❡

µDµψ,

P4 ✏ iψ fµγ5Dµψ, P5 ✏ ψ ψ, P6 ✏ iψ γ5 ψ,

P7 ✏ ψ ❛
µγµ ψ, P8 ✏ F µνFµν , P9 ✏ ♣❦F qαβκλF αβF κλ,

where ❛
µ and ❡

µ, and ❝
µν and ♣❦F qµνρσ are combinations of coefficients aµ and eµ,

and cµν and ♣kF qµνρσ, respectively, as expected because of shared properties under the

discrete C and PT transformations of Table 2.1. To first order in Lorentz-violating

coefficients, these combinations are fully determined by field redefinition arguments —

see Sec. 3.1 — but to higher orders explicit evaluation of multiloop integrals may be

required for their determination. Finally, the most general integrated local function rS
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which is gauge and PT invariant is therefore given by

rS ✏ ➺ d 4x

9➳
i✏1

aiPi♣xq, (2.25)

where a1, . . . , a9 represent renormalizations of the coefficients appearing in the gauge

and PT invariant action. Note that these coefficients remain arbitrary. They are to

be fixed by renormalization conditions at the classical zeroth order, and by induction,

order by order in perturbation theory. If every coefficient ai can be unambiguously

fixed, this ends the proof of the renormalizability of this PT symmetric theory, and a

similar proof holds for the C invariant theory as well as for the C and PT symmetric

one.

For conventional QED case, this last task of fixing free parameters is accom-

plished straightforwardly, and at first it also seems to be the case for the Lorentz-

violating model just discussed, but as will be seen in the next chapter, the presence of

Lorentz violation introduces further issues — see the additional note below.

Additional note: A very interesting work [25], published about a year after publication

of the results discussed above, presents the surprising result that field redefinitions

of the form ψ Ñ ♣1 � Ẑqψ, where Ẑ has arbitrary dependence on momentum and

γ matrices, reveal that some Lorentz-violating coefficients naively characterized with

renormalizable dimension are actually naturally relocated to nonrenormalizable sectors

— for instance, in Ref. [25] it is found that eµ effectively behaves as a mass dimen-

sion ✁1 version of aµ. Once power-counting renormalizability of the Lorentz-violating

QED (2.1) is one of the fundamental hypotheses of the method we have employed to

study its renormalizability, the before mentioned results on field redefinitions may have

important consequences on our results for the C or PT invariant cases proved to be

renormalizable in this section.

Explicit renormalization by means of evaluation of Feynman diagrams may be

suitable to cope with all subtleties and determine what would change in our results.

Incidentally, when Ref. [25] was published, we were working on the one-loop evaluation
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of the fermion self-energy diagram and we actually find that all divergences related to

this diagram can be eliminated by renormalization of parameters appearing in (2.1),

but it seems renormalization conditions cannot be consistently fixed for the symmetric

parts of cµν and dµν — namely, cµνS and dµνS , respectively — and the mixed-symmetry

irreducible representation of gκλµ — call it gκλµM . Connecting with the results presented

in this section, an extra requirement for renormalizability of lagrangian (2.1) would

be imposing extra constraints on these coefficients. Setting them to zero at tree-level

solves the problem to first order in Lorentz violation and loop expansion as they do

not receive radiative corrections from other coefficients at this order. Nevertheless, the

question whether or not this is true to higher orders has to be further investigated.

For our surprise, expectations that coefficients more naturally regarded as hav-

ing nonrenormalizable dimension would lead to problems during renormalization were

not realized, at least for renormalization of the fermion self-energy. Actually, some co-

efficients having natural renormalizable dimension — c
µν
S , dµνS , and gκλµM , as mentioned

above — were problematic. Nevertheless, a common ground for these coefficients is

that neither of them relate to other coefficients within the fermion sector by means

of field redefinitions, and they are the only observable coefficients with renormaliz-

able dimension to have this property. In this sense, field redefinitions seem to play an

important role in these preliminary findings, to be discussed in Chapter 3.

2.3 Anomaly coefficients

In this section we use the quantum gauge relation (2.23) to identify potentially

anomalous graphs — these are the vertex correction and fermion self-energy, photon

self-energy, and the three-photon vertex diagrams — and derive generalizations of

conventional QED gauge identities for the presence of Lorentz-violating interactions

as described by (2.1). Evaluation of Feynman loop diagrams will give the value of

the anomaly coefficients, which are found to vanish to one-loop order5, meaning that

5As mentioned in the outline of this chapter, absence of anomalies associated to the vertex correc-
tion and fermion self-energy, and photon self-energy diagrams were already verified in Ref. [40]. These
are also discussed here for completeness reasons — we mention all results we use here were explicitly
checked, and some were also extended in Chapter 3.
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the model is free of anomalies to this order. A brief discussion regarding multiloop

corrections, as well as corrections coming from higher powers in Lorentz violation, is

made for the photon self-energy and three-photon vertex diagrams, and we present an

argument suggesting these give no contributions to gauge anomalies at any order.

2.3.1 Ward-Takahashi identity

Anomaly coefficients from λ♣1q to λ
♣5q
µν are all related to the vertex correction

Γµ♣p, qq and fermion self-energy Σ♣pq diagrams. Acting on (2.23) with
ÝÑ
δ ④δψ and

ÐÝ
δ ④δψ, setting the fields to zero, and Fourier transforming the result leads to

✁qµΓµ♣p, qq ✁ eΣ♣p� qq � eΣ♣pq ✏ λ♣1q � iλ♣2qγ5 � λ♣3q
α γα � λ♣4q

α γαγ5 � λ
♣5q
αβσ

αβ.

(2.26)

In conventional QED, the right-hand side of this expression identically vanishes, re-

sulting in the so called Ward-Takahashi identity. Our generalized expression exhibits

all possible ways it could be broken for a Lorentz-violating model based in (2.1). Note

that the form of this expression remains unchanged at higher orders in loop expansion

— multiloop corrections appear only modifying the anomaly coefficients. Making use

of the results for the divergent part of the one-loop fermion self-energy and vertex

correction of Ref. [40] — their Eqs. (12) and (18), respectively — we verify that

✁ qµΓµ♣p, qq ✏ eΣ♣p� qq ✁ eΣ♣pq, (2.27)

i.e., the conventional Ward-Takahashi identity of QED still holds at one-loop order

and, therefore,

λ♣1q ✏ λ♣2q ✏ λ♣3q
α ✏ λ♣4q

α ✏ λ
♣5q
αβ ✏ 0 to one-loop order, (2.28)

which was to be expected in view of Eq. (20) of Ref. [40], which is the equivalent of

this relation but in terms of renormalization factors. We should stress that we have

found no compelling reason to expect these coefficients will not develop nonzero values

when higher-loop diagrams are considered, therefore explicit multiloop evaluations of
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the vertex and fermion self-energy diagrams may be desirable.

2.3.2 Transversality of the photon self-energy tensor

Coefficient λ
♣6q
µν is related to the photon self-energy tensor Πµν♣kq. To see this,

apply δ④δAν on (2.23), set the fields to zero, and Fourier transform it, to find

kµΠµν♣kq ✏ ✁2λ♣6q
µν k

µ. (2.29)

Transversality of Πµν was already verified in Ref. [40]. Thus, this anomaly coefficient

also vanishes,

λ♣6q
µν ✏ 0 to one-loop order. (2.30)

Appealing to the generalized Furry theorem [40] — stating that only overall C even

insertions in fermion loops with even number of external photon legs give nonvanishing

contributions — Lorentz-breaking may be expected to give no contribution to the C

odd anomaly coefficient λ
♣6q
µν at higher orders in loop expansion or Lorentz-violating

coefficients.

2.3.3 Three-photon vertex

Following the same procedure as before, but acting on (2.23) with two functional

derivatives of the gauge field, we obtain the expression

♣p� qqλΓλµν♣p, qq ✏ ✁8iλ♣7q
κµλνp

κqλ, (2.31)

with external momenta p and q as depicted in Fig. 2.1, relating λ
♣7q
κµλν to the one-loop

three-photon vertex Γλµν♣p, qq. It represents vector current conservation if λ
♣7q
κµλν ✏ 0,

otherwise an anomaly is present and gauge symmetry is broken. Instead of working

on an expression for λ
♣7q
κµλν , in what follows we evaluate the left-hand side of the above

expression. Before, it is important to notice that in (2.23), due to the contraction with

F κλF µν , only pieces of λ
♣7q
κλµν satisfying

λ
♣7q
κλµν ✏ ✁λ♣7q

λκµν ✏ ✁λ♣7q
κλνµ ✏ λ

♣7q
µνκλ (2.32)
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Figure 2.1: One-loop three-photon vertex.

can contribute to the anomaly on the right-hand side of (2.31). Therefore, any piece

without this index symmetries that may appear after evaluation of the left-hand side

of (2.31) will not represent an anomaly. It represents noninvariant counterterms that

can be reabsorbed by a redefinition of the vertex functional Γ at that loop order and

are further cancelled, order by order in perturbation theory, leaving no physically

measurable effect, as discussed in Sec. 2.2.3.

Bose symmetry must be taken into account and, as seen in Fig. 2.1, we consider

both diagrams along with a convenient internal momenta routing. According to gener-

alized Furry theorem [40], only C odd insertions give nonzero contribution to processes

with odd number of external photon legs attached to a fermion loop. Therefore, the

nonvanishing part of Γλµν♣p, qq is given by the sum of all nine possible processes with

one C odd propagator or vertex insertion as depicted in Fig. 2.2. Contraction of the

integral representing Γλµν♣p, qq with ♣p� qqλ leads to

♣p� qqλΓλµν♣p, qq ✏ ♣p� qqλ
✁
Γ

♣1q
λµν � ☎ ☎ ☎ � Γ

♣9q
λµν

✠
✏ e3

➺
d4k

♣2πq4Tr
★✓

Γ1λp
✶λ 1

k④ ✁ p④✶ ✁m
γµ

1

k④ ✁ q④ ✁m
γν

1

k④ ✁m
� ♣µ; pØ ν; qq

✛

�
✓
Γ1ν

1

k④ ✁ p④✶ ✁m
γµ

1

k④ ✁ q④ ✁m
✁ Γ1ν

1

k④ ✁m
γµ

1

k④ ✁ q④ ✁m
� ♣µ; pØ ν; qq

✛

�
✓
Γ1ν

1

k④ ✁ p④ ✁m
γµ

1

k④ ✁ p④✶ ✁m
✁ Γ1ν

1

k④ ✁ p④ ✁m
γµ

1

k④ ✁m
� ♣µ; pØ ν; qq

✛
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Figure 2.2: Lorentz-violating insertions in the one-loop three-photon vertex. Gener-
alization of Furry theorem states that only C odd insertions can give nonvanishing
contributions to this process.

�
✓
✁ Γ1λ♣k ✁ p✶qλ 1

k④ ✁ p④✶ ✁m
γµ

1

k④ ✁ q④ ✁m
γν

1

k ✁ p④✶ ✁m

� Γ1λ♣k ✁ p✶qλ 1

k④ ✁ p④✶ ✁m
γν

1

k④ ✁ p④ ✁m
γµ

1

k④ ✁m
� ♣µ; pØ ν; qq

✛

�
✓
✁ Γ1λk

λ 1

k④ ✁ p④✶ ✁m
γµ

1

k④ ✁ q④ ✁m
γν

1

k④ ✁m

� Γ1λk
λ 1

k④ ✁m
γν

1

k④ ✁ p④ ✁m
γµ

1

k④ ✁m
� ♣µ; pØ ν; qq

✛

�
✓
✁ Γ1λ♣k ✁ qqλ 1

k④ ✁ q④ ✁m
γν

1

k④ ✁ p④✶ ✁m
γµ

1

k④ ✁ q④ ✁m

� Γ1λ♣k ✁ pqλ 1

k④ ✁ p④ ✁m
γµ

1

k④ ✁m
γν

1

k④ ✁ p④ ✁m
� ♣µ; pØ ν; qq

✛✰
,

(2.33)

where the terms inside the first square brackets at the right-hand side are the con-

tributions coming from Γ
♣1q
λµν , the ones inside the second are the contributions from

Γ
♣2q
λµν , and so on until the last square brackets, which comprises the contributions from
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Γ
♣6q
λµν . Diagrams (7), (8), and (9), involving propagator insertions of M1, give vanishing

contributions as will be explained below. First, we note the following in (2.33):

• A shift k Ñ k✁ p in the second term from Γ
♣2q
λµν cancels the first term from Γ

♣3q
λµν ;

• A shift k Ñ k✁ q in the second term from Γ
♣3q
λµν cancels the first term from Γ

♣2q
λµν ;

• A shift k Ñ k✁ q in the second term from Γ
♣5q
λµν cancels the first term from Γ

♣6q
λµν ;

• A shift k Ñ k✁ q in the second term from Γ
♣6q
λµν cancels the first term from Γ

♣4q
λµν ;

• Analogous results follows for the above with µØ ν and pØ q;

• All remaining non-mentioned terms add up to zero.

Care must be taken while doing these integration shifts since we are dealing with

linearly6 divergent integrals. In this case, shifts in the integration momenta generate

finite nonvanishing surface terms7,

♣p� qqλΓλµν♣p, qq

✏ e3
➺

d4k

♣2πq4Tr
★
pα

❇
❇kα

✄
Γ1ν

1

k④ ✁m
γµ

1

k④ ✁ q④ ✁m

☛
� qα

❇
❇kα

✄
Γ1ν

1

k④ ✁ p④ ✁m
γµ

1

k④ ✁m

☛

✁ qα
❇
❇kα

✄
Γ1λk

λ 1

k④ ✁m
γν

1

k④ ✁ p④ ✁m
γµ

1

k④ ✁m

✁ Γ1λ♣k ✁ pqλ 1

k④ ✁ p④ ✁m
γµ

1

k④ ✁m
γν

1

k④ ✁ p④ ✁m

☛
� ♣µ; pØ ν; qq

✰
.

(2.34)

As stated before, propagator insertions of M1 give vanishing contributions, and the

reason is their associated integrals are logarithmically divergent, thus the resulting

6Each integral in (2.33) is quadratically divergent, but the sum, for each diagram, results in a linear

divergent integral. To illustrate this point, consider, for instance,
➩
d4k

✑
1

k♣k✁aq ✁
1
k2

✙
which diverges

linearly.
7To see this, consider the difference ∆♣aq ✏

➩�✽
✁✽

d4xrf♣x � aq ✁ f♣xqs ✏
➩�✽
✁✽

d4xraµ❇µf♣xq �
aµaν❇µ❇νf♣xq�☎ ☎ ☎ s. If the integral of f♣xq converges, then f♣✟✽q ✏ f ✶♣✟✽q ✏ ☎ ☎ ☎ ✏ 0 and ∆♣aq ✏ 0.
On the other hand, if the integral diverges linearly, then f♣✟✽q ✘ 0 and f ✶♣✟✽q ✏ ☎ ☎ ☎ ✏ 0, and the

shift generates a finite nonvanishing surface term, ∆♣aq ✏
➩�✽
✁✽

d4x aµ❇µf♣xq ✏
➯
S
d3Sµa

µf♣xq.
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surface integrals converge to zero, as seen when the surface is taken at infinity. More-

over, only the dµνγ5γµ part of Γν1 contributes because, as mentioned earlier, only C odd

insertions give nonvanishing contributions and, of these, the contributions from the eν

and fν parts of Γν1 vanish because the trace of both an odd number of γ matrices or

the product of γ5 with an odd number of γ’s vanish, remaining only dµν .

Note that the surface integrals (2.34) are finite, thus there is no need to introduce

UV regulators and the conventional approach to γ5 holds. Therefore, to evaluate the

integral (2.34), we use Gauss’ theorem to change it into a surface integral, which is easy

to solve considering an isotropic hypersurface at k Ñ ✽. Before, however, we need to

evaluate traces involving the product of γ5 with four and six γ’s. For the former we

use Tr♣γ5γκγλγµγνq ✏ ✁4iǫκλµν and for the latter we make extensive use of identities

a④γµb④ ✏ 2a④bµ ✁ a④b④γµ and a④b④ ✏ 2a☎b ✁ b④a④ to reduce the trace to the first case. After

evaluation of the traces and reorganizing, we find

♣p� qqλΓλµν♣p, qq

✏ 4ie3
➺

d4k

♣2πq4
★
dλνǫλµρσ♣pσqα ✁ pαqσq ❇

❇kα
✓

kρ

♣k2 ✁m2qr♣k ✁ pq2 ✁m2s

✛

✁ 2dκλq
α ❇
❇kα

✓
kζkλpσkτ ♣ηζµǫκνστ ✁ ηζνǫκµστ � ηζσǫκµντ q

♣k2 ✁m2q2r♣k ✁ pq2 ✁m2s

� ♣k ✁ pqζ♣k ✁ pqλpσkτ ♣ηζµǫκνστ ✁ ηζνǫκµστ ✁ ηζτ ǫκµνσq
♣k2 ✁m2qr♣k ✁ pq2 ✁m2s2

✛

� dκλǫκµνρq
α ❇
❇kα

✓
k2kλ♣k � pqρ

♣k2 ✁m2q2r♣k ✁ pq2 ✁m2s ✁
♣k2 ✁ p2q♣k ✁ pqλkρ

♣k2 ✁m2qr♣k ✁ pq2 ✁m2s2
✛

✁m2dκλǫκµνσq
α ❇
❇kα

✓
kλ♣k � pqσ

♣k2 ✁m2q2r♣k ✁ pq2 ✁m2s �
♣k ✁ pqλ♣k ✁ 2pqσ

♣k2 ✁m2qr♣k ✁ pq2 ✁m2s2
✛

� ♣µ; pØ ν; qq
✰
. (2.35)

Making use of Gauss’ theorem to transform the integrals (2.35) into surface integrals8,

8For this purpose, we Wick rotate to Euclidean space, ko ✏ ik4 and d4k ✏ id4kE ✑ idk1dk2dk3dk4.
Then

➩
V
d4kE

❇
❇kα

�
. . .

✟α
✏

➯
S
d3SE

α

�
. . .

✟α
✏

➯
S
dΩ k2kα

�
. . .

✟α
, where in the last integral the integra-

tion is along the solid angle of a 3-dimensional surface, where
➯
S
dΩ ✏ 2π2.
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and evaluating it at an isotropic surface at k Ñ ✽, reveals that the difference inside the

third square brackets vanishes at the boundary and the surface integral of the terms

inside the fourth square brackets goes to zero as k Ñ ✽. Expression (2.35) simplifies

and is given by

♣p� qqλΓλµν♣p, qq ✏ ✁4e3dλνǫλµρσ♣pσqα ✁ pαq
σq

➽
S

dΩ

♣2πq4
kαkρ

k2

� 8e3dκλ
�
2ηζµǫκνστ ✁ 2ηζνǫκµστ � ηζσǫκµντ

✁ ηζτ ǫκµνσ
✟
pσqα

➽
S

dΩ

♣2πq4
kαkζkλkτ

k4
� ♣µ; pØ ν; qq.

(2.36)

The surface integrals are evaluated at isotropic momenta kµ Ñ ✽, and we use

1

2π2

➽
S

dΩ
kµkν

k2
✏ 1

4
ηµν , (2.37)

1

2π2

➽
S

dΩ
kκkλkµkν

k4
✏ 1

24
♣ηκληµν � ηκµηλν � ηκνηλµq, (2.38)

which are derived by arguments of Lorentz covariance, to finally obtain

♣p� qqλΓλµν♣p, qq ✏ ✁ e3

12π2

�
dλµǫλνρσ ✁ dλνǫλµρσ ✁ dλρǫλµνσ � dλσǫλµνρ

✟
pρqσ

� e3

12π2
dκλ ♣ǫκλνρηµσ ✁ ǫκλνσηµρ ✁ ǫκλµρηνσ � ǫκλµσηνρq pρqσ.

(2.39)

Expression (2.39) looks like as if there is a gauge anomaly, but fortunately this

result is not the whole story. There is an internal momenta routing ambiguity, i.e.,

we may relabel all internal momenta of the triangular diagram, Fig. 2.1, by adding a

constant vector a, i.e.,

k Ñ k � a, where a ✏ αq � ♣α ✁ βqp, (2.40)

with α and β arbitrary constants, and ask what would change in our results. If the
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integral describing this process were perfectly finite, nothing would change, but it is

actually linearly divergent and a relevant surface term emerges as a result of this routing

ambiguity. Therefore, we should substitute result (2.39) for Γλµν♣p, qq by another one

Γλµν♣p, q; aq which takes this ambiguity into account, i.e., one valid for an arbitrary

shift of internal momenta. A practical way of finding Γλµν♣p, q; aq is to first compute

the surface term ∆λµν♣aq,

∆λµν♣aq ✏ Γλµν♣p, q; aq ✁ Γλµν♣p, q; 0q, (2.41)

where Γλµν♣p, q; 0q ✑ Γλµν♣p, qq and use it to obtain

♣p� qqλΓλµν♣p, q; aq ✏ ♣p� qqλ rΓλµν♣p, q; 0q �∆λµν♣aqs , (2.42)

where the first term at the right-hand side is already known — it is Eq. (2.39) — and

the second one is just the divergence of (2.41). In the end, we will have a result with

explicit dependence on the routing ambiguity. Since our physical theory relies upon

gauge invariance, we fix the ambiguity by requiring this symmetry to hold.

Computation of ♣p � qqλ∆λµν♣aq follows very similarly the derivation of (2.39)

such that its generalization to consider an arbitrary shift of internal momenta leads to

♣p� qqλΓλµν♣p, q; aq

✏ ✁ ♣1� βq e3

12π2

�
dλµǫλνρσ ✁ dλνǫλµρσ ✁ dλρǫλµνσ � dλσǫλµνρ

✟
pρqσ

� ♣1� βq e3

12π2
dκλ ♣ǫκλνρηµσ ✁ ǫκλνσηµρ ✁ ǫκλµρηνσ � ǫκλµσηνρq pρqσ

✁ β
e3

6π2
dλρǫκλµν♣pκpρ ✁ qκqρq

✁ β
e3

12π2
dκλ

✏
ǫκλµν♣p2 ✁ q2q � ǫκλνρ♣pµpρ ✁ qµq

ρq ✁ ǫκλµρ♣pνpρ ✁ qνq
ρq✘ , (2.43)

where we note that terms proportional to β are contributions coming from ♣p �
qqλ∆λµν♣aq of (2.42). This is the left-hand side of the conservation law (2.31), but

it is not very illuminating in this form, so we recast it in terms of the vertex functional
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and fields,

wg♣xqΓ ✏✁ ♣1� βq e3

24π2
i
�
dλµǫλνρσ � dλνǫλµρσ � dλρǫλµνσ � dλσǫλµνρ

✟ ❇µAν❇ρAσ
� ♣1� βq e3

24π2
idκλ ♣ǫκλµνηρσ � ǫκλρσηµν ✁ ǫκλµσηνρ � ǫκλνρηµσq ❇µAν❇ρAσ

✁ β
e3

6π2
idλρǫλµνσA

µ❇ρ❇σAν

� β
e3

12π2
idκλǫκλµν ♣Aµ❧Aν ✁ Aµ❇ν❇αAα ✁ Aα❇α ❇µAνq , (2.44)

which can be further rewritten as

wg♣xq
★
Γ✁ ♣1� βq e3

24π2
i

➺
d4y

✓
♣dλµǫλνρσ � dλνǫλµρσqAµAν❇ρAσ

� dκλǫκλµν♣AµAα❇αAν ✁ AµAα❇νAα ✁ A2❇µAνq
✛✰

✏ ♣1� 3βq e3

24π2
i

✓
♣dλρǫλµνσ ✁ dλµǫλνρσqAσ❇ρ❇µAν

� dκλǫκλµν♣Aµ❧Aν ✁ Aµ❇ν❇αAα ✁ Aα❇α❇µAνq
✛
. (2.45)

The expression inside curly brackets in the left-hand side of (2.45) can be understood

as a redefinition of the vertex functional but now comprising noninvariant counterterms

— see Sec. 2.2.3. This expression is to be compared with Eq. (2.23), where poten-

tial anomalies coming from other diagrams were already found to vanish to one-loop

order in Secs. 2.3.1 and 2.3.2. The objects with Lorentz indices and the numerical

factors of A❇❇A in the right-hand side of the above expression are identified as pieces

composing λ
♣7q
κλµν , and they must be zero in order to ensure vector gauge invariance at

this order. This physical requirement fixes the parameter β ✏ ✁1④3. Therefore, in the

Lorentz-violating QED (2.1), the one-loop three-photon vertex does not contribute to

a potential vector gauge anomaly, as expressed by

λ
♣7q
κλµν ✏ 0 ♣at one-loop orderq. (2.46)
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Concerning this result, to first order in Lorentz violation, due to the contraction with

the C and PT even operator F µνF ρσ in (2.23), it is expected that only C and PT

even coefficients may give contribution to λ
♣7q
µακβ. It turns out this anomaly coefficient

vanishes to one-loop order and, according to the mentioned expectation, this was not

to be a surprise as the only C and PT symmetric coefficients, cµν and ♣kAF qµνρσ, do
not contribute at all to Γρµν♣p, qq because of the generalized Furry theorem.

In a theory with chiral fermions, the ABBJ anomaly — a ǫκλµν contribution to

λ
♣7q
κλµν — would be expected, and we actually found a Lorentz-violating generalization

of its structure — the the right-hand side of (2.45) — because of the term dµνψγµγ5❇νψ
present in the action (2.1), with the isotropic (trace) part of dµν playing the role of a

conventional chiral interaction. It turns out there is no contribution from ǫκλµν to λ
♣7q
κλµν

and explicit evaluation actually reveals that the overall contribution of the trace part

of dµν to Γρµν♣p, qq vanishes, even before contraction with ♣p � qqρ. Lorentz violation

allows for a generalized structure as in the right-hand side of (2.45), but we found the

coefficient for this anomaly structure vanishes to one-loop order, as it is to be expected

on symmetry grounds as dµν is related to C odd field operators.

On dimensional grounds, λµνρσ could receive contributions only from coefficients

for Lorentz violation with mass dimension zero, therefore coefficients from M1 are

expected to give no contribution to the anomaly (2.31) at any order in Lorentz violation

— as discussed after Eq. (2.34), contributions from M1 insertions lead to vanishing

surface integrals.

Regarding multiloop contributions along with higher powers in coefficients for

Lorentz violation, the standard ABBJ anomaly vanishes to one-loop and do not receive

further higher order corrections due to the nonrenormalization theorem of Adler and

Bardeen [55]. We may also conjecture that λ
♣7q
κλµν will not receive corrections from higher

powers in Lorentz violation. The reason is the C symmetric anomaly coefficient λ
♣7q
κλµν

can receive only C symmetric corrections, but the generalized Furry theorem guarantees

these corrections add up to zero for the three-point function Γλµν♣p, qq, protecting λ♣7q
κλµν

from receiving contributions from C even Lorentz-violating coefficients. In this line of

reasoning, we expect the generalized form of the ABBJ anomaly — the right-hand side
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2. Renormalizability of the minimal QED extension

of (2.45) — to vanish to all orders because dµν is C antisymmetric.

At last, we should point out that in Ref. [65] it was verified that addition of

an isotropic Lorentz-violating coefficient ǫ, leading to a lagrangian for a Weyl spinor u

coupled to gauge fields of the form iu✿
✏
Do ✁ ♣1 ✁ 1

2
ǫq~σ ☎ ~D✘

u, results in the very same

anomaly of ABBJ, and for abelian gauge fields the anomaly vanishes, to all orders due

to the Adler-Bardeen theorem, as in the standard Lorentz invariant case. Comparison

with our case reveals this is analogous to considering (2.1) with only Lorentz-violating

coefficient the isotropic part of dµν , thus our results agree with [65]. The nonisotropic

contribution from dµν leads to an anomaly similar to the ABBJ but with Lorentz-

violating anomaly coefficients, as can be seen in (2.45), and we checked it vanishes

to one-loop order. It would be interesting to study how the Adler-Bardeen theorem

generalizes to this case, but this is beyond the scope of this work. As suggested before,

there is a good indication the anomaly indeed vanishes to all orders.

2.4 Summary

In this chapter, we investigated renormalizability of the minimal Lorentz-

violating QED extension. Making use of the algebraic method of renormalization, we

have found that Lorentz symmetry violation typically introduces new possible anoma-

lous structures — all of them forbidden in the conventional because of Lorentz invari-

ance and the existence of discrete symmetries in the model. Those new structures were

understood as extensions of conventional gauge identities to include Lorentz violation.

The vanishing or not of each new structure is controlled by numerical factors which

we have called anomaly coefficients. All diagrams contributing to anomaly coefficients

were identified. Lorentz-violating corrections to the fermion self-energy and vertex cor-

rection can lead to violations of the Ward-Takahashi identity; corrections to the photon

self-energy can spoil its transversality; and corrections to the three-photon triangular

diagram can result in current nonconservation at its vertices.

We emphasize that our results by no means imply existence of gauge anomalies

in the model, but indicate they are possible and therefore requires determination of
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the numerical value of each anomaly coefficient by, for instance, explicit evaluation of

Feynman diagrams. To first order in loop expansion, previous results in the literature

found no anomalies related to the fermion self-energy, vertex correction, and photon

self-energy diagrams. We investigated the remaining three-photon diagram and verified

no gauge anomaly is present to this order. We have also suggested, using arguments

related to discrete symmetries and a generalized version of Furry theorem, that anomaly

coefficients related to the photon self-energy and the three-photon vertex vanish to all

orders in perturbation theory. Further investigations aiming a formal proof of this

conjecture would be interesting.

As a byproduct of the use of the algebraic method, we were able to identify

submodels of the minimal QED extension which are completely free of gauge anomalies.

We found that automatic vanishing of anomaly coefficients can be achieved by requiring

discrete C or PT symmetry. It was surprising for us that discrete symmetries could

play such decisive role in ruling out potential anomalies in a model. Once candidate

anomalies were ruled out, renormalization of the model was immediately verified since

the action describing this model is the most general one according its symmetries.

Hence all loop divergences can be eliminated by a finite number of counterterms and

redefinition of parameters appearing in the classical action. The question as to whether

or not free parameters introduced by renormalization can be consistently fixed by

suitably chosen renormalization conditions appears to be more subtle than expected,

and preliminary results on this issue will be presented in the following chapter.
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Chapter 3

Fermion self-energy of the minimal

QED extension

Investigations on radiative corrections for the minimal Lorentz-violating QED

extension have been performed regularly in the past years since the SME was de-

vised. Loop calculations considering only the bµ coefficient may have been the most

investigated ones — for instance, dealing with radiatively induced Chern-Simons-like

terms [4,47,48,66], radiative corrections giving mass to the photon [67], and corrections

to the lamb shift and the electron anomalous magnetic moment [68]. Contributions

from coefficients cµν and ♣kF qµρνρ — as they are phenomelogically indistinguishable —

were also studied, for instance, to the photon self-energy [4], to the vertex correction

in order to extract bounds using the electron anomalous magnetic moment [69], to

the fermion self-energy [42], and to the four-photon “box diagram” where it induces

the Euler-Heisenberg lagrangian [70]. Investigations dealing with other coefficients

includes, among others, one-loop renormalizability of the full minimal QED exten-

sion [40], analysis of vacuum photon splitting [71] and our analysis in the context of

gauge anomalies [12], discussed in the previous chapter.

Different features related to radiative corrections have been studied, but few of

them have dealt with the associated question of renormalization. Following the previ-

ous chapter, our main interest is the renormalization of the minimal Lorentz-violating

QED extension. To one-loop order, it was shown in [40] that all divergences can be ac-

commodated by renomalization of fields, parameters, and Lorentz-violating coefficients
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3. Fermion self-energy of the minimal QED extension

appearing in the starting action. It is our intention to make a further step and treat

radiatively induced Lorentz-violating finite corrections as well. As a starting point, we

consider those from the fermion self-energy as it has a technically simpler structure

compared to the photon self-energy or the vertex correction. Despite that, we will see

Lorentz violation introduces unexpected new features. On one hand, renormalization

introduces modifications of fermion kinematical properties as (finite) operators not

present in the tree-level lagrangian are radiatively induced — we emphasize this is not

the case for the conventional QED fermion self-energy — and interesting experimental

signals may be further investigated. On the other hand, even though the theory can

be rendered finite, we find some coefficients may not be consistently renormalized by

conventional means as some arbitrariness introduced in the renormalization process

apparently cannot be adequately fixed.

A very recent investigation [42] dealing with the cµν and ♣kF qµρνρ coefficients

has independently found results concordant with ours but using a different approach.

They observed the same behavior with respect to the first point mentioned above, and

our preliminary results indicates the radiative generation of structures not present in

the tree-level lagrangian is a general feature for some other coefficients as well. For the

second point we mentioned, our conclusions differ from those in the forementioned ref-

erence, where they find introduction of momentum-dependent wave-function renormal-

ization factor adequately renormalizes contribution from cµν and ♣kF qµρνρ. Although,

in the present work, we could follow this idea, we will see it appears it does not solves

the problem for coefficients other than cµν and ♣kF qµρνρ.
The outline of this chapter is the following. In Sections 3.1 and 3.2, we rein-

troduce the framework we used in the previous chapter, but now with focus on its

application to the evaluation of the fermion self-energy diagram. In Sec. 3.3, we eval-

uate the one-loop fermion self-energy, regularizating its divergences and renormalizing

the final result by adjusting renormalization factors introduced by counterterms. In

the end of this chapter we present our preliminary conclusions and perspectives.
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3. Fermion self-energy of the minimal QED extension

3.1 Framework: Minimal QED extension revisited

The lagrangian L of the Lorentz- and CPT violating extension of the QED for

a single Dirac fermion is based in the same action studied in Chapter 2, and is given

by [4]

L ✏ i ψ♣γµ � Γµ1qDµ ψ ✁ ψ♣m�M1qψ

✁ 1
4
F µνFµν ✁ 1

4
♣kF qµνρσF µνF ρσ � 1

2
ǫµνρσ♣kAF qµAνFρσ. (3.1)

As previously discussed, besides the usual QED terms, lagrangian (3.1) is not invariant

under particle Lorentz transformation once it contains constant background fields that

break spacetime isotropy. In the photon sector, Lorentz violation is implemented by

the last two terms of (3.1), and in the fermion sector it occurs because of the terms

related to Γµ1 and M1, defined as

Γµ1 ✑ cλµγλ � dλµγ5γλ � eµ � ifµγ5 � 1
2
gκλµσκλ,

M1 ✑ im5γ5 � aµγ
µ � bµγ5γ

µ � 1
2
Hµνσ

µν . (3.2)

Terms with coefficients of even (odd) number of indexes respect (do not respect) CPT

symmetry. Coefficients ♣kF qµνρσ and those appearing in Γµ1 are dimensionless, while

♣kAF qµ and the ones in M1 have dimension of mass. The trace part of cµν and dµν is

Lorentz invariant and amounts only to redefinitions of the fermion field, thus can be

set as zero; Hµν and the first two indices of gµνρ are antisymmetric; ♣kF qµνρσ have the

symmetries of the Riemann tensor,

♣kF qµνρσ ✏ ✁♣kF qνµρσ ✏ ✁♣kF qµνσρ ✏ ♣kF qρσµν ,

♣kF qµνρσ � ♣kF qµσνρ � ♣kF qµρσν ✏ 0, (3.3)

and can be taken as double traceless ♣kF qµνµν ✏ 0, otherwise it would lead to a mere

redefinition of the photon field; at last, m5 is Lorentz-invariant and can actually be

reabsorbed by other coefficients after a chiral rotation ψ Ñ exp
�✁ i

2
γ5 tan

✁1 m5

m

✟
ψ,
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thus is it uninteresting to our analysis and will not be considered. Other effects of field

redefinitions will be discussed below.

Additionally, lagrangian (3.1) will be considered together with an infrared (IR)

regulator term, 1
2
λ2AµA

µ, by means of a photon mass λ, and also a gauge-fixing pa-

rameter α by means of ✁ 1
2α
♣❇µAµq2. For simplicity, we work in the α ✏ 1 gauge.

A very interesting feature of lagrangian (3.1) is related to fermion field redefini-

tions [3,4,25,75–77,107] of the form ψ Ñ r1�Z♣x, ❇qsψ, where Z♣x, ❇q is a 4✂4 matrix

linear in the coordinates and derivatives, with dependence on Lorentz-violating coeffi-

cients. These redefinitions reveal some coefficients are not observable at leading order

in Lorentz violation, some are not observable to all orders, and also that only some

specific coefficient combinations are observable. We restrict the following discussion

for flat spacetime QED with a single Dirac fermion.

Coefficients aµ, eµ, the antisymmetric part cµνA of cµν and the trace part of gκλµ,

g
κλµ
T ✑ 1

3
♣gκααηλµ ✁ gλααη

κµq, can be removed at leading order [75], and fµ can be

removed to all orders in Lorentz violation [76]. Physically, we say these coefficients are

unobservable at leading order (and to all orders in the case of fµ).

Besides removing unobservable coefficients, those redefinitions also reveal the

only observable coefficient combinations [75],

c
µν
S ✑ 1

2
♣cµν � cνµq,

d
µν
S ✑ 1

2
♣dµν � dνµq,

g
κλµ
M ✑ 1

3
♣gκλµ � gκµλ � ηαβg

λαβηκµq ✁ ♣κØ λq,
bκ ✁mgκA,

Hκλ ✁ 1
2
mǫκλµνd

µν
A , (3.4)

where the first and second line defines the symmetric part of cµν and dµν , respec-

tively; the third line defines the mixed-symmetry representation g
κλµ
M of gκλµ, and

in the fourth line we have defined its axial representation, gκA ✏ ✁1
6
ǫκλµνg

λµν
A where

g
κλµ
A ✑ 1

6
gνρσǫνρσαǫ

ακλµ; and in the last line we have defined the antisymmetric part dµνA

of dµν . After field redefinitions of the form mentioned above, and in terms of coeffi-
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3. Fermion self-energy of the minimal QED extension

cient combinations (3.4), lagrangian (3.1) can be rewritten in terms of only physically

observable coefficient combinations,

LÑ L ✏ ψ
✁
i❇④ ✁m

✠
ψ � ψ

✁
c
µν
S γµ � d

µν
S γ5γµ � 1

2
gκλνM σκλ

✠
i❇νψ

✁ 1
4

✁
1
2
ǫκλρσd

ρσ
A ✁ 1

m
Hκλ

✠
ψ
✁
ǫκλµνγ5γµi❇ν ✁mσκλ

✠
ψ

� 1
2

✁
g
µ
A ✁ 1

m
bµ
✠
ψ
✁

1
2
ǫκλµνσ

κλi❇ν �mγ5γµ

✠
✁ 1

4
F µνFµν ✁ 1

4
♣kF qµνρσF µνF ρσ � 1

2
ǫµνρσ♣kAF qµAνFρσ. (3.5)

Therefore, not all coefficients can be individually accessed in experiments, and some are

intrinsically entangled with others — for instance, dµνA and Hµν . In a purely practical

point of view, coefficient combinations appearing in (3.5) can be redefined as new

and fully observable coefficients. Additionally, it turns out that only the combination

2cµνS ✁ ♣kF qµρνρ is observable [78], and also that ♣kAF qµ may relate to bµ and gκλµA .

We emphasize our starting point for evaluation of the fermion self-energy will

not be the redefined lagrangian (3.5), instead we start from the original lagrangian (3.1)

with all fundamental coefficients, as we call them. Therefore, as an extra consistency

check of our calculations, our results for observable quantities must be in accordance

with what should be expected from (3.5).

The lagrangian (3.5) for the observable coefficient combinations reveals impor-

tant information related to its renormalization that was previously hidden. First of

all, coefficients appearing in (3.1) are not independent at all, and are related to other

coefficients by field redefinitions, therefore we can expect a mixing of the fundamental

coefficients as they are renormalized.

No feature related to theoretical consistency or any measurable quantity can

be affected by radiative corrections from unobservable coefficients. For instance, no

contribution from fµ to the fermion self-energy can raise new technical issues related

to renormalization. Indeed, we will find none.

Because of field redefinitions, as a specific example, renormalization of contri-

butions from dµν should exhibit two different behaviors — one for dµνS and another for

d
µν
A . In particular, only radiative corrections from d

µν
A may mix with the ones from Hµν ,
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and divergences associated with one of them may eventually be cancelled by countert-

erms associated with the other, and vice-versa. The same is to be expected for other

coefficients that mix under field redefinitions, and that is indeed what is found.

Finally, one issue is to be expected. As we will see, in order to fix free parame-

ters introduced in the renormalization process, two renormalization conditions will be

imposed in the fermion self-energy. As for the conventional case, these conditions are

motivated by the appearance of two divergences, one proportional to p④ and another

to m✂ 1, which demands two counterterms, each one carrying a free parameter to be

fixed. In complete analogy to the conventional case, two renormalization conditions will

be imposed on the complete fermion self-energy corrected by Lorentz-violating terms,

which comprise individual contribution from all coefficients appearing in (3.1) and each

of these contributions have to satisfy the same renormalization conditions. An issue

introduced by Lorentz violation is that contribution from some coefficients demands

only a single independent counterterm, effectively introducing only one free parameter,

as can be readily guessed from the redefined lagrangian (3.5). For instance, because of

the mixing between dµνA andHµν , two counterterms appear for each of these coefficients,

proportional to ♣pµγ5γν ✁ pνγ5γµq and ǫµνρσσρσ, and each coefficient receives two free

parameters, thus the two renormalization conditions can be fixed without any problem.

On the other hand, dµνS is a “single” coefficient, and its contribution receives only one

counterterm proportional to ♣pµγ5γν � pνγ5γµq, leading to only one free parameter —

the same happens to all other “single” fermionic coefficients in (3.5). Typically, we

cannot fix two conditions with a single free parameter. In these cases, renormalization

of those contributions fails to be consistent if we are to follow conventional procedures.

On the other hand, contribution from fµ, for instance, has a single free parameter

but is not problematic because it turns out it satisfies both renormalization conditions

trivially, i.e., for any choice of its single free parameter — we will see this is a feature

of all unobservable coefficients.

51



3. Fermion self-energy of the minimal QED extension

3.2 Set up for one-loop evaluations

Inclusion of Lorentz-violating interactions, as in lagrangian (3.1), leads to new

Feynman rules, as previous discussed in Sec. 2.1.3. In that case, our focus was on

one-particle irreducible (1PI) diagrams, where external legs are cut off, and because of

the experimentally known smallness of upper bounds on the relevant Lorentz-violating

terms of the lagrangian (3.1), those where taken as new interactions vertices, small

perturbations on the conventional QED. This approach effectively introduces a set of

new Feynman rules for Lorentz-violating insertions in propagator internal lines for a

fermion of momentum pµ,

✏ ✁iM1, (3.6)

✏ iΓµ1pµ, (3.7)

and a photon of momentum kµ,

µ ν ✏ ✁2ikκkλ♣kF qκµλν , (3.8)

µ ν ✏ 2♣kAF qκǫκµλνkλ, (3.9)

and in vertices,

✏ ✁ieΓµ1 . (3.10)

In this case, it would be less attractive to consider higher order Lorentz violation

contributions to one-loop diagrams as they may be of the same order of magnitude as

higher loop corrections, which we disregard in the present analysis.

The above approach is insufficient for all of our goals in this chapter. Evaluation

of one-loop integrals from 1PI diagrams can be consistently performed with above con-

siderations, but as we are looking for effects of finite radiative corrections, external legs

are to be considered in order to determine full propagators, which must be constructed

starting from tree-level propagators taking into account Lorentz violation to all orders
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for a consistent use of the LSZ reduction formula [74].

As for the fermion self-energy, the external lines are fermionic only, thus the

relevant complete tree-level propagator and corresponding Feynman rule are given by

✏ iSF ♣pq ✏ i

p④ � Γ1 ☎ p✁m✁M1

. (3.11)

Naturally, we could use this propagator for internal lines of loop diagrams as well, but

as discussed before, for this case it is reasonable to consider Lorentz violation small

enough to enter as insertions on the conventional QED fermion propagator,

✏ � � � � � ☎ ☎ ☎ ,
(3.12)

where ✏ i
p④✁m

is the conventional fermion propagator, and keep it only to

first order in Lorentz-violation for internal lines of one-loop diagrams. Along with an

analogous approach for the photon propagator, we recover the Feynman rules from

(3.6) to (3.9).

As in conventional QED calculations, Feynman diagrams containing Lorentz-

violating insertions may contain ultraviolet (UV) divergences, therefore an adequate

regularization is required. We use dimensional regularization [72], as its techniques are

not changed considering our approach to loop integrals with Lorentz-violating inser-

tions. All integrals are still functions of internal momenta only, which behaves covari-

antly, and the role of Lorentz-violating coefficients is restricted to index contraction

with results of these integrals.

Often divergent integrals come in conjunction to γ5 matrices, whose properties

are dimension dependent, raising potential complications during dimensional regular-

ization where integrals are generalized to an arbitrary dimension d. Our approach

for the generalization of γ5 to d dimensions is to use ’t Hooft-Veltman’s definition of
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γ5 [73],

tγµ, γ5✉ ✏ 0, µ ✏ t0, 1, 2, 3✉,
rγµ, γ5s ✏ 0, µ ➙ 4. (3.13)

By means of this definition, γ matrices can be conveniently split in two pieces, γµ ✏
γµ � ♣γµ, where

γµ ✏

✩✬✬✬✫✬✬✬✪
γµ, µ ✏ t0, 1, 2, 3✉

0, µ ➙ 4

, and ♣γµ ✏
✩✬✬✬✫✬✬✬✪

0, µ ↕ 4

γµ, µ ➙ 4

, (3.14)

which amounts to a set of γ matrices for the first four dimensions and another orthog-

onal set for higher dimensions, respectively. These definitions introduce a technical

breaking of Lorentz invariance in all dimensions except the first four. Nevertheless, no

extra physical feature is introduced in our perturbative approach for Lorentz violation

as the integrals to be regularized have conventional Lorentz properties.

3.3 One-loop fermion self-energy

The conventional QED fermion self-energy diagram is illustrated in Fig. 3.1.

Lorentz violation modify it by means of replacing the conventional external leg

by the complete Lorentz-violating tree-level propagator , see (3.12), and also

by propagator insertions in internal lines and vertex insertions, according to rules

from (3.6) to (3.10). For the moment, we are interested only in amputated diagrams,

those with external legs cut off. Therefore, the diagrams we have to compute are the

amputated version of the conventional Lorentz-symmetric diagram of Fig. 3.1 and the

Lorentz-violating diagrams of Fig. 3.2.

The Feynman rules are like the conventional QED ones along with extra interac-

tions for internal line propagators and vertices, as dictated by rules from (3.6) to (3.10),

as mentioned above. For instance, diagram (1) only differs from the conventional one
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Figure 3.1: Conventional fermion self-energy diagram.

Figure 3.2: Lorentz-violating insertions in the one-loop fermion self-energy.

of Fig. 3.1 by modifying the vertex at the left side, from ✁ieγν to ✁ieΓ1ν , such that

✁ iΣ♣1q♣pq ✏
➺

d4k

♣2πq4
✁iηµν
k2 ✁ λ2

♣✁ieγµq i

p④ ✁ k④ ✁m
♣✁ieΓ1νq, (3.15)

and we note that the superficial degree of divergence of the integral remains the same

as we have inserted a dimensionless Lorentz-violating coefficient. On the other hand,

propagator insertions of mass dimension one coefficients make the integral more con-

vergent. Diagram (6), for instance, has an insertion in the photon line,

✁ iΣ♣6q♣pq ✏
➺

d4k

♣2πq4
✁iηµρ
k2 ✁ λ2

✏
2♣kAF qκǫκρλσkλ

✘ ✁iησν
k2 ✁ λ2

♣✁ieγµq i

p④ ✁ k④ ✁m
♣✁ieγνq,

(3.16)

effectively introducing an extra momentum factor in the denominator.

As in conventional QED, it turns out the integrals associated with diagrams
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from Figs. 3.1 and 3.2 contain divergences in the high momenta, ultraviolet region.

As discussed in the previous section, to give meaningful results, our approach is based

on the use of dimensional regularization to isolate the infinities as poles at ε Ñ 0 —

where ε is a regulator introduced to render finite the integrals as long as ε ✘ 0 — and

later remove the divergences by means of a renormalization of parameters appearing

in the lagrangian (3.1). In the next section, we go through the intermediate step of

regularization of divergences.

3.3.1 Regularization

Evaluation of Feynman diagrams with Lorentz-violating insertions can be done

with the same techniques used for conventional QED calculations. To illustrate this

point and also to introduce some definitions, in the following we evaluate diagram (2)

using dimensional regularization. This diagram is given by the integral

✁ iΣ♣2q♣pq ✏
➺

d4k

♣2πq4
✁iηµν
k2 ✁ λ2

♣✁ieγµq i

p④ ✁ k④ ✁m
iΓρ1♣p✁ kqρ i

p④ ✁ k④ ✁m
♣✁ieγνq, (3.17)

and its generalization to d dimensions reads

✁iΣ♣2q
reg♣pq ✏

➺
ddk

♣2πqd
✁iηµν
k2 ✁ λ2

♣✁ieµ2✁ d
2γµq i

p④ ✁ k④ ✁m
iΓρ1♣p✁ kqρ i

p④ ✁ k④ ✁m
♣✁ieµ2✁ d

2γνq

✏ ♣eµ2✁ d
2 q2

➺
ddk

♣2πqd
1

k2 ✁ λ2
1

r♣p✁ kq2 ✁m2s2γ
µ♣p④ ✁ k④ �mqΓρ1♣p✁ kqρ♣p④ ✁ k④ �mqγµ,

(3.18)

where the mass parameter µ was introduced to give the correct dimension to the electric

charge e in d dimensions, and effectively introduces an arbitrary mass scale. Feynman

parameters can be introduced as usual to combine the denominators,

1

k2 ✁ λ2
1

r♣p✁ kq2 ✁m2s2 ✏ 2

➺ 1

0

dx

➺ 1

0

dyδ♣x� y ✁ 1q y

♣ℓ2 ✁∆q3 , (3.19)

where we have already performed a shift in the integration variable k, k Ñ ℓ ✑ k✁ yp,
and defined ∆ ✑ ✁x♣p2x✁m2q � λ2x where x ✑ 1✁ x. The shift in k also changes the
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product of matrices in the second equality of (3.18),

γµ♣p④ ✁ k④ �mqΓρ1♣p✁ kqρ♣p④ ✁ k④ �mqγµ
ÝÑ γµγαΓλ1γ

βγµ

✑
♣1✁ yq3pαpβpλ � ♣1✁ yqℓρℓσ

✁
pαδ

ρ
λδ

σ
β � pλδ

ρ
αδ

σ
β � pβδ

ρ
αδ

σ
λ

✠✙
�mγµtγρ,Γσ1✉γµ

✑
♣1✁ yq2pρpσ � ℓρℓσ

✙
�m2♣1✁ yqpνγµΓν1γµ, (3.20)

where linear terms in ℓµ were not written foreseeing the integration in ddℓ is spherically

symmetric thus only even powers of ℓ contribute. Integral (3.18) now reads

✁iΣ♣2q
reg♣pq ✏ 2♣eµ2✁ d

2 q2
➺ 1

0

dxx

➺
ddℓ

♣2πqd
✒

1

♣ℓ2 ✁∆q3 ✂ Eq.(3.20)

✚
y✏x

. (3.21)

The integration in ℓ has the general form
➩
ddℓ♣ℓµℓσ ☎ ☎ ☎ q④♣ℓ2 ✁ ∆qn and the solutions

are well-known — for instance, see Appendix A of [79]. Defining ε ✏ 2 ✁ d
2
and the

fine-structure constant α ✏ e2

4π
, the result is

Σ♣2q
reg♣pq ✏ ✁ α

4π

➺ 1

0

dxxΓ♣εq
✂
4πµ2

∆

✡ε ✑
xγµγαΓλ1γ

βγµ

✁
pαηβλ � pληαβ � pβηαλ

✠
�mγµtγν ,Γν1✉γµ

✙
� α

4π

➺ 1

0

dx
x

∆

✑
x3pνγ

µp④Γν1p④γµ �mx2pνγ
µtp④,Γν1✉γµ �m2xpνγ

µΓν1γµ

✙
. (3.22)

The gamma function Γ♣εq is singular as ε Ñ 0, Γ♣εq ✏ 1
ε
✁ γE � O♣εq, where γE ✏

0.577216 . . . is the Euler-Mascheroni constant. Along with aε ✏ 1 � ε ln a �O♣εq, we
have

Γ♣εq
✂
4πµ2

∆

✡ε

✏ 1

ε
✁ γE � ln

✂
4πµ2

∆

✡
�O♣εq. (3.23)

In Eq. (3.22), the second integral is perfectly finite in the UV region (εÑ 0), but the

first one may contain divergences as bad as 1
ε
. Evaluation of all other diagrams in Fig.

3.2 are done in completely analogous way.

At this point in the evaluation of self-energy diagrams, we can go no fur-

ther without considering individual Lorentz-violating coefficients contained in M1 and

Γµ1 , along with ♣kAF qµ and ♣kF qµνρσ. Each coefficient comes with a different γ ma-

trix structure, formed by any of the 16 linearly independent matrices of the basis
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t1, γ5, γµ, γ5γµ, σµν ✏ i
2
rγµ, γνs✉, as in definitions (3.2). As an intermediate step, be-

fore proceeding to the removal of the divergences 1
ε
and renormalization of parameters,

simplification of products of γ matrices — as the ones in (3.22) — to the fundamental

basis is needed because they can generate factors of ε in the numerators as we are

working in d ✏ 2♣2✁ εq dimensions. This task presents no technical difficulty, but it is

lengthy and tedious due the extensive use of relations between γ matrices, making the

use of computer programs a valuable tool for this end. For the results to be presented,

we used the package FeynCalc [80] for the software Mathematica to perform alge-

braic manipulations with γ matrices. Because of limitations of the mentioned package,

manipulations involving γ5 in divergent integrals had to be done by hand using the ’t

Hooft-Veltman approach based in (3.13).

The complete contribution of first-order Lorentz violation to the one-loop

fermion self-energy is the sum of all diagrams of Fig. 3.2. For practical reasons,

we write Σx♣pq to represent the total contribution of each individual Lorentz-violating

coefficient x. As an example, Σa is given by only the aµ contribution to Σ♣4q, and Σc

is obtained by the sum Σ♣1q � Σ♣2q � Σ♣3q with only cµν insertions.

Finally, in the Lorentz-violating QED (3.1), the conventional regularized one-

loop fermion self-energy,

ΣQED ✏ α

2π

★
p④
✒
✁1

2

✂
1

ε
✁ γE ✁ 1

✡
✁
➺ 1

0

dxx ln

✂
4πµ2

∆

✡✚

�m

✒
2

✂
1

ε
✁ γE ✁ 1

2

✡
� 2

➺ 1

0

dx ln

✂
4πµ2

∆

✡✚✰
, (3.24)

is corrected, to first order in Lorentz violation, by the sum of the following:

Σa♣pq ✏ α

2π

★
a④
✒
1

2

✂
1

ε
✁ γE ✁ 2

✡
�
➺ 1

0

dxx ln

✂
4πµ2

∆

✡
✁
➺ 1

0

dx
x

∆

�
x2p2 ✁m2

✟✚

� 2a ☎ p
➺ 1

0

dx
xx

∆
♣p④x✁ 2mq

✰
, (3.25)
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Σb♣pq ✏ α

2π

★
γ5b④

✒
1

2

✂
1

ε
✁ γE � 2

✡
�
➺ 1

0

dxx ln

✂
4πµ2

∆

✡
✁
➺ 1

0

dx
x

∆

�
x2p2 �m2

✟✚

� 2b ☎ pγ5p④
➺ 1

0

dx
xx2

∆

✰
, (3.26)

Σc♣pq ✏ α

2π

★
pνγµ

✒✒
1

6ε
♣4cνµ � cµνq ✁ 1

6
cνµ

✒
4γE � 1✁ 6

➺ 1

0

dxx♣2✁ xq ln
✂
4πµ2

∆

✡✚

✁1

6
cµν

✁
γE ✁ 3� 6

➺ 1

0

dxx♣1✁ 2xq ln
✂
4πµ2

∆

✡✠
� cµν

➺ 1

0

dx
xx

∆

�
x2p2 ✁m2

✟✚✚

✁ 2cµνp
µpν

➺ 1

0

xx2

∆
♣p④x✁ 2mq

✰
, (3.27)

Σd♣pq ✏ α

2π

★
1

6
pνγ5γ

µ

✒✒
1

ε
♣4dνµ� dµνq ✁ dνµ

✒
4γE ✁1✁ 6

➺ 1

0

dxx♣2✁ xq ln
✂
4πµ2

∆

✡✚

✁dµν
✒
γE � 1� 6

➺ 1

0

dxx♣1✁ 2xq ln
✂
4πµ2

∆

✡✚
� 6 dµν

➺ 1

0

dx
xx

∆

�
x2p2 �m2

✟✚✚

✁ 2dµνp
µpνγ5p④

➺ 1

0

xx3

∆
� 1

4
mdµνǫ

µνρσσρσ

✒
2

ε
✁ 2γE � 1� 2

➺ 1

0

dx ln

✂
4πµ2

∆

✡✚✰
,

(3.28)

Σe♣pq ✏ α

2π

★
e ☎ p

✒
✁1

2

✂
1

ε
✁ γE ✁ 5

3

✡
✁
➺ 1

0

dx♣6✁ 7xq ln
✂
4πµ2

∆

✡

�2

➺ 1

0

dx
xx

∆

�
p2x2 ✁mp④x�m2

✟✚

�me④
✒
1

2

✂
3

ε
✁ 3γE ✁ 1

✡
�
➺ 1

0

dx♣2✁ xq ln
✂
4πµ2

∆

✡✚✰
, (3.29)

Σf ♣pq ✏ α

2π
if ☎ pγ5

✒
✁1

2

✂
1

ε
✁ γE � 5

3

✡
✁
➺ 1

0

dxx♣5✁ 6xq ln
✂
4πµ2

∆

✡

�2

➺ 1

0

dx
xx

∆

�
p2x2 ✁m2

✟✚
, (3.30)
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Σg♣pq ✏ α

2π

★
✁ 1

4
pµσκλ

✒
✁gκλµ

✂
1

ε
✁ γE � 1

3

✡
✁ ♣gκµλ ✁ gλµκq

✂
1

ε
✁ γE ✁ 1

3

✡

�1

2
♣gκννηµλ ✁ gλν

νηµκq
✂
1

ε
✁ γE � 1

3

✡✚
✁ 1

2
pµσκλ

✒
✁gκλµ ✁ ♣gκµλ ✁ gλµκq � 1

2
♣gκννηµλ ✁ gλν

νηµκq
✚ ➺ 1

0

dxx ln

✂
4πµ2

∆

✡
� 1

2
mgκλµǫ

κλµνγ5γν

✒
1

2

✂
1

ε
✁ γE ✁ 1

✡
�
➺ 1

0

dxx ln

✂
4πµ2

∆

✡✚

✁mgκλµǫ
κλνρpµpργ5γν

➺ 1

0

dx
xx2

∆

✰
, (3.31)

ΣH♣pq ✏ α

2π
mHκλǫ

κλµνpνγ5γµ

➺ 1

0

dx
xx

∆
, (3.32)

ΣkAF
♣pq ✏ α

2π

★
γ5k④AF

✒
✁3

2

✂
1

ε
✁ γ

✡
� 3

➺ 1

0

dxx ln

✂
4πµ2

∆

✡
✁ 2p2

➺ 1

0

dx
xx2

∆

✚

� 2kAF ☎ pγ5p④
➺ 1

0

dx
xx2

∆
�m♣kAF qµǫµνρσpνσρσ

➺ 1

0

dx
xx

∆

✰
, (3.33)

ΣkF ♣pq ✏ ✁ α

3π
♣kF qµρνρpµγν

✒
1

ε
✁ γE � 3

2

➺ 1

0

dxx♣2✁ xq ln
✂
4πµ2

∆

✡✚
✁ α

2π
♣kF qµρνρpµpν

➺ 1

0

dx
x2x

∆
♣p④x✁mq . (3.34)

It is worth mentioning that our results for the divergent corrections — the ones pro-

portional to 1
ε
— are in agreement with the ones found in Ref. [40]. Our original

contribution comes from the finite corrections, requiring a more involved analysis of

the self-energy corrections, which we perform in the next section. Removal of the di-

vergences are essential to produce a meaningful theory, and fixing the arbitrariness

introduced during regularization is equally important. Although in the conventional

case both are fully taken care by means of renormalization of the fields and parameters

in the original lagrangian without modifying the dynamics of free fermions, we will see

that introduction of Lorentz violation will lead to new features — the modification of

the effective kinematics of fermions — and some issues — the apparent impossibility

of consistently renormalizing the contribution from some coefficients.
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3.3.2 Renormalization

The intent of the regularization procedure just performed is to isolate the diver-

gences associated with the processes illustrated in Figs. 3.1 and 3.2, and the next step is

the renormalization of parameters appearing in the Lorentz-violating QED lagrangian

(3.1), which will suffice to render the model UV finite.

For the renormalization and removal of the divergences 1
ε
, we first write the

full fermion propagator, which is obtained after summing the infinite series of radia-

tive correction to all loop orders and to arbitrarily (but finite) high order in Lorentz

violation,

✏ �
✁

� � � � � ☎ ☎ ☎
✠

� ☎ ☎ ☎

✑ iSF♣pq � iSF♣pqr✁iΣreg♣pqsiSF♣pq � . . .

✏ i

p④ ✁m� Γ1 ☎ p✁M1 ✁ Σreg♣pq , (3.35)

where Σreg♣pq is the regularized fermion self-energy, defined as the sum of the regularized

conventional QED self-energy and its Lorentz-violating corrections, calculated to all

orders in loop expansion and Lorentz violation, and given by

Σreg ✏ ΣQED � ΣLV, (3.36)

where, to one-loop order, the conventional QED contribution is given by (3.24) and

the Lorentz-violating contribution by

ΣLV ✏ Σa � Σb � Σc � Σd � Σe � Σf � Σg � ΣH � ΣkAF
� ΣkF , (3.37)

with individual one-loop contributions given by Eqs. (3.25) to (3.34). The full fermion

propagator (3.35) is the quantum-corrected extension of the full tree-level fermion

propagator (3.11) and, as we have mentioned before, it is exact to all orders in Lorentz-

violating coefficients, as required for consistency with the LSZ reduction formula.
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Counterterms

Removal of divergences will be done as prescribed by the counterterm renormal-

ization procedure, which amounts to add a counterterm lagrangian Lct to the original

one L,

L ÝÑ L� Lct, (3.38)

where Lct is at least of order α, and is judiciously chosen to cancel all UV divergences

at this order (and higher orders in α in multiloop analysis). Here, we follow the on

mass-shell renormalization scheme (for short, on shell renormalization), which amounts

to specify the divergent and finite parts of counterterms, such that divergences in the

original theory based in (3.1) are cancelled by counterterms and no dependence in an

arbitrary energy scale µ remains after renormalization — it is effectively set at the

fermion mass. Other schemes could be used — for instance, the minimal subtraction

deals with removal of divergences only, without changing finite contributions, effectively

keeping the arbitrary energy µ unspecified — but as the on shell scheme for QED has

a more evident connection with experiments it seems more suitable for our future

purposes of searching for Lorentz-violating signals due to radiative corrections.

The structure of the relevant counterterms for the fermion self-energy calculation

can be inferred from the original lagrangian (3.1),

Lct ⑩ ♣Zψ ✁ 1qψi❇④ψ ✁ ♣Zm ✁ 1qmψψ � Lct♣LVq, (3.39)

where the Z factors are (potentially divergent) renormalization factors to be chosen so

as to cancel eventual divergences and fix the finite pieces of once an energy

scale µ— often called subtraction point — and suitable renormalization conditions are

chosen (to be discussed soon), and Lct♣LVq are the counterterms for the Lorentz-violating

corrections, to be discussed in the next section.

It is worth a brief note on another equivalent renormalization scheme called

multiplicative renormalization, which amounts to a reinterpretation of fields and pa-

rameters of the original lagrangian as bare (divergent) quantities, in the sense they are

not observable and must be renormalized to their measured (finite) values. Bare quan-
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tities are conveniently chosen to absorb the divergences. For instance, the conventional

free fermion piece of the lagrangian written in terms of the bare fermion field and its

bare mass reads ψB ♣i❇④ ✁mBqψB, where ψB ✏ Z
1④2
ψ ψ and mB ✏ Zmm, with ψ and m

the finite fermion field and mass, respectively, and a convenient choice of ψB and mB

is expected to remove associated divergences. For what is relevant to our analysis, the

correspondence from the counterterm renormalization we use to the multiplicative one

can be written as Zψ Ñ Zψ, Zm Ñ Z✁1
ψ Zm, and Zx Ñ Z✁1

ψ Zx, where Zx renormalizes

a Lorentz-violating coefficient denoted by x.

At this point we emphasize that, with the exception of Z factors, within the

counterterm renormalization all parameters in the lagrangian L and Lct are already

finite, and Z factors coming along with the counterterms — as in Eq. (3.39) — are

responsible for removal of divergences and renormalization of the fermion self-energy

— and all other processes in a broader analysis.

The renormalization factors Z are of order α or greater, therefore its tree-level

contribution gives order α corrections to the full fermion propagator, and it reads

♣✁i q✁1 ✏ p④ ✁m� Γ1 ☎ p✁M1

✁
✑
ΣQED � ΣLV ✁ ♣Zψ ✁ 1qp④ � ♣Zm ✁ 1qm� ☎ ☎ ☎

✙
✑ p④ ✁m� Γ1 ☎ p✁M1 ✁ ΣR♣pq, (3.40)

where the ellipsis comprises Lorentz-violating counterterms and will be made explicit

soon, and ΣR♣pq is the finite renormalized fermion self-energy. Explicit determination

of ΣR♣pq to one-loop will be done soon.

From previous experience with the conventional QED case, one would expect

the Lorentz-violating ΣR to result in mere renormalization of parameters of the tree-

level lagrangian — namely, fermion wave-function ψ and massm, and Lorentz-violating

coefficients inside Γµ1 and M1 — nevertheless we will see a new feature is introduced by

Lorentz violation, namely, the radiative generation by ΣR of new structures not present

in the tree-level lagrangian (3.1) which effectively changes the free fermion dynamics

as it changes its kinematical structure away from the tree-level one.
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Lorentz-violating counterterms

A look at the lagrangian (3.1) reveals

Lct♣LVq ⑩ ψ

★✑
♣Zcqµνρσcρσ ✁ cµν

✙
γµ �

✑
♣Zdqµνρσdρσ ✁ dµν

✙
γ5γµ �

✑
♣Zeqνρeρ ✁ eν

✙
� i

✑
♣Zf qνρfρ ✁ f ν

✙
γ5 � 1

2

✑
♣Zgqλµνρστgρστ ✁ gλµν

✙
σλµ

✰
i❇νψ

✁ ψ

★✑
♣Zaqµνaν ✁ aµ

✙
γµ �

✑
♣Zbqµνbν ✁ bµ

✙
γ5γ

µ

� 1

2

✑
♣ZHqµνρσHρσ ✁Hµν

✙
σµν

✰
ψ (3.41)

are the relevant counterterms for the Lorentz-violating part of the self-energy, and the

Z factors with indices are Lorentz-violating generalizations of renormalization factors,

as introduced in [40]. It will be shown that these counterterms are enough to render

the fermion self-energy finite. It is important to note there is no explicit counterterm

for ♣kF qµνρσ or ♣kAF qµ as they do not contribute to the tree-level fermion propagator.

Nevertheless, a glance at Eqs. (3.27) and (3.34) reveals cµν and ♣kF qµνρσ share the

same combined structure of momentum and γ matrix, therefore the factor ♣Zcqµνρσ
can be adjusted to cancel ♣kF qµνρσ’s divergences as well. The same reasoning applies

to bµ, gµνρA , and ♣kAF qµ. This also happens to coefficients within the same sector:

contributions from aµ and eµ share the same structure, and analogously the same is

true for Hµν and d
µν
A . This discussion will be made explicit soon, but this already

suggests that Lorentz-violating coefficients mix under quantum corrections, and this

effect is not limited to the removal of divergences, instead it is a real feature of the

renormalization process for the Lorentz-violating QED (3.1). As already mentioned in

the end of Sec. 3.1, this feature is intrinsically related to redefinitions of the fermion

field ψ.

Determination of the renormalization factors Z are made easier and clearer if

we first write them as if each Lorentz-violating contribution Σx♣pq had its own un-

mixed factors, and later group together the ones with the same structure. An illus-
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tration of this point is as follows. The only specific counterterm for the coefficient

eµ is iψ
✑
♣Zeqµνeν ✁ eµ

✙
❇µψ and it will cancel the divergent factor 1

ε
that appears

together with a pµ structure in Σe♣pq of Eq. (3.29) and will renormalize the asso-

ciated finite factors as well. However, Σe♣pq also has a divergent factor associated

with a γµ structure. It turns out that aµ has a counterterm ψ
✑
♣Zaqµνaν ✁ aµ

✙
γµψ

which can be adjusted so as to renormalize factors associated with γµ in Σa♣pq and

also in Σe♣pq. In this sense, focusing at the structures of Σe♣pq, we can conve-

niently write ♣Zeqµνeνpµ ✏ ♣Ze☎pqµνeνpµ and ♣Zaqµνaνγµ ⑩ ♣Ze④qµνeνγµ. For practi-

cal purposes, the renormalized contribution of eµ to the self-energy will be written as

ΣR
e ♣pq ✏ Σe♣pq✁

✑
♣Ze☎pqµνeν✁eµ

✙
pµ�

✑
♣Ze④qµνeν✁eµ

✙
γµ. Once we determine the factors

Z, construction of the factors Z is immediate.

Renormalization conditions

Dimensional regularization of the divergent integrals associated with diagrams

in Figs. 3.1 and 3.2 isolates divergences as poles in ε and also introduces an arbitrary

energy scale µ. These features are naturally introduced in the regularization process,

and are fixed by means of renormalization. In particular, introduction of renormalizing

factors Z can be made so as to cancel divergences and remove the arbitrariness of µ.

Nevertheless, the Z factors naturally introduce finite unspecified parameters due to the

freedom on how to remove the divergences. These arbitrary finite contributions have

to be fixed, and this is done imposing renormalization conditions at a then specified

energy scale µ.

In the conventional case, as each counterterm brings up one free parameter,

we need as many conditions are there are counterterms. There, the Lorentz-invariant

fermion self-energy receives two counterterms, and therefore two conditions are re-

quired — we discuss them below. In the Lorentz-noninvariant case, the self-energy

receives extra counterterms — one for each Lorentz-violating coefficient if we consider

renormalization factors Z or, equivalently, at most two counterterms if we consider Z

factors as discussed before. Only two conditions on the self-energy are still required

as each Lorentz-violating correction from different coefficients has to independently
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satisfy them — more details will be given soon.

Often it is suitable to choose conditions related to the way physical quantities

are experimentally measured. For a moment, consider the conventional QED case,

where asymptotic states (free particles) are measured, motivating the use of so called

on shell conditions. Defining the physical mass mP as the pole of the full propagator

i
p④✁m✁ΣR♣p④q

sets the condition ΣR♣p④q⑤p④✏m ✏ mP ✁ m. Demanding the on shell full

propagator to have its residue coinciding with the one for the free propagator, the

condition r❇ΣR♣p④q④❇p④sp④✏m ✏ 0 is introduced. These conditions define the pole mass as

the physical mass and are independent of the subtraction scheme for the counterterms.

Particularly, in the on shell subtraction m is chosen to coincide with the physical mass,

m ✏ mP , such that the first condition takes the special form ΣR♣p④q⑤p④✏mP
✏ 0, and

the second remains unchanged, but they are now enforced on shell, at values of the

momentum p satisfying the Dirac equation, i.e., at u♣pqp④u♣pq ✏ u♣pqmPu♣pq. This is

equivalent to set the subtraction point at p2 ✏ m2
P , i.e., setting the energy scale at the

fermion physical mass, µ2 ✏ m2
P .

For the Lorentz-violating full propagator i
p④✁m�Γ1☎ p✁M1✁ΣR♣pq

the situation is

analogous, but to exactly parallel the above discussion we would need to find the

zero of the function P ♣pq ✏ p④✁m�Γ1 ☎ p✁M1, which we define as coinciding with the

physical mass. Nevertheless, due to the complexity of P ♣pq — the explicit dispersion

relation is known in the literature [30,36,37] — instead of finding the pole we take

a more pragmatic approach and simply impose renormalization conditions on ΣR♣pq
such that the pole of the full propagator coincides with the zero of P ♣pq. This leads

to conditions completely analogous to the conventional case with the sole difference

the on shell relation has changed because of Lorentz violation — now it is given by

u♣pq♣p④ � Γ1 ☎ pqu♣pq ✏ u♣pq♣m �M1qu♣pq. Therefore, with this choice, the renormal-

ization conditions the Lorentz-violating fermion self-energy has to satisfy are given

by

ΣR♣pq
✞✞✞
p④�Γ1☎ p✏m�M1

✏ 0, and
❇
❇p④ΣR♣pq

✞✞✞
p④�Γ1☎ p✏m�M1

✏ 0, (3.42)

which guarantee the pole of the full propagator coincides with the physical mass, also
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keeping its residue at i.

As we have seen, the regularized fermion self-energy can be split into conven-

tional and Lorentz-violating pieces, Σreg ✏ ΣQED � ΣLV, as in (3.36). The renormal-

ized conventional QED piece has to satisfy the analogous of conditions (3.42) but for

ΣR
QED. On the other hand, it turns out the conditions for the renormalized Lorentz-

violating contribution ΣR
LV can be approximately taken at the conventional on shell

point u♣pqp④u♣pq ✏ u♣pqmu♣pq, such that

ΣR
LV♣pq

✞✞✞
p④✏m

✏ 0, and
❇
❇p④Σ

R
LV♣pq

✞✞✞
p④✏m

✏ 0, (3.43)

with errors appearing only at second order in Lorentz violation, which are disregarded

in our analysis. Additionally, considering each individual Lorentz-violating coefficient

as responsible for an independent contribution to the self-energy as discussed at the

end of the previous section, each of these contributions has to separately satisfy the

above conditions (3.43). For instance, contributions from aµ and eµ mix under renor-

malization, but for all practical purposes, with the approach using Z factors, we can

consider Σa and Σe as being renormalized independently of each other, therefore ΣR
a

and ΣR
e must each satisfy conditions (3.43). Furthermore, to strengthen this point,

we point out the renormalization conditions we have chosen are enforced on shell, and

it turns out fermionic coefficients unrelated by field redefinitions do have to indepen-

dently satisfy these conditions. For instance, aµ and bµ are completely unrelated to

each other, and the on shell fermion self-energy contribution from the first is associ-

ated with pµ and γµ structures while contribution from the second is associated with

γ5γµ and ǫµνρσp
νσρσ, therefore it is clear that the contribution of each coefficient to the

fermion self-energy must independently satisfy the above renormalization conditions.

Concluding the above discussion, to first order in Lorentz violation, renormal-

ization conditions for ΣR♣pq can be written as

♣iq ΣR♣pq
✞✞✞
p④�Γ1☎ p✏m�M1

✏ ΣR
QED♣pq

✞✞✞
p④�Γ1☎ p✏m�M1

� ΣR
LV♣pq

✞✞✞
p④✏m

✏ 0,

♣iiq ❇
❇p④ΣR♣pq

✞✞✞
p④�Γ1☎ p✏m�M1

✏ ❇
❇p④Σ

R
QED♣pq

✞✞✞
p④�Γ1☎ p✏m�M1

� ❇
❇p④Σ

R
LV♣pq

✞✞✞
p④✏m

✏ 0, (3.44)
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where each of these terms individually vanishes. Nevertheless, it turns out to be not

practical to evaluate the conditions on ΣR
QED at the Lorentz violating on shell point

u♣pq♣p④�Γ1 ☎ pqu♣pq ✏ u♣pq♣m�M1qu♣pq, where it is rather intractable. Conversely, we
can choose to satisfy the conditions for ΣR

QED at the conventional point u♣pqp④u♣pq ✏
u♣pqmu♣pq, introducing an error of first order in Lorentz violation, but taking it into

account by modifying the conditions satisfied by the Lorentz violating contributions

ΣR
LV.

An example to explicitly illustrate this point is in place. The regularized con-

ventional QED contribution ΣQED, as given by (3.24), will be renormalized in the next

section. Counterterms in (3.39) associated with Zψ and Zm remove the divergences

of ΣQED and introduce two free parameters κψ and κm, such that the renormalized

expression reads

ΣR
QED ✏ α

2π

★
✁
➺ 1

0

dx♣p④x✁ 2mq ln
✂
∆os

∆

✡
✁ ♣p④κψ �mκmq

✰
. (3.45)

Renormalization conditions (3.42) are used to fix the two parameters. Clearly, when

evaluated at the Lorentz-violating on shell point, contributions from Lorentz violation

will be introduced by u♣pqp④u♣pq ✏ u♣pq♣✁Γ1 ☎p�m�M1qu♣pq. This introduces further
technical complications when trying to fix κψ and κm. On the other hand, this task is

straightforward to accomplish working with the conventional on shell point u♣pqp④u♣pq ✏
u♣pqmu♣pq, such that

ΣR
QED♣pq

✞✞✞
p④✏m

✏ 0, and
❇
❇p④Σ

R
QED♣pq

✞✞✞
p④✏m

✏ 0. (3.46)

After using these conditions to fix κψ and κm — which will be identical to the con-

ventional ones — it can be easily shown that the renormalization conditions at the

Lorentz-violating on shell point for the conventional QED contribution in (3.44) do not

vanish, instead

ΣR
QED♣pq

✞✞✞
p④�Γ1☎ p✏m�M1

✏ ✁α
π

✁
Γ1 ☎ p✁M1

✠✞✞✞
p④✏m

➺ 1

0

dx
xx♣x✁ 2q
♣∆os④m2q , (3.47)
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❇
❇p④Σ

R
QED♣pq

✞✞✞
p④�Γ1☎ p✏m�M1

✏ ✁2α

π

✂
Γ1 ☎ p

m
✁ M1

m

✡ ✞✞✞
p④✏m

➺ 1

0

dx
x2x

♣∆os④m2q , (3.48)

where use of the convention on shell point at the right-hand side introduces errors of

second order in Lorentz violation, which can be ignored in our approximation. There-

fore, for the fermion self-energy ΣR♣pq to still satisfy the on shell conditions (3.44), with

the conventional QED part ΣR
QED♣pq satisfying (3.46), we have to modify the conditions

for the Lorentz-violating part ΣR
LV♣pq, which instead of (3.43) now will be given by

♣iq ΣR
LV♣pq

✞✞✞
p④✏m

✏ �α
π

✁
Γ1 ☎ p✁M1

✠✞✞✞
p④✏m

➺ 1

0

dx
xx♣x✁ 2q
♣∆os④m2q ,

♣iiq ❇
❇p④Σ

R
LV♣pq

✞✞✞
p④✏m

✏ �2α

π

✂
Γ1 ☎ p

m
✁ M1

m

✡ ✞✞✞
p④✏m

➺ 1

0

dx
x2x

♣∆os④m2q . (3.49)

Because of (3.37), the left-hand side of conditions (3.49) is naturally split into contribu-

tions from each Lorentz-violating coefficient, and the right-hand side splits accordingly.

As a consequence, for instance, the conditions for the aµ contribution are

♣iq ΣR
a ♣pq

✞✞✞
p④✏m

✏ ✁α
π
aµγ

µ

➺ 1

0

dx
xx♣x✁ 2q
♣∆os④m2q ,

♣iiq ❇
❇p④Σ

R
a ♣pq

✞✞✞
p④✏m

✏ ✁2α

π

aµ

m
γµ

➺ 1

0

dx
x2x

♣∆os④m2q . (3.50)

Contribution from the other fermionic coefficients satisfy analogous conditions, and

we point out the right-hand side of conditions for ♣kAF qµ and ♣kF qµνρσ actually vanish,

for instance,

♣iq ΣR
kAF

♣pq
✞✞✞
p④✏m

✏ 0,

♣iiq ❇
❇p④Σ

R
kAF

♣pq
✞✞✞
p④✏m

✏ 0. (3.51)

Therefore, summarizing this section, renormalization of the fermion self-energy will pro-

ceed as subjected to renormalization conditions (3.46) on the convention QED contribu-

tion and (3.49) on the Lorentz-violating one. Because of these conditions, from now on,

by “on shell” we really mean the conventional on shell point u♣pqp④u♣pq ✏ u♣pqmu♣pq.
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Subtraction and Renormalization

In the following, we perform the subtraction of divergences along with renormal-

ization of the one-loop fermion self-energy. As an illustration, for the conventional QED

contribution we explicitly show counterterms depending on free parameters and how

these are fixed by renormalization conditions. The procedure for Lorentz-violating

contributions are completely analogous, and do not introduce any procedural issue.

Nevertheless, we will find out renormalization of contributions from c
µν
S , dµνS , gκλµM ,

and ♣kF qµρνρ fails to consistently fix the arbitrary parameters, thus it appears renor-

malization of such contributions cannot be consistently accomplished by conventional

means.

Renormalization of the conventional QED contribution

The regularized conventional QED contribution to the fermion self-energy (3.24)

is renormalized according to

ΣR
QED ✏ ΣQED ✁ ♣Zψ ✁ 1qp④ � ♣Zm ✁ 1qm, (3.52)

as can be inferred by counterterms shown in (3.39) and lagrangian (3.1). The countert-

erms are chosen to cancel the 1
ε
divergences, but the freedom to choose the counterterms

also introduce free parameters κ renormalizing the finite contributions,

Zψ ✏ 1� α

2π

★
✁ 1

2

✂
1

ε
✁ γE ✁ 1

✡
✁
➺ 1

0

dxx ln

✂
4πµ2

∆os

✡
� κψ

✰
,

Zm ✏ 1✁ α

2π

★
2

✂
1

ε
✁ γE ✁ 1

2

✡
� 2

➺ 1

0

dx ln

✂
4πµ2

∆os

✡
� κm

✰
, (3.53)

where ∆os♣xq ✑ ∆♣xq⑤p2✏m2 ✏ m2x2 � λ2x. Such Z factors lead to a renormalized (UV

finite) expression,

ΣR
QED ✏ α

2π

★
✁
➺ 1

0

dx♣p④x✁ 2mq ln
✂
∆os

∆

✡
✁ ♣p④κψ �mκmq

✰
, (3.54)
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and we see the dependence on the arbitrary parameter µ disappears, as we had effec-

tively set the energy scale at the fermion mass p2 ✏ m2. Two free parameters κψ and

κm have been introduced, but they are fixed as we require ΣR
QED♣pq to satisfy renormal-

ization conditions (3.46). This is readily done without any difficulty — for instance,

we make use of ❇∆④❇p④ ✏ ✁2xxp④ and ❇ ln∆④❇p④ ✏ ✁2xxp④④∆ — and the free parameters

can be determined,

κψ ✏ ✁κm ✏ ✁2
➺ 1

0

dx
xx♣x✁ 2q
♣∆os④m2q . (3.55)

Thus, the resulting renormalized contribution from the conventional QED to the

fermion self-energy reads

ΣR
QED ✏ α

2π

★
✁
➺ 1

0

dx♣p④x✁ 2mq ln
✂
∆os

∆

✡
� 2♣p④ ✁mq

➺ 1

0

dx
xx♣x✁ 2q
♣∆os④m2q

✰
. (3.56)

This expression satisfy both conditions (3.46), is UV finite, and has no dependence on

the mass parameter µ, as desired. As expected, it exhibits the low momenta, infrared

divergences of the conventional Lorentz symmetric QED, which are further cancelled

in scattering cross sections when soft-photon emission by the external legs are taken

into account [81].

An important point to be emphasized is the interplay between p④ and m. On

mass shell they are related to each other by u♣pqp④u♣pq ✏ u♣pqmu♣pq, making possi-

ble for the free parameters κψ and κm to relate to each other so ΣR
QED satisfies both

renormalization conditions of (3.46). This sort of on shell interplay is fundamental in

fixing the free parameters, and we see it extends to more complicated structures1 ac-

companying Lorentz-violating contributions to the fermion self-energy — see Table 3.1.

Nevertheless, we see there are fermionic coefficients associated with only one structure.

1The most basic relation is u♣pqp④u♣pq ✏ u♣pqmu♣pq, and it is nothing more than the (free) conven-
tional Dirac equation for external leg spinors u♣pq. We call this relation, and any other derived using
it, an on shell relation, and they have the form u♣pq♣. . . qu♣pq ✏ u♣pq♣. . . qu♣pq, where usually the left-
hand side contains more factors of momentum than the right-hand side, in analogy to (and because of)
the previous relation between p④ and m. Along with use of the Dirac equation, a suitable starting point
to deduce more complicated relations makes use of the trivial identity pµ ✏ 1

2
tp④, γµ✉. For instance,

the Gordon identity u♣pqpµu♣pq ✏ u♣pqmγµu♣pq and also u♣pq♣pµγ5qu♣pq ✏ 0 are immediately derived
with the mentioned “trick”.
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Unless the “single” structure vanishes on shell — thus trivially satisfying conditions

(3.49) — renormalization of the contribution to the fermion self-energy from those

“single” coefficients cannot be consistently done by conventional means. From Table

3.1, we expect contributions from c
µν
A , fµ, and g

κλµ
T to satisfy renormalization condi-

tions (3.49) trivially — which could be expected as these coefficients are unobservable

to first order. We also expect issues for the renormalization of contributions from c
µν
S ,

d
µν
S , and gκλµM . Renormalization of the contribution from the remaining coefficients is

expected to be accomplished without issues.

Table 3.1: On shell expressions for functions M♣p, γq involving powers of pµ and γ

matrices. For functions M♣p, γq appearing in the Lorentz-violating QED lagrangian,
its associated coefficients are indicated.

Coefficients M♣p, γq u♣pqrM♣p, γqsu♣pq

— p④ m

aµ, eµ pµ mγµ

bµ, gκλνǫ
κλµν ǫµρστp

ρσστ 2mγ5γµ

c
µν
S pµγν � pνγµ —

c
µν
A pµγν ✁ pνγµ 0

— pµpν
1
2
m♣pµγν � pνγµq

d
µν
S pµγ5γν � pνγ5γµ —

d
µν
A , ǫκλµνHκλ pµγ5γν ✁ pνγ5γµ ✁1

2
mǫµνρσσ

ρσ

— pµpνγ5 0

fµ pµγ5 0

g
κλµ
A , bνǫ

κλµν pµσκλ � pλσµκ � pκσλµ mǫκλµργ5γ
ρ

g
κλµ
T pλσκλ 0

g
κλµ
M pµσκλ —

— ǫκλνρpµp
ργ5γ

ν ✁mpµσκλ
Hµν , dAκλǫ

κλµν ǫµνρσp
ργ5γ

σ mσµν
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Renormalized contribution from aµ

For the renormalization of Lorentz-violating contributions, it is enough to con-

sider the on shell point at p2 ✏ m2 as the error introduced is of second order in the

Lorentz-violating coefficients at least — see discussion before Eq. (3.43). Similarly, we

can use the conventional Dirac equation p④u♣pq ✏ mu♣pq to simplify on shell expression.

We will make use of the Gordon identity u♣pqpµu♣pq ✏ u♣pqmγµu♣pq for renormaliza-

tion of the aµ contribution to the fermion self-energy, as it involves the structures pµ

and γµ. This renormalized contribution reads

ΣR
a ✏ Σa ✁

✑
♣Za☎pqµνaν ✁ aµ

✙pµ
m

�
✑
♣Za④qµνaν ✁ aµ

✙
γµ, (3.57)

where the expression for Σa is given by (3.25), and determination of the Z factors

proceeds analogously to the conventional case, except that we need to know how to

perform derivatives like ❇pµ④❇p④, which are seldom seen in the conventional case. By the

chain rule we can write derivatives with respect to p④ as ❇④❇p④ ✏ 2p④❇④❇p2, where we have
used ❇p2④❇p④ ✏ 2p④. The last piece of information we need is given by ❇pµ④❇p2 ✏ pµ④2p2,
which can be derived by arguments of Lorentz covariance. Thus we finally have the

desired derivative, ❇pµ④❇p④ ✏ pµp④④p2.
After using the Gordon identity to relate pµ and γµ and fix the free parameters

with the renormalization condition (3.49), the Z factors can be determined,

♣Za☎pqµνaν ✏ aµ � α

2π
aµ

★
✁ 2

➺ 1

0

dx
xx♣2x✁ 1q
♣∆os④m2q � 2

➺ 1

0

dx
x2x♣x2 ✁ 2xq
♣∆os④m2q2

✰
, (3.58)

♣Za④qµνaν ✏ aµ ✁ α

2π
aµ

★
1

2

✂
1

ε
✁ γE ✁ 2

✡
�
➺ 1

0

dxx ln

✂
4πµ2

∆os

✡

�
➺ 1

0

dx
x♣7x2 ✁ 10x� 1q

♣∆os④m2q ✁ 2

➺ 1

0

dx
x2x♣x2 ✁ 2xq
♣∆os④m2q2

✰
, (3.59)
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and the aµ renormalized contribution to the self-energy then reads

ΣR
a ✏

α

2π

★
a④
✓ ➺ 1

0

dxx ln

✂
∆os

∆

✡
✁
➺ 1

0

dx
x

♣∆④m2q
✂
p2

m2
x2 ✁ 1

✡
✁
➺ 1

0

dx
x♣7x2 ✁ 10x� 1q

♣∆os④m2q

� 2

➺ 1

0

dx
x2x♣x2 ✁ 2xq
♣∆os④m2q2

✛

� 2a ☎ p
m

✓ ➺ 1

0

dx
xx

♣∆④m2q
✂
p④
m
x✁ 2

✡
�
➺ 1

0

dx
xx♣2x✁ 1q
♣∆os④m2q ✁

➺ 1

0

dx
x2x♣x2 ✁ 2xq
♣∆os④m2q2

✛✰
.

(3.60)

Although the coefficient aµ is unobservable at leading order in flat spacetime — it can

be removed from lagrangian (3.1) by a field redefinition ψ Ñ e✁ia☎xψ — the above

expression already reveals some curious feature due to Lorentz violation. The term

proportional to a ☎ p

m

p④
m

in the last line is a radiative correction modifying the tree-

level propagator by a finite structure not present in the original lagrangian, effectively

changing its kinematics. Further more, it resembles an a-like coefficient — we could

identify a
♣5q
µαβ Ø 1

m2aαηβµ — associated with a dimension 5 operator ψγµ❇α❇βψ. In the

conventional QED, this situation — radiative generation of finite terms of nonrenor-

malizable dimension — only occurs for the vertex correction where it is responsible for

corrections to the fermion gyromagnetic factor, but never for the fermion self-energy.

Although no leading order effect from aµ is observable, this new feature may be ex-

pected for other coefficients as well. Indeed, we will see this is a typical feature of the

Lorentz-violating QED (3.1).

Renormalized contribution from bµ

Renormalization of bµ contributions is more interesting because it involves the

structures ǫµνρσp
νσρσ and γ5γµ,

ΣR
b ✏ Σb ✁

✑
♣Zbpσqµνbν ✁ bµ

✙
ǫµνρσ

pν

m
σρσ �

✑
♣Zγ5b④qµνbν ✁ bµ

✙
γ5γµ, (3.61)

although a glance at Σb♣pq, Eq. (3.26), reveals it contains no piece proportional to

ǫµνρσp
νσρσ. Latter we will see that this counterterm actually comes from g

µνρ
A coun-
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terterms, ♣ZgAqκλµνρσgνρσA ⑩ ♣Zbpσqαβbβǫακλµ, as we would expect if we take field redefi-

nitions in consideration, as in lagrangian (3.5). Even before knowing that, the on shell

relation u♣pq♣ǫµνρσpνσρσqu♣pq ✏ u♣pq♣2mγ5γµqu♣pq already suggests such a counterterm

for Σb is to be expected. Therefore, in (3.61) this counterterm renormalizes a factor of

♣zeroq ✂ ǫµνρσb
µpνσρσ in Σb♣pq.

The Z factors are given by

♣Zbpσqµνbν ✏ bµ � α

2π
bµ

★
✁
➺ 1

0

dx
xx♣4x✁ 3q
♣∆os④m2q ✁

➺ 1

0

dx
x2x♣x2 � 1q
♣∆os④m2q2

✰
, (3.62)

♣Zγ5b④qµνbν ✏ bµ ✁ α

2π
bµ

★
1

2

✂
1

ε
✁ γE � 2

✡
�
➺ 1

0

dxx ln

✂
4πµ2

∆os

✡

�
➺ 1

0

dx
x♣9x2 ✁ 10x✁ 1q

♣∆os④m2q � 2

➺ 1

0

dx
x2x♣x2 � 1q
♣∆os④m2q2

✰
. (3.63)

Therefore, the renormalized bµ correction to the self-energy reads

ΣR
b ✏

α

2π

★
γ5b④

✓ ➺ 1

0

dxx ln

✂
∆os

∆

✡
✁
➺ 1

0

dx
x

♣∆④m2q
✂
p2

m2
x2�1

✡
✁
➺ 1

0

dx
x♣9x2 ✁ 10x✁ 1q

♣∆os④m2q

✁ 2

➺ 1

0

dx
x2x♣x2 � 1q
♣∆os④m2q2

✛
� 2b ☎ p

m
γ5
p④
m

➺ 1

0

dx
xx2

♣∆④m2q

� bµǫ
µνρσ pν

m
σρσ

✓ ➺ 1
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dx
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➺ 1
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dx
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♣∆os④m2q2

✛✰
. (3.64)

Similar to the aµ case, but now leading to observable effects, Lorentz violation ra-

diatively induces a new structure b ☎ p

m
γ5

p④
m

to the fermion propagator, different from

any other present at tree-level. Its coefficient effectively acts as a b-like coefficient

b
♣5q
µαβ Ø 1

m2 bαηβµ associated to a dimension 5 operator ψγ5γ
µ❇α❇βψ. Only combinations

between bµ and gκλµA are observable — therefore we expect a similar term radiatively

induced by ΣR
gA

— but we can already see that modifications of the fermion kinematics

is a feature of observable Lorentz-violating coefficients as well.
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Renormalized contribution from cµν

Renormalization of cµν seems to be problematic because it involves only one

structure, pνγµ. This lone term induces only one counterterm, and therefore only one

free parameter to be adjusted in the need of satisfying two renormalization conditions.

As will be seen soon, if the whole contribution of a coefficient vanishes on shell for

any value of the free parameter, the renormalization conditions are satisfied trivially.

If that does not happen, and there is only one free parameter, it cannot be fixed in a

consistent way by conventional means.

To isolate the problem, we decompose cµν in symmetric cµνS and antisymmetric

c
µν
A pieces. From Eq. (3.27), the contribution from c

µν
A to the fermion self-energy reads

ΣcA♣pq ✏
α

2π

★
1

12
♣pµγν ✁ pνγµqcµνA

✒
3

ε
✁ 3γE ✁ 4� 18

➺ 1

0

dxxx ln

✂
4πµ2

∆

✡

✁6
➺ 1

0

dx
xx

♣∆④m2q
✂
p2

m2
x2 ✁ 1

✡✚✰
, (3.65)

and is renormalized by a single counterterm,

ΣR
cA
✏ ΣcA ✁

1

2

✑
♣ZcApγqµνρσcρσA ✁ c

µν
A

✙
♣pµγν ✁ pνγµq, (3.66)

where

♣ZcApγqµνρσcρσA ✏ c
µν
A � α

2π
c
µν
A

★
1

6

✒
3

ε
✁ 3γE ✁ 4� 18

➺ 1

0

dxxx ln

✂
4πµ2

∆os

✡✚
� κcA

✰
,

(3.67)

resulting in the renormalized expression

ΣR
cA
♣pq ✏ α

2π

★
1

2
♣pµγν ✁ pνγµqcµνA

✒
3

➺ 1

0

dxxx ln

✂
∆os

∆

✡
✁ κcA

✁
➺ 1

0

dx
xx

♣∆④m2q
✂
p2

m2
x2 ✁ 1

✡✚✰
. (3.68)

In this particular case, having a single free parameter is not a problem because this
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3. Fermion self-energy of the minimal QED extension

expression vanishes on shell since u♣pq♣pµγν✁pνγµqu♣pq ✏ 0, and automatically satisfies

both renormalization conditions, thus we can actually set κcA ✏ 0. This should not

come as a surprise once we already knew, by arguments of field redefinitions, that the

coefficient cµνA is unobservable at leading order — see the end of Sec. 3.1. Also, no new

structure is radiatively induced.

The situation drastically changes for the symmetric part cµνS . From (3.27), its

regularized contribution to the self-energy reads

ΣcS♣pq ✏
α

2π

★
1

12
♣pµγν � pνγµqcµµS

✒
5

ε
✁ 5γE � 2� 18

➺ 1

0

dxx♣1� xq ln
✂
4πµ2

∆

✡

� 6

➺ 1

0

dx
xx

♣∆④m2q
✂
p2

m2
x2 ✁ 1

✡
✁ 2cµνS pµ

pν

m

➺ 1

0

dx
xx2

♣∆④m2q
✂
p④
m
x✁ 2

✡✰
,

(3.69)

and it is renormalized similarly as its antisymmetric counterpart, but with a symmetric

counterterm

ΣR
cS
✏ ΣcS ✁

1

2

✑
♣ZcSpγqµνρσcρσS ✁ c

µν
S

✙
♣pµγν � pνγµq, (3.70)

where

♣ZcSpγqµνρσcρσS ✏ c
µν
S � α

2π
c
µν
S

★
1

6

✒
5

ε
✁ 5γE � 2� 18

➺ 1

0

dxx♣1�xq ln
✂
4πµ2

∆os

✡✚
�κcS

✰
,

(3.71)

such that

ΣR
cS
♣pq ✏ α

2π

★
1

2
♣pµγν � pνγµqcµνS

✒
3

➺ 1

0

dxx♣1� xq ln
✂
∆os

∆

✡
✁ κcS

�
➺ 1

0

dx
xx

♣∆④m2q
✂
p2

m2
x2 ✁ 1

✡✚
✁ 2cµνS pµ

pν

m

➺ 1

0

dx
xx2

♣∆④m2q
✂
p④
m
x✁ 2

✡✰
.

(3.72)

Contrary to the previous case, this expression does not automatically satisfy the

renormalization conditions — the on shell relation leads to a trivial relation,
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u♣pq♣pµγνqu♣pq ✏ u♣pq♣pνγµqu♣pq. Therefore, with κcS as the only free parameter,

the two renormalization conditions of (3.49) cannot be consistently satisfied.

This Lorentz-violating correction to the fermion self-energy also radiatively in-

duces two new structures not present in the tree-level propagator. The first is propor-

tional to cµνS p
µ p

ν

m

p④
m
, and resembles a c-like coefficient c

♣6qµνρσ
S Ø 1

m2η
µνc

ρσ
S associated

to a dimension 6 operator iψ♣γν❇µ � γµ❇νq❇ρ❇σψ. The second structure comes from

the term proportional to cµνS p
µ p

ν

m
, and it effectively behaves as a mass-like coefficient

m♣5qµν Ø 1
m
c
µν
S associated to a dimension 5 operator ψ❇µ❇νψ.

Incidentally, we point out the interesting on shell relation u♣pq♣pµpν p④
m
qu♣pq ✏

u♣pq♣pµpνqu♣pq ✏ u♣pqr1
2
m♣pµγν � pνγµqsu♣pq, but the term associated to pµpν in (3.69)

does not receive counterterms as it is not in the original lagrangian (3.1), therefore by

conventional procedures we cannot add a free parameter by means of a counterterm

with this structure.

To enforce renormalization, a departure from conventional procedure may sug-

gest adding such nonrenormalizable term, u♣pq♣pµpνqu♣pq, to the tree-level lagrangian

(3.1). It would be, from the start, of order α, thus it would not spoil renormalizability

to one-loop order as it enters effectively as a counterterm. No decrease in the predic-

tive power of the model to this order would be expected once no extra renormalization

condition is required to fix the free parameter this term introduces. Nevertheless, this

may not be an adequate approach. In the following, we show renormalization of the

fermion self-energy contribution from d
µν
S presents issues similar to the ones we have

just encountered, but there we will see there is no naturally appearing on shell relation,

similar to the one mentioned above, which could help enforcing renormalization even

if introducing order α nonrenormalizable terms in the tree-level lagrangian.

A somewhat similar departure from the conventional approach could be the in-

troduction of renormalization factors with momentum dependence, as done in Ref. [42].

In this case, the adequate modification would be in the wave-function renormalization

factor Zψ, introducing a term c
µν
S pµpν inside it, with a free paramenter κcSpp as its

coefficient. Such a modification would require the sum ΣR
QED � ΣR

cS
to satisfy renor-

malization conditions (3.46) and (3.49) simultaneously. As there would be, now, two
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free parameters, κcS and κcSpp, associated to cµνS , these could be consistently fixed so as

to satisfy all renormalization conditions. Nevertheless, once more, in the next section

we will see this apparently does not work for the also problematic contributions from

d
µν
S . It is our opinion such procedure is not the proper solution to the more general

problem.

Renormalized contribution from dµν

Renormalization of dµν presents issues similar to the previous case for the

cµν coefficient. At first, from (3.28), it seems to involve two structures, pµγ5γν and

ǫµνρσσρσ, nevertheless the only relation between them is u♣pq♣pµγ5γν ✁ pνγ5γµqu♣pq ✏
u♣pq♣✁1

2
mǫµνρσσ

ρσqu♣pq, which is associated only with the antisymmetric part of dµν .

For the symmetric part of pµγ5γν , we only get trivial on shell equalities. As a con-

sequence, the contribution to the fermion self-energy from d
µν
A can be consistently

renormalized, but the one from d
µν
S seems to fall into the same issues encountered for

c
µν
S , as we see next.

Inspection of (3.28) reveals the correction to the fermion self-energy from the

antisymmetric coefficient dµνA reads

ΣdA♣pq ✏
α

2π

★
1

12
♣pµγ5γν ✁ pνγ5γµqdµνA

✒
3

ε
✁ 3γE � 2� 18

➺ 1

0

dxxx ln

✂
4πµ2

∆

✡

✁6
➺ 1

0

dx
xx

♣∆④m2q
✂
p2

m2
x2 � 1

✡✚

� 1

4
md

µν
A ǫµνρσσ

ρσ

✒
2

ε
✁ 2γE � 1� 2

➺ 1

0

dx ln

✂
4πµ2

∆

✡✚✰
, (3.73)

and renormalization of this contribution proceeds as usual,

ΣR
dA

✏ ΣdA ✁
1

2

✑
♣ZdApγ5γqµνρσdρσA ✁ d

µν
A

✙
♣pµγ5γν ✁ pνγ5γµq

� 1

2

✑
♣ZdAσqµνρσdρσA ✁ d

µν
A

✙
mǫµνρσσ

ρσ, (3.74)
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where the renormalization factors are given by

♣ZdApγ5γqµνρσdρσA ✏ d
µν
A � α

2π
d
µν
A

★
1

6

✒
3

ε
✁ 3γE � 2� 18

➺ 1

0

dxxx ln
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✁
➺ 1

0

dx
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0

dx
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✰
,

♣ZdAσqµνρσdρσA ✏ d
µν
A ✁ α

2π
d
µν
A

★
1

2

✒
2

ε
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dx
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♣∆os④m2q2

✰
,

(3.75)

such that the renormalized contribution from d
µν
A is

ΣR
dA
♣pq ✏ α

2π

★
1

2
♣pµγ5γν✁pνγ5γµqdµνA

✒
3

➺ 1

0

dxxx ln

✂
∆os
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✡
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dx
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dx
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dx
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∆

✡
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0

dx
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�
➺ 1

0

dx
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✚✰
. (3.76)

It can be readily checked that this expression satisfy both renormalization conditions

of (3.49). Interestingly, for contributions of this coefficient to the fermion self-energy,

no new structure is radiatively induced — by arguments of field redefinition, the same

is to be expected for contributions from Hµν .

As for the symmetric coefficient dµνS , inspection of (3.28) once more reveals

ΣdS♣pq ✏
α

2π

★
1

12
♣pµγ5γν � pνγ5γµqdµνS

✒
5

ε
✁ 5γE � 6

➺ 1

0

dxx♣1� xq ln
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∆
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dx
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✡✚
✁ 2dµνS p
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ν

m
γ5
p④
m

➺ 1

0

xx3

♣∆④m2q

✰
. (3.77)
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Renormalization of this contribution involves only one counterterm,

ΣR
dS
✏ ΣdS ✁

1

2

✑
♣ZdSpγ5γqµνρσdρσS ✁ d

µν
S

✙
♣pµγ5γν � pνγ5γµq, (3.78)

where

♣ZdSpγ5γqµνρσdρσS ✏ d
µν
S � α

2π
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✧
1
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➺ 1

0

dxx♣1� xq ln
✂
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∆os
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✯
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which is enough to render ΣdS♣pq finite,

ΣdS♣pq ✏
α

2π

★
1

2
♣pµγ5γν � pνγ5γµqdµνS

✒➺ 1
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dxx♣1� xq ln
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dx
xx
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dx
xx3
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.

(3.80)

but because κdS is the only one free parameter, it is not enough to consistently satisfy

both renormalization conditions of (3.49).

The radiatively generated new structure comes from the term proportional to

d
µν
S p

µ p
ν

m
γ5

p④
m
, which can be seen as a d-like coefficient d

♣6qµνρσ
S Ø 1

m2η
µνd

ρσ
S associated

to a dimension 6 operator iψ♣γ5γν❇µ � γ5γµ❇νq❇ρ❇σψ.
Differently from the cµνS case, the induced new finite contribution in (3.80) does

not give any contribution on shell because u♣pq♣pµpνγ5p④qu♣pq ✏ 0. Therefore, even a

departure from conventional renormalization procedure, as suggested by the cµνS case,

by adding this nonrenormalizable structure to the tree-level lagrangian to act as a coun-

terterm — effectively introducing a desired extra free parameter — would not fix the

problem because the renormalization conditions (3.49) are based on on shell relations

and, as mentioned, this nonrenormalizable structure vanishes on shell, being unable to

introduce a suitable extra free parameter. Similarly, introduction of renormalization

factors with momentum-dependence may not solve the problem for the same reason.
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Renormalized contribution from eµ

Renormalization of eµ involves two structures, pµ and γµ,

ΣR
e ✏ Σe ✁

✑
♣Ze☎pqµνeν ✁ eµ

✙
pµ �

✑
♣Ze④qµνeν ✁ eµ

✙
mγµ, (3.81)

as motivated by u♣pqpµu♣pq ✏ u♣pqmγµu♣pq, where the renormalization factors are

given by
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✰
,

(3.82)

♣Ze④qµνeν ✏ eµ ✁ α
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, (3.83)

resulting in the eµ renormalized correction to the fermion self-energy,
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. (3.84)

The new radiatively induced term reads from the first line, e☎p p④
m
, and actually resembles

an a-like coefficient a
♣5q
µνρ Ø 1

m
eµηνρ associated to the dimension 5 operator ψγρ❇µ❇νψ.

This sort of mixing, even for radiatively induced structures, can be traced back to the
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arguments of field redefinition discussed in Sec. 3.1.

Renormalized contribution from fµ

Renormalization of fµ, similarly to the cµνA case, involves only a single structure,

namely pµγ5, such that

ΣR
f ✏ Σf ✁ i

✑
♣Zf ☎pγ5qµνf ν ✁ fµ

✙
pµγ5. (3.85)

This could be foreseen noticing the on shell relation u♣pq♣pµγ5qu♣pq ✏ 0, and because ΣR
f

involves only this structure both renormalization conditions of (3.49) are automatically

satisfied. Therefore, we have room for only a single counterterm which we choose so as

to ensure the finiteness of ΣR
f and absence of the mass scale µ. The counterterm then

reads

♣Zf ☎pγ5qµνf ν ✏ fµ � α

2π
fµ
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ε
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✰
,

(3.86)

such that, for the fµ correction to the renormalized fermion self-energy, we obtain

ΣR
f ♣pq ✏

α

2π
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★
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0

dxx♣5✁ 6xq ln
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∆os
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✰
,

(3.87)

where the free parameter κf can be set, for instance, to zero for simplicity. The absence

of on shell contributions from fµ is expected by arguments of field redefinition, where

it is known the fµ coefficient can be eliminated from lagrangian (3.1) by a choice of

spinor basis such that its effects are unobservable to all orders [76]. As expected, fµ

leads no new structure by means of radiative corrections to the fermion self-energy.

Renormalized contribution from gκλµ

Renormalization of the gκλµ contribution to the fermion self-energy suffers from

the same issues found for cµν and dµν , i.e., not all contributions from its irreducible
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representations can be adequately renormalized. This coefficient can be decomposed

into axial gκλµA , trace gκλµT , and mixed-symmetry gκλµM representations, explicitly given

by [77]

g
κλµ
A ✏1

6
gνρσǫνρσαǫ

ακλµ ✏ 1
3
♣gκλµ � gµκλ � gλµκq, (3.88)

g
κλµ
T ✏1

3
ηαβ♣gκαβηλµ ✁ gλαβηκµq, (3.89)

g
κλµ
M ✏1

3
♣gκλµ � gκµλ � ηαβg

λαβηκµq ✁ ♣κØ λq. (3.90)

Inspection of the regularized gκλµ contribution (3.31) to the fermion self-energy sug-

gests two counterterms proportional to pµσκλ and ǫκλµνγ5γν . The on shell relation

between these structures is u♣pq♣pµσκλ � pλσµκ � pκσλµqu♣pq ✏ u♣pq♣mǫκλµνγ5γνqu♣pq.
This relation suggests these counterterms renormalize contributions from the totally

antisymmetric axial piece gκλµA . This is in agreement with expectations motivated by

a glance at the lagrangian (3.5) obtained after field redefinitions.

Renormalization of the antisymmetric piece is expected to proceed without prob-

lems. Indeed, using the total antisymmetry of gκλµA , from (3.31) its regularized contri-

bution reads
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, (3.91)

which is renormalized according to

ΣR
gA
✏ ΣgA ✁

1

3

✑
♣ZgApσqκλµνρσgνρσA ✁ g

κλµ
A

✙
♣pµσκλ � pλσµκ � pκσλµq

� 1

2

✑
♣ZgAγ5γqκλµνρσgνρσ ✁ gκλµ

✙
mǫκλµνγ5γ

ν , (3.92)
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with counterterms given by

♣ZgApσqκλµνρσgνρσA ✏ g
κλµ
A � α
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κλµ
A

✧
✁1

4

✂
1

ε
✁ γE ✁ 1

✡
✁ 1

2

➺ 1

0

dxx ln

✂
4πµ2

∆os

✡

�2
➺ 1

0

dx
xx♣11x✁ 6q
♣∆os④m2q � 8

➺ 1

0

dx
x2x3

♣∆os④m2q2
✯
,

(3.93)

♣ZgAγ5γqκλµνρσgνρσA ✏ gκλνA ✁ α
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(3.94)

Finally, the renormalized contribution of the axial piece gκλµA to the self-energy reads

ΣR
gA
♣pq ✏ α
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✰
. (3.95)

Using also the identity u♣pq♣gκλµA ǫκλνρpµp
ργ5γ

νqu♣pq ✏ u♣pq♣✁4
3
m2g

κλµ
A ǫκλµνγ5γ

νqu♣pq,
the above renormalized expression is found to satisfy both renormalization conditions

of (3.49).

Arguments of field redefinition entangle bµ and g
κλµ
A into a single observable

coefficient combination. In this sense, the new structure radiatively induced by ΣR
b

should also be induced by ΣR
gA
. Indeed, the last line of (3.95) reveals an induced

term of the form mg
κλµ
A ǫκλνρ

pµ
m

pρ

m
γ5γ

ν , in agreement to the structure induced by ΣR
b .
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Effectively, this term behaves as a b-like coefficient b♣5qµαβ Ø 1
m
gκλαA ǫκλ

βµ associated to

a dimension 5 operator ψγ5γµ❇α❇βψ.
As for the trace part gκλµT , the regularized contribution reads
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0

dxx ln
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∆

✡✚✰
, (3.96)

and is renormalized receiving only one counterterm,

ΣR
gT
✏ ΣgT ✁

1

3

✑
♣ZgT pσqκλµνρσgνρσT ✁ g

κλµ
T

✙
ηλµp

τσκτ , (3.97)

where

♣ZgT pσqκλµνρσgνρσT ✏ g
κλµ
T � α
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(3.98)

The final expression for the gκλµT contribution to the fermion energy reads

ΣR
gT
♣pq ✏ α

2π

★
✁ 1

3
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κµ
T µ

✒
1

2
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0

dxx ln

✂
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∆

✡
✁ κgT

✚✰
. (3.99)

Similarly to other unobservable coefficients, having only one free parameter is not a

problem here because this expression vanishes on shell, u♣pq♣pλσκλqu♣pq ✏ 0, auto-

matically satisfying both renormalization conditions of (3.49), thus we can simply set

κgT ✏ 0. Once more, this result does not come as a surprise because, as discussed in

Sec. 3.1, the gκλµT is unobservable at leading order. Also, no new structure is radiatively

induced.

On the other hand, contribution from the mixed-symmetry g
κλµ
M part of gκλµ

cannot be consistently renormalized because it involves only one counterterm related

to pµσκλ,

ΣR
gM
♣pq ✏ ΣgM ♣pq ✁

✑
♣ZgMpσqκλµνρσgνρσM ✁ g

κλµ
M

✙
pµσκλ, (3.100)
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as we can see from the regularized expression (3.31) by setting gκλµ Ñ g
κλµ
M ,

ΣgM ♣pq ✏
α
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✰
, (3.101)

and writing the Z factor of (3.100 as,

♣ZgMpσqκλµνρσgνρσM ✏ g
κλµ
M ✁ α

2π
g
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(3.102)

such that renormalization of this contribution introduces only one free parameter κgM ,

ΣR
gM
♣pq ✏ α
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κλµ
M

✓
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➺ 1
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dxx ln
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➺ 1
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dx
xx2
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✰
, (3.103)

such that renormalization conditions (3.49) cannot be simultaneously satisfied.

Similarly to cµνS , but differently from the dµνS case, the new structure radiatively

induced by ΣR
gM

— as inferred from the last line of (3.103) — satisfy an interesting

identity, u♣pq♣ǫκλνρpµpνγ5γρqu♣pq ✏ u♣pq♣mpµσκλqu♣pq, but again this term does not

receive a counterterm as it is not in the original lagrangian (3.1).

Renormalized contribution from Hµν

Renormalization of Hµν involves two structures, pµγ5γν and σµν ,

ΣR
H ✏ ΣH ✁

✑
♣ZHpγ5γqµνρσHρσ ✁Hµν

✙
ǫµνρσ

pρ

m
γ5γ

σ � 1

2

✑
♣ZHσqµνρσHρσ ✁Hµν

✙
σµν ,

(3.104)

where the second counterterm renormalizes ♣zeroq ✂ Hµνσµν , and is motivated by

u♣pq♣ǫµνρσpνγ5γµqu♣pq ✏ u♣pq♣mσρσqu♣pq, similarly to previous cases. The renormal-
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ization factors read

♣ZHpγ5γqµνρσHρσ ✏ Hµν � α

2π
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, (3.105)

♣ZHσqµνρσHρσ ✏ Hµν ✁ α
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✰
,

(3.106)

leading to the renormalized contribution of Hµν to the self-energy,
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H ✏ α
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dx
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. (3.107)

Field redefinitions entangle dµνA and Hµν into a single observable coefficient combina-

tion. Renormalization of ΣdA revealed no radiatively induced new structure, and the

same happened for ΣH , as expected.

Renormalized contribution from ♣kAF qµ

As the ♣kAF qµ coefficient has no tree-level contribution to the fermion propaga-

tor and its contribution to the fermion self-energy receives counterterms only indirectly,

from counterterms of the bµ and gκλµA contributions to the self-energy, thus its renor-

malized contribution has the form

ΣR
kAF

✏ ΣkAF
✁
✑
♣ZkAF pσqµν♣kAF qν ✁ ♣kAF qµ

✙
ǫµνρσ

pν

m
σρσ

�
✑
♣Zγ5k④AF

qµν♣kAF qν ✁ ♣kAF qµ
✙
γ5γµ, (3.108)

which is completely analogous to the bµ case. Therefore, renormalization of ΣkAF

comes from one counterterm from the gκλµA part of the counterterm lagrangian (3.41)

and another from the bµ part, respectively, and these structures are related by

u♣pq♣ǫµνρσpνσρσqu♣pq ✏ u♣pq♣2mγ5γµqu♣pq.
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Renormalization conditions (3.49) lead to Z factors as given by
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(3.109)
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(3.110)

such that the renormalized ♣kAF qµ correction to the self-energy reads
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. (3.111)

It is important to emphasize that the renormalization factors (3.109) will be later

reinterpreted as renormalizing the bµ and g
κλµ
A coefficients, effectively mixing them

with ♣kAF qµ to one-loop order. Renormalization of the ♣kAF qµ coefficient is determined

by means of renormalization of the photon self-energy, which we do not deal with in

this work.

The radiatively induced term with new structure is kAF ☎ pmγ5 p④
m
, which can be

seen as b-like coefficient b
♣5q
µαβ Ø 1

m2 ♣kAF qαηβµ associated with a dimension 5 operator

ψγ5γ
µ❇α❇βψ.
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Renormalized contribution from ♣kF qµνρσ

Contributions from ♣kF qµνρσ to the fermion self-energy are all related to the

symmetric coefficient ♣kF qµλνλ ✏ ♣kF qνλµλ, and inspection of (3.34) reveals it receives

counterterms originating from the symmetric cµνS part of the lagrangian, and thus suffers

from the same problems found for ΣcS in (3.72). It receives only one counterterm,

ΣR
kF
✏ ΣkF ✁

1

2

✑
♣ZkF pγqµνρσ♣kF qρλσλ ✁ ♣kF qµλνλ

✙
♣pµγν � pνγµq, (3.112)

where

♣ZkF pγqµνρσ♣kF qρλσλ
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. (3.113)

The renormalized contribution reads

ΣR
kF
♣pq ✏ ✁ α

2π

★
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✒
3
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➺ 1
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dxx♣2✁ xq ln
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∆
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✁ 2

3
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� ♣kF qµρνρpµp
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m

➺ 1

0

dx
x2x

♣∆④m2q
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p④
m
x✁ 1

✡✰
, (3.114)

and the problem of having only one free parameter to fix two renormalization conditions

persists. This was to be expected, as coefficients cµνS and ♣kF qµλνλ are phenomenologi-

cally indistinguishable.

Paralleling the cµνS case, two new structures are radiatively induced by ΣR
kF
.

One proportional to ♣kF qµλνλpµ pνm p④
m
, and resembles a c-like coefficient c

♣6qµνρσ
S Ø

1
m2η

µν♣kF qρλσλ associated to a dimension 6 operator iψ♣γµ❇ν � γν❇µq❇ρ❇σψ. The other

comes from the term proportional to ♣kF qµλνλpµ pνm , and it effectively behaves as a

mass-like coefficient m♣5qµν Ø 1
m
♣kF qµλνλ associated to a dimension 5 operator ψ❇µ❇νψ.

3.3.3 Renormalization factors

Finally, we are in position to organize our results and write down the countert-

erms with corresponding renormalization factors Z for the Lorentz-violating corrections
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to the fermion self-energy.

The one-loop renormalized fermion self-energy ΣR♣pq is finally given by

ΣR ✏ ΣR
QED � ♣ΣR

a � ΣR
e q � ♣ΣR

b � ΣR
gA
� ΣR

kAF
q � ♣ΣR

dA
� ΣR

Hq
� ΣR

cA
� ΣR

f � ΣR
gT
� ♣ΣR

cS
� ΣR

kF
q � ΣR

dS
� ΣR

gM
, (3.115)

where each individual contribution was calculated in the previous section, and we have

grouped them in a suggestive way to be explained soon. Each of these contributions

contain Z factors that carries out renormalization — we have also found all of them in

the previous section. The counterterm lagrangians (3.39) and (3.41) contains renormal-

ization factors Z instead of Z, but from our approach explained after Eq. (3.41), we

know (in a symbolic sense) that Z ⑩ Z. In what follows, it is our intention to write the

explicit renormalization factors Z that appear in the counterterm lagrangians (3.39)

and (3.41). These truly reveals the mixing of Lorentz-violating coefficients under quan-

tum corrections, giving a new look to results previously presented. We emphasize that

all quantities to be presented next were determined in previous sections, except for the

Z factors.

The way individual contributions to the fermion self-energy are grouped together

in (3.115) reflects how they mix under quantum corrections, as expected by field re-

definition arguments and discussed in what follows. Ungrouped contributions do not

mix at all. Furthermore, renormalization of the last four contributions in the second

line, from coefficients cµνS , ♣kF qµρνρ, dµνS , and gκλµM , respectively, failed to be consistent

as they do not satisfy renormalization conditions (3.49).

The conventional QED contribution ΣR
QED is given by (3.56), and we have seen

it comes solely from ΣR
QED ✏ ΣQED ✁ ♣Zψ ✁ 1qp④ � ♣Zm ✁ 1qm, where
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, (3.116)
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matching with the conventional result — see, for instance [82].

Coefficients aµ and eµ are known to be entangled by field redefinitions. Accord-

ingly, renormalization of their contributions to the fermion self-energy is consistently

carried on only if both coefficients mix under quantum corrections. In this sense,

renormalization have to be perform in the combination

ΣR
a � ΣR

e ✏ Σa � Σe � r♣Zaqµνaν ✁ aµs γµ ✁ r♣Zeqµνeν ✁ eµs pµ, (3.117)

where we have already determined ΣR
a (3.60) and ΣR

e (3.84), and the renormalization

factors are given by
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, (3.118)

♣Zeqµνeν ✏ eµ � α
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. (3.119)

This shows the intrinsic mixing of coefficients aµ and eµ suggested by field redefinitions

and here realized by quantum corrections.
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Similarly, contributions from bµ, gκλµA , and ♣kAF qµ are considered together,

ΣR
b � ΣR

gA
� ΣR

kAF
✏ Σb � ΣgA � ΣkAF
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♣pµσκλ � pλσµκ � pκσλµq, (3.120)

with ΣR
b (3.64), ΣR

gA
(3.95), and ΣR

kAF
(3.111) previously determined, and

♣Zbqµνbν ✏ bµ ✁ α

2π
bµ

★
1

2

✂
1

ε
✁ γE � 2

✡
�
➺ 1

0

dxx ln

✂
4πµ2

∆os

✡

�
➺ 1

0

dx
x♣9x2 ✁ 10x✁ 1q

♣∆os④m2q � 2

➺ 1

0

dx
x2x♣x2 � 1q
♣∆os④m2q2

✰

� α

2π

1

2
mǫµνρσ♣gAqνρσ

✧
1

2

✂
1

ε
✁ γE ✁ 1

✡
�
➺ 1

0

dxx ln

✂
4πµ2

∆os

✡

�16

➺ 1

0

dx
x2x

♣∆os④m2q ✁
16

3

➺ 1

0

dx
x2x3

♣∆os④m2q2
✯

✁ α

2π
♣kAF qµ

★
✁ 3

2

✂
1

ε
✁ γ

✡
� 3

➺ 1

0

dxx ln

✂
4πµ2

∆os

✡

✁ 4

➺ 1

0

dx
xx2

♣∆os④m2q ✁ 4

➺ 1

0

dx
x3x2

♣∆os④m2q2
✰
, (3.121)
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(3.122)

It is now clear that all renormalization of the ♣kAF qµ contribution to the fermion self-

energy comes out due to mixing of this coefficient with bµ and gκλµA .
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3. Fermion self-energy of the minimal QED extension

As we have seen, the cµν coefficient splits into antisymmetric cµνA and symmetric

c
µν
S representations. The renormalized contribution ΣR

cA
from the antisymmetric part

is given by (3.68), coming solely from ΣR
cA

✏ ΣcA ✁ 1
2
r♣ZcAqµνρσcρσA ✁ c

µν
A s ♣pµγν✁pνγµq,

where
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(3.123)

As we have discussed before, contribution from c
µν
A to the one-loop fermion self-energy

automatically satisfy both renormalization conditions of (3.49) without the need to

fix a specific value for the free parameter κcA contained in ♣ZcAqµνρσ, thus we can

set κcA ✏ 0 for simplicity. The arbitrariness for κcA is not a problem as cµνA has no

observable effect to this order.

The symmetric part cµνS and the coefficient ♣kF qµρνρ are phenomenologically

indistinguishable, thus they should be taken together for renormalization of their con-

tributions,

ΣR
cS
� ΣR

kF
✏ ΣcS � ΣkF ✁ 1

2
r♣ZcSqµνρσcρσS ✁ c

µν
S s ♣pµγν � pνγµq. (3.124)

But this renormalized contribution cannot be fully determined as the parameters κcS

and κkF introduced by the counterterm,
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(3.125)

cannot be consistently fixed so as to satisfy both renormalization conditions of (3.49),

as discussed in previous section when considering renormalization of contributions from

each individual Lorentz-violating coefficient. Although there are two free parameters

they are entangled as they appear together with the same structure ♣pµγν � pνγµq.
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3. Fermion self-energy of the minimal QED extension

The dµν coefficient is also split into antisymmetric dµνA and symmetric dµνS parts.

Arguments of field redefinition tell us dµνA andHµν are entangled to each other, thus only

their combined contribution to the fermion self-energy can be properly renormalized,

ΣR
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� ΣR
H ✏ ΣdA � ΣH ✁ 1

2
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� 1

2

✑
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✙
σµν , (3.126)

where ΣR
dA

and ΣR
H are given by (3.76) and (3.107), respectively, and the renormalization

factors by
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As expected, only the antisymmetric part of dµν mixes with the (also antisymmetric)

Hµν coefficient.

We have seen the dµνS symmetric contribution ΣR
dS

(3.80) is not related to any

other, and is given by ΣR
dS

✏ ΣdS ✁ 1
2
r♣ZdSqµνρσdρσS ✁ d
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S s ♣pµγ5γν � pνγ5γµq, where
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(3.129)
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and it is not determined as its free parameter κdS cannot be consistently adjusted to

satisfy both renormalization conditions of (3.49).

The fµ renormalized contribution ΣR
f to the fermion self-energy is given by

(3.84). It does not mix with other coefficients, and comes from ΣR
f ✏ Σf ✁

i r♣Zf qµνf ν ✁ fµs pµγ5, where
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As it happened to cµνA , the fµ contribution to the fermion self-energy automatically

satisfies both renormalization conditions of (3.49) without the need to fix a value for

κf , thus we can set it to zero. Again, this is not an issue as effects genuinely from fµ

are unobservable to all orders.

As for the trace part contribution ΣR
gT

from g
κλµ
T , given by (3.99), it comes solely

from ΣR
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✏ ΣgT ✁ 1
3
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Once more, ΣR
gT

satisfies renormalization conditions (3.49) for all values of the free

parameter κgT , thus we can set κgT ✏ 0 for simplicity. As in similar situations discussed

before, gµνλT leads to no observable effects to first order.

Finally, the renormalized fermion self-energy correction ΣR
gM

due to the mixed-

symmetry representation of gµνλ, as given by (3.103), also comes from a single coun-

terterm, ΣR
gM
♣pq ✏ ΣgM ♣pq ✁

✑
♣ZgM qκλµνρσgνρσM ✁ g

κλµ
M

✙
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(3.132)

but it cannot be fully determined as the free parameter κgM cannot be consistently
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fixed so as to satisfy renormalization conditions (3.49).

As a last note, in Ref. [40] the authors employed multiplicative renormalization

to determine the divergences of the Z factors. As we have used counterterm renor-

malization, the correspondence between our approach and the one of the mentioned

reference is accomplished by Zψ Ñ Zψ, Zm Ñ Z✁1ψ Zm, and Zx Ñ Z✁1ψ Zx, where Zx

renormalize a Lorentz-violating contribution due to a coefficient denoted by x. Under

this correspondence we find our results agree with those of Ref. [40] for the divergences

of each Z factor — although mostly straightforward, we point out some care should be

taken as some coefficients were not decomposed in irreducible representations in the

aforementioned reference.

3.4 Summary and Perspectives

In this chapter we initiated investigation of one-loop radiative corrections to the

single-fermion minimal QED sector of the SME. Evaluation of the fermion self-energy

revealed all new divergences introduced due to Lorentz violation can be removed by

means of renormalization of the Lorentz-violating coefficients. For the finite radiative

corrections, a set of on shell renormalization corrections were chosen to fix free param-

eters introduced by renormalization, but some issues were found. All parameters could

be adequately fixed with the sole exception of those associated to contributions from

coefficients cµνS , dµνS , gκλµM , and ♣kF qµρνρ. A common ground to these coefficients is,

in the tree-level lagrangian, they are associated with single structures only, therefore

renormalization of their contributions to the fermion self-energy introduces only one

free parameter. Within our chosen set of renormalization conditions — the so called

on shell conditions, for their interpretation makes direct contact with experiments —

each contribution to the fermion self-energy has to satisfy two conditions, therefore we

cannot consistently fix the single free parameter associated with each of the mentioned

coefficients.

Although so far we have not discussed other possible sets of renormalization

conditions, we mention we have tried others — often conditions without a link to re-
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alistic experimental set ups, leading to so called intermediate renormalizations. The

conclusion remains as troublesome as before, but for different reasons: it seems to be

possible to find sets of renormalization conditions unambiguously fixing all free pa-

rameters, but those typically lead to mixing between contributions from CPT odd and

CPT even coefficients — for instance, the fixed value of the free parameters coming

from counterterms of eµ would also have contributions coming from c
µν
S corrections to

the fermion self-energy. Behavior of individual coefficients under discrete transforma-

tions forbids such mixing of CPT odd and CPT even contributions. Another related

issue comes from unobservable coefficients contributing to the fixed value of parameters

associated to observable coefficients — for instance, the free parameter κcS associated

to c
µν
S receives contributions from the unobservable coefficient cµνA . Therefore, even

though we have found different sets of renormalization conditions unambiguously fix-

ing all free parameters, their fixed value seem to be inconsistent with expected behavior

under discrete transformations or observable contents of the model.

In Ref. [42], the authors considered a model with c
µν
S as the only fermionic

coefficient and also ♣kF qµρνρ in the photon sector, and — although using a different

approach from ours — consistent renormalization of the model forced the introduction

of a wave-function renormalization factor with momentum-dependence. It is worth

mentioning such modification would also fix the problem for contributions from this

coefficient in our approach, but it seems similar modifications would not solve the

problem for contributions coming from d
µν
S and gκλµM . It is our aim to further investigate

this question to discover whether or not contributions from these coefficients can be

consistently renormalized and, if so, to see if this is achieved by conventional means or if

an unconventional solution — such as having renormalization factors with momentum-

dependence — is ultimately required.

For coefficients whose contributions to the fermion self-energy were consistently

renormalized, an interesting new effect was found. Typically, Lorentz violation seems to

fundamentally modify the fermion kinetic term by means of finite radiative corrections.

In the conventional QED, radiative corrections to the fermion self-energy amount only

to renormalization of the fermion field and mass, and a shift of the propagator’s pole,
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from the bare to the renormalized mass. Here, Lorentz violation effectively changes

the free fermion dynamics by introducing field operators of dimension five or six to

the effective lagrangian. For instance, the bµ contribution to the classical action is

bµψγ5γ
µψ, and — besides renormalizing bµ — radiative corrections changes it by adding

an extra order α contribution of the form b
♣5q
µαβψγ5γ

µ❇α❇βψ, where b♣5qµαβ ✑ 1
m2 bαηβµ.

This definition is motivated by Ref. [25], where a general formalism were developed to

deal with free fermions with Lorentz-violating field operators of arbitrary dimension.

In the next chapter, we use such formalism to place bounds on nonminimal Lorentz-

violating coefficients of the muon sector in the context of muon ♣g ✁ 2q experiments.

For instance, considering the identification just mentioned, bounds on the nonminimal

b
♣5q
µαβ coefficient can be directly translated into bounds on the minimal bµ coefficient in

the context of radiative corrections to the Lorentz-violating minimal QED extension.

Unexpectedly, this phenomenon reveals Lorentz-violating radiative corrections

can be experimentally as relevant as tree-level contributions because, depending on

the induced operator, these radiative contributions naturally come with factors of α
m

or α
m2 , where α ✓ 1

137
characterizes the natural loop suppression and the enhancing

factors of 1
m

or 1
m2 are because of the extra momenta factor of the radiatively induced

operator, therefore processes with typical energy of order m
α

are expected to receive

relevant contributions due to radiative corrections. For instance, considering induced

operators naturally suppressed by α
m
, radiative effects of the same order of magnitude

as tree-level ones may be achieved in experiments with energies of about 70MeV for

electrons — which are common in experiments testing Lorentz symmetry — and effects

in muon experiments with expected suppression of a factor of 10 relative to tree-level

contributions can be accessed with energies of about 1.4GeV — which is the case for

muon ♣g ✁ 2q experiments, the subject of the next chapter. Similarly, for induced

operators naturally suppressed by α
m2 , radiative effects of the same order of magnitude

as tree-level contributions may be achieved using electrons of about 6MeV and muons

of 1.2GeV.

The above discussion is mostly qualitative as a quantitative description requires

explicit determination of the effective fermion equation of motion, which constitutes
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one of our next goals. Comprising a systematic investigation, finite radiative cor-

rections coming from the vertex correction and photon self-energy diagrams are also

envisaged for the future. We expect new finite radiative corrections due to Lorentz

violation modifying the conventional interaction vertex in such a way as to accommo-

date the modifications described above in the fermion kinetic term to keep intact gauge

invariance of the action by means of the Ward-Takahashi identity.
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Chapter 4

Testing Lorentz symmetry with

muon ♣g ✁ 2q experiments

Experiments measuring the muon anomalous magnetic moment are very suitable

in the search of physics beyond the Standard Model, due to muon’s g✁2 intrinsic high

sensitivity to corrections coming from higher energy scales, and particularly CPT and

Lorentz violation because of the high precision attainable in such experiments. In

the past decade, measurements with precision of about 0.5 ppm were achieved at the

Brookhaven National Laboratory (BNL) [83], and upcoming Fermilab Muon ♣g✁2q [84]
and Japan’s J-PARC [85] experiments expect roughly a fivefold improvement over this

mark. Currently, Standard Model evaluations are about 3.3 σ below the experimental

results [86,87], giving enough room for expectations on new physics playing a role there.

Effects of CPT and Lorentz violation on the muon g ✁ 2 have been studied

in the past [2,88,89] using the framework of the minimal Standard Model Extension

[3,4] for muons. The full extension also enjoys nonrenormalizable interactions that

may be relevant as we probe higher energy scales. Investigation of such nonminimal

contributions in the neutrino [23] and photon [24] sectors have already been made,

and a general framework for massive fermions was recently developed in [25]. In this

chapter, we extend the analysis done in [88] to consider also Lorentz-violating couplings

from operators of arbitrary dimension in the context of muon ♣g ✁ 2q experiments. In

the following, we give a brief overview of such experiments in Sections 4.1 and 4.2, and

in Sec. 4.3 we employ the SME framework to investigate Lorentz-violating signals in
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this context.

4.1 Why muons?

Why use muons for testing fundamental physics? To answer this question,

we consider the anomalous contribution a ✑ g④2 ✁ 1 to the gyromagnetic factor g

of a charged lepton. This contribution comes entirely from quantum fluctuations of

the vacuum, i.e., loop corrections to tree-level processes. It turns out that quantum

corrections δa to a due to higher energies or heavier states scale proportional to the

squared lepton mass mlepton,

δalepton

alepton
✾m

2
lepton

M2
, ♣M ✧ mleptonq, (4.1)

where M may be a heavier Standard Model particle, or a heavy state beyond SM,

or an energy scale or UV cutoff where the SM no longer holds. In this sense, muons

are much more sensitive to physics coming from higher energy scales, whether conven-

tional or not, than electrons because m2
µ ✏ ♣0.1057GeVq2 ✒ 4 ✂ 104m2

e. Therefore,

the advantages of using muons in high precision experiments can be twofold: for test-

ing conventional physics coming from sectors other than QED that may give relevant

contributions to the muon anomaly factor aµ, and also for looking for signals of non-

standard physics from higher energy scales. For an experiment aiming to measure

g ✁ 2, we highlight some features due to the use of muons (or, analogously, antimuons

as well):

• High sensitivity to distinct Standard Model sectors (weak and strong, besides

QED itself) and potentially new physics beyond SM.

• High precision measurements can be achieved. This is made possible because

of parity-violating weak decays that make it easy to produce polarized muons

through pion decay, π✁ Ñ µ✁ � νµ, and which also make it easy to understand

the final muon polarization state right before it decays into lighter leptons, µ✁ Ñ
νµ � e✁ � νe.
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• There is a “magic” value for the relativistic γ factor that matches the anomaly

factor. Theoretically, the advantage of working at such γ is that equations of

motion are greatly simplified, and experimentally it is that the muon lifetime is

increased by a factor of roughly 30, which is enough to collect them in a storage

ring and have time enough to make precise measurements by performing enough

cycles along the ring.

A question may arise as “why not use taus, which are 17 times heavier than muons?”

Because taus are heavier and more unstable than muons, they have much shorter

lifetime, leading to fewer cycles in a storage ring, significantly decreasing the precision

of the measurements. Indeed, so far the tau sector remains vastly unexplored mostly

due to difficulties in determining its properties with higher precision — see, for instance

[90,91].

4.2 Basics of the BNL Muon ♣g ✁ 2q experiment

In this section we give a very basic overview of the physics of the BNL ♣g ✁ 2q
experiment — for a detailed introduction, see Refs. [92–94], and see Ref. [95] for the final

report of the BNL experiment. It tested physics for both muons µ✁ and antimuons

µ�, but for simplicity from now on we will refer to muons only. The experiment is

primarily designed as a means of testing conventional physics with higher precision.

Nevertheless, as will be discussed in Sec. 4.3, the experiment can also be used in the

search of signals coming from unconventional physics.

4.2.1 The anomalous magnetic moment

At tree-level, the gyromagnetic factor g is predicted by the Dirac equation to be

g ✏ 2 for all charged leptons. Radiative corrections due to vacuum fluctuation corrects

this value to g ✏ 2♣1 � aq, where a is called the anomalous magnetic moment. The

one-loop correction is aone-loop ✏ α④2π ✓ 1④137 ✒ 10✁3 [96] and it is also the same

for all charged leptons, but higher order effects are not universal and lead to different

corrections due to mass hierarchy and the way different charged leptons feel effects of
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weak and strong interactions. For instance, contributions from QED and electroweak

interactions to the muon anomalous magnetic moment aµ are currently well-understood

at the level required by the experimental precision, and most theoretical uncertainties

comes from hadronic ones (hadronic vacuum polarization and hadronic scattering of

light-by-light). Current results put the SM theoretical prediction for aµ off by 3.3

σ with respect to the experimental value [86], which could be due to some missing

conventional physics effect or some yet unknown new physics.

An indirect measurement of aµ could be made through a direct measurement of

g, which could be performed by placing muons in a magnetic field B and measuring the

ratio ωL④ωc of the Larmor spin-precession frequency ωL ✏ ✁g

2
e
m
B to the cyclotron

frequency ωc ✏ ✁ 1
γ
e
m
B. This could be accomplished by means of Penning traps.

However, because aµ ✒ 10✁3, measuring aµ with a precision of 10✁6 requires measuring

g to one part per billion. This is a very feasible approach for stable particles, like

electrons — for instance, see Sec. 6.7 of Ref. [93], and, in the context of Lorentz-

violation, see Ref. [97] — but currently such a precision cannot be obtained for unstable

particles like muons.

An alternative approach was put into work at CERN’s Muon ♣g✁2q experiment

in the late 70’s [98], and then about twenty years later at BNL, and will be used again

in the upcoming Fermilab ♣g✁2q experiment and also in J-PARC’s one (although with

a different experimental setup). It sets muons in a constant uniform magnetic field

B, perpendicular to the muon’s plane of motion. The orbital motion is characterized

by the cyclotron (orbital) frequency ωc ✏ ✁ 1
γ
e
m
B and the spin-precession frequency1

ωs ✏ ✁
✁
g

2
✁ 1� 1

γ

✠
e
m
B. The approach for muon g ✁ 2 measurements is to define the

anomaly frequency ωa,

ωa ✑ ωs ✁ ωc ✏ ✁aµ e
m
B, (4.2)

which describes the rate of precession of the orbit plane parallel component of the

spin around the muon momentum p. Because aµ ✘ 0, there is a Larmor precession of

1The spin-precession frequency ωs is most clearly understood when written as ωs ✏ ωL � ωT ,

where ωL ✏ ✁ g
2

e
m
B is the Larmor precession of the spin, and ωT ✏

✁
1✁ 1

γ

✠
e
m
B is the Thomas

precession which comes as a relativistic correction due to orbital motion.
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the direction of the muon spin with respect to the momentum — see Fig. 4.1 for a

qualitative illustration of the effect. This approach allows for a direct measurement of

aµ, which gives an improvement in sensitivity of about 103 from the start. The strategy

to determine aµ is to make two separate measurements, one of ωa by looking for muon

decay particles along the cyclotron orbit, and another measurement by using proton

nuclear magnetic resonance (NMR) techniques to measure B. Some more details are

given in the next sections. In our search for Lorentz-violating effects, ωa will play the

central role, as we will discuss in Sec. 4.3.

Figure 4.1: Muon spin-precession due to the anomalous magnetic moment.

4.2.2 Experimental method of the BNL experiment

The aim of this section is to give a brief and overly simplified overview of some

aspects of the BNL ♣g✁ 2q experiment that will be relevant for our search for Lorentz-

violating signals. We refer the reader to Chap. 6 of [93], Sec. II of [95], or Ref. [99] for

all technical details of the BNL experiment.

Instead of a single muon, a bunch of muons is used to form a beam. The beam

needs to be as narrow as possible and an electric quadrupole field E normal to the

muon orbit plane is used for focusing. This is a major issue because the electric field
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interacts directly with the muon spin, changing expression (4.2)for ωa to

ωa ✏ ✁a e
m
B �

✂
a✁ 1

γ2 ✁ 1

✡
e

m
v ✂E. (4.3)

Following CERN’s experimental set up closely, to avoid the daunting issue of precise

tuning a quadrupole field, BNL’s set up made use of the fortuitous cancellation of

the term inside curly brackets in the second term above when γ ✏ ❛1④a� 1 ✓ 29.3.

Setting the muon beam energy E0 ✏ γm at 3.096GeV corresponds to the “magic”

γ of 29.3, reducing expression (4.3) to the same form as (4.2). Setting the energy of

the beam to this precise value is not a major experimental problem. Therefore, at

this energy, the electric field is used only for focusing of the beam, and the anomaly

frequency is influenced only by the magnetic field, and this is central to the precision

achieved by the experiment. For a brief discussion of other experimental issues, see

Ref. [100].

The basic idea of the experimental set up performed at the BNL, see Fig. 4.2,

was to collide proton beams with a hadronic target, producing energetic pions. In a

decay channel, because of a parity-violating weak decay, pions produce polarized muons

which are guided by a beam inflector and then captured by a uniform constant magnetic

field of 1.5T in a storage ring of diameter 14.2m. Kicker modules at the beginning

of the ring give an initial short current pulse to stabilize the beam orbit. The spin

direction of polarized muons is aligned with the momentum direction when they enter

the storage ring at t ✏ 0. Relativistic muons traveling at the “magic” momentum

⑤p⑤ ✔ 3.094GeV have long enough lifetime — τin-flight ✏ 64.4µs, compared to τrest ✏
2.2µs when at rest — allowing sufficiently many spin oscillations (ω✁1s ✏ 4.37µs) while

completing many orbits (ω✁1c ✏ 149 ns) before decaying into electrons. Muons then

undergo parity-violating weak decay into electrons, and a correlation exists between

the muon polarization state right before the decay and the direction of the emitted

electron, which is known once the electron hits any of the detectors (calorimeters)

spread along the storage ring, see Fig. 4.3. When a decay electron is detected at

some moment after injection, we have information about the final polarization state

of a muon of the beam, and eventually all muons decay. Each injection of pions was
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followed by a measurement period typically of 700µs, with the whole process being

periodically repeated for half an hour, and several “runs” being performed during each

day.

Figure 4.2: Simple schematic of the Muon ♣g ✁ 2q experiment at BNL.

Figure 4.3: Muon parity-violating weak decay and detection of electrons by calorimeters
spread along the storage ring.

4.2.3 Measurement of ωa

Conventional QED calculation for the tree-level weak decay of muons into elec-

trons predicts the number N♣tq of decay electrons with energy greater than E emitted
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at a time t after muons are injected into the storage ring,

N♣tq ✏ No♣Eqe✁t④γτrest
✏
1� A♣Eq cos �ωat� φ♣Eq✟✘ , (4.4)

where No♣Eq is a normalization factor, γτrest ✏ 64.4µ s is the dilated muon lifetime,

A♣Eq is the asymmetry factor for electrons of energy greater than E, and φ♣Eq is the
average muon spin angle as a function of E at t ✏ 0. This expression is to be compared

with the fit of the electron arrival-time spectrum N♣tq ✂ t for electrons detected by

calorimeters after injection of muons in the storage ring. This gives the value of ωa,

which controls the modulation of the exponential decay law of the decaying muons. A

typical plot of the electron time-arrival spectrum is shown in Fig. 4.4.

Figure 4.4: Typical plot of the decay electrons detected after a full run.

4.2.4 Measurement of B

High precision measurements of ωa and aµ are strongly related to the ability of

manufacturing a constant homogeneous magnetic field and being able to determine its

value with great accuracy. As mentioned before, it is possible to measure the mag-
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netic field by measuring ωc, but this is not a reasonable approach for high precision

muon experiments. Instead, measurements of the free proton Larmor spin-precession

frequency ωp ✏ ♣gP ④2q♣e④mP q①B② with NMR are used to determined ①B②, the aver-

age magnetic field over muon trajectories during each run. Along with NMR probes

distributed around the ring, this was done with a trolley carrying NMR probes, peri-

odically moved throughout the entire muon storage region. See Sec. II G of [95] for

more details.

4.2.5 Determination of aµ

To improve the precision of the experiment, measured frequencies are written

relative to ωp such that, from Eq. (4.2), the muon g ✁ 2 anomaly is written as

aµ ✏ ωa

ωL ✁ ωa
✏ ωa④ωp
ωL④ωp ✁ ωa④ωp ✏

R

λ✁R
, (4.5)

where R ✑ ωa④ωp is measured in the ♣g ✁ 2q experiment, and a high precision value

of the muon-to-proton magnetic moment ratio λ ✑ ωL④ωp ✏ µµ④µp is available in the

literature from previous muonium hyperfine level structure measurements [101].

Assuming CPT invariance to average between aµ� and aµ✁ , the measured value

obtained at the BNL ♣g ✁ 2q experiment gives the anomalous magnetic moment [95]

aµ♣Exptq ✏ 11659208.0♣6.3q ✂ 10✁10♣0.54 ppmq, (4.6)

which the Muon ♣g ✁ 2q Collaboration compared with the theoretical Standard Model

predictions

aµ♣SMq ✏ 11659185.7♣8.0q ✂ 10✁10♣0.69 ppmq, (4.7)

aµ♣SMq ✏ 11659182.0♣7.3q ✂ 10✁10♣0.62 ppmq, (4.8)

from Refs. [102,103] respectively, resulting in the difference

δaµ♣Expt✁ SMq ✏ r♣22.4✟ 10q to ♣26.1✟ 9.4qs ✂ 10✁10 (4.9)

109



4. Testing Lorentz symmetry with muon ♣g ✁ 2q experiments

with a significance of 2.2–2.7 standard deviation. In 2008 the last digit of (4.6) has

changed from 0 to 9 [104,105] as the published proton-to-muon magnetic moment

ratio λ ✏ µµ④µp has also changed [106], and along with recent improvements on the

theoretical prediction of aµ [86], the discrepancy δaµ♣Expt✁ SMq was further extended
to a significance of 3.3 standard deviation. As mentioned in the beginning of this

chapter, this gives enough room to expect some new physics playing a role in the muon

sector. In the following section, we look for experimental signals that could arise in a

Lorentz-violating QED for muons, antimuons and photons, and in particular we use

the BNL data for ωa to impose constraints on Lorentz-violating coefficients and also

estimate bounds that could be obtained in the upcoming Fermilab ♣g✁2q and J-PARC

experiments.

A brief note on the Fermilab and J-PARC ♣g ✁ 2q experiments

The Fermilab ♣g ✁ 2q experiment will be done following the same experimental

set up as the one at the BNL, with improved control to systematic errors [84]. Although

the J-PARC experiment will be fundamentally different, the key measurable quantities

will be the same [85]. At the J-PARC, instead of the “magic” energy, highly polarized

muon beams will be produced at 320MeV, corresponding to a value of γ roughly ten

times smaller than the one used at the BNL. Instead of choosing the “magic” γ to

cancel the electric field contribution to the anomaly frequency (4.2), by using ultra-

cold muons with almost no transverse dispersion, no focusing electric field will be used

at all, therefore the anomaly factor aµ can be derived in the same way as in the BNL

experiment. A uniform constant 3T magnetic field will be used for muon storage in a

orbit with 66 cm in diameter, much smaller than the storage ring to be used at Fermilab

and better to control the magnetic field with precision. Determination of aµ will again

follow the measurement of ωa by counting of decay positrons at detectors together with

precise knowledge of the magnetic field. Both experiments are primarily intended to

run with antimuons only, but as happened with the BNL experiment, future upgrades

may allow the use of muons as well.
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4.3 Search for Lorentz violation in muon ♣g✁ 2q ex-

periments

Search for CPT and Lorentz violation coming from minimal SME coefficients

in the context of muon ♣g ✁ 2q experiments have been performed in the past [2,88,89].

Viewed as an effective theory, the SME framework also allows for nonrenormalizable

interactions which may be relevant as higher energy scales are probed. A general frame-

work for dealing with free fermions with Lorentz-violating field operators of arbitrary

dimension was developed in [25], and now we use it to extend the analysis of muon

♣g ✁ 2q experiments beyond operators associated to minimal coefficients.

As discussed in previous sections, determination of g✁2 at the BNL experiment

required the intermediate step of measuring the angular anomaly frequency ωa, which

is the difference between the spin-precession frequency ωs and the cyclotron frequency

ωc. In different runs, relativistic polarized µ✁ or µ� beams were injected into cyclotron

orbits in a constant 1.45T magnetic field, and adjusted to the “magic” momentum

⑤p⑤ ✏ 3.094GeV and γ ✏ 29.3 at which the dependence of ωa on the focusing electric

field is eliminated. Fitting the decay spectrum of µ✟ to specified time functions, allows

the anomaly frequency ωa to be inferred. The Fermilab experiment will be performed

in the same fashion as the BNL one, but J-PARC’s will be significantly different. The

latter will be based on the use of ultra-cold highly polarized muon beams at 320MeV

(γ ✏ 3.03), with almost no transverse dispersion, that can be stored in a 3T magnetic

field during their lifetime without requiring a focusing electric field. In our context,

apart from different setups, the key quantities to be measured in both experiments

remain the same.

Departing from conventional Standard Model predictions, CPT and Lorentz

violation allows, for instance, different behavior between µ✁ and µ�, and also sidereal

and annual variations of ωµ
✟

a , as we discuss in what follows.
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4.3.1 The Lorentz-violating model for muons

We consider the QED limit of the nonminimal SME for muons, antimuons and

photons,

L ✏ 1
2
ψ
✁
iγν

Ø

Dν ✁mµ � ♣Q✠ψ � h.c., (4.10)

where mµ is the mass of the muon, iDν ✑ i❇ν ✁ qAν with charge q ✏ ✁⑤e⑤, and ♣Q
represents couplings to Lorentz-violating coefficients, to be defined soon. Couplings

between those and electromagnetism are highly suppressed given typical values for the

magnetic field in ♣g ✁ 2q experiments, and were ignored. In this approximation, for

contributions from Lorentz violation, we can make use of the framework developed

in [25], for free fermions with Lorentz-violating operators of arbitrary dimension. In

this section, we give a brief overview of key results derived in the before-mentioned

reference which will make our starting point to study Lorentz-violating signals in muon

♣g ✁ 2q experiments. To avoid confusion with the notation, from now on, we reserve

the letter µ to refer to the muon only, and never as a tensorial index.

In momentum space, the explicit form of ♣Q in terms of fundamental SME coef-

ficients can be written as

♣Q ✏
✂
ĉρσγρ � d̂ρσγ5γρ � êσ � if̂σγ5 � 1

2
ĝνρσσνρ

✡
pσ

✁
✂
m̂� im̂5γ5 � âνγν � b̂νγ5γν � 1

2
Hνσσνσ

✡
, (4.11)

where the “hat” notation means Ĉκλ... ✏ ➦
d C

♣dqκλ...α1α2...αd✁3pα1pα2 ☎ ☎ ☎ pαd✁3
, with Ĉκλ...

representing any of the Lorentz-violating terms in (4.11), where d ♣oddq ➙ 5 for m̂,

and m̂5, and d ♣evenq ➙ 4 for ĉρσ, d̂ρσ, êσ, f̂σ, and ĝνρσ, and d ♣oddq ➙ 3 for âν , b̂ν ,

and Hνσ. Indices κλ . . . in the coefficients C♣dqκλ...α1α2...αd✁3 control the spin nature

of the operator and the d ✁ 3 symmetric indices α1α2 . . . αd✁3 control the momentum

dependence. Note that imposing d ↕ 4 recovers the minimal Lorentz-violating QED

for muons.

Well-known field redefinitions for the minimal SME reveal some coefficients are

completely unobservable to first order in Lorentz violation and some other appear
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only as specific coefficient combinations [3,4,75–77,107]. In Ref. [25] these results are

extended to the nonminimal coefficients. For instance, by means of the transformation

ψ Ñ ♣1� Ẑqψ, with Ẑ a suitably chosen momentum-dependent operator containing γ

matrices and Lorentz-violating coefficients, to first order in the coefficients, lagrangian

(4.10) is shown to be equivalent to

L ✏ 1
2
ψ
✁
iγν

Ø

Dν ✁mµ � ♣Q✶
✠
ψ � h.c., (4.12)

where ♣Q✶ is written in terms of effective coefficients,

♣Q✶ ✏ �
ĉλeff ✁ âλeff

✟
γλ � 1

2

✁
˜̂gκλeff ✁ ˜̂

Hκλ
eff

✠
σκλ, (4.13)

with dual coefficients defined by C̃µν ✏ 1
2
ǫµνρσCρσ, and where the “hat” notation follows

previous definitions but with d ♣evenq ➙ 4 for cλeff and g̃κλeff , and d ♣oddq ➙ 3 for aλeff and

H̃κλ
eff . The explicit relations between fundamental SME coefficients and effective ones

are

âκeff ✏
✁
âκ ✁ 1

mµ
pκêλpλ

✠
,

ĉκeff ✏
✁
ĉκλpλ ✁ 1

mµ
pκm̂

✠
,

˜̂gκλeff ✏
✁

1
2
ǫκλρσĝρσνp

ν ✁ 1
mµ
prκb̂λs

✠
,

Ĥκλ
eff ✏

✁
1
2
ǫκλρσĤρσ ✁ 1

mµ
prκd̂λsνpν

✠
. (4.14)

We point out that coefficients m̂5 and f̂ ν are completely unobservable to first order in

Lorentz-violation in flat spacetime.

A perturbative hamiltonian, to leading order in Lorentz-violation, can be de-

rived by means of a generalized Foldy-Wouthuysen transformation [25] that decouples

positive and negative energy states, with diagonal blocks giving 2✂2 relativistic hamil-

tonians for particles and antiparticles. The relativistic Lorentz-violating correction δh

reads

δh ✏ ha � hc � hg ☎ σ � hH ☎ σ. (4.15)
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Aiming use of this expression for the setup of muon ♣g ✁ 2q experiments, we will

write the explicit form of the Lorentz-violating correction δh in spherical coordinates,

introducing spherical polar angles θ and φ by means the unit 3-momentum vector

p̂ ✏ ♣sin θ cosφ, sin θ sinφ, cos θq and defining the helicity basis as ǫ̂r ✏ ǫ̂r ✏ p̂ and

ǫ̂✟ ✏ ǫ̂✠ ✏ ♣θ̂✟ iφ̂q④❄2. In this basis, rotation scalars are expanded in terms of spher-

ical harmonics 0Yjm♣p̂q and rotation tensors are expanded in terms of spin-weighted

spherical harmonics2 sYjm♣p̂q. The rotation scalar part (4.15) then reads

ha ✏
➳
dnjm

Ed✁3✁n
0 ⑤p⑤n0Yjm♣p̂qa♣dqnjm,

hc ✏ ✁
➳
dnjm

Ed✁3✁n
0 ⑤p⑤n0Yjm♣p̂qc♣dqnjm, (4.16)

and using the helicity basis decomposition with the Pauli matrices written as

σr ✏ σr ✏

☎✝✝✝✆ cos θ sin θe✁iφ

sin θeiφ ✁ cos θ

☞✍✍✍✌,

σ✟ ✏ σ✠ ✏ 1❄
2

☎✝✝✝✆ ✁ sin θ ♣cos θ ✟ 1qe✁iφ

♣cos θ ✠ 1qeiφ sin θ

☞✍✍✍✌, (4.17)

the rotation tensor part reads

♣hgqr ✏ ✁mµ

➳
dnjm

Ed✁4✁n
0 ⑤p⑤n0Yjm♣p̂q♣n� 1qg♣dq♣0Bqnjm ,

♣hgq✟ ✏
➳
dnjm

Ed✁3✁n
0 ⑤p⑤n✟1Yjm♣p̂q ✂

✓
✟
❝
j♣j � 1q

2
g
♣dq♣0Bq
njm ✟ g

♣dq♣1Bq
njm � ig

♣dq♣1Eq
njm

✛
,

♣hHqr ✏ mµ

➳
dnjm

Ed✁4✁n
0 ⑤p⑤n0Yjm♣p̂q♣n� 1qH♣dq♣0Bq

njm ,

2Spin-weighted spherical harmonics can be seen as a generalization of spherical harmonics for
objects transforming as tensors under rotations. For a concise introduction to this subject, see, for
instance, Appendix A of [108].
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♣hHq✟ ✏ ✁
➳
dnjm

Ed✁3✁n
0 ⑤p⑤n✟1Yjm♣p̂q ✂

✓
✟
❝
j♣j � 1q

2
H

♣dq♣0Bq
njm ✟H

♣dq♣1Bq
njm � iH

♣dq♣1Eq
njm

✛
,

(4.18)

with E0 ✏ γ mµ and where the Cartesian coefficients C
♣dqκλ...α1α2...αd✁3

eff were decomposed

in spherical ones C
♣dq
njm — see Sec. V C of Ref. [25] for the explicit relation between the

Cartesian coefficients and the spherical ones. All information contained in the cartesian

indices of C
♣dqκλ...α1α2...αd✁3

eff are now encoded in the spherical indices of C
♣dq
njm. The CPT

behavior and index ranges of the coefficients are listed in Table 4.1. Superscripts “E”

and “B” represents the behavior of the operators under parity in analogy to the electric

and magnetic fields.

Table 4.1: Spherical coefficients appearing in the Lorentz-violating hamiltonian.

Coefficient CPT d n j

a
♣dq
njm Odd Odd, ➙ 3 0, 1, . . . , d✁ 2 n, n✁ 2, ☎ ☎ ☎ ➙ 0

c
♣dq
njm Even Even, ➙ 4 0, 1, . . . , d✁ 2 n, n✁ 2, ☎ ☎ ☎ ➙ 0

g
♣dq♣0Bq
njm Odd Even, ➙ 4 0, 1, . . . , d✁ 3 n� 1, n✁ 1, ☎ ☎ ☎ ➙ 0

g
♣dq♣1Bq
njm Odd Even, ➙ 4 2, 3, . . . , d✁ 2 n✁ 1, n✁ 3, ☎ ☎ ☎ ➙ 1

g
♣dq♣1Eq
njm Odd Even, ➙ 4 1, 2, . . . , d✁ 2 n, n✁ 2, ☎ ☎ ☎ ➙ 1

H
♣dq♣0Bq
njm Even Odd, ➙ 3 0, 1, . . . , d✁ 3 n� 1, n✁ 1, ☎ ☎ ☎ ➙ 0

H
♣dq♣1Bq
njm Even Odd, ➙ 5 2, 3, . . . , d✁ 2 n✁ 1, n✁ 3, ☎ ☎ ☎ ➙ 1

H
♣dq♣1Eq
njm Even Odd, ➙ 3 1, 2, . . . , d✁ 2 n, n✁ 2, ☎ ☎ ☎ ➙ 1

4.3.2 Application to muon ♣g ✁ 2q experiments

Fundamental quantities for muon ♣g✁2q experiments are the anomaly frequency

ωa, the free proton Larmor frequency and the muon-to-proton magnetic ratio. In our

experimental context, the anomaly frequency is the cleanest quantity for the study of
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Lorentz violation in the muon sector, and in the following we predict Lorentz-violating

signals affecting this observable.

Laboratory frame

Starting from the Lorentz-violating correction δh (4.15), we see that only co-

efficients ˜̂gκλeff and
˜̂
Hκλ

eff induce couplings between Lorentz violation and the muon spin

S ✏ 1
2
σ in the hamiltonian. This coupling leads to birefringence, which can be under-

stood as an intrinsic Larmor-like precession of S around preferred spacetime directions

as the particle travels. Since deviations from the conventional cyclotron frequency

can be neglected, the Lorentz-violating contribution δωa to the anomaly frequency ωa

(4.2) can be taken as entirely due to the birefringent effect, which is calculated as a

Larmor-like spin-precession frequency,

d①S②
dt

✞✞✞
LV
✏ ①irδh,Ss② ✓ δωa ✂ ①S②, where δωa ✏ 2♣hg � hHq, (4.19)

where hg and hH are given by (4.18). In the above equation, we have explicitly sepa-

rated the contribution from Lorentz violation as d①S②④dt also contains the conventional

spin-precession frequency ωs, which added to the cyclotron frequency ωc gives the con-

ventional anomaly frequency ωa, as discussed before Eq. (4.2).

At the BNL Muon ♣g ✁ 2q experiment, the detectors are in the x̂-ŷ plane, thus

only the ẑ-component of ωa is measured, and for the Lorentz-violating contribution

this means

δωa ✑ ♣δωaqz ✏ 2 ♣hg � hHqr cos θ ✁
❄
2
✏♣hg � hHq� � ♣hg � hHq✁

✘
sin θ. (4.20)

Because the muon beam is also confined in this plane, the above expression is evaluated

at θ ✏ π④2, and as for what concerns data collection, only averages of the anomaly

frequency over full cycles are meaningful, δωa ÝÑ 1
2π

➩2π
0
dφ δωa, where the identification

φ ✏ 2π trun④Trun can be made with Trun the characteristic time as measured by trun

that each muon takes to complete a full run before decaying. After averaging, only

azimuthally symmetric couplings (m ✏ 0) between Lorentz violation and momentum
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factors contribute to δωa. Moreover, because only spin-weighted spherical harmonics

of the form ✟1Yj,m✏0♣θ ✏ π
2
q contribute to δωa, only odd values of j (and therefore

only even values of n, see Table 4.1) give nonvanishing contributions. After these

considerations, the Lorentz-violating correction δωa to the anomaly frequency of a

muon µ✁ or an antimuon µ� in the laboratory frame reads

δω✟
a♣labq ✏ 2

➳
dnj

Ed✁3
0

❛
j♣j � 1q�1Yj0

✁
θ ✏ π

2

✠ ✑
Ȟ
♣dq
nj0 ✟ ǧ

♣dq
nj0

✙
, (4.21)

where we have introduced the definitions

Ȟ
♣dq
njm ✑

✁
1✁ 1

γ2

✠n
2
✑
H
♣dq♣0Bq
njm �

❜
2

j♣j�1q

✁
1✁ 1

γ2

✠
H
♣dq♣1Bq
♣n�2qjm

✙
, (4.22)

ǧ
♣dq
njm ✑

✁
1✁ 1

γ2

✠n
2
✑
g
♣dq♣0Bq
njm �

❜
2

j♣j�1q

✁
1✁ 1

γ2

✠
g
♣dq♣1Bq
♣n�2qjm

✙
, (4.23)

which are the measurable coefficient combinations for the ♣g✁ 2q experiment (see next

sections). The index ranges of Ȟ
♣dq
njm and ǧ

♣dq
njm are listed in Table 4.2. It is important

to note that indices of individual coefficients inside the above definitions still have

independent constraints as shown in Table 4.2. For instance, for d ✏ 3, we have

Ȟ
♣3q
njm ✏

✁
1✁ 1

γ2

✠n
2
H
♣3q♣0Bq
njm because H

♣dq♣1Bq
njm exists only for d♣oddq ➙ 5; similarly,

Ȟ
♣5q
2jm ✏

✁
1✁ 1

γ2

✠n
2
H
♣5q♣0Bq
2jm because H

♣5q♣1Bq
4jm vanishes as n ✏ 2 is the highest value

possible for H
♣5q♣1Bq
njm .

As a consistency check, we obtain the minimal SME limit of (4.21) in terms of

fundamental coefficients,

δω
✟♣mSMEq
a♣labq ✏ 2 b̌

♣3q✟
3

✑ 2
✑
✟ 1
γ

✁
b
♣3q
3 �mµg

♣4q
120

✠
✟ 3

2
γ
✁
1✁ 1

γ2

✠
mµg

♣4q♣Mq
120 �mµd

♣4q
30 �H

♣3q
12

✙
, (4.24)

where g
♣4q♣Mq
κλν ✏ 1

3

✑✁
g
♣4q
κλν � g

♣4q
κνλ � ηαβg

♣4q
λαβηκν

✠
✁ ♣κØ λq

✙
is the mixed-symmetry ir-

reducible representation of g
♣4q
κλν . This result matches with δω✟a found in Ref. [88], but

we have extra contributions coming from the coefficient g
♣4q
κλν in the definition of b̌

♣3q✟
3 ,

which was not considered in the analysis done in the mentioned reference.

The origin of the γ factors of the coefficient combination in (4.24) can be un-
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Table 4.2: Ranges for indices appearing in key quantities.

Quantity Coefficient d n j

δω✟
a Ȟ

♣dq
njm Odd, ➙ 3 0, 2, . . . , d✁ 3 1, 3, . . . , n� 1

ǧ
♣dq♣0Bq
njm Even, ➙ 4 0, 2, . . . , d✁ 4 1, 3, . . . , n� 1

Ȟ
♣dq
njm H

♣dq♣0Bq
njm Odd, ➙ 3 0, 2, . . . , d✁ 3 1, 3, . . . , n� 1

H
♣dq♣1Bq
njm Odd, ➙ 5 2, 4, . . . , d✁ 3 1, 3, . . . , n✁ 1

ǧ
♣dq
njm g

♣dq♣0Bq
njm Even, ➙ 4 0, 2, . . . , d✁ 4 1, 3, . . . , n� 1

g
♣dq♣1Bq
njm Even, ➙ 4 2, 4, . . . , d✁ 2 1, 3, . . . , n✁ 1

K✟
m̃ Ǩ

♣dq✟
njm̃ Odd, ➙ m̃� 2 Even, Odd,

from j ✁ 1 to d✁ 3 from m̃ to d✁ 2

derstood as follows. Consider, first, the γ Ñ 1 nonrelativistic limit, where the above

coefficient combination reduces to b̃
♣3q
3 ✑ b

♣3q
3 �mµg

♣4q
120�mµd

♣4q
30 �H♣3q

12 , where b̃
♣3q
3 is the

observable combination between b
♣3q
ν and g

♣4q
κλν , and d

♣4q
κλ and H

♣3q
κλ for the nonrelativis-

tic limit of this kind of experiment, in agreement with field redefinition arguments —

see discussion at the end of Sec. 3.1. Indeed, several nonrelativistic experiments set

bounds specifically on b̃
♣3q
3 [10], and we see our combination agrees with what should

be expected in this limit, and now we argument the relativistic generalization of b̃
♣3q
3

is consistent with b̌
♣3q
3 , Eq. (4.24). From Eq. (4.19), we note the muon spin precession

is measured in the muon rest frame, but using laboratory time t, therefore use of the

muon proper time τ introduces a time dilatation factor of 1④γ multiplying b̃
♣3q
3 (because

it is proportional to δωa). Also, we want the result in the laboratory frame instead of

the muon rest frame, thus we perform a boost in the x̂-ŷ plane, where the muon orbit

is confined. The boost does not affect b
♣3q
3 , therefore it ends up accompanied only by

1④γ. On the other hand, 1
γ
g
♣4q
120

boostÝÝÝÑ 1
γ
g
♣4q
120 � 3

2
γ
✁
1✁ 1

γ2

✠
g
♣4q♣Mq
120 . At last, both d

♣4q
30

and H
♣3q
12 acquire a γ under the boost, which is then cancelled by the time dilatation

1④γ factor. In conclusion, moving from the muon rest frame to the laboratory frame
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changes the observable coefficient combination b̃
♣3q
3 into b̌

♣3q
3 , in accordance to what we

have explicitly found in (4.24) from a relativistic treatment from the start.

Sun-centered frame

The Lorentz-violating correction δω✟
a♣labq (4.21) to the anomaly frequency al-

ready shows different behaviors for particles and antiparticles, and it could be used

to place bounds on CPT and Lorentz violation in the laboratory frame. However,

for comparison among different experiments, it is useful to write it in a more suitable

frame. Moreover, due to Earth’s rotation and orbital motion around the Sun, coupling

between Lorentz violation and the muon ♣g ✁ 2q experiment changes over time, and

this time-depence is hidden for our expressions written in the noninertial Earth-based

laboratory frame. For the moment, we neglect the Earth’s orbital motion as in the

next two sections we look for effects separated by time intervals of the order of days or

weeks, such that a nonrotating frame centered at the Earth can be well-approximated

as an inertial one. An extra translation centers this frame at the Sun, defining the

standard nonrotating Sun-centered frame, as discussed in Appendix A.

We choose to work with coefficients K
♣dq
njm defined in the standard nonrotating

Sun-centered frame. A coefficient C
♣dq
njm in a laboratory frame with x axis pointing south

and y axis pointing east is related to the Sun-centered frame coefficient K
♣dq
njm by [108]

C
♣dq
njm ✏

➳
m✶

eim
✶Ωtd

♣jq
mm✶♣✁χqK♣dq

njm✶ , (4.25)

where Ω ✏ 2π④♣23 h 56minq is the sidereal rotation frequency of Earth as measured by

the sidereal time t, the “little” Wigner matrix d
♣jq
mm✶ is given in Eq. (A.4) and χ is the

colatitude of the experiment in the northern hemisphere. Finally, in the nonrotating

Sun-centered frame, the Lorentz-violating contribution to the anomaly frequency reads

δω✟a ✏ 2
➳
dnj

Ed✁3
0

➳
m✶

eim
✶ΩtGjm✶♣χq

✑
Ȟ

♣dq
njm✶ ✟ ǧ

♣dq
njm✶

✙
, (4.26)

where Gjm✶♣χq ✑ ❛
j♣j � 1q�1Yj0

�
θ ✏ π

2

✟
d
♣jq
0m✶♣✁χq is a purely geometrical factor —

see Table 4.3 for some useful values — and the index ranges of the coefficients are
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the same as in (4.21). The above expression for δωa extends the analogous result

of [88] to encompass Lorentz-violating operators of arbitrary dimensions. It predicts

for nonminimal coefficients the same effects as those for the minimal SME, for instance,

the difference of the anomaly frequency between particles and antiparticles, ∆ωa ✏
δω�a ✁δω✁a , and also sidereal and annual variations of δω✟a . It is important to emphasize

these signals are absent in conventional QED predictions, representing a precise way

of testing Lorentz and CPT invariance.

We note from (4.26) that sensitivity to higher dimensional coefficients typically

increases with powers of the energy. As detailed below, this behavior places Fermilab

and J-PARC experiments in very distinct positions as each of them may enjoy very dif-

ferent sensitivity to some coefficient combinations. Both may typically achieve similar

sensitivities to minimal spherical coefficients, but J-PARC’s smaller γ due to the use

of ultra-cold muons results in improved sensitivity of order 10 to Cartesian coefficients

tied to factors of 1④γ. On the other hand, Fermilab’s use of high energetic muons

may lead to comparatively stronger bounds on the nonminimal coefficients. Moreover,

combined use of results from both experiments can be used to place bounds on differ-

ent coefficient combinations, usually inaccessible in single experiments. Having both

experiments running in completely different experimental setup opens a great venue

for deep investigations of Lorentz violation in the muon sector.

4.3.3 Muon/Antimuon comparison

Comparison between µ✁ and µ� anomaly frequency can be used to access time-

independent (m✶ ✏ 0) Lorentz-violating signals in the measurement of the anomaly

frequency δω✟a (4.26) and, for instance, disentangle contributions from CPT even and

CPT odd coefficients as well. If CPT symmetry is broken — implying Lorentz sym-

metry is broken as well — differences between particles and antiparticles are to be

expected. Actual measurements of g ✁ 2 are made in different runs for µ� and µ✁,

therefore we consider the time-averaged difference ①∆ωa② ✏ ①δω�a ② ✁ ①δω✁a ② over many

120
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Table 4.3: Some useful values of Gjm♣χq for the BNL, Fermilab, and J-PARC experi-
ments.

j m CERN (43.7✆) BNL (49.1✆) Fermilab (48.2✆) J-PARC (53.5✆)

1 0 0.353 0.320 0.326 0.291

✟1 ✠0.239 ✠0.261 ✠0.258 ✠0.278
3 0 0.156 0.314 0.291 0.410

✟1 ✟0.540 ✟0.419 ✟0.441 ✟0.300
✟2 ✁0.529 ✁0.573 ✁0.568 ✁0.589
✟3 ✟0.206 ✟0.270 ✟0.259 ✟0.325

5 0 ✁0.694 ✁0.493 ✁0.536 ✁0.245
✟1 ✟0.241 ✟0.518 ✟0.481 ✟0.639
✟2 0.623 0.340 0.392 0.0750

✟3 ✠0.792 ✠0.801 ✠0.806 ✠0.736
✟4 0.453 0.588 0.566 0.684

✟5 ✠0.137 ✠0.215 ✠0.200 ✠0.292
7 0 ✁0.170 ✁0.634 ✁0.576 ✁0.773

sidereal days, leading to

①∆ωa② ✏ 4
➳
dn j

Ed✁3
0 Gj0♣χqǧ♣dqnj0. (4.27)

Comparison using data collected at the same geographical location has access to CPT

odd coefficients only, but as we will see soon, comparison between data from different

locations allows access to CPT even coefficients as well.

The Muon ♣g ✁ 2q Collaboration found no differences between µ� and µ✁

anomaly frequency within the achieved experimental precision [83], leading to ①∆ωa② ✏
♣✁9.2 ✟ 9.4q ✂ 10✁25 GeV. They (separately) used µ� and µ✁ beams with E0 ✏
3.096GeV in the BNL experiment, and using their bound on ①∆ωa② along with ex-

pression (4.27), we set new constraints on Lorentz- and CPT-violating coefficients ǧ
♣dq
njm

of arbitrary dimension. Bounds on coefficient combinations of d ✏ 4, 6, 8, 10 are listed
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4. Testing Lorentz symmetry with muon ♣g ✁ 2q experiments

Table 4.4: Constraints on combinations of CPT odd coefficients from comparison be-
tween µ� and µ✁ anomaly frequency using data from BNL Muon ♣g ✁ 2q experiment.
Units are GeV4✁d.

d Combination Upper bound

4 ǧ
♣4q
010 ♣✁2.3✟ 2.4q ✂ 10✁25

6
➳
n✏0,2

ǧ
♣6q
n10 � 0.98 ǧ

♣6q
230 ♣✁2.4✟ 2.5q ✂ 10✁26

8
➳

n✏0,2,4

ǧ
♣8q
n10 � 0.98

➳
n✏2,4

ǧ
♣8q
n30 ✁ 1.5 ǧ

♣8q
450 ♣✁2.5✟ 2.6q ✂ 10✁27

10
➳

n✏0,2,4,6

ǧ
♣10q
n10 � 0.98

➳
n✏2,4,6

ǧ
♣10q
n30 ✁ 1.5

➳
n✏4,6

ǧ
♣10q
n50 ✁ 2.0 ǧ

♣10q
670 ♣✁2.6✟ 2.7q ✂ 10✁28

in Table 4.4, and bounds for individual coefficients are listed in Table 4.5.

In terms of fundamental SME coefficients, the minimal coefficient ǧ
♣4q
010 can be

written as

ǧ
♣4q
010 ✏

2

E0

❝
π

3

✓
1

γ

✁
b
♣3q
Z �mµg

♣4q
XY T

✠
� 3

2
γ

✂
1✁ 1

γ2

✡
mµg

♣4q♣Mq
XY T

✛
, (4.28)

where the notation Kν... with ν ✏ tT,X, Y, Z✉ is a reminder that these are quantities

defined in the Sun-centered frame. The bound on the spherical effective coefficient ǧ
♣4q
010

— see first line of Table 4.4 — is naturally translated into a bound on a combination

of fundamental coefficients, and individual bounds on such coefficients can be readily

inferred. For the BNL experiment, E0 ✏ 3.096GeV and γ ✏ 29.3, and using the bound

ǧ
♣4q
010 ✏ ♣✁2.3✟ 2.4q✂ 10✁25, we find b

♣3q
Z ✏ ♣✁1.0✟ 1.1q✂ 10✁23 GeV, in agreement with

Ref. [2]. We can also provide new bounds on g
♣4q
XY T . Its axial contribution g

♣4q♣Aq
XY T only

appears in the combination b
♣3q
Z �mµg

♣4q♣Aq
XY T , thus it is bounded accordingly to the bound

on b
♣3q
Z . The trace part g

♣4q♣Tq
XY T contribution vanishes. Finally, the mixed-symmetry part

contribution is bounded as g
♣4q♣Mq
XY T ✏ ♣✁7.3✟ 8.0q ✂ 10✁26. The coefficient combination

is constrained as ♣b♣3qZ �mµg
♣4q♣Aq
XY T q � 1.3✂ 103mµg

♣4q♣Mq
XY T ✏ ♣✁1.0✟ 1.1q ✂ 10✁23 GeV.

As we can see from (4.27), comparison between µ� and µ✁ anomaly frequency

within a single experiment has access to CPT odd coefficients only. On the other hand,
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Table 4.5: Bounds on spherical CPT odd coefficients from the antimuon/muon
anomaly-frequency difference in the BNL Muon (g ✁ 2) experiment. Given in units
of GeV4✁d.

d Coefficient Constraint

4 ǧ
♣4q
010 ♣✁2.3✟ 2.4q ✂ 10✁25

6 ǧ
♣6q
010, ǧ

♣6q
210 ♣✁2.4✟ 2.5q ✂ 10✁26

ǧ
♣6q
230 ♣✁2.5✟ 2.5q ✂ 10✁26

8 ǧ
♣8q
010, ǧ

♣8q
210, ǧ

♣8q
410 ♣✁2.5✟ 2.6q ✂ 10✁27

ǧ
♣8q
230, ǧ

♣8q
430 ♣✁2.6✟ 2.6q ✂ 10✁27

ǧ
♣8q
450 ♣1.6✟ 1.7q ✂ 10✁27

10 ǧ
♣10q
010 , ǧ

♣10q
210 , ǧ

♣10q
410 , ǧ

♣10q
610 ♣✁2.6✟ 2.7q ✂ 10✁28

ǧ
♣10q
230 , ǧ

♣10q
430 , ǧ

♣10q
630 ♣✁2.7✟ 2.7q ✂ 10✁28

ǧ
♣10q
450 , ǧ

♣10q
650 ♣1.7✟ 1.7q ✂ 10✁28

ǧ
♣10q
670 ♣1.3✟ 1.4q ✂ 10✁28

comparison among experiments in different locations can be used for constraining CPT

even coefficients as well,

①∆R♣1, 2q② ✏ 2
➳
dn j

Ed✁3
0

✧✒
Gj0♣χ1q
ωp1

� Gj0♣χ2q
ωp2

✚
ǧ
♣dq
nj0 �

✒
Gj0♣χ1q
ωp1

✁ Gj0♣χ2q
ωp2

✚
Ȟ

♣dq
nj0

✯
,

(4.29)

where ①∆R♣1, 2q② ✑ δR�♣χ1q ✁ δR✁♣χ2q, with ①δR✟♣χiq② ✑ ①δω✟a ♣χiq②④ω✟pi , and ω✟pi

accounts for the magnetic field used at the experiment located at χi running with µ✟

— see Sec. 4.2.4. Therefore, differences between ωa for µ
� and µ✁ are not caused only

by CPT violation, but by pure Lorentz violation as well.

Data available from muon (g ✁ 2) experiments at CERN [98] and BNL [83] can

be used to impose new constraints on CPT even spherical coefficients. The strongest

bounds come from ∆R♣CERN,BNLq ✏ ♣✁3.5 ✟ 3.6q ✂ 10✁8, where we have used

R�♣χCERNq ✏ 3.707173♣36q✂10✁3, R✁♣χBNLq ✏ 3.7072083♣26q✂10✁3, ω�p(CERN)
④♣2πq ✔
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Table 4.6: Constraints on combinations of CPT even coefficients from comparison
between µ� and µ✁ anomaly frequency using data from CERN’s and BNL’s muon
♣g ✁ 2q experiments. Units are GeV4✁d.

d Combination Upper bound

3 Ȟ
♣3q
010 ♣✁1.6✟ 1.7q ✂ 10✁22

5
➳
n✏0,2

Ȟ
♣5q
n10 ✁ 5.8 Ȟ

♣5q
230 ♣✁1.7✟ 1.7q ✂ 10✁23

7
➳

n✏0,2,4

Ȟ
♣7q
n10 ✁ 5.8

➳
n✏2,4

Ȟ
♣7q
n30 ✁ 6.9 Ȟ

♣7q
450 ♣✁1.7✟ 1.8q ✂ 10✁24

9
➳

n✏0,2,4,6

Ȟ
♣9q
n10 ✁ 5.8

➳
n✏2,4,6

Ȟ
♣9q
n30 ✁ 6.9

➳
n✏4,6

Ȟ
♣9q
n50 � 17 Ȟ

♣9q
670 ♣✁1.8✟ 1.9q ✂ 10✁25

6.278302♣5q ✂ 107 Hz, and ω✁p(BNL)
④♣2πq ✔ 6.1791400♣11q ✂ 107 Hz. These bounds

are given in Table 4.6 for coefficient combinations and in Table 4.7 for individual

coefficients. Bounds on CPT odd coefficients from comparison of different experiments

are typically weaker than bounds coming from a single experiment — as in Table 4.5

— and, therefore, were omited.

Upcoming Fermilab and J-PARC experiments are primarily intended to measure

g ✁ 2 for µ� only, but if later upgrades allow the use of µ✁ as well, both experiments

could improve current bounds on CPT odd coefficients from muon/antimuon compar-

ison, as in (4.27), roughly by a factor of 5 because of improved precision alone. For

some coefficients — for instance, see (4.28) — J-PARC could also achieve another extra

improvement by a factor of 10 because γJ-PARC ✒ γFermilab④10. Also, data from both

experiments could be used together to specify new bounds on CPT even coefficients

appearing in (4.29).

4.3.4 Sidereal variations of the anomaly frequency

Sidereal variations of the anomaly frequency, i.e., daily oscillations of its mea-

sured value as the Earth spins, are to be expected if Lorentz symmetry is broken.

Lorentz-violating background fields are taken as constant in our approach, meaning
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Table 4.7: Bounds on spherical CPT even coefficients from the antimuon/muon
anomaly-frequency difference between the CERN and BNL experiments, given in units
of GeV4✁d.

d Coefficient Constraint

3 Ȟ
♣3q
010 ♣✁1.6✟ 1.7q ✂ 10✁22

5 Ȟ
♣5q
010, Ȟ

♣5q
210 ♣✁1.7✟ 1.7q ✂ 10✁23

Ȟ
♣5q
230 ♣2.9✟ 3.0q ✂ 10✁24

7 Ȟ
♣7q
010, Ȟ

♣7q
210, Ȟ

♣7q
410 ♣✁1.7✟ 1.8q ✂ 10✁24

Ȟ
♣7q
230, Ȟ

♣7q
430 ♣3.0✟ 3.1q ✂ 10✁25

Ȟ
♣7q
450 ♣2.6✟ 2.6q ✂ 10✁25

9 Ȟ
♣9q
010, Ȟ

♣9q
210, Ȟ

♣9q
410, Ȟ

♣9q
610 ♣✁1.8✟ 1.9q ✂ 10✁25

Ȟ
♣9q
230, Ȟ

♣9q
430, Ȟ

♣9q
630 ♣3.2✟ 3.3q ✂ 10✁26

Ȟ
♣9q
450, Ȟ

♣9q
650 ♣2.7✟ 2.7q ✂ 10✁26

Ȟ
♣9q
670 ♣✁1.1✟ 1.1q ✂ 10✁26

they have a fixed direction in spacetime. Nevertheless, as the Earth rotates, the per-

ceived direction of the background field changes over the sidereal day, as illustrated

in Fig. 4.5. Any physical quantity depending on Lorentz-violating coefficients will

accordingly exhibit variations of its absolute value on the course of a day. In our case,

this quantity is the anomaly frequency ωa, which receives a contribution δωa due to

Lorentz violation. Expressing δωa in the nonrotating Sun-centered frame reveals the

time-dependence of the Lorentz-violating correction, as we can infer from the time-

dependent (m✶ ✘ 0) part of (4.26), which can be rewritten as

δω✟
a♣SVq ✏

➳
m̃

A✟
m̃Ω cos♣m̃Ωt� φm̃q, (4.30)

where m̃ ✏ 1, 2, . . . and φm̃ an associated phase, revealing an interference pattern com-

ing from oscillations with different integer multiples m̃ of Earth’s rotational frequency
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Ω, each oscillation with amplitude

A✟
m̃Ω ✏

❜
Re
�
K✟
m̃

✟2 � Im
�
K✟
m̃

✟2
, where K✟

m̃ ✑ 4
➳
dn j

Ed✁3
0 Gjm̃♣χqǨ♣dq✟

njm̃ , (4.31)

and the Lorentz-violating factor Ǩ
♣dq✟
njm̃ as defined by the observable coefficient combi-

nation for this sort of signal given by

Ǩ
♣dq✟
njm̃ ✑ Ȟ

♣dq
njm̃ ✟ E0 ǧ

♣d�1q
njm̃ , (4.32)

with the summation ranges listed in Table 4.2. Note the above expressions are valid

for arbitrarily high values of d, and the maximum value of m̃ for a model with a

specific d is determined by the restriction d ♣oddq ➙ m̃ � 2 of the summation in d of

Eq. (4.31). For instance, in this context, signals with m̃ ✏ 2, 3 come from spherical

coefficients with d ➙ 5, and signals with m̃ ✏ 4, 5 come from d ➙ 7. Typically,

minimal coefficients contribute to signals repeating within no more than one sidereal

frequency but when studying signals with annual variation in the next section, we will

see minimal coefficients can also generate subleading-order signals within two sidereal

variations suppressed by a factor of order 106 due to Earth’s rotational speed.

Once more, for a consistency check, considering only contributions from the min-

imal SME, in terms of fundamental coefficients, signals within one sidereal frequency

have amplitude given by

A
✟♣mSMEq
1Ω ✏ 2 ⑤ sinχ⑤

❜�
b̌
♣3q✟
X

✟2 � �b̌♣3q✟Y

✟2
, (4.33)

which follows from (4.31) using

Re
✁
Ǩ
♣3q✟
011

✠
✏ Re

✁
Ȟ

♣3q
011 ✟ E0 ǧ

♣4q
011

✠
✏ ✁

❝
2π

3
b̌
♣3q✟
X ,

Im
✁
Ǩ
♣3q✟
011

✠
✏ Im

✁
Ȟ

♣3q
011 ✟ E0 ǧ

♣4q
011

✠
✏ ✁

❝
2π

3
b̌
♣3q✟
Y , (4.34)
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Figure 4.5: Approximate constancy of the background field with respect to Earth’s
position in space in the course of a day (top) and apparent sidereal variation of the
background vector as seen by an observer at a rotating Earth-based frame (bottom).

where the definition

b̌
♣3q✟
J ✑✟ 1

γ

✁
b
♣3q
J � 1

2
mǫJKLg

♣4q
KLT

✠
� 1

2
ǫJKLH

♣3q
KL �mµd

♣4q
JT ✟ 3

4
γ
✁
1✁ 1

γ2

✠
mµǫJKL g

♣4q♣Mq
KLT ,

(4.35)

follows from the one introduced in Eq. (4.24), now in terms of Sun-frame quantities,

as indicated by the uppercase indices. These expressions agree with the results of

Ref. [2], but again we have extra contributions from the g
♣4q
κλν coefficient which was

not considered in the aforementioned reference. Note that inclusion of nonminimal

coefficients alters the amplitude (4.33) by adding such coefficients inside each of the

squared factors, as dictated by (4.31).

The Muon ♣g✁2q Collaboration searched for sidereal variations considering time

stamps on frequency measurements at BNL and studied the data collected under the
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hypothesis of a signal within one sidereal frequency [2]. For instance, the data set from

1999 for µ� was acquired from 806 runs, each with duration of about 30 minutes, spread

along 25 days [89]. A run i was associated with a time ti assigned by the center of the

time interval which encompassed the run i— for example, if the run started at 8:45AM

and ended at 9:15AM, then ti ✏ 9.0. Data from each run i were individually processed

and fitted to give ωa♣tiq, along with a measured ωp♣tiq, leading to R♣tiq ✑ ωa♣tiq④ωp.
Data R♣tiq✂ti from 1999 and 2000 for µ�, and from 2001 for µ✁ were then fitted under

the hypothesis of signals within one sidereal variation, i.e.,

R♣tiq ✏ k � A1Ω

ωp
cos ♣Ωti � φq , (4.36)

where the constant k ✑ λaµ
1�aµ

is chosen in order to recover (4.5) if A1Ω ✏ 0. No

statistically significant sidereal variation was observed, resulting in the bounds A�
1Ω ↕

2.12 ✂ 10✁24 GeV and A✁
1Ω ↕ 3.93 ✂ 10✁24 GeV at the 95% confidence level. In our

framework, this is translated into bounds on Lorentz-violating coefficients by means

of (4.31), which constrains not only minimal coefficients, but a combination involving

also nonminimal ones from operators of arbitrarily high dimension — see Table 4.8 for

bounds on the combination Ǩ
♣dq✟
nj1 and Table 4.9 for bounds on the modulus of real or

imaginary parts of individual spherical coefficients of dimension up to eight. Reanalysis

of the BNL data could be used to impose new constraints on sidereal variations with

higher frequencies (m̃ → 1) due to nonminimal coefficients.

Assuming precisions of 140 ppb (Fermilab) and 100 ppb (J-PARC) for the mea-

surement of δωa in upcoming ♣g ✁ 2q experiments, we estimate new constraints from

sidereal variations, listed in Table 4.10, and sensitivities for individual coefficients in

Table 4.11. The energy dependence of the amplitude (4.31) implies that the coeffi-

cient combination (4.32) has an upper bound roughly of order A✟
m̃Ω④4Edmin✁3

0 , where

dmin ✏ m̃ � 2 is the lowest (odd) dimension appearing in the combination, there-

fore Fermilab and J-PARC experiments typically have about the same sensitivity to

minimal spherical coefficients (d ✏ 3), but the latter’s sensitivity to nonminimal ones

(d → 3) is gradually suppressed roughly by a factor of ♣EFermilab
0 ④EJ-PARC

0 qd✁3 ✒ 10d✁3

128



4. Testing Lorentz symmetry with muon ♣g ✁ 2q experiments

Table 4.8: Constraints on combinations Ǩ
♣dq✟
nj1 ✑ Ȟ

♣dq
nj1 ✟ E0 ǧ

♣d�1q
nj1 , where E0 ✏

3.096GeV, from the BNL data for one-sidereal variations of ωa. Given in units of
GeV4✁d.

d Combination ♣Cq Constraint on
❛
Re♣Cq2 � Im♣Cq2

for µ� for µ✁

3 Ǩ
♣3q✟
011 2.03✂ 10✁24 3.76✂ 10✁24

5
➳
n✏0,2

Ǩ
♣5q✟
n11 ✁ 1.60 Ǩ

♣5q✟
231 2.12✂ 10✁25 3.93✂ 10✁25

7
➳

n✏0,2,4

Ǩ
♣7q✟
n11 ✁ 1.60

➳
n✏2,4

Ǩ
♣7q✟
n31 ✁ 1.99 Ǩ

♣7q✟
451 2.21✂ 10✁26 4.09✂ 10✁26

in comparison to Fermilab’s. On the other hand, once more, J-PARC’s smaller value

of γ may lead to an extra improvement of a factor of 10 on sensitivity to fundamental

coefficients tied to 1④γ factors.

It is important to mention that Lorentz violating signals within up to two side-

real variations are not signatures coming solely from nonminimal coefficients as it can

also be induced from minimal ones by annual variations, as discussed in the next

section.

4.3.5 Annual variations of the anomaly frequency

In the course of days or a few weeks, the Earth’s motion around the Sun can

be neglected, and a rotating Earth-based laboratory frame and a nonrotating Sun-

centered frame are related by a simple rotation once contributions proportional to

Earth’s rotational speed βL ✒ 10✁6 are disregarded as they are highly suppressed.

This is the case for the search for sidereal variations of the anomaly frequency, as

performed in the previous section. On the other hand, in the search for month- or

year-long spanning effects — the case for annual variations — the Earth’s orbital

motion is to be taken into account, introducing extra contributions proportional to

its orbital speed β❈ ✒ 10✁4 encoding these effects since an extra boost is involved

when relating laboratory and Sun-centered reference frames. In Appendix A we derive

the transformation to the Sun-centered frame, considering all contributions up to first
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Table 4.9: Constraints on the modulus of real or imaginary parts of spherical coefficients
from searches for one-sidereal variations of ωa obtained from the BNL experiment data.
Given in unit of GeV4✁d.

d Coefficient Constraint for µ� Constraint for µ✁

3 Ȟ
♣3q
011 2.03✂ 10✁24 3.76✂ 10✁24

4 ǧ
♣4q
011 6.56✂ 10✁25 1.21✂ 10✁24

5 Ȟ
♣5q
011, Ȟ

♣5q
211 2.12✂ 10✁25 3.93✂ 10✁25

Ȟ
♣5q
231 1.32✂ 10✁25 2.45✂ 10✁25

6 ǧ
♣6q
011, ǧ

♣6q
211 6.84✂ 10✁26 1.27✂ 10✁25

ǧ
♣6q
231 4.26✂ 10✁26 7.90✂ 10✁26

7 Ȟ
♣7q
011, Ȟ

♣7q
211, Ȟ

♣7q
411 2.21✂ 10✁26 4.09✂ 10✁26

Ȟ
♣7q
231, Ȟ

♣7q
431 1.38✂ 10✁26 2.55✂ 10✁26

Ȟ
♣7q
451 1.11✂ 10✁26 2.06✂ 10✁26

8 ǧ
♣8q
011, ǧ

♣8q
211, ǧ

♣8q
411 7.13✂ 10✁27 1.32✂ 10✁26

ǧ
♣8q
231, ǧ

♣8q
431 4.45✂ 10✁27 8.24✂ 10✁27

ǧ
♣8q
451 3.59✂ 10✁27 6.66✂ 10✁27

order in the speeds β❈ and βL (the last one included for completeness reasons).

In what follows, we restrict ourselves to Cartesian minimal coefficients. The

reason for this restriction is twofold: (i) a spherical description of the coefficients is

suitable for analysis of rotational properties, but is intractable when boosts are consid-

ered, and (ii) nonminimal coefficients are neatly described in the formalism based in

spherical coordinates, as done before, but in Cartesian coordinates the large number

of indices makes the analysis much more cumbersome. Therefore, only minimal coeffi-

cients in Cartesian coordinates will be studied in this section. To simplify the notation,

from now on indices indicating the dimension of coefficients will be suppressed and the

mass will be denoted by m instead of mµ. In what follows, we present the analysis for

µ� first, and then for µ✁.
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Table 4.10: Estimated bounds on combinations Ǩ
♣dq✟
njm̃ ✑ Ȟ

♣dq
njm̃ ✟E0 ǧ

♣d�1q
njm̃ , where E0 ✏

3.096GeV (Fermilab) or E0 ✏ 0.320GeV (J-PARC), from sidereal variations of ωa.
Given in units of GeV4✁d.

d m̃ Combination ♣Cq Bound on
❛
Re♣Cq2 � Im♣Cq2

Fermilab J-PARC

3 1 Ǩ
♣3q✟
011 1.3✂ 10✁25 8.5✂ 10✁26

5 1
➳
n✏0,2

Ǩ
♣5q✟
n11 � G31♣χq

G11♣χq
Ǩ
♣5q✟
231 1.3✂ 10✁26 8.3✂ 10✁25

2 Ǩ
♣5q✟
232 6.1✂ 10✁27 3.9✂ 10✁25

3 Ǩ
♣5q✟
233 1.3✂ 10✁26 7.1✂ 10✁25

7 1
➳

n✏0,2,4

Ǩ
♣7q✟
n11 � G31♣χq

G11♣χq

➳
n✏2,4

Ǩ
♣7q✟
n31 � G51♣χq

G11♣χq
Ǩ
♣7q✟
451 1.4✂ 10✁27 8.1✂ 10✁24

2
➳
n✏2,4

Ǩ
♣7q✟
n32 � G52♣χq

G32♣χq
Ǩ
♣7q✟
452 6.4✂ 10✁28 3.8✂ 10✁24

3
➳
n✏2,4

Ǩ
♣7q✟
n33 � G53♣χq

G33♣χq
Ǩ
♣7q✟
453 1.4✂ 10✁27 6.9✂ 10✁24

4 Ǩ
♣7q✟
454 6.47✂ 10✁28 3.3✂ 10✁24

5 Ǩ
♣7q✟
455 1.8✂ 10✁27 7.7✂ 10✁24

Antimuons

We have seen in Sec. 4.3.2 the Lorentz-violating correction to the anomaly

frequency for µ� due to minimal coefficients in the laboratory frame is given by (4.24),

δω�a ✏ 2b̌✝3 , (4.37)

where we had defined the “haček” coefficient

b̌✝3 ✑ 1
γ
♣b3 �mg120q � 3

2
γ
✁
1✁ 1

γ2

✠
mgM120 �md30 �H12, (4.38)

which is the measurable laboratory combination of minimal fundamental coefficients

to which the experiment is sensitive. Note we have changed our notation, and instead

of a superscript “+” for the antimuon, we are using “*” to match the conventions of
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Table 4.11: Estimated sensitivities to real or imaginary parts of individual coefficients
Ȟ

♣dq
njm̃ and ǧ

♣dq
njm̃ from sidereal variations of ωa, given in units of GeV4✁d.

Coefficient Fermilab J-PARC Coefficient Fermilab J-PARC

Ȟ
♣3q
011 1.3✂ 10✁25 8.5✂ 10✁26 ǧ

♣4q
011 4.2✂ 10✁26 2.7✂ 10✁25

Ȟ
♣5q
011, Ȟ

♣5q
211 1.3✂ 10✁26 8.3✂ 10✁25 ǧ

♣6q
011, ǧ

♣6q
211 4.3✂ 10✁27 2.6✂ 10✁24

Ȟ
♣5q
231 7.9✂ 10✁27 7.7✂ 10✁25 ǧ

♣6q
231 2.5✂ 10✁27 2.4✂ 10✁24

Ȟ
♣5q
232 6.1✂ 10✁27 3.9✂ 10✁25 ǧ

♣6q
232 2.0✂ 10✁27 1.2✂ 10✁24

Ȟ
♣5q
233 1.3✂ 10✁26 7.1✂ 10✁25 ǧ

♣6q
233 4.3✂ 10✁27 2.2✂ 10✁24

Ȟ
♣7q
011, Ȟ

♣7q
211, Ȟ

♣7q
411 1.4✂ 10✁27 8.1✂ 10✁24 ǧ

♣8q
011, ǧ

♣8q
211, ǧ

♣8q
411 4.5✂ 10✁28 2.5✂ 10✁23

Ȟ
♣7q
231, Ȟ

♣7q
431 8.2✂ 10✁28 7.5✂ 10✁24 ǧ

♣8q
231, ǧ

♣8q
431 2.7✂ 10✁28 2.3✂ 10✁23

Ȟ
♣7q
451 7.4✂ 10✁28 3.5✂ 10✁24 ǧ

♣8q
451 2.4✂ 10✁28 1.1✂ 10✁23

Ȟ
♣7q
232, Ȟ

♣7q
432 6.3✂ 10✁28 3.8✂ 10✁24 ǧ

♣8q
232, ǧ

♣8q
432 2.0✂ 10✁28 1.2✂ 10✁23

Ȟ
♣7q
452 9.2✂ 10✁28 3.0✂ 10✁23 ǧ

♣8q
452 3.0✂ 10✁28 9.4✂ 10✁23

Ȟ
♣7q
233, Ȟ

♣7q
433 1.4✂ 10✁27 6.9✂ 10✁24 ǧ

♣8q
233, ǧ

♣8q
433 4.5✂ 10✁28 2.2✂ 10✁23

Ȟ
♣7q
453 4.5✂ 10✁28 3.1✂ 10✁24 ǧ

♣8q
453 1.4✂ 10✁28 9.6✂ 10✁24

Ȟ
♣7q
454 6.4✂ 10✁28 3.3✂ 10✁24 ǧ

♣8q
454 2.1✂ 10✁28 1.0✂ 10✁23

Ȟ
♣7q
455 1.8✂ 10✁27 7.7✂ 10✁24 ǧ

♣8q
455 5.8✂ 10✁28 2.4✂ 10✁23

Ref. [10] for minimal coefficients. As we have seen before, one of the interesting features

of signals with sidereal variations is that it allows to measure different components of

b̌✝µ besides the axial one, namely, b̌✝X and b̌✝Y . For the case of annual variations, due to

the boost involved in the transformation to the Sun-frame, we get access to different

coefficient combinations besides b̌✝µ. To know δωa in the Sun-centered frame all we need

is the expression for b̌✝3 in this reference frame. Explicitly, in the Sun-frame, b̌✝3 is given

by

b̌✝3 ✏ cosχb̌✝Z � βL sinχ
✁

2γ

♣γ�1q2
ďXY ✁ 11γ2✁6γ✁1

2♣γ�1q♣2γ✁1q
ǧZX ✁ 1✁3γ

2✁4γ
ǧZY ✁ 2γ

γ�1
ȞZT

✠
� β❈ cosχ cosΩ❈T

✑
cos η

✁
✁ 7γ2✁2γ✁1

♣γ�1q♣2γ✁1q
ǧXY ✁ 2γ

γ�1
ȞXT

✠
� sin η

✁
✁7γ4�2γ2✁1

2γ♣3γ2✁1q
b̌T � 7γ4✁4γ2�1

2γ♣3γ2✁1q
ǧT ✁ 2γ♣γ2�1q

3γ2✁1
ď� � 2γ3

3γ2✁1
ďQ

✠ ✙
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� β❈ cosχ sinΩ❈T
✑ ✁

4γ

♣γ�1q2
ďZX ✁ 4γ♣γ✁1q

♣γ�1q♣2γ✁1q
ǧY Z ✁ 1✁3γ

1✁2γ
ǧY X ✁ 2γ

γ�1
ȞY T

✠ ✙
� cosΩt

✦
sinχb̌✝X � βL cosχ

✁
7γ2✁2γ✁1

♣γ�1q♣2γ✁1q
ǧXY � 2γ

γ�1
ȞXT

✠
✁ β❈ sinχ cosΩ❈T

✑
cos η

✁
4γ

♣γ�1q2
ďXY ✁ 4γ♣γ✁1q

♣γ�1q♣2γ✁1q
ǧZX ✁ 1✁3γ

1✁2γ
ǧZY ✁ 2γ

γ�1
ȞZT

✠
� sin η

✁
7γ2✁2γ✁1

♣γ�1q♣2γ✁1q
ǧY Z � 2γ

γ�1
ȞY T

✠ ✙
� β❈ sinχ sinΩ❈T

✁
✁ ♣6γ2✁7q♣γ�2qγ3✁2γ♣5γ✁1q�3

2γ♣γ�1q2♣3γ2✁1q
b̌T � 2γ

♣γ�1q2
ď✁ � 4

♣γ�1q2
ǧc

� ♣6γ2✁1q♣γ�2qγ3✁2γ♣3γ�1q�1

2γ♣γ�1q2♣3γ2✁1q
ǧT � 4γ

3γ2✁1
ď� ✁ γ

3γ2✁1
ďQ

✠✮
� sinΩt

✦
sinχb̌✝Y ✁ βL cosχ

✁
4γ

♣γ�1q2
ďZX ✁ 4γ♣γ✁1q

♣γ�1q♣2γ✁1q
ǧY Z ✁ 1✁3γ

1✁2γ
ǧY X ✁ 2γ

γ�1
ȞY T

✠
� β❈ sinχ cosΩ❈T

✑
cos η

✁
✁3γ4♣γ�2q�4♣γ3✁1q�γ♣14γ�1q

2♣γ�1q2♣3γ2✁1q
b̌T � 2γ

♣γ�1q2
ď✁ � 4

♣γ�1q2
ǧc

�3γ5♣γ�2q✁2♣γ4✁1q�γ2♣2γ✁3q
2γ♣γ�1q2♣3γ2✁1q

ǧT ✁ 4
3γ2✁1

ď� � γ

3γ2✁1
ďQ

✠
� sin η

✁
✁ 4γ

♣γ�1q2
ďY Z � 4γ♣γ✁1q

♣γ�1q♣2γ✁1q
ǧXY � 1✁3γ

1✁2γ
ǧXZ � 2γ

γ�1
ȞXT

✠
� β❈ sinχ sinΩ❈T

✑ ✁
7γ2✁2γ✁1

♣γ�1q♣2γ✁1q
ǧZX � 2γ

γ�1
ȞZT

✠ ✙✮
� cos 2Ωt

✑
βL sinχ

✁
2γ

♣γ�1q2
ďXY � 1✁3γ

2✁4γ
♣ǧZX ✁ ǧZY q

✠ ✙
� sin 2Ωt

✑
βL sinχ

✁
3γ3♣γ�2q�2γ✁3

4γ♣γ�1q2
b̌T ✁ 2γ

♣γ�1q2
ď✁ ✁ 4

♣γ�1q2
ǧc ✁ 3γ3♣γ�2q�2γ✁3

4γ♣γ�1q2
ǧT

✠ ✙
,

(4.39)

where Ω is Earth’s rotational frequency and χ is the colatitude of the experiment in the

northern hemisphere, as defined before, and Ω❈ ✏ 2π④♣365.26 daysq and η ✏ 23.5✆ are

the Earth’s orbital frequency and orbital tilt with respect to the equator, respectively,

and we have introduced haček coefficients by the definitions

b̌J ✏ 1
γ
♣bJ � 1

2
mǫJKLgKLT q ✁ 1

2
ǫJKLHKL ✁mdJT � 3

4
γ
✁
1✁ 1

γ2

✠
mǫJKL g

♣Mq
KLT ,

b̌✝J ✏ 1
γ
♣bJ � 1

2
mǫJKLgKLT q � 1

2
ǫJKLHKL �mdJT � 3

4
γ
✁
1✁ 1

γ2

✠
mǫJKL g

♣Mq
KLT ,

b̌T ✏ bT �mgXY Z ,

ǧT ✏ ♣bT �mgXY Zq ✁ 3mg
♣Mq
XY Z ,

ȞXT ✏ 1
2

✁
1� 1

γ

✠
♣HXT �mdZY q ✁ 1

2

✁
2γ � 1✁ 1

γ

✠
m
✁
g
♣Mq
XTT � g

♣Mq
XY Y

✠
,
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ȞY T ✏ 1
2

✁
1� 1

γ

✠
♣HY T �mdXZq ✁ 1

2

✁
2γ � 1✁ 1

γ

✠
m
✁
g
♣Mq
Y TT � g

♣Mq
Y ZZ

✠
,

ȞZT ✏ 1
2

✁
1� 1

γ

✠
♣HZT �mdY Xq ✁ 1

2

✁
2γ � 1✁ 1

γ

✠
m
✁
g
♣Mq
ZTT � g

♣Mq
ZXX

✠
,

ď� ✏ 1
2
γ
✁
3✁ 1

γ2

✠
m♣dXX � dY Y q � γ

✁
1✁ 1

γ2

✠
mdZZ ,

ď✁ ✏ 1
4

✁
γ � 2� 1

γ

✠
m♣dXX ✁ dY Y q,

ďQ ✏ 1
2
γ
✁
3✁ 1

γ2

✠
m ♣dXX � dY Y q � γ

✁
1✁ 3

γ2

✠
mdZZ � 3mg

♣Mq
XY Z ,

ďJ ✏ m
�
dTJ � 1

2
dJT

✟✁ 1
4
εJKLHKL,

ďY Z ✏ 1
4

✁
γ � 2� 1

γ

✠
m
✁
dY Z � dZY ✁ g
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✁
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♣Mq
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✠
, ♣no K sum, J ✘ Kq. (4.40)

Definition of haček coefficients is motivated by the corresponding nonrelativistic “tilde”

coefficients of [10], which constitute the set of observable coefficients in nonrelativistic

experiments. Our approach to obtain these coefficients follows the same reasoning

used to obtain b̌3 from b̃3, in Sec. 4.3.2, i.e., by multiplying a tilde coefficient by the

time dilatation factor 1④γ and boosting it from the muon rest frame to the laboratory

frame. This reveals the haček definitions are the natural ones 3 when discussing boost

effects as each of them represents an independent observable coefficient combination.

An additional point is the above notation is defined to be the same for µ� and µ✁,

3Although this reasoning to define the haček coefficients seems natural, the unappealing dependence
on Lorentz γ factors both in the boosted expression for b̌✝3 and in the mentioned haček coefficients
may redeem these definitions unattractive to handle. As an alternative, in Ref. [13] we have in-
troduced “cleaner” definitions for these coefficients based on simpler, although potentially artificial,
modifications of the tilde coefficients.
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with no sign change. This is again motivated by the fact the tilde definitions behave

the same way.

The constant terms in the first line of (4.39) are inaccessible in single ♣g ✁
2q experiments, but can be bounded when considering comparison between µ� and

µ✁ anomaly frequency or comparison between experiments in different geographical

locations, as discussed in Sec. 4.3.3. The pieces proportional to βL may be neglected

once they are suppressed by a factor of 106.

Terms proportional to cosΩt and sinΩt from the fifth to the fourteenth line

bring up one-sidereal variations. The contributions of zeroth order in velocities were

previously studied in Sec. 4.3.4, and are the dominant one-sidereal contributions. The

four coefficient combinations proportional to β❈,

♣iq cos η
✁

4γ

♣γ�1q2
ďXY ✁ 4γ♣γ✁1q

♣γ�1q♣2γ✁1q
ǧZX ✁ 1✁3γ
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ǧZY ✁ 2γ

γ�1
ȞZT

✠
� sin η

✁
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γ�1
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✠
,

♣iiq ♣6γ2✁7q♣γ�2qγ3✁2γ♣5γ✁1q�3
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♣γ�1q2
ď✁ � 4

♣γ�1q2
ǧc

�3γ5♣γ�2q✁2♣γ4✁1q�γ2♣2γ✁3q
2γ♣γ�1q2♣3γ2✁1q

ǧT ✁ 4
3γ2✁1

ď� � γ
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ďQ

✠
� sin η

✁
✁ 4γ

♣γ�1q2
ďY Z � 4γ♣γ✁1q

♣γ�1q♣2γ✁1q
ǧXY � 1✁3γ
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γ�1
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✠
,

♣ivq 7γ2✁2γ✁1

♣γ�1q♣2γ✁1q
ǧZX � 2γ

γ�1
ȞZT , (4.41)

are signals varying with Earth’s sidereal frequency but slowly modulated by its annual

frequency. The remaining ones proportional to βL may be neglected as before as

their signals are suppressed by a factor of at least 100 with respect to the others and

suppressed by 106 compared to the leading signal.

The last two lines show that even minimal coefficients can induce twice-sidereal

signals, which was a feature that naturally appeared when considering nonminimal

coefficients in Sec. 4.3.4. However, in the present context, these signals coming from

135



4. Testing Lorentz symmetry with muon ♣g ✁ 2q experiments

minimal coefficients are suppressed by factors of at least 106 relative to the other

signals.

Finally, the second, third, and fourth lines,

b̌✝3 ⑩ β❈ cosχ cosΩ❈T
✑
cos η

✁
✁ 7γ2✁2γ✁1

♣γ�1q♣2γ✁1q
ǧXY ✁ 2γ

γ�1
ȞXT

✠
� sin η

✁
✁7γ4�2γ2✁1

2γ♣3γ2✁1q
b̌T � 7γ4✁4γ2�1

2γ♣3γ2✁1q
ǧT ✁ 2γ♣γ2�1q

3γ2✁1
ď� � 2γ3

3γ2✁1
ďQ

✠ ✙
� β❈ cosχ sinΩ❈T

✑ ✁
4γ

♣γ�1q2
ďZX ✁ 4γ♣γ✁1q

♣γ�1q♣2γ✁1q
ǧY Z ✁ 1✁3γ

1✁2γ
ǧY X ✁ 2γ

γ�1
ȞY T

✠ ✙
,

(4.42)

represent signals with pure annual variation. Sensitivity to these coefficients is nat-

urally suppressed by Earth’s orbital speed β❈ ✒ 10✁4, but this is the leading order

signal with annual variation to be searched for. Similarly to our estimates for sidereal

varying signals, we can estimate bounds on coefficient combinations by measuring δωa

within annual time range. In the context of minimal coefficients, δω�a ✏ 2b̌✝3 in the

laboratory frame, therefore assuming precision of 140 ppb for the measurement of ωa

at the Fermilab experiment (γ ✏ 29.3 and χ ✏ 48.2✆) and using the result above for

the Sun-frame coefficient, we predict an attainable bound of❜�
3.1ǧXY � 1.8ȞXT � 14b̌T ✁ 14ǧT � 7.8ď� ✁ 7.8ďQ

✟2 ☎ ☎ ☎
☎ ☎ ☎ � �

0.13ďZX ✁ 1.9ǧY Z ✁ 1.5ǧY X ✁ 1.9ȞY T

✟2 ➚ 1.0✂ 10✁21 GeV,

(4.43)

and assuming precision of 100 ppb for J-PARC (γ ✏ 3.03 and χ ✏ 53.5✆) we predict

the bound❜�
2.6 ǧXY � 1.4 ȞXT � 1.5 b̌T ✁ 1.4 ǧT � 9.2✂ 10✁1 ď� ✁ 8.3✂ 10✁1 ďQ

✟2 ☎ ☎ ☎
☎ ☎ ☎ � �

7.5✂ 10✁1 ďZX ✁ 1.2 ǧY Z ✁ 1.6 ǧY X ✁ 1.5 ȞY T

✟2 ➚ 8.0✂ 10✁22 GeV.

(4.44)

Search for annual variations of the anomaly frequency therefore allows bounds on

different coefficient combinations not accessible in sidereal variations analysis or
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muon/antimuons comparison analysis. In Table 4.12 we estimate the sensitivity to

individual Sun-frame µ� coefficients for Fermilab and J-PARC. As expected, both ex-

periments have competitive sensitivity to the minimal coefficients.

Table 4.12: Estimated sensitivity to real or imaginary parts of spherical Sun-frame µ�

coefficients.

Sun-frame coefficient Fermilab J-PARC

b̌T 7.1✂ 10✁23 GeV 5.3✂ 10✁22 GeV

ǧT 7.1✂ 10✁23 GeV 5.7✂ 10✁22 GeV

ȞXT 5.6✂ 10✁22 GeV 5.7✂ 10✁22 GeV

ȞY T 5.3✂ 10✁22 GeV 5.3✂ 10✁22 GeV

ď� 1.3✂ 10✁22 GeV 8.7✂ 10✁22 GeV

ďQ 1.3✂ 10✁22 GeV 9.6✂ 10✁22 GeV

ǧXY 3.2✂ 10✁22 GeV 3.1✂ 10✁22 GeV

ďZX 7.7✂ 10✁21 GeV 1.1✂ 10✁21 GeV

ǧY X 6.7✂ 10✁22 GeV 5.0✂ 10✁22 GeV

ǧY Z 5.3✂ 10✁22 GeV 6.7✂ 10✁22 GeV

Muons

All results of the previous section are for µ� coefficients, but results for µ✁

coefficients could be readily obtained by means of a CPT transformation, changing

the sign of the CPT odd fundamental coefficients bν and gκλν . For instance, see the

definition of b̌✟3 in (4.24), b̌✠3
CPTÝÝÝÑ b̌✟3 ✏ ✟ 1

γ
♣b✟3 �mg✟120q�H✟

12�md✟30✟ 3
2
γ♣1✁ 1

γ2
qmgM✟120 .

Alternatively, we can approach the results for muons using the haček definitions

of (4.40). As mentioned before, they were defined to be exactly the same for µ� and µ✁,

without any sign change. As a consequence, in what follows we obtain expressions for

µ✁ that at first seem to be unrelated by a CPT transformation to the corresponding

ones for µ�, but we emphasize they are definitely the CPT transformation of each
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other as it can be explicitly verified when they are written in terms of fundamental

coefficients instead of haček ones.

Following the above considerations, analogously to the antimuon discussion, in

the laboratory frame, muon ♣g ✁ 2q experiments are sensitive to the combination

b̌3 ✑ 1
γ
♣b3 �mg120q � 3

2
γ
✁
1✁ 1

γ2

✠
mgM120 ✁md30 ✁H12 (4.45)

because δω✁a ✏ 2b̌3. Comparing to (4.24), we emphasize we have once more changed

our notations to match the ones of Ref. [10]. Expression (4.24) and (4.45) are related

by b̌3 ✏ ✁b̌✁3 . In the Sun-frame, the above expression is given by
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ǧZY ✁ 2γ

γ�1
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� sin 2Ωt
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βL sinχ
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(4.46)

where the haček coefficients are given by (4.40).

Interpretation of (4.46) is identical to the analogous expression (4.39) for an-

timuons. We again highlight interesting combinations proportional to cosΩt cosΩ❈T ,

cos Ωt sinΩ❈T , sinΩt cosΩ❈T , and sinΩt sinΩ❈T bringing up one-sidereal variations

with slow annual modulation, respectively given by
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Terms with pure annual variations are the ones of the second, third, and fourth lines,
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(4.48)
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Considering upcoming ♣g ✁ 2q experiments, we predict an attainable bound of❜�
0.39ǧXY � 1.8ȞXT � 31b̌T ✁ 31ǧT � 7.8ď� ✁ 7.8ďQ

✟2 ☎ ☎ ☎
☎ ☎ ☎ � �

0.13ďZX ✁ 1.9ǧY Z � 1.4ǧY X ✁ 1.9ȞY T

✟2 ➚ 1.0✂ 10✁21 GeV

(4.49)

for the Fermilab experiment, and❜�
2.7✂ 10✁3 ǧXY � 1.4 ȞXT � 2.9 b̌T ✁ 3.0 ǧT � 9.3✂ 10✁1 ď� ✁ 8.4✂ 10✁1ďQ

✟2 ☎ ☎ ☎
☎ ☎ ☎ � �

7.5✂ 10✁1ďZX ✁ 1.0 ǧY Z � 1.0 ǧY X ✁ 1.5 ȞY T

✟2 ➚ 8.0✂ 10✁22 GeV,

(4.50)

for the J-PARC one. Estimates of the sensitivity to individual Sun-frame µ✁ coefficients

for Fermilab and J-PARC are given in Table 4.13.

Table 4.13: Estimated sensitivity to real or imaginary parts of spherical Sun-frame µ✁

coefficients.

Sun-frame coefficient Fermilab J-PARC

b̌T 3.2✂ 10✁23 GeV 2.8✂ 10✁22 GeV

ǧT 3.2✂ 10✁23 GeV 2.7✂ 10✁22 GeV

ȞXT 5.5✂ 10✁22 GeV 5.7✂ 10✁22 GeV

ȞY T 5.3✂ 10✁22 GeV 5.3✂ 10✁22 GeV

ď� 1.3✂ 10✁22 GeV 8.6✂ 10✁22 GeV

ďQ 1.3✂ 10✁22 GeV 9.5✂ 10✁22 GeV

ǧXY 2.6✂ 10✁21 GeV 3.0✂ 10✁19 GeV

ďZX 7.7✂ 10✁21 GeV 1.1✂ 10✁21 GeV

ǧY X 7.1✂ 10✁22 GeV 8.0✂ 10✁22 GeV

ǧY Z 5.3✂ 10✁22 GeV 8.0✂ 10✁22 GeV
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4.4 Summary

In this chapter, Lorentz violation was investigated in the context of muon ♣g ✁
2q experiments. Our framework was based on the Lorentz-violating QED extension

for operators of arbitrary mass dimension — whereas they were restricted to mass

dimension less than five in previous chapters. Our formalism was then adapted to

spherical coordinates, where spherical Lorentz-violating coefficients are described by

more compact and simpler notation then Cartesian ones. This approach allows for

very clean results in the sense of what is effectively observable in the experiment.

After a brief overview of muon ♣g ✁ 2q experiments, we have sorted out which

observable signals coming from Lorentz violation can be expected in such experiments.

Fairly clean effects of Lorentz violation can be looked for by analysing the so called

anomaly frequency ωa, which is the difference between the muon spin precession fre-

quency and its cyclotron frequency, and is one of the key quantities measured in muon

♣g ✁ 2q experiments. The high precision to which ωa can be measured is very suitable

in the search of diminute violations of Lorentz symmetry, and although no significant

deviation from Lorentz invariance have been detected in the already concluded BNL

Muon ♣g✁ 2q experiment, it allowed us to place stringent upper bounds on coefficients

controlling Lorentz violation by means of available data for antimuon/muon anomaly

frequency difference and searches for sidereal variations of this quantity. Using the

estimated precision of upcoming Fermilab and J-PARC ♣g ✁ 2q experiments we also

predict their sensitivity to Lorentz-violating signals.

As our main result, we derived the correction to the anomaly frequency due to

Lorentz violation. Our expression can be written in quite compact form and is valid for

Lorentz-violating operators of arbitrarily high dimensions. Such expression was used

to constrain coefficients for Lorentz violation using CERN’s and BNL’s data. These

bounds are related to signals of Lorentz symmetry breaking predicted by our model,

as discussed below. In the literature, these are the first bounds on such coefficients of

the nonminimal muon sector. Additionally, we estimated the sensitivity to Lorentz-

violation for the upcoming (g ✁ 2) experiments.
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Differences between particles and antiparticles are characteristic signals of

Lorentz noninvariance. By comparing the anomaly frequency of muons and antimuons

measured in the BNL experiment, we have written explicit bounds on dimension four

to dimension ten CPT odd coefficients. Our general expression for differences between

muon and antimuons also allows for extra constraints on CPT even coefficient com-

binations, which can be obtained comparing data from two experiments in different

locations, and using data from the CERN and BNL experiments we presented new

bounds on such coefficients as well. We predict data from upcoming Fermilab and

J-PARC experiments may improve those bounds by roughly a factor of five, or even

greater for comparisons from different experiments.

Sidereal variations of the anomaly frequency are also predicted by our model.

A reanalysis of the BNL data was performed in the past by other authors and no

significant Lorentz violation due to one-sidereal variations was found for minimal coef-

ficients. Here we provided the adequate framework for the search for sidereal variations

associated with nonminimal coefficients as well. We used bounds on signals within one-

sidereal variation — initially intented to constrain minimal coefficients — to provide

new constraints on nonminimal ones as well, explicitly written for coefficients with di-

mension up to eight. Considering the expected precision of the Fermilab and J-PARC

experiments, we have also written the estimated sensitivity to Lorentz violation coming

from nonminimal coefficients.

Similarly, annual variations can be expected due to Lorentz violation. No such

analysis was ever done for data from any muon ♣g✁2q experiment, and we provided the

characteristic signals to be search for as well as the coefficient combinations that would

create such signals — for practical reasons, in this case we have limited ourselves

to minimal coefficients. Estimated sensitivity of future experiments to such signals

was also provided, where we expect Fermilab and J-PARC experiments to achieve

competitive sensitivities.
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More than a hundred years have passed since the development of Special Rela-

tivity, and so far Lorentz symmetry of the known physical laws stands strong on solid

experimental grounds. Nevertheless, our desire for a long sought consistent quantum

description of gravity leads us to question the very basic building blocks of our descrip-

tion of Nature by devising theoretical frameworks and high precision experiments to

test such principles. If even minuscule violations of Lorentz symmetry were ever found,

a drastic change of paradigm would occur, infusing our knowledge with fresh air and

possibly helping us on the search for more fundamental theories describing the physics

of particles and fields.

In this thesis, we have studied different aspects of a single-fermion Lorentz-

violating extension of quantum electrodynamics, based on the framework of the Stan-

dard Model Extension. We investigated first matters of renormalizability of the min-

imal QED extension, and secondly we considered the nonminimal extension in the

context of muon ♣g ✁ 2q experiments. Although not expected, we found intersecting

points between both studies.

Aiming for an analysis to all orders in perturbation theory, renormalizability

was investigated using the algebraic renormalization approach leading to a natural em-

phasis on the search for quantum gauge anomalies. It was found that new potentially

anomalous structures are induced because of Lorentz violation. Important is the fact

these are not necessarily anomalies, but candidate anomalies. In practice, we found

conventional gauge identities — for instance, the Ward-Takahashi identity — are no

longer automatically satisfied once they are extended by Lorentz-violating contribu-

tions, each of these carrying so-called anomaly coefficients. The value of each of these
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coefficients tells about the true anomaly content of the model. If they vanish to all

orders, gauge identities recover the conventional structure and there is no anomaly. It

turns out, we verified all anomaly coefficients indeed vanish to one-loop order. Addi-

tionally, by arguments based on behavior under discrete symmetries and a generalized

version of the Furry theorem, we suggested gauge identities related to the transversality

of the vacuum polarization and current conservation at each vertex of the three-photon

triangular diagram are non-anomalous to all orders. Nevertheless, there remains the

question as to whether or not anomaly coefficients related to the Ward-Takahashi iden-

tity — the only other potentially anomalous identity — develop nonvanishing values

under multiloop corrections. On the other hand, we found more restricted models,

where C or PT invariance are enforced, are definitely free of anomalies to all orders —

revealing the previously overlooked importance of discrete symmetries in guaranteeing

the absence of anomalies of a model.

Proof of renormalizability to all orders, if no anomaly is found, follows in the al-

gebraic approach once is found a consistent set of renormalization conditions fixing free

parameters introduced by renormalization. Analysis of this last point is better done by

explicit calculation of finite radiative corrections coming from divergent diagrams, as

Lorentz violation may introduce unexpected features inaccessible by the algebraic ap-

proach only. Indeed, in the form of preliminary results, investigation of the fermion-self

energy revealed coefficients cµνS , dµνS , gκλµM , and ♣kF qµρνρ generate contributions which

fail to be properly renormalized once the corresponding introduced free parameters ap-

parently cannot be consistently fixed by renormalization conditions. Mention should

be made of the possibility that this result comes out from an inadequate choice of

renormalization conditions. Nevertheless, we also mention other conditions were tried

but the conclusion remained the same.

Additional preliminary results suggest radiative corrections modify the free

propagation of fermions — an effect absent in conventional QED — as finite Lorentz-

violating corrections radiatively induce field operators of dimension higher than four

modifying the tree-level action. Because of the dimensionality of such induced opera-

tors, there are extra factors of momentum divided by the fermion mass, revealing the

144



Conclusions and Perspectives

possibility that Lorentz-violating radiative contributions can be as relevant as tree-level

ones in specific experiments. In particular, that would be the case for tests of Lorentz

symmetry with electrons of energy ➪ 70MeV — which is a typical energy for such

tests — or muons of energy ➪ 1.4GeV — we point out muon ♣g ✁ 2q experiments are

performed at 3.09GeV, making them ideal for such investigation. In such situations,

it is possible that coefficient bounds derived from radiative corrections can be at least

as strong as bounds derived by tree-level analysis.

We emphasize the above two points we have discussed are based on preliminary

results and are under ongoing investigation, and raising interesting questions, both

theoretical and experimental.

This thesis’ last work was devoted to application of the nonminimal Lorentz-

violating QED extension to muon ♣g ✁ 2q experiments. Such experiments are suitable

as tests of Lorentz invariance as they can achieve high precision measurements and

are very sensible to physics of higher energy scales. In particular, we predicted signa-

tures of Lorentz violation in the muon anomaly frequency — currently measured to

about 0.5 part per million — using a powerful formalism which allows consideration of

contributions coming from fermion operators of arbitrary dimension. The first signa-

ture we mention is the difference between the anomaly frequency of µ� and µ✁, which

we showed is caused not only by CPT violation, but also by CPT invariant Lorentz-

violating contributions as well. Using data from CERN’s and BNL’s muon ♣g ✁ 2q
experiments, we derived the first explicit bounds on several azimuthally symmetric co-

efficients associated to operators with dimension up to ten. The other Lorentz violation

signatures we propose for experimental search are sidereal and annual variations of the

anomaly frequency. The Muon ♣g ✁ 2q Collaboration searched for signals within one

sidereal variation assuming this effect as due to minimal coefficients only, and here we

found nonminimal coefficients can also generate such signals and, therefore, the null

result found at the BNL also provides new bounds on nonminimal coefficients. We

also found searches within higher number of sidereal variations are important as these

are typical signals from nonmininal coefficients. Additionally, annual variation of the

anomaly frequency have never been searched for and we provided the whole set of min-
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imal coefficient combinations that can be accessed in this experiment. For both cases,

we estimated the sensitivity for Lorentz violation of upcoming Fermilab and J-PARC

muon ♣g ✁ 2q experiments.
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between frames

In this Appendix, we present some definitions and results for transformations

between rotating Earth-based laboratory frames and nonrotating Sun-centered frames

— see, for instance, Refs. [9,10,24,109]. As discussed in Chapter 4, the motivation to

perform such transformations is twofold: (i) the laboratory frame is noninertial and

moving to inertial frames reveals the time-dependence of Lorentz-violating signals, and

(ii) it allows comparison among different experiments.

It is important to define two cases:

1) When a nonrotating Earth-centered frame can be approximated as an inertial

frame, which is a reasonable simplification when investigating signals within days

or few weeks — in this time span, Earth’s rotation axis precession can also

be neglected once its period is about 26.000 years. In this case, only Earth’s

rotational motion is considered.

2) When signals are investigated within months or year-long time span, and Earth’s

noninertial orbital motion need to be considered. In this case a nonrotating

Sun-centered frame is more adequate.

Naturally, even the Sun-frame is not really inertial because of its motion around the

center of the galaxy, but it takes about 230 million years for it to complete a full orbit,

thus it is a reasonable approximation to consider this frame as an inertial one within

a time span of thousands of years.

Let us consider a nonrotating Earth-based frame tX, Y, Z✉ to be taken as cen-

tered on Earth, as depicted in Fig. 4.6. Orientation of the Z axis can be suitably
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chosen so as to simplify searches for rotation violations in Earth-based laboratories.

Therefore, to define the orientation of the axes, we note that an equinox occurs twice a

year, when the equatorial plane of Earth passes through the center of the Sun. Defining

Earth’s rotation axis as having declination 90✆, the vernal equinox point can be defined

as having right ascension 0✆ and declination 0✆. Now we define the Z axis as coinciding

with Earth’s rotation axis at the vernal equinox of year 2000, X and Y axes lying in

Earth’s equatorial plane, with X pointing to the vernal equinox point of the celestial

sphere, and Y completing the right-handed coordinate system at right ascension 90✆

and declination 0✆.

Figure 4.6: Rotating earth-based laboratory frame tx, y, z✉ (translated to the center
of Earth, in the picture) and nonrotating Earth-centered frame tX, Y, Z✉.

The position of a laboratory at the surface of the Earth is described by its

colatitude χ— defined as the complementary angle of the latitude — and the angle Ωt,

where Ω ✏ 2π④23 h 56min is Earth’s sidereal frequency as measured by t. Coordinates

tx, y, z✉ of the laboratory frame can be defined with z passing through Earth’s center,

x perpendicular to z and contained in the plane spanned by ẑ ☎ Ẑ, and ŷ ✑ ẑ✂ x̂ always
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lying in the equatorial plane — see Fig. 4.6, where the tx, y, z✉ laboratory frame was

translated to the origin of the tX, Y, Z✉ nonrotating frame.

A nonrotating Sun-centered frame, as depicted in Fig. 4.7, can be defined

precisely as above by means of a simple translation of the tX, Y, Z✉ coordinate system
to the center of the Sun, where Ω❈ ✏ 2π④♣365.26 daysq is Earth’s orbital frequency,

with T measured by a clock at the origin, setting T ✏ 0 as the vernal equinox of the

year 2000. Thefore Earth is in the negative X axis at T ✏ 0 and crosses the XY

plane on a descending trajectory — note T and t differ by a constant value. At last,

η ✓ 23.5✆ is the tilt angle of Earth’s orbital plane with respect to its equatorial plane.

Figure 4.7: Nonrotating Sun-centered frame tX, Y, Z✉, obtained as a translation from
the nonrotating Earth-centered frame.

From the above definitions, it is evident the construction of a nonrotating Sun-

centered frame is suitable for both cases mentioned before. The approximation as to

whether or not Earth can be taken as an inertial frame effectively plays a role when

we make a coordinate transformation from the Earth-based laboratory tx, y, z✉ frame

to the Sun-centered frame tX, Y, Z✉. The transformations for both cases are presented

below.

149



Appendix A: Transformation between frames

Case 1: Earth’s orbital motion can be neglected

As discussed before, in this case, only Earth’s rotational motion is relevant.

For a fully relativistic treatment, the transformation relating the nonrotating Earth-

centered frame and the rotating laboratory frame could be obtained by means of an

instantaneous boost, but since Earth’s rotational speed βL ✒ 10✁6 can be neglected,

a nonrelativistic approach is enough. Additionally, we approximate Earth’s orbit to

a circle. In this sense, the transformation can be constructed, for instance, by two

spatial rotations, one with respect to the Z axis and parameterized by Ωt, followed

by another one around the Y axis parameterized by χ, and an additional translation

setting the frame at the center of the Sun, thus we can still say this transformation

relates a laboratory-based frame to a Sun-centered frame, although it is limited to

time scales where Earth’s motion around the Sun may be neglected. The resulting

transformation is given by

Rµν ✏

☎✝✝✝✝✝✝✆
1 0 0 0

0

0 RjJ

0

☞✍✍✍✍✍✍✌, where RjJ ✏

☎✝✝✝✆
cosχ cosΩt cosχ sinΩt ✁ sinχ

✁ sinΩt cosΩt 0

sinχ cosΩt sinχ sinΩt cosχ

☞✍✍✍✌,

(A.1)

where j ✏ tx, y, z✉ ✏ t1, 2, 3✉ are indices in the laboratory frame and J ✏ tX, Y, Z✉
are indices in the Sun-frame.

The transformation matrix (A.1) is suitable for cartesian coefficients. For in-

stance, the coefficient b̌3 of definition (4.24) transforms as

b̌3 ✏ R3J b̌J ✏ b̌Z cosχ�
�
b̌X cosΩt� b̌Y sinΩt

✟
sinχ. (A.2)

This expression clearly reveals the time-dependence of Lorentz-violating signals on

sidereal time scales, as discussed in Sec. 4.3.4.

On the other hand, cartesian coefficients with several indices — nonminimal

coefficients, for instance — become hard to handle under the transformation (A.1). In
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this case, it is convenient to decompose then in spin-weighted spherical harmonics, as

described in Sec. 4.3.1. In this case, coefficients in the laboratory frame and in the

Sun-centered frame are related by [24]

C
♣labq
jm ✏

➳
m✶

eim
✶Ωtd

♣jq
mm✶♣✁χqC♣Sunqjm✶ , (A.3)

where d
♣jq
mm✶♣θq is the “little” Wigner matrix,

d
♣jq
mm✶♣θq ✏

➳
k

♣✁1qk�m�m✶

❛♣j �mq!♣j ✁mq!♣j �m✶q!♣j ✁m✶q!
♣j ✁m✁ kq!♣m✁m✶ � kq!♣j �m✶ ✁ kq!k!

✂
✂
cos

θ

2

✡2j ✂
tan

θ

2

✡2k�m✁m✶

, (A.4)

for all values of k such that the factorials are non-negative. For a derivation of this

result, see Section V A of Ref. [24].

Case 2: Earth’s orbital motion is taken into account

In this case, Earth’s orbital motion around the Sun is also considered along with

its rotational motion. The transformation from the Sun-centered frame to the rotating

laboratory frame can be obtained in two steps: (i) an instantaneous boost from the

nonrotating Sun-centered frame to a Sun-orbiting nonspinning frame at the surface of

the Earth — with surface velocity, as measured in the Sun-centered frame depicted in

Fig. 4.7, given by

~β ✏ β❈

☎✝✝✝✆
sinΩ❈T

✁ cos η cosΩ❈T

✁ sin η cosΩ❈T

☞✍✍✍✌� βL

☎✝✝✝✆
✁ sinΩt

cosΩt

0

☞✍✍✍✌, (A.5)

where β❈ is Earth’s orbital speed — and (ii) a rotation to the Sun-orbiting spinning

Earth-based laboratory frame, as done before. A reasonable approximation is to keep

contributions only up to leading order in β❈ ✒ 10✁4 and βL ✒ 10✁6, and for this

reason the boost will only mix temporal and spatial components, changing the first

row and column of (A.1), but will not introduce extra spatial rotations. Finally, the
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transformation from the nonrotating Sun-centered frame to the rotating Earth-based

laboratory frame is given by

Λµν ✏

☎✝✝✝✝✝✝✆
1 Λ0X Λ0Y Λ0Z

Λ1T

Λ2T RjJ

Λ3T

☞✍✍✍✍✍✍✌, (A.6)

where RjJ is given by (A.1), and

Λ0X ✏β❈ sinΩ❈T ✁ βL sinΩt,
Λ0Y ✏✁ β❈ cos η cosΩ❈T � βL cosΩt,
Λ0Z ✏✁ β❈ sin η cosΩ❈T,

Λ1T ✏β❈ sinΩ❈T ✁ βL sinΩt,
Λ2T ✏✁ β❈ cos η cosΩ❈T � βL cosΩt,
Λ3T ✏✁ β❈ sin η cosΩ❈T, (A.7)

are the contributions from the boost. Naturally, in the limit β❈ Ñ 0 we recover Case 1

discussed before. Application of this transformation is done in Sec. (4.3.5), revealing

Lorentz-violating signals to be searched for in time scales within months or years.
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Rev. Mod. Phys. 83, 11 (2011).

[11] O.M. Del Cima, J.M. Fonseca, D.H.T. Franco, A.H. Gomes, and O. Piguet, Phys.

Rev. D 85, 065023 (2012).

[12] D.H.T. Franco and A.H. Gomes, J. Phys. A 46, 04540 (2013).

153



References
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[19] R. Bluhm and V.A. Kostelecký, Phys. Rev. D 71, 065008 (2005).
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[23] V.A. Kostelecký and M. Mewes, Phys. Rev. D 69, 016005 (2004).
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[47] R. Jackiw and V.A. Kostelecký, Phys. Rev. Lett. 82, 3572 (1999).

155



References

[48] M. Pérez-Victoria, Phys. Rev. Lett. 83, 2518 (1999).

[49] C. Adam and F.R. Klinkhamer, Phys. Lett. B 513, 245 (2001).

[50] G. Bonneau, L.C. Costa, and J.L. Tomazelli, Int. J. Theor. Phys. 47, 1764 (2008).

[51] O. Piguet and S.P. Sorella, Algebraic Renormalization, Lect. Notes Phys. M 28,

Springer-Verlag, Berlin, 1995.

[52] S.L. Adler, Phys. Rev. 177, 2426 (1969).

[53] W.A. Bardeen, Phys. Rev. 184, 1848 (1969).

[54] J.S. Bell and R. Jackiw, Nuovo Cimento 60, 47 (1969).

[55] S.L. Adler and W.A. Bardeen, Phys. Rev. 182, 1517 (1969).

[56] J.H. Lowenstein, Commun. Math. Phys. 4, 2281 (1971); 24, 1 (1971).

[57] Y-M.P. Lam, Phys. Rev. D 6, 2145 (1972); 7, 2943 (1973).

[58] T.E. Clark and J.H. Lowenstein, Nucl. Phys. B 113, 109 (1976).

[59] O. Piguet and A. Rouet, Phys. Rep. 76, 1 (1981).

[60] P. Breitenlohner and D. Maison, Commun. Math. Phys. 52, 11 (1977) 11; 52, 39

(1977); 52, 55 (1977).
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