Lactone Derivatives Produced by a *Phaeoacremonium* sp., an Endophytic Fungus from *Senna spectabilis*


†Instituto de Ciências Exatas e Tecnológicas, Universidade Federal de Viçosa, Rio Paranaíba, Minas Gerais 38810-000, Brazil
‡Department of Organic Chemistry, São Paulo State University (Unesp), Chemistry Institute, Araraquara, São Paulo 14800-900, Brazil
§Instituto de Ciências Exatas e Tecnologia, Universidade Federal do Amazonas, Itacoatiara, Amazonas 69103-128, Brazil
⊥Instituto de Ciências Exatas e Naturais, Universidade Federal de Mato Grosso, Rondonópolis, Mato Grosso 78735-901, Brazil
∥Departamento de Fitopatologia, Universidade Federal de Lavras, Lavras, Minas Gerais 37200-000, Brazil
¶Seção de Fisiologia e Bioquímica de Plantas, Instituto de Botânica, São Paulo, São Paulo 04301-902, Brazil
§Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, São Paulo 13560-970, Brazil
△Departamento de Fitopatologia, Universidade Federal de Viçosa, Viçosa, Minas Gerais 36570000, Brazil
△São Paulo State University (Unesp), School of Pharmaceutical Sciences, Araraquara, São Paulo 14801-902, Brazil

**Supporting Information**

**ABSTRACT:** Three new isoaigialones, A, B, and C (1–3), along with aigialone (4), were isolated from the crude EtOAc extract of a *Phaeoacremonium* sp., an endophytic fungus obtained from the leaves of *Senna spectabilis*. The structures of these compounds were elucidated based on the analysis of spectroscopic data. Compounds 2 and 4 were active against the phytopathogenic fungi *Cladosporium cladosporioides* and *C. sphaerospermum*. This is the first report of metabolites produced by an *Phaeoacremonium* sp., associated with *S. spectabilis*.

Approximately one-quarter of all natural products have been isolated from fungi, which are estimated to be 1.5–5.5 million species, including mycoparasites, coprophiles, those from soil and freshwater, epiphytes, endophytes, and others. Endophytic fungi inhabit the interior of a plant during the fungus life cycle, without harming the plant. A number of potently bioactive and structurally diverse secondary metabolites have been isolated from endophytic fungi, which are considered a promising source of novel products.

In our continuing program studying metabolites from endophytic fungi, we investigated endophytes associated with the plant *Senna spectabilis* (Leguminoseae), selected because several species of *Senna* accumulate unusual phenolic compounds. Chapla et al. described the isolation of bioactive phenolic compounds, including alternariol, 5′-epialtenuene, and cytosporone C, produced by the endophytic fungus *Phomopsis* sp., associated with *S. spectabilis*. These results, together with the hypothesis that endophytic fungi are capable of mimicking the chemistry of their hosts, led us to investigate endophytic fungi associated with *S. spectabilis*.

Here, we describe the isolation, structure, and biological activity (antifungal and cytotoxic) of three new isoaigialones, A,
B, and C (1–3), along with aigialone (4), from a Phaeoacremonium sp. associated with S. spectabilis. These compounds are considered rare in nature due to a ketene acetal functional group.

The chemical and biological evaluation of six endophytic axenic strains (CL-01–CL-06) isolated from leaves of S. spectabilis was conducted in order to prioritize these for additional studies. The crude extract of strain CL-06, classified as Phaeoacremonium sp., displayed antifungal activity against the phytopathogenic fungi Cladosporium cladosporioides and C. sphaerospermum; the endophytic fungus selected yielded three new isoaigialones, A (1), B (2), and C (3), and the known aigialone (4).

Compound 1 was isolated as an optically active, white, amorphous powder. The molecular formula of 1 was established as C_{16}H_{26}O_{6} by HRESIMS analysis. The UV spectrum of 1 showed an intense absorption at \( \lambda_{\text{max}} \) 235 nm, while the IR spectrum presented bands at \( \nu_{\text{max}} \) 3336 (OH), 1736 (C=O), and 1677 cm\(^{-1}\) (enol).

Analysis of NMR data of 1 (Table 1) indicated the presence of two olefinic carbons, three methyl groups, two O-substituted sp\(^3\) carbons, two oxymethine groups, six methylene carbons, and one signal at \( \delta_{\text{C}} \) 168.8 ppm in the \(^{13}\)C NMR spectrum, which suggested the presence of an ester group. The MS and NMR data indicated the presence of two cyclic systems in the molecule.

Analysis of the \(^1\)H and \(^{13}\)C NMR data (Table 1) indicated the presence of an \( n \)-heptyl moiety. A methylene group at \( \delta_{\text{H}} \) 1.80 showed coupling with a methylene at \( \delta_{\text{H}} \) 1.54, itself coupled to a methylene at \( \delta_{\text{H}} \) 1.24 connected to the methyl group at \( \delta_{\text{H}} \) 0.85. The \( n \)-heptyl group was shown to be connected to C-6 via a long-range correlation observed in the HMBC spectrum between H-6 (\( \delta_{\text{H}} \) 4.10) and C-13 (\( \delta_{\text{C}} \) 26.3).

A vicinal \(^1\)H−\(^1\)H correlation between H-6 and H-12 (\( \delta_{\text{H}} \) 1.80) observed in the COSY spectrum confirmed this connection. In the HMBC spectrum, H-6 showed correlations to both C-7 (\( \delta_{\text{C}} \) 70.7) and C-4 (\( \delta_{\text{C}} \) 172.3). The hydrogen H-8 (\( \delta_{\text{H}} \) 3.80) showed long-range correlations to C-6 (\( \delta_{\text{C}} \) 87.2), C-4 (\( \delta_{\text{C}} \) 172.3), and C-1 (\( \delta_{\text{C}} \) 168.8), while the methyl group C-11 showed correlations to C-6 and C-8. These data enabled us to establish the structure of the 3,4-dihydro-3-methyl-2-heptyl-2\(^{1}\)H-pyran-3,4-diol moiety in 1. Finally, correlations observed in the gHMBC spectrum between H3C-10 and C-3 and C-4, along with the UV absorption and the \(^{13}\)C NMR chemical shifts of C-
Compound 4 was identified as the known metabolite aigialone by comparing its spectroscopic data with literature data. Aigialone was first described from the fungus Aigialus parvus and has not been reported from any other natural source.

Compounds 1–4 were evaluated against Cladosporium cladosporioides and C. sphaerospermum using direct bioautography. The results showed that 2 and 4 exhibited antifungal activity, with a detection limit of 5 μg, for both fungi, while compound 3 displayed weak activity (detection limit >5 μg), with a detection limit of 25 μg. Nystatin was used as a positive control, showing a detection limit of 1 μg.

The cytotoxicity of compounds 1–4 against a human cervical tumor cell line (HeLa) was tested using the MTT assay (Mosmann, 1983). Compound 4 exhibited an IC_{50} of 50 μmol L^{-1}, compound 2 presented an IC_{50} value of 100 μmol L^{-1}, and the other compounds were inactive (IC_{50} > 100 μmol L^{-1}). Camptothecin was used as positive control and presented an IC_{50} of 0.12 μmol L^{-1}.

In conclusion, we have isolated three new polyketides, aigialones A, B, and C, from Phaeoacremonium sp. To the best of our knowledge, only one natural metabolite presenting the furan3,4-b]pyran ring system, named massarilactone B, has been previously reported, in this case from the freshwater aquatic fungus Massarina tunicata. Compounds 2–4 are active against the phytopathogenic fungi C. cladosporioides and C. sphaerospermum, which suggests that these metabolites may exert a defensive role in S. spectabilis host species against microbial pathogens.

EXPERIMENTAL SECTION

General Experimental Procedures. Optical rotations were measured in MeOH using a PerkinElmer polarimeter with a sodium lamp operating at 589 nm and 25 °C. UV spectra were recorded in MeOH or CHCl₃ on a Shimadzu UV-2401 PC spectrophotometer. IR spectra were run on a Nicolet Impact-400 spectrophotometer. HRESIMS data were obtained on a Q-TOF mass spectrometer from a DRX-500 spectrometer, using tetramethylsilane as internal standard. IR spectra were run on a Nicolet Impact-400 spectrophotometer. 1H (500 MHz) and 13C NMR spectra were run on a Varian DRX-500 spectrometer, using tetramethylsilane as internal standard. HRESIMS data were obtained on a Q-TOF mass spectrometer from Bruker maXis, with an electrospray ionization (ESI) interface (Bruker, Fremont, CA, USA).

Analytical HPLC was performed on a Varian Pro Star 230 System with a UV–vis/DAD detector, using a Phenomenex C18 column (250 mm × 4.6 mm, 5 μm). Column chromatography (CC) was performed over reversed-phase silica gel 230–400 mesh (Merck). TLC was performed using Merck silica gel 60 (>230 mesh) and precoated silica gel 60 PF254. Spots on TLC plates were visualized under UV light and by spraying with anisaldehyde-H₂SO₄ reagent followed by heating at 120 °C. Preparative HPLC was performed on a Varian Prep-Star 400 system, using a Phenomenex C18 (250 mm × 21.2 mm, 10 μm) preparative column.

Plant Material. Leaves of Senna spectabilis were collected in the Araquara Cerrado area, in June 2001, Araquara, Sao Paulo state, Brazil. A voucher specimen number (SILVA No-193) has been deposited in the herbarium of the Botanic Garden of Sao Paulo, Brazil.

Isolation of the Endophytic Fungus. The fungal strains were isolated from healthy leaves of S. spectabilis following a published protocol. Six strains were obtained. Strains were coded as CL-01 to CL-06 and preserved in sterile water. The fungal strain CL-06 was isolated as an optically active, white, amorphous powder, with the formula C₁₆H₂₆O₅ based on analysis by HRESIMS and 1H and 13C NMR data (Table 1). The 1H and 13C NMR spectra (Table 1) of 2 were very similar to that of aigialone A (1), differing in the chemical shift of C-3, which changed from δC 99.9 to δC 72.5, as well as the coupling pattern of H₂-C-10, which appeared as a singlet in 1 (δH 1.48) and as a doublet in 2 (δH 1.32, 7.5 Hz). Long-range correlations observed in the HMBC data between H₂-C-10 (δH 1.31) and C-4 (δC 175.8), as well as from H-3 (δH 4.90) to C-9 (δC 99.9), confirmed the absence of the hydroxy group in C-3. The loss of 16 mass units in the NOESY 1D data, which showed an NOE between H3C-11 (δH 1.31) and C-2 (δH 1.48), indicated the presence of a β-alkoxy-α,β-unsaturated lactone fragment in 1. The structure assignment, as well as its relative configuration, was finally confirmed by X-ray analysis (Figure 1).

Figure 1. Thermal ellipsoid representation of 1.

Figure 2. Dipolar couplings (NOEs) observed for aigialone B (2).

Figure 3. Dipolar couplings (NOEs) observed for aigialone B (2).
Growth of *Phaeococcomyces* sp. and Preparation of the EtOAc Extract. The strain CL-06, identified as *Phaeococcomyces* sp., was inoculated in a Petri dish containing potato dextrose agar and incubated for 7 days. After this period, preinoculi were incubated in potato dextrose broth (5.6 L, total volume) and incubated at 160 rpm, under controlled temperature (25 °C) for 28 days. After growth, the broth was separated from the mycelium by filtration and extracted with EtOAc three times (50% of the broth volume each). The organic layer was evaporated to dryness, to give 8660.6 mg of crude extract.

**Antifungal Assay.** The assay for antifungal potential (bioautography) of the crude AcOEt extract and compounds 1–4 was carried out with the phytopathogenic fungi *C. sphaerospermum* (Perzig) SPC 491 and *C. cladosporeoides* (Fresen) of Vries SPC 140, using a previously described method. Both strains are maintained at the Institute of Botany, São Paulo, Brazil. The assays were performed at concentrations of 5, 10, 20, 50, and 100 μg L⁻¹, using nystatin as positive control.

**Cytotoxicity Bioassay.** The human cervical cancer cell line assay was performed as previously described. Camptothecin was used as a positive control.

**Extraction and Isolation.** The EtOAc extract (8660.6 mg) was fractionated by CC using reversed-phase silica gel and a gradient of MeOH in H₂O as eluent, to give six fractions of 200 mL each: MeOH 15% (FrCl-06-1, 108.0 mg), MeOH 25% (FrCl-06-2, 83.0 mg), MeOH 35% (FrCl-06-3, 19.4 mg), MeOH 50% (FrCl-06-4, 26.0 mg), MeOH 100% (FrCl-06-5, 553.0 mg), and CH₂Cl₂ (FrCl-06-6, 63.0 mg). Fraction FrCl-06-5 (553.0 mg) was further purified using reversed-phase preparative HPLC (H₂O/MeCN (65:35), 15.0 mL min⁻¹), yielding the isoaiagiolones 1 (tₚ = 43 min; 30.0 mg), 2 (tₚ = 52 min; 20.0 mg), and 3 (tₚ = 65 min; 12.0 mg) and aigialone 4 (tₚ = 69 min; 180.0 mg).

**Isoaiagiolone A (1):** white, amorphous powder; [α]D²⁰ = –36.0 (c 0.38, MeOH); UV (MeOH) εmax 235 (3.65) nm; IR (KBr) νmax 3316, 1736, and 1677 cm⁻¹; ¹H and ¹³C NMR see Table 1; HRESIMS m/z 315.1788 [M + H⁺] (calcld for C₁₆H₂₆O₅Na, 315.1808) ppm; ESIMS m/z 315.1788 [M + H⁺] (calcld for C₁₆H₂₆O₅Na, 315.1809) ppm. **Isoaiagiolone B (2):** white, amorphous powder; [α]D²⁰ = –141.5 (c 0.27, CHCl₃); IR (KBr) νmax 3336, 1736, and 1677 cm⁻¹; ¹H NMR and ¹³C NMR see Table 1; HRESIMS m/z 299.1853 [M + H⁺] (calcld for C₁₆H₂₆O₅Na, 299.1858) ppm. **Isoaiagiolone C (3):** white, amorphous powder; [α]D²⁰ = +39.1 (c 0.14, CHCl₃); IR (KBr) νmax 3336, 1736, and 1677 cm⁻¹; ¹H and ¹³C NMR see Table 1; HRESIMS m/z 321.1677 [M + Na⁺] (calcld for C₁₆H₂₇O₅Na, 321.1678). **X-ray Structure Determination of Isoaiagiolone 1.** The X-ray crystallographic data were measured on an Enraf-Nonius KAPPA CCD diffractometer (95 mm CCD camera on a four-circle diffractometer). The crystal data were summarized as follows: empirical formula C₁₆H₂₆O₅; formula weight 312.35 amu; monoclinic, space group P2₁, Z = 2, a = 5.433(1) Å, b = 8.456(1) Å, c = 18.775(3) Å, β = 94.864(7)°; V = 899.4(2) Å³; Dcalc = 1.207 mg/m³; F(000) = 336 μ, μ = 0.092 mm⁻¹, 6387 collected reflections (3.25 °< θ< 27.36 °), 6676 unique reflections; completeness to θ (27.36 °). The crystallographic data are deposited with number 763495 at the Cambridge Crystallographic Data Centre, Cambridge, UK.

**ASSOCIATED CONTENT**

**Supporting Information**

The Supporting Information is available free of charge on the ACS Publications website at DOI: 10.1021/acs.jnatprod.5b00828.

Selected ¹H and ¹³C NMR, ¹H–¹H COSY, HSQC, HMBC, and HRMS spectra of compounds 1–3 (PDF)