ALTERAÇÕES FISIOLÓGICAS INDUZIDAS PELO DEFICIT HÍDRICO NO ESTÁDIO REPRODUTIVO DA SOJA COM REFLEXO SOBRE A PRODUTIVIDADE

Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Fisiologia Vegetal, para a obtenção do título de *Magister Scientiae*.

VIÇOSA
MINAS GERAIS – BRASIL
2017
Rosa, Vanessa do Rosário, 1992-
v. 39f. : il. (algumas color.) ; 29 cm.

Orientador: Cleberson Ribeiro.
Dissertação (mestrado) - Universidade Federal de Viçosa. Inclui bibliografia.

CDD 22 ed. 633.34
ALTERAÇÕES FISIOLÓGICAS INDUZIDAS PELO DEFICIT HÍDRICO NO ESTÁDIO REPRODUTIVO DA SOJA COM REFLEXO SOBRE A PRODUTIVIDADE

Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Fisiologia Vegetal, para a obtenção do título de Magíster Scientiae.
AGRADECIMENTOS

À Deus por me dar forças para lutar.

À Universidade Federal de Viçosa (UFV) e, em especial, ao Programa de Pós-graduação em Fisiologia Vegetal, pela oportunidade de realização do curso.

Ao Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) (447794/2014-0) e a Fundação de Amparo à Pesquisa do Estado de Minas Gerais (FAPEMIG) (APQ-01043-14) pelos suportes financeiros do projeto.

A CAPES pela concessão da bolsa de estudos.

Ao professor Cleberson Ribeiro, pela orientação. Aos coorientadores Juraci Alves e Felipe Silva pelos conselhos e apoio.

À minha mãe Tide Rosa por todo apoio, atenção, dedicação e amor. À minha irmã Valquíria Rosa pelo apoio, conselhos e carinho. A minha sobrinha Clara Rosa por tornar minha vida mais leve. Ao meu cunhado e amigo Bruno Vicente pela amizade e conselhos. Às minhas tias Eva, Nilva, Iva, Mara e Dirce e a toda a família por acreditarem tanto em mim, por se empolgarem com as minhas conquistas e por sentirem tanto orgulho.

Aos meus amigos de Catalão por entenderem minha ausência e mesmo assim cuidarem de mim. Agradeço aos meus amigos David e Adênio por toda atenção e dedicação.

À Duanny, Gabriela, ao Fred e Ricardo por todo companheirismo e por terem sido a minha família em Viçosa. Ao Adinan e a Cíntia por me ajudarem tanto e pelas horas de risadas. Aos demais amigos que estiveram comigo em Viçosa, por terem tornado tudo mais leve. Ao meu estagiário Júnior por todo aprendizado e apoio.
<table>
<thead>
<tr>
<th>SUMÁRIO</th>
</tr>
</thead>
<tbody>
<tr>
<td>RESUMO .. iv</td>
</tr>
<tr>
<td>ABSTRACT .. v</td>
</tr>
<tr>
<td>1. INTRODUÇÃO .. 1</td>
</tr>
<tr>
<td>2. OBJETIVOS ... 4</td>
</tr>
<tr>
<td>3. MATERIAL E MÉTODOS .. 5</td>
</tr>
<tr>
<td>3.1 MATERIAL VEGETAL .. 5</td>
</tr>
<tr>
<td>3.3 POTENCIAL HÍDRICO FOLIAR E TEOR RELATIVO DE ÁGUA 6</td>
</tr>
<tr>
<td>3.4 ANÁLISES MORFOLÓGICAS .. 6</td>
</tr>
<tr>
<td>3.5 TROCAS GASOSAS ... 6</td>
</tr>
<tr>
<td>3.6 PARÂMETROS DE FLUORESCÊNCIA .. 7</td>
</tr>
<tr>
<td>3.7 PIGMENTOS CLOROPLASTÍDICOS ... 7</td>
</tr>
<tr>
<td>3.8 PEROXIDAÇÃO DE LIPÍDEOS .. 8</td>
</tr>
<tr>
<td>3.9 ANÁLISES ENZIMÁTICAS ... 8</td>
</tr>
<tr>
<td>3.9.1 Atividade da SOD .. 8</td>
</tr>
<tr>
<td>3.9.2 Atividade de CAT .. 9</td>
</tr>
<tr>
<td>3.9.3 Atividade da POX .. 9</td>
</tr>
<tr>
<td>3.9.4 Atividade da APX .. 9</td>
</tr>
<tr>
<td>3.10 CONCENTRAÇÃO DE PROTEÍNA ... 9</td>
</tr>
<tr>
<td>3.11 PROLINA .. 9</td>
</tr>
<tr>
<td>3.12 AMINOÁCIDOS TOTAIS .. 10</td>
</tr>
<tr>
<td>3.13 PARÂMETROS DE QUALIDADE DAS SEMENTES .. 10</td>
</tr>
<tr>
<td>4. RESULTADOS ... 11</td>
</tr>
<tr>
<td>5. DISCUSSÃO ... 23</td>
</tr>
<tr>
<td>6. CONCLUSÃO ... 30</td>
</tr>
<tr>
<td>7. REFERÊNCIAS BIBLIOGRÁFICAS .. 31</td>
</tr>
</tbody>
</table>
RESUMO

As mudanças climáticas têm causado alterações no regime das chuvas e gerado transtornos na produção da soja. A soja está entre as principais atividades econômicas do mundo, abastecendo o mercado com óleo e proteína extraídas das suas sementes. Para atender à sua crescente demanda é preciso aumentar a produção, mesmo em de déficit hídrico. Quando as plantas são expostas as situações estressantes apresentam integração de diversas respostas a níveis morfológico, molecular e fisiológico. O objetivo deste trabalho foi entender como estes mecanismos atuam na manutenção da produtividade de linhagens de soja, quando o déficit hídrico ocorre no estádio reprodutivo R4 que é o período de maior demanda água pela planta. Foram utilizadas as linhagens Vx-08-10819 e Vx-08-11614, do Programa de Melhoramento da Qualidade da Soja do BIOAGRO/UFV, após a exposição ao déficit hídrico, a primeira manteve níveis normais de produtividade e a segunda apresentou queda na produtividade. As plantas foram germinadas em substrato próprio para plantas e posteriormente transplantadas para vasos com solo, cultivadas em casa de vegetação com monitoramento de temperatura e umidade. As plantas foram mantidas por três dias a três diferentes capacidades de campo: controle (100%), moderado (60%) e severo (40%), e então reidratadas por dois dias. As avaliações ocorreram após os três dias de exposição ao estresse e a reidratação. Foram avaliados o potencial hídrico foliar, análises fenotípicas, parâmetros de trocas gasosas e fluorescência da clorofila, pigmentos fotossintéticos, peroxidação lipídica, enzimas do sistema antioxidativo, acúmulo de moléculas osmoprotetoras, produtividade e qualidade da semente. A linhagem Vx-08-10819 por apresentar melhor desempenho fotossintético, maior controle estomático, mecanismo protetores contra danos foto-oxidativos mais eficientes, menor peroxidação lipídica, maiores atividades das enzimas anti-oxidativas e manutenção da produtividade, foi considerada tolerante. A linhagem Vx-08-11614 apresentou maior direcionamento de fotoassimilados para o crescimento vegetativo, maior área foliar e área foliar específica, menor desempenho fotossintético, menor controle estomático, mecanismo protetores contra danos foto-oxidativos pouco eficientes, maior peroxidação lipídica, menores atividades das enzimas anti-oxidativas e perdas de produtividade nos tratamentos moderado e severo, e por estes motivos foi denominada sensível.
ABSTRACT

Climate change has caused changes in the rainfall regime and generated disruption in soybean production. Soy is among the world's major economic activities, fueling the market with oil and protein extracted from its seeds. To meet its growing demand, it is necessary to increase production, even in water deficit. When plants are exposed stressful situations present integration of several responses at morphological, molecular and physiological levels. The objective of this work was to understand how these mechanisms act in the maintenance of the productivity of soybean strains when the water deficit occurs in the reproductive stage R4, which is the period of higher demand for water by the plant. The strains Vx-08-10819 and Vx-08-11614 of the BIOAGRO / UFV Soybean Breeding Program were used, after exposure to water deficit, the first maintained normal levels of productivity and the second showed a decrease in productivity. The plants were germinated in substrate suitable for plants and later transplanted to pots with soil, grown in a greenhouse with temperature and humidity monitoring. The plants were maintained for three days at three different field capacities: control (100%), moderate (60%) and severe (40%), and then rehydrated for two days. Evaluations occurred after three days of exposure to stress and rehydration. Leaf water potential, phenotypic analyzes, gas exchange parameters and chlorophyll fluorescence, photosynthetic pigments, lipid peroxidation, antioxidative system enzymes, accumulation of osmoprotective molecules, productivity and seed quality were evaluated. The Vx-08-10819 strain presented better photosynthetic performance, greater stomatal control, more efficient photo-oxidative damage, less lipid peroxidation, higher antioxidative enzyme activities and maintenance of productivity. The Vx-08-11614 strain showed higher photoassimilate targeting for vegetative growth, greater leaf area and specific leaf area, lower photosynthetic performance, lower stomatal control, protection mechanism against less efficient photooxidative damage, higher lipid peroxidation, lower Anti-oxidative enzymes and productivity losses in moderate and severe treatments, and for these reasons was termed sensitive.
1. INTRODUÇÃO

A produção da soja está entre as atividades econômicas que mais cresceu nas últimas décadas e é considerada a principal oleaginosa cultivada atualmente (Hirakuri e Lazzarotto, 2014). De acordo com o Instituto Brasileiro de Geografia e Estatística (IBGE), nos últimos anos a soja tem se destacado como a principal cultura brasileira em função do seu retorno econômico ao produtor rural (IBGE, 2015). Na safra de 2016-2017, a produção nacional foi novamente recorde, com acréscimo de 2,1% da área plantada e de 13,2% na produtividade, quando comparado a safra anterior (IBGE, 2017).

A soja é uma das principais culturas do mundo, com diversas aplicações industriais e com grande importância na alimentação humana e animal sendo importante fonte de proteína e óleo vegetal, com teores de 40% e 20% respectivamente (Vollmann et al., 2000; Bezerra et al., 2015). A demanda por este produto tende a crescer nos próximos anos, o que torna ainda mais promissor o cenário futuro para o cultivo da soja (Bezerra et al., 2015).

Para atender à crescente demanda de soja, é necessário o aumento da produtividade desta cultura. No entanto, à escassez de chuva em regiões produtoras comprometem a produção, gerando grandes quedas de produtividade (Hirakuri e Lazzarotto, 2014). Em 2015, a produção na safra de soja no Brasil ficou 23,2% abaixo do esperado, devido ao veranico prolongado ocorrido em fevereiro deste ano, e também foram observados problemas na qualidade dos grãos decorrentes do forte deficit hídrico durante a fase de enchimento de sementes que produziram sementes leves, ardidas e malformadas (FAO, 2015).

. O deficit hídrico induz redução no potencial hídrico foliar e na abertura estomática, levando a redução na disponibilidade de CO₂ e consequentemente na fotossíntese (Osakabe et al., 2014). Como a produtividade da soja depende dos fotoassimilados produzidos durante o processo fotossintético (Pinheiro et al, 2011), é esperado que uma redução na disponibilidade hídrica, induz uma redução na produtividade da soja (Gozáles et al., 2008).

Estresses que limitam a fixação de CO₂, como por exemplo a seca, provocam o excesso de energia disponível nos fotossistemas dos tilacóides, fazendo com que as reações fotoquímicas da fotossíntese gerem maiores níveis de espécies reativas de oxigênio (EROs), como o peróxido de hidrogênio (H₂O₂), o radical ânion superóxido (O₂⁻), o radical hidroxila (HO•) e o oxigênio singlete (¹O₂), que podem causar estresse oxidativo através da oxidação de proteínas, moléculas de RNA, DNA, lipídeos e pigmentos fotossintéticos,
além de induzir a ativação da morte celular programada (Mittler et al., 2004; Silva et al., 2012; Pyngrope et al., 2013). As EROs possuem a capacidade de se difundirem entre os compartimentos, como por exemplo o H$_2$O$_2$ que pode mover-se através das membranas, causando danos às mesmas através da peroxidação lipídica (Tian et al., 2016).

O déficit hídrico pode levar à formação de EROs, que são eliminadas das células através de eficientes mecanismos antioxidantes não enzimáticos e enzimáticos, presentes nas plantas, que desempenham importante papel na proteção contra à toxicidade dessas moléculas (Choudhury et al., 2016 e Pandy et al., 2016). O mecanismo enzimático é formado pelas enzimas superóxido dismutase (SOD), catalase (CAT), ascorbato peroxidase (APX), e peroxidases totais (POXs) (Bin et al., 2010; Silva et al., 2012). No mecanismo não enzimático, os carotenóides são bem conhecidos por sua atividade antioxidante dentro dos cloroplastos (Xu et al., 2001). A manutenção de uma elevada capacidade antioxidante para a eliminação das EROs tem sido associada ao aumento da tolerância das plantas a uma ampla gama de estresses ambientais (Bin et al., 2010; Mishra et al., 2012).

Segundo Fang e Xiang, (2015) plantas sobre déficit hídrico podem apresentar acúmulo de algumas moléculas osmorreguladoras, como prolina e aminoácidos, que diminuem o potencial osmótico celular, garantindo a manutenção da absorção de água e da pressão de turgescência celular, que são considerados mecanismos chave que permitem às plantas manterem maior taxa fotossintética, abertura estomática, e expansão celular em condições de deficiência hídrica (Cattivelli et al., 2008; Sanders e Arndt, 2016).

A disponibilidade hídrica é importante durante todo o desenvolvimento da soja, contudo, à medida que a planta se desenvolve, a necessidade de água vai aumentando, chegando ao máximo no estádio reprodutivo (floração R1-R2, frutificação R3-R4, e enchimento de sementes R5-R6), que são os estádios mais sensíveis à seca (Oya et al., 2004; Silva et al., 2015). Na soja, as alterações no metabolismo da planta são mais intensas quando o déficit hídrico ocorre durante o estádio reprodutivo, o que pode resultar em redução de produtividade (Ku et al., 2013). A escassez de água na fase reprodutiva induz menor número e tamanho de vagens e sementes, menor peso de sementes, senescência foliar, e encurtamento do ciclo de vida da planta o que pode prejudicar o enchimento de sementes (Manavalan et al., 2009).

Quando as plantas são submetidas ao déficit hídrico, elas respondem ao estresse pela integração de diversas respostas e mecanismos adaptativos, nos níveis morfológico, molecular e fisiológico (Fang e Xiong, 2015). Assim, entender como estes mecanismos
atuam na manutenção da produtividade poderá auxiliar estudos futuros envolvendo a identificação e seleção de genótipos produtivos em condições de déficit hídrico e posteriormente, a criação de novas cultivares, sendo uma importante ferramenta para suprir a crescente demanda de alimentos no mundo.
2. OBJETIVOS

Este trabalho teve como objetivo avaliar as alterações fisiológicas induzidas em duas linhagens de soja, contrastantes em produtividade após exposição ao deficit hídrico no estádio reprodutivo (R3-R4), buscando informações que justifiquem a diferença de produtividade sob condições de seca.
3. MATERIAL E MÉTODOS

3.1 MATERIAL VEGETAL

As linhagens de soja Vx-08-10819 e Vx-08-11614, disponíveis no Programa de Melhoramento da Qualidade da Soja do Instituto de Biotecnologia Aplicada a Agropecuária (Bioagro) da Universidade Federal de Viçosa (UFV) foram utilizadas nos experimentos. As linhagens foram selecionadas a partir de screening com 14 linhagens/cultivares por apresentarem produtividades e ciclo fenológico semelhantes em condições normais de capacidade de campo. Por outro lado, após exposição ao déficit hídrico, a linhagem Vx-08-10819 manteve sua produtividade e a Vx-08-11614 apresentou redução.

As sementes das linhagens de soja foram cultivadas entre os meses de janeiro e abril de 2016 em casa de vegetação do Bioagro/UFV, com sistema de monitoramento de temperatura e umidade. A temperatura média e umidade média durante o experimento foi 33°C e 22°C, e 93% e 47%, máxima e mínima respectivamente. As sementes foram semeadas em substrato específico, Bioplant®, composto de casca de pinus e fibra de coco. Após germinadas, as sementes foram transplantadas para vasos de sete litros (quatro plantas por vaso) contendo mistura de solo e areia (proporção de 2:1) adubada com NPK (04-14-08). Os vasos foram previamente pesados e preenchidos com mesma quantidade da mistura de solo e areia.

As plantas no estádio reprodutivo R3 (início da frutificação) tiveram a irrigação suspensa e o peso dos vasos foi monitorado três vezes ao dia para atingir os pesos referentes ao nível moderado (60% da capacidade de campo) e ao nível severo (40% da capacidade de campo). Essas condições hídricas foram mantidas por três dias. Após, plantas no estádio reprodutivo R4 (frutificação plena) foram avaliadas e amostras foliares foram coletadas nas seguintes condições: 100% (nível controle), 60% (nível moderado) e 40% (nível severo) da capacidade de campo. Em seguida, os vasos receberam água e todas as plantas atingiram a capacidade de campo normal e após dois dias foi avaliado a capacidade de recuperação de cada linhagem aos danos causados pelo déficit hídrico nas três condições hídricas. Após esse período, os vasos foram mantidos em condições normais de capacidade de campo (100%) até as plantas atingirem o estádio R8 (maturação plena).

Análises de crescimento, potencial hídrico foliar, caracterização do aparato fotossintético, teor dos pigmentos cloroplastídicos, peroxidação lipídica, atividade das enzimas antioxidativas e teor de prolina e aminoácidos foram realizadas ao final do
período de déficit hídrico e de reidratação, estando as plantas no estádio R4. A produtividade e parâmetros de qualidade de sementes foram avaliados no estádio R8.

Um total de 60 plantas por linhagem foram cultivadas em 15 vasos (quatro plantas por vaso), sendo cinco vasos para cada nível (controle, moderado e severo). Três plantas foram coletadas no período R4, sendo duas ao final do período de déficit hídrico (condição estressante, E) e uma ao final do período de reidratação (condição reidratada, R). A última planta foi coletada ao final do estádio R8.

O delineamento experimental foi realizado em blocos inteiramente casualizados (DBC), com 2 linhagens (Vx-08-10819 e Vx-08-11614), 3 níveis (controle, moderado, severo) e 2 condições (estressante e reidratada). Os dados foram submetidos a análise de variância (ANOVA), sendo posteriormente aplicado o teste de médias, Tukey a 5% de probabilidade utilizando o software Genes (Cruz, 2013).

3.3 POTENCIAL HÍDRICO FOLIAR E TEOR RELATIVO DE ÁGUA

O potencial hídrico foliar (ψ_w) foi avaliado ao final das condições estressante e de reidratação no período da antemanhã em folhas completamente expandidas do sétimo trifólio a partir do ápice com auxílio de bombsa de pressão do tipo Scholander (Scholander et al., 1965).

Para obtenção do teor relativo de água (TRA) seis discos foliares de 6 mm de diâmetro foram coletados de folhas completamente expandidas do sexto trifólio a partir do ápice, então foram pesados e colocados por seis horas em placas de Petri com água destilada para saturação. Em seguida, os discos foram novamente pesados e colocados para secar à 70ºC por 72 horas, para obtenção do peso seco (Turner, 1981). O TRA foi obtido a partir da seguinte fórmula:

$$TRA = \frac{\text{Massa Fresca} - \text{Massa Seca}}{\text{Massa Túrgida} - \text{Massa Seca}} \times 100$$

3.4 ANÁLISES MORFOLÓGICAS

Altura, área foliar total, área foliar total específica (medidor de área LI-3100C) e diâmetro do caule foram avaliadas ao final do período estressante (E) no estádio R4. O desempenho agronômico, incluindo altura da planta, número de vagens com um, dois ou três sementes, número de sementes, número de vagens por planta, peso de 100 sementes e produção final foi avaliado no estádio R8.

3.5 TROCAS GASOSAS
A taxa de assimilação líquida do CO\(_2\) (A), condutância estomática (\(g_s\)), taxa transpiratória (E) e concentração interna carbono (\(C_i\)) foram realizadas em folhas completamente expandidas do oitavo trifólio a partir do ápice, com analisador de gases a infravermelho (IRGA; modelo portátil LI-6400xt, LI-COR Biosciences Inc., Lincon, Nebraska, USA). As medições foram realizadas entre 08:00 e 10:00 da manhã, em casa de vegetação, utilizando radiação fotosinteticamente ativa (\(PAR\)) constante (1000\(\mu\)mol fótons m\(^{-2}\)s\(^{-1}\)), concentração atmosférica de CO\(_2\), temperatura e umidade ambiente. A eficiência instantânea do uso da água (EUA) foi calculada pela razão \(A/E\) e a eficiência de carboxilação (EC) pela razão \(A/C_i\).

3.6 PARÂMETROS DE FLUORESCÊNCIA

As variáveis de fluorescência da clorofila \(a\) foram obtidas na mesma área da folha em que foram realizadas as medidas das trocas gasosas, com auxílio de fluorômetro acoplado ao IRGA. As variáveis obtidas foram: fluorescência inicial (\(F_0\)); fluorescência máxima (\(F_m\)); fluorescência variável (\(F_v\) diferença entre \(F_0\) e \(F_m\)) e rendimento quântico potencial do PSII (\(F_v/F_m\)) (Genty et al., 1989).

As variáveis da fase lenta de indução da fluorescência, fluorescência em amostra adaptada à luz antes do pulso de saturação (\(F\)) e fluorescência máxima em amostra adaptada à luz (\(F_m'\)), foram obtidas sequencialmente com a aplicação de um pulso de luz actínia saturante (>3000 \(\mu\)mol fótons m\(^{-2}\)s\(^{-1}\)). Os parâmetros de fluorescência mínima do tecido vegetal iluminado (\(F_0'\)) (Oxborough e Baker, 1997) e estimativa de centros de reações abertos do FSII (qP) (Kramer et al., 2004) foram calculados a partir de \(F\) e \(F_m'\).

Os rendimentos quânticos efetivos do fluxo linear de elétrons pelo PSII (\(\phi_{PSII}\)), da dissipação de energia regulada (Y(NPQ)) e da dissipação de energia não regulada (\((Y(NO))\) foram calculados de acordo com Genty et al., 1989). O \(\phi_{PSII}\) foi utilizado ainda para estimar a taxa aparente de transporte de elétrons (ETR) (Bilger et al., 1995). O coeficiente de extinção fotoquímico foi calculado como qP = (\(F_m'\) - \(F_s\)) / (\(F_m'\) - \(F_0'\)), e o de extinção não fotoquímico por NPQ = (\(F_m'\) - \(F_m''\)) / \(F_m''\).

3.7 PIGMENTOS CLOROPLASTÍDICOS

Teores de pigmentos (clorofilas \(a, b\), razão clorofila \(a/b\) e carotenoides) foram determinados em discos foliares de 6mm de diâmetro retirados de folhas completamente expandidas do oitavo trifólio a partir do ápice imersos em solução de dimetilsulfóxido (DMSO) saturado com carbonato de cálcio (CaCO\(_3\)). Em seguida, a absorbância das amostras foi determinada no espectrofotômetro Genesys 10UV (ThermoScientific, EUA)
nos comprimentos de onda de 665,1; 649,1 e 480nm (Wellburn, 1994). O cálculo das concentrações das clorofilas \(a \) e \(b \) e carotenoides foi baseado em metodologia descrita por Wellburn (1994).

3.8 PEROXIDAÇÃO DE LIPÍDEOS

Amostras vegetal de 100mg de folhas expandidas foram maceradas em nitrogênio líquido, homogeneizadas em ácido tricloroacético (TCA) 1% e centrifugadas a 12000g, a 4°C, por 15 minutos (Gomes-Junior et al., 2006). Aliquotas de 250µl dos sobrenadantes foram adicionadas a 750µl de solução de TBA 0,5% em TCA 20% e incubadas em banho úmido a 95°C. Após 30 minutos, a reação foi paralisada, os tubos centrifugados a 3000g por 10 minutos e as absorbâncias determinadas a 532 e 600nm. A concentração do complexo aldeído malônico-TBA foi estimada utilizando-se a absorbância e coeficiente de absorvividade de 155mM\(^{-1}\) cm\(^{-1}\) (Heath & Packer, 1968).

3.9 ANÁLISES ENZIMÁTICAS

A atividade das enzimas dismutase do superóxido (SOD - EC 1.15.1.1), catalase (CAT - E.C. 1.11.1.6), peroxidases (POX - EC 1.11.1) e peroxidase do ascorbato (APX - 1.11.1.11) foi determinada para avaliar os mecanismos de defesa das linhagens de soja ao déficit hídrico. Amostras de 100 mg de folhas expandidas foram maceradas em nitrogênio líquido e adicionadas a um meio de homogeneização. O meio foi constituído de tampão fosfato de potássio 0,1M, pH 6,8, ácido etilenodiaminotetracético (EDTA) 0,1mM, fluoreto de fenilmetilsulfônico (PMSF) 1mM e polivinilpirrolidona (PVPP) 1% (p/v) para as enzimas SOD, CAT e POX. Para a enzima APX, o meio de homogeneização foi constituído de tampão fosfato de potássio 50mM, pH 7,0, EDTA 1mM, ácido ascórbico 1mM, PMSF 1mM, ditiotreitol (DTT) 2mM e PVPP 1% (p/v) (Peixoto et al., 1999). Em seguida, os homogeneizados foram filtrados e centrifugados a 12.000 g a 4°C por 15 minutos e os sobrenadantes utilizados como extrato bruto de enzima.

3.9.1 Atividade da SOD

Extrato bruto de 5µL foi adicionado a 195µL de meio de reação constituído de tampão fosfato de sódio 50mM (pH 7,8) contendo metionina 13mM, azul de p-nitro tetrázolio (NBT) 75µM, EDTA 0,1mM e riboflavina 2µM. A reação foi realizada em câmara com luz fluorescente de 15W a 25°C por 10 minutos. Em seguida, a iluminação foi interrompida e a absorbância da formazana azul resultante da fotorredução do NBT foi determinada em leitor de microplaca a 560nm (Multiskan GO, Thermo Scientific, Waltham, EUA). O branco da reação consistiu da mistura entre amostra vegetal e meio de
reação mantida no escuro nas mesmas condições de temperatura e tempo. Uma unidade de SOD foi definida como a quantidade de enzima necessária para inibir em 50% a fotorredução do NBT. O resultado foi expresso em U min⁻¹ mg⁻¹ proteína.

3.9.2 Atividade de CAT

Extrato bruto de 10µL foi adicionado a 190µmL de meio de reação contendo tampão fosfato de potássio 50mM (pH 7,0) e H₂O₂ 12,5mM (Havir & McHale, 1987). A absorvância foi obtida em leitor de microplaca (Multiskan GO, Thermo Scientific, Waltham, EUA) no comprimento de onda de 240nm após 1 minuto. A atividade enzimática foi determinada pela utilização da absorvância e do coeficiente de absorbividade de 36 M⁻¹ cm⁻¹ e o resultado expresso em µmol de H₂O₂ min⁻¹ mg⁻¹ proteína.

3.9.3 Atividade da POX

Extrato bruto de 5µL foi adicionado a 195µL do meio de reação constituído de tampão fosfato de potássio 25mM (pH 6,8), pirogalol 20mM e H₂O₂ 20mM (Kar e Mishra, 1976). A produção de purpurogalina foi determinada pela medida da absorvância em leitor de microplaca (Multiskan GO, Thermo Scientific, Waltham, EUA) no comprimento de onda de 420nm, a 25°C. A atividade enzimática foi calculada utilizando-se a absorvância e o coeficiente de extinção molar de 2,47 mM⁻¹ cm⁻¹ (Chance & Maehley, 1955) e expressa em µmol de purpurogalina min⁻¹ mg⁻¹ proteína.

3.9.4 Atividade da APX

Extrato bruto de 5µL foi adicionado a 195µL do meio de reação contendo tampão fosfato de potássio 0,05M (pH 7,0), ácido ascórbico 0,8Mm e H₂O₂ 1,0Mm (Nakano & Asada, 1981). A atividade enzimática foi determinada pela medida da absorvância em leitor de microplaca (Multiskan GO, Thermo Scientific, Waltham, EUA) no comprimento de onda de 290nm a 25º C considerando o coeficiente de extinção molar de 2,8Mm⁻¹ cm⁻¹. O resultado foi expresso em µmol de ácido ascórbico min⁻¹ mg⁻¹ proteína.

3.10 CONCENTRAÇÃO DE PROTEÍNA

Extrato bruto de 3µL foi misturado a 197µL do reagente de Bradford (Bradford, 1976). A absorbância foi medida em leitor de microplaca (Multiskan GO, Thermo Scientific, Waltham, EUA) no comprimento de onda de 595nm. A curva padrão foi preparada utilizando-se quantidades conhecidas de albumina do soro bovino (BSA) na faixa de 0 a 16µgL⁻¹.

3.11 PROLINA
Amostras de 100mg de tecido foliar foram homogeneizadas em 2mL de ácido sulfossalicílico 3% (p/v), e centrifugada a 6300g por 10min. Aliquotas de 75µL do extrato foram adicionados a 375µL de solução ácida de ninhidrina (1,25 g de nihidrina, 30mL de ácido acético glacial e 20mL de ácido fosfórico 6M) e a mistura foi incubada a 100°C por 1 hora. A reação foi paralisada em banho de gelo e a absorbância do sobrenadante foi medida em espectrofotômetro no comprimento de onda de 520nm. As absorbâncias foram comparadas à curva-padrão de prolina (0 a 100µg mL⁻¹) (Bates, 1973) e os resultados expressos em μmol prolina g⁻¹ MF⁻¹.

3.12 AMINOÁCIDOS TOTAIS

Amostra foliar de 10mg foi homogeneizada em tampão citrato de sódio 0,2M (pH 5,0), ninhidrina 5%, cianeto de potássio 0,002 M e etanol 60% (v/v) para extração dos aminoácidos totais. A absorbância foi analisada em leitor de microplaca (Multiskan GO, Thermo Scientific, Waltham, EUA) no comprimento de onda de 570nm e os resultados comparados com curva padrão de glicina (0,1-1,0µmole/ml) (Yemm e Cocking, 1955). Os resultados foram expressos em μmol. g⁻¹ MF⁻¹.

3.13 PARÂMETROS DE QUALIDADE DAS SEMENTES

A porcentagem de proteína e porcentagem de açúcares totais foram utilizados para avaliar a qualidade das sementes. As sementes foram moídas em moinho (modelo MA20), com peneira de mesh 10, e as amostras foram submetidas à espectrometria por infravermelho FT-NIR (Antaris II FT NIR Analyzer Thermo Scientific).

Para a avaliação de germinação foram utilizadas 600 sementes de cada linhagem, divididas em quatro repetições de 50 sementes por nível (controle, moderado e severo), foram tratadas com fungicida e germinadas entre três folhas de papel germitest, previamente imersas em água destilada na proporção de 2,5 vezes o peso seco do papel, enroladas cuidadosamente e colocadas em câmara de germinação vertical com controle de temperatura a 25°C (Brasil, 2009). As contagens foram realizadas aos 5 e 8 dias após o início do teste, realizando a porcentagem final de plântulas normais.
4. RESULTADOS

As plantas apresentaram diferentes alterações morfológicas visuais aos níveis moderado e severo após exposição às condições estressantes e reidratada. (Figura 1). A linhagem Vx-08-10819 apresentou melhor desempenho visual após imposição ao déficit hídrico moderado e severo.

![Figura 1: Registro das alterações morfológicas visuais. Níveis controles (A, D, G e J), moderados (B, E, H e K) e severos (C, F, I e L) das linhagens de soja Vx-08-10819 e Vx-](image-url)
08-11614 no estádio reprodutivo R4 após condição estressante de déficit hídrico (A, B, C, G, H e I): controle (100%), moderado (60%) e severo (40% da capacidade de campo) e após a condição reidratada (D, E, F, J, K e L): todos os níveis a 100% da capacidade de campo.

O potencial hídrico foliar (ψ_w) reduziu em ambas as linhagens após o déficit hídrico de 40% e 60% da capacidade de campo. Nas condições estressantes, entretanto a linhagem Vx-08-10819 manteve maior potencial hídrico foliar que a linhagem Vx-08-11614, tendo sido 14% e 32% superior para os níveis moderado e severo, respectivamente. Na condição reidratada não houve diferença entre as linhagens e apenas o potencial hídrico da linhagem Vx-08-10819, no nível moderado, retornou ao nível do seu controle (Figura 2A). Os resultados de teor relativo de água (TRA) para a linhagem Vx-08-11614 foram semelhantes aos do ψ_w. No entanto, a linhagem Vx-08-10819 apresentou redução apenas no nível severo (Figura 2B).

Figura 2: Potencial hídrico foliar (A) e teor relativo de água na folha (B), nas linhagens de soja Vx-08-10819 (□) e Vx-08-11614 (■) no estádio reprodutivo R4 após condição estressante (E) de déficit hídrico: controle (100%), moderado (60%) e severo (40% da capacidade de campo) e após reidratação (R). Médias seguidas pela mesma letra maiúscula entre níveis para uma mesma linhagem e pela mesma letra minúscula entre linhagens para o mesmo nível não diferem pelo teste de Tukey a 5% de probabilidade. Barras representam o erro padrão da média.

A linhagem Vx-08-11614 apresentou maiores valores de: área foliar, área foliar específica, diâmetro do caule e altura da parte aérea (Figura 3). A área foliar específica reduziu em ambas linhagens após os níveis moderado e severo, e foi menor em todas as condições na linhagem Vx-08-10819. O diâmetro do caule reduziu no nível severo para a linhagem Vx-08-10819, e em ambos níveis para a Vx-08-11614.
Figura 3: Análises de crescimento. Área foliar (A), área foliar específica (B), diâmetro do caule (C) e altura da parte aérea (D) em duas linhagens de soja: Vx-08-10819 (□) e Vx-08-11614 (■) no estádio reprodutivo R4 após condição estressante (E) de deficit hídrico: controle (100%), moderado (60%) e severo (40% da capacidade de campo). Médias seguidas pela mesma letra maiúscula entre níveis para uma mesma linhagem e pela mesma letra minúscula entre linhagens para o mesmo nível não diferem pelo teste de Tukey a 5% de probabilidade. Barras representam o erro padrão da média.

A produtividade da linhagem Vx-08-10819 não variou após deficit hídrico. Por outro lado, na linhagem Vx-08-11614, o número total de sementes e produção por planta reduziram 38 e 28% no nível moderado e 62 e 64% no nível severo. O peso de 100 sementes reduziu 14 e 16% nos níveis moderado e severo da linhagem Vx-08-11614, respectivamente. O número total de sementes e produção por planta foram superiores parada linhagem Vx-08-10819 nos níveis moderado e severo. O número de vagens reduziu 38% na linhagem Vx-08-11614 após nível severo (Figura 4). O número de vagens com uma semente não diferiu entre os níveis para ambas linhagens, entretanto a linhagem Vx-08-11614 apresentou maior número de vagens com 1 grão. O número de vagens com duas sementes reduziu 30 e 41% para os níveis moderado e o severo, respectivamente, na
linhagem Vx-08-11614. O número de vagens com três sementes foi superior na linhagem Vx-08-10819 em todos os níveis (Tabela 1).

Figura 4: Número de vagens (A), número total de sementes (B), peso de 100 sementes (C), produção por planta (D) e altura da parte aérea (E) nas linhagens de soja Vx-08-10819 (□) e Vx-08-11614 (■) no estádio reprodutivo R8 após exposição ao déficit hídrico no estádio reprodutivo R4. Médias seguidas pela mesma letra maiúscula entre níveis para uma mesma linhagem e pela mesma letra minúscula entre linhagens para o mesmo nível não diferem pelo teste de Tukey a 5% de probabilidade. Barras representam o erro padrão da média.
Tabela 1: Análise de número de sementes por vagem nas linhagens de soja Vx-08-10819 e Vx-08-11614 no estádio reprodutivo R8 após exposição ao déficit hídrico no estádio reprodutivo R4. Dados em porcentagem de vagens com 1, 2 ou 3 sementes por nível: controle (100%), moderado (60%) e severo (40% da capacidade de campo).

<table>
<thead>
<tr>
<th>Número de Sementes por Vagem</th>
<th>Linhagem Vx-08-10819</th>
<th>Linhagem Vx-08-11614</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Controle</td>
<td>Moderado</td>
</tr>
<tr>
<td>1 Grão</td>
<td>2,09% ± 0,67 Ab</td>
<td>6,99% ± 0,7 Aa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Sementes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Controle</td>
<td>0,8% ± 6,03 Ab</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Sementes</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Controle</td>
<td>2,33% ± 5,09 Aa</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Médias seguidas pela mesma letra maiúscula entre níveis para uma mesma linhagem e pela mesma letra minúscula entre linhagens para o mesmo nível não diferem pelo teste de Tukey a 5% de probabilidade. +/- representa o erro padrão da média.

A taxa transpiratória (E) reduziu 86 e 99% no nível severo para as linhagens Vx-08-10819 e Vx-08-11614, respectivamente. Após reidratação, a transpiração da linhagem Vx-08-10819 foi maior que os níveis reidratados da linhagem Vx-08-11614 (Figura 5A). A taxa fotossintética (A) foi superior para a linhagem Vx-08-10819 em todas as condições. A fotossíntese reduziu 78% no déficit hídrico severo para a linhagem Vx-08-10819, e 58 e 87% no déficit hídrico moderado e severo, respectivamente, para a linhagem Vx-08-11614. Na condição reidratada, a fotossíntese recuperou para a linhagem Vx-08-10819, e a Vx-08-11614 apresentou o mesmo padrão da condição estressante. A concentração interna de carbono (Ci) apresentou alterações apenas no nível severo da linhagem Vx-08-11614, com acréscimos de 54% e após a reidratação retornou aos níveis do seu controle (Figura 5C). Os valores de Ci foram menores no nível severo da linhagem Vx-08-10819. A condutância estomática (gs) reduziu 84 e 94% para as linhagens Vx-08-10819 e Vx-08-11614, respectivamente, no nível severo. Após reidratação, os valores de gs retornaram para os níveis do controle, entretanto os valores foram maiores para a linhagem Vx-08-10819 em todas as condições (Figura 5D). A eficiência de carboxilação (EC) reduziu 80 e 84% para as linhagens Vx-08-10819 e Vx-08-11614, respectivamente, no nível severo (Figura 5E).
eficiência do uso da água (EUA) aumentou na linhagem Vx-08-10819 após níveis moderado e severo (Figura 5F).

Figura 5: Taxa transpiratória (A), Taxa de assimilação de CO₂ (B), Concentração interna de carbono (C), Condutância estomática (D), Eficiência de carboxilação (E) e Eficiência no uso da água (F), nas linhagens de soja Vx-08-10819 (□) e Vx-08-11614 (■) no estádio reprodutivo R4 após condição estressante (E) de deficit hídrico: controle (100%), moderado (60%) e severo (40% da capacidade de campo) e após reidratação (R). Médias seguidas pela mesma letra maiúscula entre níveis para uma mesma linhagem e pela mesma letra minúscula entre linhagens para o mesmo nível não diferem pelo teste de Tukey a 5% de probabilidade. Barras representam o erro padrão da média.
Os valores do rendimento quântico efetivo do fotossistema II (Φ PSII) e da taxa de transporte de elétrons (ETR) da linhagem Vx-08-10819 foram superiores aos da Vx-08-11614 em todas as condições avaliadas. Estes mesmos parâmetros reduziram no nível severo para a linhagem Vx-08-10819 e nos níveis moderado e severo para a linhagem Vx-08-11614. Após reidratação, a Φ PSII e ETR não recuperaram na linhagem Vx-08-11614 (Figuras 6A-B). A dissipação de energia regulada Y(NPQ) aumentou 66 e 23% para as linhagens Vx-08-10819 e Vx-08-11614, respectivamente, no nível severo (Figura 6C). A dissipação de energia não regulada Y(NO) aumentou 17 e 14% após os níveis moderado e severo, respectivamente, na linhagem Vx-08-11614 e não retornou ao valor do controle após reidratação. Os valores de Y(NO) da linhagem Vx-08-11614 foram superiores aos da Vx-08-10819 em todas as condições (Figura 6D). O coeficiente de extinção fotoquímico (qP) reduziu 64 e 73% no nível moderado e severo, respectivamente, para a linhagem Vx-08-11614 e 25% após déficit hídrico severo para a linhagem Vx-08-10819. Após reidratadas, apenas os valores de qP da linhagem Vx-08-11614, no nível severo, não recuperaram ao nível do controle. Valores de qP foram maiores para a linhagem Vx-08-10819 em todas as condições (Figura 6E). O coeficiente de extinção não fotoquímico (NPQ) aumentou 12 e 16% para as linhagens Vx-08-10819 e Vx-08-11614, respectivamente no nível severo. Valores de NPQ foram maiores para a linhagem Vx-08-10819 em todas as condições (Figura 6F).
Figura 6: Rendimento quântico efetivo do fotossistema II (A), Taxa de transporte de elétrons (B), Rendimento quântico da dissipação regulada (C), Rendimento quântico da dissipação não regulada (D), Coeficiente de extinção fotoquímico (F), e Coeficiente de extinção não fotoquímico (G) nas linhagens de soja Vx-08-10819 (□) e Vx-08-11614 (■) no estádio reprodutivo R4 após condição estressante (E) de deficit hídrico: controle (100%), moderado (60%) e severo (40% da capacidade de campo) e após reidratação (R). Médias seguidas pela mesma letra maiúscula entre níveis para uma mesma linhagem e pela mesma letra minúscula entre linhagens para o mesmo nível não diferem pelo teste de Tukey a 5% de probabilidade. Barras representam o erro padrão da média.
Teores de clorofila a e clorofila b reduziram na linhagem Vx-08-11614 após nível moderado e severo. Teores de clorofila b reduziram no nível severo enquanto teor de clorofila a reduziu nos níveis moderado e severo para a linhagem Vx-08-10819. Independente do nível, os teores de clorofila b foram maiores na linhagem Vx-08-10819. Teores de carotenoides reduziram na linhagem Vx-08-11614 após o nível moderado e severo e na linhagem Vx-08-10819 no nível severo. Após a reidratação apenas o nível moderado da Vx-08-10819 recuperou-se ao nível do controle. (Figura 7).

Figura 7: Teores de clorofila a (A), clorofila b (B), razão clorofila a/b (C) e carotenoides (D) nas linhagens de soja Vx-08-10819 (□) e Vx-08-11614 (■) no estádio reprodutivo R4 após condição estressante (E) de deficit hídrico: controle (100%), moderado (60%) e severo (40% da capacidade de campo) e após reidratação (R). Médias seguidas pela mesma letra maiúscula entre níveis para uma mesma linhagem e pela mesma letra minúscula entre linhagens para o mesmo nível não diferem pelo teste de Tukey a 5% de probabilidade. Barras representam o erro padrão da média.

A concentração de peroxidação lipídica (MDA-TBA) foi maior nos níveis moderado e severo de ambas as linhagens. Entre as linhagens, a concentração de MDA-TBA foi menor na linhagem Vx-08-10819 após os níveis submetidos ao déficit hídrico.
Após reidratadas os valores de MDA-TBA da linhagem Vx-08-11614 não retornaram ao nível do controle (Figura 8A). A atividade de todas as enzimas aumentou na linhagem Vx-08-10819 após os níveis moderado e severo. Já na linhagem Vx-08-11614, apenas a CAT teve aumento de atividade. As atividades de SOD e CAT foram superiores na linhagem Vx-08-10819 após déficit hídrico moderado e severo. Após a reidratação, as atividades de SOD e APX retornaram aos níveis do controle, diferente do observado para CAT e POX em ambas linhagens (Figura 8B, C, D e E).

Figura 8: Concentração de peroxidização lipídica (A), atividade das enzimas superóxido dismutase (B), catalase (C), peroxidase (D) e peroxidase do ascorbato (E) nas linhagens de soja Vx-08-10819 (□) e Vx-08-11614 (■) no estádio reprodutivo R4 após condição
estressante (E) de deficit hídrico: controle (100%), moderado (60%) e severo (40% da capacidade de campo) e após reidratação (R). Médias seguidas pela mesma letra maiúscula entre níveis para uma mesma linhagem e pela mesma letra minúscula entre linhagens para o mesmo nível não diferem pelo teste de Tukey a 5% de probabilidade. Barras representam o erro padrão da média.

A concentração de prolina e aminoácidos foi maior no nível severo de ambas linhagens, com aumentos de 21,6 e 7,6 vezes para a linhagem Vx-08-10819 e 60 e 8,5 vezes para a linhagem Vx-08-11614, respectivamente. Os níveis de prolina e aminoácidos foram maiores na linhagem Vx-08-11614 após deficit hídrico. Após reidratação, a concentração de aminoácidos não retornou ao nível do controle na linhagem Vx-08-11614, e também no nível severo para a mesma linhagem para a concentração de prolina (Figura 9), e também no níveis severo para a mesma linhagem nos níveis de prolina (Figura 9).

Figura 9: Concentração de prolina (A) e de aminoácidos totais (B), nas linhagens de soja Vx-08-10819 (□) e Vx-08-11614 (■) no estádio reprodutivo R4 após condição estressante (E) de deficit hídrico: controle (100%), moderado (60%) e severo (40% da capacidade de campo) e após reidratação (R). Médias seguidas pela mesma letra maiúscula entre níveis para uma mesma linhagem e pela mesma letra minúscula entre linhagens para o mesmo nível não diferem pelo testede Tukey a 5% de probabilidade. Barras representam o erro padrão da média.

A porcentagem de proteína da linhagem Vx-08-10819 reduziu nos níveis moderado e severo, enquanto na linhagem Vx-08-11614 houve redução apenas no moderado. A porcentagem de açúcares totais da linhagem Vx-08-10819 foi superior a linhagem Vx-08-11614 (Tabela 2). Os teores de ácidos graxos e açúcares não redutores não apresentaram alterações entre os níveis controle, moderado e severo (dados não mostrados). As sementes tiveram porcentagem de germinação igual ou superior a 80% em todos os tratamentos. A porcentagem de germinação reduziu 11 e 15% nas linhagens Vx-08-10819 e Vx-08011614, respectivamente, após o nível severo.
Tabela 2: Porcentagem de óleo, proteína e açúcares totais em sementes das linhagens de soja Vx-08-10819 e Vx-08-11614 no estádio reprodutivo R8 após exposição ao déficit hídrico no estádio reprodutivo R4: controle (100%), moderado (60%) e severo (40% da capacidade de campo).

<table>
<thead>
<tr>
<th>Porcentagem (%)</th>
<th>Linhagem</th>
<th>Linhagem</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Vx-08-10819</td>
<td>Vx-08-11614</td>
</tr>
<tr>
<td>Óleo na semente</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controle</td>
<td>23,08 ± 0,09 /Aa</td>
<td>22,42 ± 0,37 /Aa</td>
</tr>
<tr>
<td>Moderado</td>
<td>23,85 ± 0,08 /Aa</td>
<td>21,99 ± 0,66 /Ab</td>
</tr>
<tr>
<td>Severo</td>
<td>24,08 ± 0,13 /Aa</td>
<td>20,73 ± 0,13 /Ab</td>
</tr>
<tr>
<td>Proteína na semente</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controle</td>
<td>38,73 ± 0,04 /Ab</td>
<td>44,84 ± 0,16 /Aa</td>
</tr>
<tr>
<td>Moderado</td>
<td>37,63 ± 0,22 /Bb</td>
<td>41,55 ± 0,04 /Ba</td>
</tr>
<tr>
<td>Severo</td>
<td>36,43 ± 0,13 /Cb</td>
<td>42,28 ± 0,19 /Aa</td>
</tr>
<tr>
<td>Açúcares Totais</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Controle</td>
<td>7,12 ± 0,05 /Ba</td>
<td>6,97 ± 0,07 /Ab</td>
</tr>
<tr>
<td>Moderado</td>
<td>7,47 ± 0,06 /Aa</td>
<td>6,85 ± 0,1 /Ab</td>
</tr>
<tr>
<td>Severo</td>
<td>7,48 ± 0,25 /Aa</td>
<td>6,58 ± 0,12 /Ab</td>
</tr>
</tbody>
</table>

Médias seguidas pela mesma letra maiúscula entre níveis para uma mesma linhagem e pela mesma letra minúscula entre linhagens para o mesmo nível não diferem pelo teste de Tukey a 5% de probabilidade. +/- representa o erro padrão da média.
5. DISCUSSÃO

O déficit hídrico, quando ocorre, no estádio reprodutivo de plantas cultivadas, como a soja, afeta a produtividade por ser essa a fase mais exigente em recursos (Darianto et al., 2015; He et al., 2017). Algumas plantas são capazes de se ajustar para tolerar condições estressantes, permitindo a manutenção do seu crescimento e desenvolvimento, mas para plantas cultivadas a tolerância está relacionada a manutenção da produtividade (Dolferus, 2014; Hasanuzzanan et al., 2016).

A redução do potencial hídrico foliar e do teor relativo de água nas linhagens Vx-08-10819 e Vx-08-11614 está diretamente relacionada ao déficit hídrico. Os maiores valores de ψ_w da linhagem Vx-08-10819, após déficit hídrico, demonstram sua capacidade de se manter melhor hidratada, o que assegura a manutenção dos seus processos vitais, e consequentemente da produtividade. Plantas com esta característica alteram seus processos fisiológicos e metabólicos para economizar água, dentre eles ajustamento osmótico e controle da abertura/fechamento estomático (Osakabe et al., 2014; Blum, 2016).

A redução no teor relativo de água foi responsável pelo menor diâmetro do caule após déficit hídrico. A maior redução observada na linhagem Vx-08-11614 é indicativo de menor conteúdo de água no caule desta planta (Zweifel et al., 2005; Wang et al., 2017). Em condições de seca o potencial hídrico do xilema se torna mais negativo, permitindo que ele perca água para os tecidos de armazenamento próximos a ele, porém, nessas condições, a captação de água pela raiz ocorre de forma lenta, não sendo suficiente para substituir a água perdida, reduzindo assim o diâmetro do caule (Intriliolo e Castel, 2005).

O maior crescimento da linhagem Vx-08-11614, exibido pelos maiores valores de área foliar, área foliar específica (AFE), diâmetro do caule e altura da parte aérea, indicam alta demanda de fotoassimilados para manutenção do crescimento vegetativo. Esse direcionamento de fotoassimilados para a fase vegetativa reduz a disponibilidade para a fase reprodutiva, o que contribuiu para a menor produtividade desta linhagem nos tratamentos estressados (Dolferus et al., 2011).

Os menores valores de AFE da linhagem Vx-08-10819 estão relacionados a alta capacidade fotossintética, permitindo a adaptação desta linhagem a ambientes estressantes, uma vez que a retenção de recursos para mecanismos estruturais e de defesa da planta são mais importantes que o investimento em área foliar (Cornelissen et al., 2003; Mao et al., 2014; Dai et al., 2015). Menor AFE da linhagem Vx-08-10819 evidenciou melhor
capacidade fotossintética, comprovada pelos seus maiores valores de fotossíntese, em todos os níveis, que resultou na manutenção da sua produtividade após o deficit hídrico entre os estádios mais sensíveis a seca.

O número de vagens e a quantidade de grãos por vagem são importantes parâmetros de produtividade, que quando afetados contribuem para a redução do rendimento da cultura (Darianto et al., 2015). A linhagem Vx-08-11614 apresentou maior número de vagens com 1 semente e menor com 3 sementes, em todos os níveis, e também, reduções no número total de vagens do nível severo, em função das suas menores taxas fotossintéticas, que resultaram em limitações na formação de recursos energéticos, refletindo em maiores taxas de abortamento e menor número de sementes por vagens (Embrapa, 2003).

O número de sementes e a produção final foi maior na linhagem Vx-08-10819 nos níveis moderado e severo. O número de sementes é o componente produtivo mais vulnerável ao deficit hídrico já que as plantas optam por investirem menos em número de sementes e assim garantirem maior fecundidade de suas sementes. Entretanto para culturas de interesse econômico, como a soja, essa é uma estratégia limitante, pois reduz a produção final (Doferus et al., 2011). Linhagens agrícolas que conseguem manter a produtividade final em condições de déficit hídrico, tal como a Vx-08-10819, podem ser classificadas como tolerantes (Dolferus, 2014). A linhagem Vx-08-11614 apresentou reduções no número de sementes e produção por planta nos níveis moderado e severo, devido ao seu maior crescimento vegetativo, menor controle estomático e ineeficiência dos mecanismos de proteção, prejudicando a fotossíntese e consequentemente a produção da planta (Mastrodomenico et al., 2014; Hasanuzzamn et al., 2016). A tolerância da linhagem Vx-08-10819 é justificada pela combinação de seus processos metabólicos e fisiológicos. A menor transpiração e condutância estomática, no nível severo de ambas as linhagens está correlacionado com o fechamento estomático. Esse fechamento é a resposta final de uma cascata de sinalização que ocorre entre as raízes e a parte aérea da planta. Os sinalizadores presentes nas raízes identificam o baixo potencial hídrico no solo e comunicam com a parte aérea através da síntese de compostos químicos, como o ácido abscísico (ABA), que controlam o fechamento/abertura estomática (Bandurska et al., 2013; Sardadevi et al., 2014). Menores valores de transpiração e g_s em situações de baixa disponibilidade hídrica, atuam de forma protetora auxiliando na economia de água e melhorando a eficiência de uso da água (EUA), porém, limita o influxo de CO$_2$ e consequentemente induz reduções na
fotossíntese (Chaves et al., 2009; Manavalan et al., 2009). Após a reidratação, os níveis moderado e severo dos valores de transpiração e gs, recuperaram devido a normalização da abertura estomática em condições ideais de água, porém a Vx-08-10819 se manteve superior a Vx-08-11614 em função do seu maior controle estomático, indicando eficiente percepção no aumento do potencial hídrico do solo, que possibilita uma rápida reabertura estomática, e consequentemente, maiores taxas de fotossíntese e produtividade (Gómez-Bellot et al., 2013; Hsie et al, 2015).

A maior EUA observada na linhagem Vx-08-10819, permitiu a essa linhagem a manutenção dos processos fisiológicos e metabólicos essenciais para o desenvolvimento da planta, o que pode ter resultado na manutenção da produtividade em condição de estresse. A linhagem Vx-08-10819 manteve maiores valores de fotossíntese nos níveis moderado e severo, do que a linhagem Vx-08-11614, o que lhe garantiu melhores valores de EUA, já que ambas as linhagens apresentaram valores de transpiração semelhantes.

O aumento na concentração interna de carbono (Ci), na linhagem Vx-08-11614 no nível severo, indica redução na sua capacidade fotossintética, devido a danos ao aparato fotossintético, os quais podem ser causados pelo acúmulo de espécies reativas de oxigênio (EROs) ou por limitação bioquímica devido à baixa regeneração da rubisco (Silva et al., 2012; Zhang et al., 2016). Os menores valores de Φ PSII e ETR desta linhagem comprovam que ocorreram danos fotoinibitórios ao aparato fotossintético e também a menor eficiência fotossintética desta linhagem (El-Mageer et al., 2016). Os maiores valores de Ci também ocorreram em função do aumento da atividade respiratória em condições mais severas de déficit hídrico (Atkin e Macherel, 2009). Na condição reidratada, o tratamento severo retornou aos valores do seu controle, pois, com a normalização da disponibilidade hídrica a abertura estomática é normalizada e ocorre a síntese de novas proteínas que atuam na fotossíntese, como a rubisco ativase, que ativa a rubisco, e a ‘síntese de novo’ da proteína D1, que faz parte do fotossistema II e auxilia na transferência de elétrons durante a cadeia transportadora de elétrons (Hayano-Kanashiro et al., 2009; Zhang et al., 2016).

A redução na eficiência de carboxilação na linhagem Vx-08-11614 no nível severo ocorreu devido a limitações bioquímicas no aparato fotossintético, que resultou no elevado acúmulo de Ci no nível severo, indicando limitação bioquímica mais severa nesta linhagem. Mathobo et al., (2017) relataram que limitações bioquímicas reduzem a regeneração da rubisco que limita a carboxilação do CO₂ e consequentemente a eficiência
de carboxilação. Os menores valores de qP desta linhagem, nos níveis moderado e severo, indicam que o excesso de poder redutor afetaram diretamente o Ciclo de Calvin, e consequentemente geraram reduções na carboxilação. A redução na eficiência de carboxilação na linhagem Vx-08-10819 está relacionada a menor concentração de \(C_i \) neste mesmo nível, pois a Rubisco, que é a enzima responsável pela carboxilação e também pela oxigenação, tem baixa afinidade para o \(CO_2 \), pois no mesmo sítio ativo dessa enzima estão presentes o \(O_2 \) (substrato da oxigenase da rubisco) e o \(CO_2 \) (substrato da carboxilação da rubisco), e baixas concentrações desse último aumenta a atividade de oxigenação da rubisco e reduzem a carboxilação (Zhang et al., 2013).

Os valores de rendimento quântico efetivo do fotossistema II (\(\Phi \text{ PSII} \)) e taxa de transporte de elétrons (ETR) reduziram na linhagem Vx-08-10819 no nível severo e em ambos níveis da Vx-08-11614, pois estresses que inibem o influxo de \(CO_2 \), como o déficit hídrico, reduzem esses os valores indicando danos fotoinibitórios ao aparato fotossintético (El-Mageer et al., 2016). Danos fotoinibitórios reduzem a eficiência do sistema fotossintético em usar os elétrons gerados pela radiação incidente, o que leva a maior geração de EROs pelo fotossistema II, resultando na menor taxa fotossintética nestes níveis (Lotfi et al., 2015; Buchner et al., 2016). Os maiores valores encontrados na linhagem Vx-08-10819 para fotossíntese, \(\Phi \text{ PSII} \) e ETR demonstram que essa linhagem apresenta maior eficiência fotossintética, o que permitiu a manutenção da sua fotossíntese mesmo em condições de deficiência hídrica (Snider et al., 2014).

Após reidratação, a linhagem Vx-08-11614 não recuperou os valores de fotossíntese, \(\Phi \text{ PSII} \) e ETR por não apresentar mecanismos eficientes para reparar os danos causados ao aparato fotossintético, o que evidencia maior sensibilidade a condições de deficiência hídrica. Esses dados mostram que o aparato fotossintético da linhagem Vx-08-10819 possui maior capacidade de recuperação após situações de seca, o que dita a tolerância da planta e também mantém a produtividade da cultura, uma vez que a produtividade depende dos fotoassimilados produzidos através da fotossíntese (Chaves et al., 2009).

O maior valor na dissipação da energia regulada (\(Y(\text{NPQ}) \)) da linhagem Vx-08-10819 após déficit hídrico severo indica maior eficiência do mecanismo protetor nesta linhagem o qual está relacionado à dissipação de energia regulada na forma de calor através do mecanismo fotoprotetor regulado, que acontece no centro de reação do fotossistema II (Kramer et al., 2004). A dissipação de energia não regulada (\(Y(\text{NO}) \)) foi
maior nos níveis moderado e severo da linhagem Vx-08-11614, que também apresentou valores maiores que a linhagem Vx-08-10819, o que ressalta a baixa eficiência do mecanismo de proteção da primeira linhagem, uma vez que maiores valores de Y(NO) sugerem que a energia de excitação direcionada para a fase fotoquímica da fotossíntese e os mecanismos de proteção foram ineficientes (Klughammer e Schreiber, 2008; Tatagiba, 2013). O melhor desempenho fotossintético da linhagem Vx-08-10819, é resultado de uma maquinaria fotossintética robusta com maior capacidade fotoprotetora, que são características de plantas tolerantes ao déficit hídrico (Bazzaz, 1998; Rivas et al., 2016).

O maior coeficiente de extinção fotoquímico (qP) representa a utilização de energia luminosa pela fase fotoquímica da fotossíntese, o maior qP nos níveis moderado e severo e a sua recuperação após a reidratação evidenciam seu maior desempenho fotossintético (Campostrini, 1997). O menor valor de qP nos níveis severos de ambas as linhagens e também no moderado da Vx-08-11614, ocorreram proporcionalmente ao fechamento dos centros de reações do fotossistema II, indicativo de alteração no equilíbrio entre a taxa de excitação e de transferência de elétrons (Zlatev e Lidon, 2012; Ashraf e Harris, 2013; Zhang et al., 2016). O coeficiente de extinção não fotoquímico (NPQ) é um mecanismo de prevenção a formação de EROs e proteção ao excesso de energia luminosa, que ocorre em condições estressante como o déficit hídrico, portanto, maiores valores de NPQ da linhagem Vx-08-10819 em relação aos da Vx-08-11614, em todas as condições, indica alta capacidade protetora contra o excesso de luz e formação de EROs (Dabrowski et al., 2016; Hazrati et al., 2016; Buchner et al., 2016). A manutenção da fotossíntese na linhagem Vx-08-10819, nos níveis estressados, deve-se a maior capacidade fotoprotetora, ao mecanismo de dissipação do excesso de energia e prevenção a formação de EROs mais eficiente, que minimizaram os danos causados pelo déficit hídrico no seu aparato fotossintético (Apel e Hirt, 2004).

As reduções nos teores da clorofila \(a\) e \(b\), em função da ação das EROs, no nível severo de ambas as linhagens e no moderado da Vx-08-11614 resultam em um mecanismo protetor por reduzirem a absorção do excesso de luz e a pressão energética no fotossistema II (Parida e Das, 2005). A maior quantidade de energia absorvida pela planta em condições de seca causa a formação de EROs que poderão atuar na degradação dos pigmentos fotossintéticos resultando na interrupção de processos fisiológicos (Parida e Das, 2005; Ku et al., 2013). O maior teor de chl \(b\), nos níveis moderado e severo, na linhagem Vx-08-10819 demonstra que essa planta possui maior eficiência na absorção de luz e na
transferência da energia radiante para os centros de reação, que são características de plantas mais eficientes no uso da energia luminosa e, portanto, são consideradas mais resistentes à seca (Parida e Das, 2005).

O nível severo de ambas as linhagens apresentaram reduções nos teores de carotenoides, com maior intensidade na linhagem Vx-08-11614, que também apresentou reduções no nível moderado, o que mostra a baixa capacidade protetora de processos fotoquímicos desta linhagem, já que os carotenoides atuam na absorção de luz, transferência de energia para os centros de reação, na eliminação de elétrons na forma de calor, eliminação de EROs e prevenção da peroxidação lipídica (Fang et al., 2008; Sharma et al., 2012; Hong-hai et al., 2016). Na reidratação apenas o nível moderado da Vx-08-10819 retornou aos valores do controle, indicando o restabelecimento da absorção de luz e das atividades protetoras normais.

Os maiores teores MDA-TBA após exposição ao deficit hídrico, em ambas linhagens, é indicativo de danos oxidativos às membranas (Azevedo-Neto et al., 2005). Contudo, esse dano foi menor na linhagem Vx-08-10819, possivelmente, pelo menor acúmulo/formação de EROs em consequência de um mecanismo dissipador de excesso de poder redutor mais eficiente, e da maior atividade das enzimas antioxidativas (Sharma et al., Hojati et al., 2011). Após reidratação, os níveis de MDA-TBA da linhagem Vx-08-11614 continuaram elevados, indicando que ainda havia presença de danos oxidativos nas membranas (Bin et al., 2010). Os altos valores de MDA-TBA mesmo após a reidratação podem estar relacionados a baixa atividade enzimática da SOD, POX e APX durante o estresse, que não foi suficiente para remover eficientemente as EROs e evitar danos nas membranas.

Estresses como a seca, ativam o mecanismo de proteção nas plantas como o sistema antioxidativo enzimático formado, principalmente pelas enzimas superóxido dismutase (SOD), catalase (CAT), ascorbato peroxidade (APX) e peroxidades totais (POXs) (Pyngrope et al., 2013; Tian et al., 2016). Os maiores valores, dos níveis moderado e severo, nas atividades das enzimas antioxidantes (SOD, CAT, APX e POXs) na linhagem Vx-08-10819 evidenciam um mecanismo mais eficiente para a manutenção do estado redox das células por meio da capacidade antioxidante de eliminação das EROs (Mishra et al., 2012). Na reidratação as enzimas CAT e POX não retornaram aos níveis dos controles, pois as EROs, resultantes do deficit hídrico, podem ainda estar presentes em concentrações potencias para induzir danos oxidativos nas células.
O acúmulo de solutos osmorreguladores, como a prolina e os aminoácidos, nos níveis submetidos ao déficit hídrico, está relacionado a resposta à baixa disponibilidade hídrica da planta tendo como consequência uma melhor captação de água (Blum, 2016). A osmorregulação é um mecanismo adaptativo das plantas que minimizam as consequências negativas do déficit hídrico na produção agrícola (Serraj e Sinclair, 2002). A linhagem Vx-08-10819 recuperou seus valores de prolina e aminoácidos após a reidratação em função da sua recuperação do status hídrico obtido pela reabsorção de água. Além de osmorreguladora a prolina também possui a função osmoprotetora atuando na eliminação de radicais, na prevenção de danos fotoinibitórios, eliminação de EROs, regulação positiva de enzimas oxidantes e consequentemente na melhoria a tolerância a seca (Serraj e Sinclair, 2002). Não é possível afirmar, pelas análises realizadas, qual a porcentagem de prolina foi direcionada para o papel osmoprotetor e osmorregulador.

A menor porcentagem de proteína nos níveis moderados, de ambas as linhagens, e no severo, da Vx-08-10819, ocorreu em função da menor disponibilidade hídrica nos estádios reprodutivos precoces, que causaram distúrbios bioquímicos na biossíntese de proteína (Turner et al., 2005; Rotundo e Westgate, 2009). Porcentagens de óleo e proteína são controladas geneticamente, porém, em situações de estresse, como o déficit hídrico, a maturação da semente pode ser acelerada reduzindo o período de acúmulo das reservas (Miransari, 2016).

Nas sementes de soja os teores de óleo, proteína e açúcares totais são importantes para a germinação das sementes (Natarajan et al., 2012), porém não afetaram a taxa de germinação das sementes, que se mantiveram superiores a 80%, que é um valor considerado aceitável (Brasil, 2009). No entanto as sementes de ambas linhagens apresentaram queda no teor de germinação no nível severo que ocorreu como resposta ao déficit hídrico durante a fase de enchimento de sementes (Samarah et al., 2009). Sementes formadas durante a exposição a déficit hídricos mais severos geralmente são menores, devido a menor disponibilidade de recursos no momento de enchimento de sementes e apresentam tegumento mais rígidos, dificultando a permeabilidade da água na semente e reduzindo a taxa de germinação (Dornbs et al., 1991; Ku et al., 2013; Samarah et al., 2013).
6. CONCLUSÃO

Na linhagem Vx-08-10819 vários mecanismos fisiológicos atuaram concomitantemente para que essa linhagem mantivesse sua produtividade após um período de déficit hídrico. A manutenção do potencial hídrico foliar aliado com a menor área foliar e melhor controle estomático, garantiu um melhor uso da água e consequentemente a manutenção de atividades metabólicas importantes como a fotossíntese. Os menores níveis de MDA-TBA e maiores atividades das enzimas antioxidativas ressaltaram na maior eficiência dos mecanismos de proteção contra danos oxidativos desta linhagem. A menor área foliar específica, a melhor utilização dos parâmetros de fluorescência da clorofila \(a \) e a maior atividade fotossintética confirmaram a melhor eficiência do aparato fotossintético, que foi essencial para a manutenção da produtividade.

Assim, estes resultados sugerem que a linhagem Vx-08-10819 possui a capacidade de retardar os danos do déficit hídrico e se recuperar rapidamente, dos possíveis danos causados, após a reidratação. A manutenção na produtividade da linhagem Vx-08-10819 pode estar relacionada a sua maior tolerância ao déficit hídrico no estádio reprodutivo.
7. REFERÊNCIAS BIBLIOGRÁFICAS

hardening capacity of alpine plants as indicated by changes in xanthophyll cycle pigments; singlet oxygen scavenging; \(\alpha \)-tocopherol and plant hormones. **Environmental and Experimental Botany.** 133: 159-175; 2016.

PANDY, P.; SRIVASTAVA, K.; RAJPOOT, R.; RANI, A.; PANDEY, A.K.; DUBEY, R.S. Water deficit and aluminum interactive effects on generation of reactive oxygen species and responses of antioxidative enzymes in the seedlings of two rice cultivars

PYNGROPE, S.; BHOOMIKA, K.; DUBEY, R.S. Reactive oxygen species; ascorbate-glutathione pool; and enzymes of their metabolism in drought-sensitive and tolerant indica rice (**Oryza sativa L.**) seedlings subjected to progressing levels of water deficit. **Protoplasma.** 250: 585-600; 2013.

SANDERS, G.J.; ARNDT, S.K. Osmotic adjustment under drought conditions. In **Plant Responser to Drought Stress.** Cap. 8, 199-229; 2016.

SARADADEVI, R.; BRAMLEY, H.; SIDIDIQUE K.H.M; EDWARDS E.; PALTA A.J. Reprint of “contrasting stomatal regulation and leaf ABA concentrations in wheat genotypes when split root systems were exposed to terminal drought”. **Field Crops Research.** 165: 5-14; 2014.

TATAGIBA, S.D. *Fotossíntese; metabolismo antioxidativo e respostas de defesa de plantas de arroz infectadas por Microdochium oryzae e supridas com silício*. 126f. Tese (doutorado); Universidade Federal de Viçosa. 2013.

