EFEITOS DA CHUVA SOBRE A EFICÁCIA DE FORMULAÇÕES DE Glyphosate NO CONTROLE DE Brachiaria decumbens

Adriano Jakelaitis²
Andréia Cristina Silva²
Antônio Alberto da Silva³
Aroldo Ferreira Lopes Machado⁴
Giovani Lourenço de Freitas⁵

RESUMO

Avaliou-se a eficácia de controle de Brachiaria decumbens Stapf. cv. Basilisk por diferentes formulações de glyphosate (sal de amônio, sal de isopropilamina e sal potássico), quando as plantas tratadas foram submetidas a 20 mm de chuva, durante 50 minutos, em diferentes intervalos de tempo (1, 2, 4 e 6 horas) após a aplicação. Os herbicidas foram aplicados na dose de 720 g e.a. ha⁻¹, com pulverizador de precisão equipado com bicos TT – 110.02, aplicando-se o equivalente a 200 L ha⁻¹ de calda. Durante as aplicações as plantas permaneceram em solo úmido com temperatura do ar variando de 30 ± 3°C e umidade relativa do ar de 67 ± 7%. O delineamento utilizado foi o de blocos casualizados, com os tratamentos dispostos no esquema de parcelas subdivididas, com quatro repetições. O índice de toxidez dos herbicidas sobre a B. decumbens foi avaliado visualmente aos 3, 7, 14, 21 e 28 dias após a aplicação (DAA), sendo a biomassa seca da rebrota avaliada aos 45 DAA. A ocorrência simulada de chuva uma hora após a aplicação reduziu a eficácia de todas as formulações testadas para o controle de B. decumbens. O glyphosate formulado em sal de isopropilamina proporcionou controle satisfatório de B. decumbens aos 21 DAA, quando a simulação de

² Estudante de pós-graduação, Dep. de Fitotecnia, UFV. 36571-000 Viçosa, MG.
³ Dep. de Fitotecnia, 36571-000 Viçosa, MG.
⁴ Estudante de Agronomia, UFV, 36571-000 Viçosa, MG.
⁵ Estudante de Agronomia, UENF, 27013-602 Campos dos Goytacazes, RJ.
chuva ocorreu em intervalo de no mínimo duas horas após a aplicação dos herbicidas. Com o glyphosate sal potássico e o glyphosate sal de amônio foram necessários intervalos de 4 e 6 horas sem chuva, respectivamente. O glyphosate sal potássico e o sal de isopropilamina proporcionaram menor rebrota de *B. decumbens* em relação ao glyphosate sal de amônio nos tratamentos em que a chuva ocorreu até o intervalo de 4 horas após as aplicações das formulações.

Palavras-chave: herbicida, absorção, planta daninha.

ABSTRACT

EFFECTS OF THE RAINFALL ON THE EFFICACY OF GLYPHOSATE FORMULATIONS IN CONTROLLING *Brachiaria decumbens*

The objective of this work was to evaluate the efficacy of different glyphosate formulations (ammonium, isopropilamine and potassium salts) in controlling *Brachiaria decumbens*, when the products were applied in post-emergence conditions and the plants were submitted to 20 mm simulated rainfall during 50 minutes, at intervals of 1, 2, 4 and 6 h, after herbicide application. The herbicides were applied at the dose 0.72 kg a.e. ha\(^{-1}\), using back spraying, with TT-11002 nozzles of constant pression, applying 200 L ha\(^{-1}\). During the applications, the plants remained in humid soil at 30 ± 3°C and relative humidity of 67 ± 7%. The experiment was arranged in a randomized complete-block design, with the treatments following a split split-plot design, with four replications. The toxic effect of herbicides on *Brachiaria decumbens* was evaluated at 3, 7, 14, 21 and 28 DAA (days after application) and the sprouting evaluated at 45 DAA. The one-hour-interval rainfall presented the lowest *Brachiaria decumbens* control for all the formulations. Glyphosate formulated in isopropilamine salt was efficient in controlling *Brachiaria decumbens* at a 2 hour-interval without rainfall at 21 DAA. For the potassium and ammonium salts, 4 and 6 hour-interval without rainfall following application permitted an efficient control, respectively. The isopropilamine and potassium salts provided a lower sprouting of *Brachiaria decumbens*.

Key words: herbicide, absorption, weed.

INTRODUÇÃO

O glyphosate pertence ao grupo dos inibidores da síntese de aminoácidos e contem o N-(phosphonomethyl) glycina como ingrediente ativo, podendo ser formulado na forma de sal de amônio, sal de isopropilamina ou sal potássico (7). É um ácido fraco, que pode doar íon hidrogênio a outros compostos. Quando é formulado como um produto comercial, o íon hidrogênio é trocado com diferentes sais, que sozinhos não têm propriedades herbicidas, mas misturados com o glyphosate resultam num produto mais fácil de manusear, que mistura melhor com outros produtos químicos e pode ser mais eficiente que o ácido fraco do qual é originado (4).
As diferentes formulações de um herbicida podem influenciar a velocidade de absorção e translocação do seu ingrediente ativo, assim como a eficácia de controle das espécies daninhas (9). O herbicida somente será eficiente se permanecer retido na superfície foliar o tempo necessário para que possa ser absorvido pela planta. Fatores como intervalo de tempo e intensidade e duração da chuva após a aplicação dos herbicidas, bem como as condições climáticas antes, durante e após as aplicações, interferem na eficácia dos herbicidas aplicados em pós-emergência (2).

Trabalhos desenvolvidos por Sprankle et al. (8) e Bryson (3) evidenciam que o glyphosate pode ser facilmente lavado da superfície foliar pela chuva ou água de irrigação. Segundo Pires (6), o glyphosate necessita de no mínimo de seis horas para máxima eficiência de controle de Brachiariaria brizantha, estando as plantas em plena atividade metabólica.

Jakelaitis et al. (5) verificaram que a eficácia de controle de Digitaria horizontalis foi maior com o aumento do intervalo de tempo entre a aplicação dos herbicidas e a ocorrência de chuva, sendo as formulações de glyphosate sal de isopropilamina (concentrado solúvel, 360 g e.a. L⁻¹) e sal de amônio (granulados dispersíveis, 720 g e.a. L⁻¹) mais afetadas pela chuva em todos os intervalos avaliados, quando comparados ao sal potássico (concentrado solúvel, 330 g e.a. L⁻¹) e sal de isopropilamina (concentrado solúvel, 480 g e.a. L⁻¹).

Este trabalho foi desenvolvido com o objetivo de avaliar a eficácia de glyphosate formulado em sal de amônio, sal de isopropilamina e sal potássico no controle de B. decumbens, quando as plantas tratadas foram submetidas à chuva de 20 mm, durante 50 minutos, nos intervalos de 1, 2, 4 e 6 horas após aplicação desses produtos.

MATERIAL E MÉTODOS

O experimento foi conduzido em casa de vegetação, no período entre fevereiro e abril de 2002. O solo utilizado como substrato para o cultivo da B. decumbens foi um Argissolo Vermelho-Amarelo Câmbico, fase terraço, textura franco-argiloarenosa, cuja análise revelou pH em água de 5,9; 4,1 mg dm⁻³ de P; 95,0 mg dm⁻³ de K; 3,8 cmolc dm⁻³ de Ca; 1,6 cmolc dm⁻³ de Mg; e 3,2 dag kg⁻¹ de matéria orgânica.

As sementes de Brachiariaria decumbens Stapf cv. Basilisk foram semeadas em bandejas plásticas, sendo transplantadas para vasos contendo 3,0 L de substrato (solo + fertilizante) quando apresentavam três folhas. Cada vaso contendo três plantas de B. decumbens constituiu uma unidade experimental. O suprimento de água foi realizado
diariamente, mantendo a umidade do solo próximo a 80% da capacidade de campo, previamente determinada em laboratório.

As plantas de *B. decumbens* foram cortadas a 5 cm do solo, 30 dias após o transplante, sendo os tratamentos (Quadro 1) aplicados nas rebrotas quando estas apresentavam, em média, 40 cm de altura.

A aplicação dos herbicidas foi realizada com pulverizador costal de precisão, pressurizado com CO₂, equipado com bicos TT-110.02, mantendo-se a pressão constante em 3,0 kgf cm⁻², aplicando o equivalente a 200 L ha⁻¹ de calda.

As aplicações foram feitas em plantas em pleno crescimento vegetativo, com o solo úmido, umidade relativa do ar variando de 67 ± 7% e a temperatura do ar de 30 ± 3°C. A simulação da chuva nos intervalos previstos (1, 2, 4 e 6 horas) após as aplicações foi realizada em simulador de chuva para vasos, previamente construído com esta finalidade.

QUADRO 1 - Tratamentos (herbicidas, doses e períodos sem chuva após a aplicação das formulações de glyphosate) para o controle de *B. decumbens*

<table>
<thead>
<tr>
<th>Formulação de glyphosate</th>
<th>Nome comercial</th>
<th>Dose kg e.a. ha⁻¹</th>
<th>Intervalo de chuva após aplicação (horas)*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sal de amônio¹</td>
<td>Roundup WG</td>
<td>0,720</td>
<td>1 2 4 6 sem**</td>
</tr>
<tr>
<td>Sal de isopropilamina²</td>
<td>Roundup Transorb</td>
<td>0,720</td>
<td>1 2 4 6 sem**</td>
</tr>
<tr>
<td>Sal potássico³</td>
<td>Zapp Qi</td>
<td>0,720</td>
<td>1 2 4 6 sem**</td>
</tr>
<tr>
<td>Testemunha sem herbicida⁴</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

¹ Formulação sal de amônio contendo 72% de glyphosate; ² formulação sal de isopropilamina contendo 48% de glyphosate; ³ formulação sal potássico contendo 50% de glyphosate; ⁴ testemunha sem herbicida; * a lámina de chuva aplicada foi de 20 mm durante 50 minutos; ** testemunha com herbicida sem chuva.

O delineamento utilizado foi o de blocos casualizados, com os tratamentos dispostos no esquema de parcelas subsubdivididas, com os herbicidas nas parcelas, intervalos de chuva nas subparcelas e épocas de avaliação nas subsubparcelas, mais as testemunhas (uma sem e outra com herbicida, ambas não recebendo chuva), com quatro repetições. Durante o
desenvolvimento do experimento foram anotados os dados climáticos referentes a temperaturas máxima e mínima e umidade relativa do ar (Figura 1).

![Diagrama de temperaturas máxima e mínima e umidade relativa do ar](attachment:diagram.png)

FIGURA 1 - Temperaturas máxima e mínima e umidade relativa do ar no interior da casa de vegetação durante o período de condução do experimento, em Viçosa-MG, em 2002.

Aos 3, 7, 14, 21 e 28 dias após a aplicação dos tratamentos (DAA) foi realizada avaliação visual dos herbicidas no controle de *B. decumbens*, com base nos sintomas de toxicidade, considerando 0% ausência de toxicidade e 100% morte de todas as plantas. Aos 30 DAA as plantas foram cortadas a 5 cm do solo, e 15 dias após foi avaliada a rebrota, determinando-se a biomassa seca por vaso, sendo estes dados expressos em porcentagem em relação à testemunha sem herbicida.

Todos os dados foram analisados estatisticamente. Para a interpretação dos resultados dos tratamentos sobre a produção de biomassa seca da rebrota de *B. decumbens* utilizou-se o teste de Tukey, a 5% de probabilidade. Todavia, na interpretação dos efeitos de lavagem dos herbicidas pela chuva em diferentes intervalos utilizou-se a análise de regressão. Foram adotados modelos de regressão de acordo com a
RESULTADOS E DISCUSSÃO

As porcentagens de controle de *B. decumbens*, de acordo com a época de avaliação nos diferentes intervalos sem chuva após a aplicação das formulações de glyphosate sal de amônio, sal de isopropilamina e sal potássico, podem ser observadas nas Figuras 2 a 4.

A ocorrência de chuva uma hora após a aplicação dos herbicidas reduziu drasticamente a eficácia de controle de todos os produtos estudados, confirmando os resultados obtidos por Pires (6) com *B. brizantha*. A chuva imediatamente após a aplicação de glyphosate praticamente anulou o efeito do herbicida, enquanto o aumento no intervalo de tempo entre a aplicação e a ocorrência de chuva aumentou sua eficácia de controle.

FIGURA 2 - Porcentagem de controle de *B. decumbens* pelo glyphosate formulado em sal de amônio, em função da época de avaliação, nos diferentes intervalos de chuva.
FIGURA 3 - Porcentagem de controle de *B. decumbens* pelo glyphosate formulado em sal de isopropilamina, em função da época de avaliação, nos diferentes intervalos de chuva.

FIGURA 4 - Porcentagem de controle de *B. decumbens* pelo glyphosate formulado em sal potássico, em função da época de avaliação, nos diferentes intervalos de chuva.
O intervalo de duas horas entre a aplicação e a ocorrência de chuva proporcionou controle de 90% de *B. decumbens* pelo glyphosate formulado em sal de isopropilamina aos 21 DAA. Com o sal potássico foi necessário o intervalo de quatro horas sem chuva para o controle eficiente na mesma época de avaliação. Roman (7) verificou que na dose de 0,72 kg e.a. ha\(^{-1}\) de sal potássico, sal de isopropilamina e sal de amônio, chuvas simuladas em intervalos de tempo inferior a quatro horas após a aplicação dos herbicidas reduziram a eficácia dos produtos no controle de *B. plantaginea*. De acordo com Ahmadi et al. (1), o intervalo entre a aplicação e a chuva pode variar com a dose aplicada, a espécie de planta daninha a ser controlada e a umidade do solo onde ela está se desenvolvendo.

Com base nos resultados, foi necessário um intervalo de seis horas sem chuva para que o glyphosate formulado em sal de amônio proporcionasse controle superior a 90% da *B. decumbens* aos 21 DAA, constituindo-se na formulação mais suscetível à lavagem pela chuva. Resultados semelhantes foram observados com *Digitaria horizontalis* (5) e *B. plantaginea* (7).

Quanto à porcentagem de rebrota de *B. decumbens* em relação à testemunha sem herbicida, avaliada aos 45 DAA, não houve diferença significativa entre o sal de isopropilamina e sal potássico causada pelos intervalos sem chuva (Quadro 2). Ambas as formulações apresentaram ausência de rebrota em relação à testemunha sem herbicida a partir do intervalo de 6 horas sem chuva, após a aplicação dos herbicidas. Com o sal de amônio constatou-se diferença significativa em relação às demais formulações, apresentando alta porcentagem de rebrota, principalmente nos intervalos de 1 a 4 horas.

<table>
<thead>
<tr>
<th>Herbicidas</th>
<th>Intervalos sem chuva após a aplicação (h)</th>
<th>Média</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Sal de amônio</td>
<td>62</td>
<td>48</td>
</tr>
<tr>
<td>Sal de isopropilamina</td>
<td>19</td>
<td>13</td>
</tr>
<tr>
<td>Sal potássico</td>
<td>23</td>
<td>17</td>
</tr>
<tr>
<td>Média</td>
<td>35 A</td>
<td>26 AB</td>
</tr>
</tbody>
</table>

* Médias seguidas pela mesma letra minúscula, na coluna, e pela mesma letra maiúscula, na linha, não diferem entre si, a 5% de probabilidade, pelo teste de Tukey.
CONCLUSÕES

1) A ocorrência de chuva simulada uma hora após a aplicação do glyphosate reduz a eficiência de controle de *B. decumbens* em todas as formulações.

2) A ausência de rebrota é obtida com as formulações sal de isopropilamina e sal potássico no intervalo de 6 horas após a aplicação e com o sal de amônia somente na testemunha sem chuva.

3) A formulação de glyphosate sal de amônia é mais afetada pela chuva do que as demais.

REFERÊNCIAS

