COMPARAÇÃO DE QUATRO MÉTODOS DE AVALIAÇÃO DA ESTABILIDADE FENOTÍPICA DE CULTIVARES DE FEIJÃO

Glauco Vieira Miranda
Cosme Damião Cruz
Clíbas Vieira
Geraldo A. de Andrade Araújo

1. INTRODUÇÃO

As avaliações de novos cultivares, visando determinar-lhes o comportamento em relação à produção, são realizadas em diferentes condições de solo e clima, por alguns anos. Porém, é possível que, em certas localidades, um dos cultivares se destaque, enquanto, em outras, um cultivar diferente o suplante. Essa diferença de comportamento nos distintos ambientes é explicada pela interação cultivar x ambiente. Entretanto, pesquisas acerca dessa interação não fornecem informações sobre o comportamento dos cultivares e dos ambientes. Por isso, fazem-se estudos de adaptabilidade e estabilidade de comportamento.

Cruz e Regazzi (3) citam que, na década de 40, foi desenvolvido o método denominado tradicional, no qual era considerado mais estável o cultivar que apresentasse a menor variância, calculada pelo quadrado médio de ambiente "dentro" de cultivar. Esse método apresenta a vantagem de poder ser aplicado em número restrito de ambientes e as desvantagens da imprecisão do parâmetro de estabilidade, da falta de informação a respeito dos ambientes avaliados e sobre o direcionamento da resposta dos cultivares à variação ambiental.

2 Universidade Federal de Viçosa. Departamento de Fitotecnia. 36571-000 Viçosa, MG.
3 Universidade Federal de Viçosa. Departamento de Biologia Geral. Viçosa, MG.
PLAISTED e PETERSON (12) utilizaram como parâmetro de estabilidade a média aritmética dos componentes de variância da interação entre pares de cultivares x ambientes. O cultivar com a menor contribuição relativa para a interação é considerado o mais estável.

WRICKE (15) desenvolveu um método no qual o parâmetro de estabilidade foi denominado "ecovalência". Ele é obtido pela decomposição da soma de quadrados da interação cultivares x ambientes nas partes devidas a cultivares isolados. O cultivar com maior ecovalência é aquele que apresenta menor contribuição para a soma de quadrados da interação cultivares x ambientes.

Análises não-paramétricas para avaliar a estabilidade fenotípica são baseadas na classificação dos cultivares em cada ambiente. HUEHN (6) cita vantagens das estatísticas obtidas de métodos de estabilidade com base em medidas não-paramétricas sobre as paramétricas: redução da tendenciosidade causada por pontos completamente fora da equação de regressão ajustada; desnecessidade de assumir qualquer hipótese sobre a distribuição dos valores fenotípicos; fácil uso e interpretação; as adições ou retiradas de poucos cultivares não causam grandes variações nas estimativas; e as classificações dos cultivares para seleções no melhoramento são procedimentos essenciais.

O objetivo do presente trabalho foi comparar metodologias de análise da estabilidade que se baseiam na interação cultivares de feijão x ambientes.

2. MATERIAL E MÉTODOS

Os ensaios foram instalados seguindo o delineamento em blocos casualizados, com quatro repetições. Os cultivares utilizados foram os seguintes: Manteigão Fosco 11, Negrito 897, Carioca, Milionário 1732, Rico 1735, Ouro, Ouro Negro 1992, Vermelho 2157, CNF 5547, WAF-7 e as linhagens 2172 e 2177. As parcelas foram compostas por duas fileiras com 5,0 m de comprimento, espaçadas 0,5 m, totalizando uma área útil de 5,0 m. A densidade de semeadura foi de 15 sementes por metro. A bordadura foi constituída de uma fileira do cultivar Ouro, contornando todo o experimento.

Visando obter diferentes níveis de produtividade nos ensaios, estes recebiam ou 350 ou 700 kg/ha de 4-14-8, sem nenhum exame prévio do
solo. Os tratos culturais foram os recomendados para a cultura do feijão, inclusive a irrigação, realizada sempre que necessária, mas apenas nos plantios de inverno. O controle de doenças foi feito, pois as enfermidades não foram consideradas verdadeiros componentes do ambiente, uma vez que o ataque aos diferentes cultivares depende das raças fisiológicas que aparecem, não sendo, portanto, um fator que atinge igualmente todos os cultivares, como acontece com os fatores de clima e solo, num experimento.

De cada parcela experimental tomaram-se a produção de grãos e o "stand" final, este apenas para verificar se atendia à população mínima de feijoeiros por área, conforme indicado pela pesquisa (14).

Considerou-se que cada ensaio representava um "ambiente", uma vez que foram conduzidos em condições diferentes de solo, adubação, clima, época de plantio e irrigação.

Foi realizada uma análise da variância de cada ensaio. Posteriormente, foi feita a análise conjunta, incluindo os ensaios em que o menor quadrado médio residual não diferiu em mais de sete vezes do maior, havendo, portanto, homogeneidade da variância residual (13).

As análises estatísticas para estudar a estabilidade dos cultivares foram realizadas pelo método tradicional e pelos de PLAISTED e PETERSON (14), WRICKE (21) e HUEHN (8, 9).

Método tradicional

O estimador do parâmetro de estabilidade (\(\hat{\sigma}_{xi}^2 \)) foi obtido da seguinte forma:

\[
\hat{\sigma}_{xi}^2 = QM \left(\frac{A/G_i}{a-1} \right) = \frac{r \sum_j Y_{ij}^2 - \left(\sum_j Y_{ij} \right)^2}{a}
\]

em que:

- \(A/G_i \) = efeito de ambiente sobre o cultivar i;
- \(r \) = número de repetições em cada experimento;
- \(a \) = número de ambientes estudados e;
- \(Y_{ij} \) = média da produção de grãos do cultivar i no ambiente j.

Método de PLAISTED e PETERSON

O estimador do parâmetro de estabilidade (\(\theta_i \)) foi obtido da seguinte maneira:

\[
\theta_i = \frac{1}{g-1} \left[\sum_{i \neq i'} \hat{\sigma}^2_{ga_{i'}} \right]
\]

com \(i \neq i' \).
Sendo,
\(g \) = número de cultivares;
\(\hat{\sigma}^2_{ga_{ij}} \) = variância da interação entre pares de genótipos x ambientes,

sendo
\[
\hat{\sigma}^2_{ga_{ij}} = \frac{\left[SQ(G_{ii'} \times A) / (a - 1) \right] - QMR}{r}
\]

\[
SQ (G_{ii'} \times A) = \frac{r}{2} \left[\frac{d^2_{ii'} - \frac{1}{a} \left(\sum_j Y_{ij} - \sum_i Y_{i'j} \right)^2}{\sum_j (Y_{ij} - Y_{i'j})^2} \right]
\]

\(d^2_{ii'} \) = distância Euclidiana entre os genótipos \(i \) e \(i' \);
\(QMR = \) Quadrado médio do resíduo;
\(Y_{i'j} = \) produção do \(i' \)-ésimo cultivar no ambiente \(j \).

A contribuição relativa de cada cultivar foi calculada por:
\[
\theta_i(\%) = \frac{\theta_i \times 100}{g \hat{\sigma}^2_{ga_{ij}}}
\]

Método de WRICKE

O estimador do parâmetro de estabilidade denominado, pelo autor, "ecoavalência" (W) foi calculado da seguinte forma:
\[
W_i = r \sum_j \hat{GA}_{ij}^2 = r \sum_j \left(\frac{\sum_j Y_{ij}}{a} - \frac{\sum_i Y_{ij}}{g} + \frac{\sum_i \sum_j Y_{ij}}{ag} \right)^2
\]

em que:
\(\hat{GA}_{ij} \) = efeito da interação entre o cultivar \(i \) e o ambiente \(j \).

Método de HUEHN

HUEHN (6, 7) considerou que cultivar estável seria aquele que apresentasse a mesma classificação relativa da produção de grãos nos vários ambientes. O autor considerou ainda que as diferenças de produção
entre os cultivares afetam a grandeza da estabilidade e, consequentemente, podem causar diferenças que não são devidas à interação cultivares x ambientes. Para evitar esse problema, o autor recomendou que os efeitos de cultivares fossem retirados dos valores fenotípicos da seguinte forma:

\[
Y'_{ij} = Y_{ij} - \frac{\sum_j Y_{ij}}{a}
\]

Os parâmetros de estabilidade foram estimados da seguintes formas:

\[S_{1i} = \frac{\sum_{i,j} |r_{ij} - \bar{r}_i|}{a(a-1)/2}\]

em que:
- \(r_{ij}\) = classificação do cultivar \(i\) no ambiente \(j\);
- \(a\) = número de ambientes;

\[S_{2i} = \frac{\sum_{j=1}^{a} \left(r_{ij} - \frac{1}{a} \sum_j r_{ij} \right)^2}{a-1}\]

O cultivar com máxima estabilidade apresentaria \(S_{1i}\) e \(S_{2i}\) igual a zero.

Os testes de significância para as estatísticas \(S_{1i}\) e \(S_{2i}\) foram desenvolvidos por NASSAR e HÜHN (10) e HÜHN e NASSAR (8). Com base na distribuição normal, foi desenvolvida uma medida não-paramétrica aproximada da distribuição \(\chi^2\) (\(Z_{mi}\)), associada a um grau de liberdade:

\[Z_{mi} = \frac{[S_{mi} - E(S_m)]^2}{V(S_m)}\]

para \(m = 1\) ou \(2\) e \(i = 1, 2, ..., g\).

em que:
- \(E(S_m)\) = esperança matemática de \(S_m\).
V (S_m) = variância de S_m

Sendo,

\[E(S_1) = \frac{(g^2 - 1)}{3g} \]
\[E(S_2) = \frac{(g^2 - 1)}{12} \]

\[V(S_1) = (g^2 - 1) \frac{(g^2 - 4)(a + 3) + 30}{45g^2a(a - 1)} \]
\[V(S_2) = (g^2 - 1) \frac{2(g^2 - 4)(a - 1) + 5(g^2 - 1)}{360a(a - 1)} \]

Para testar a estabilidade do grupo de cultivares utiliza-se a estatística \(\chi^2 \), associada a g graus de liberdade, expressa por:

\[\chi^2_s = \sum_{i=1}^{g} Z_{m_i} \]

3. RESULTADOS E DISCUSSÃO

As estimativas do parâmetro de estabilidade do método tradicional encontram-se no Quadro 1. Verifica-se que o cultivar Carioca e a Linhagem 2177 apresentaram menor variância ambiental e, consequentemente, foram os mais estáveis, de acordo com o método. No entanto, tais materiais são os de menor rendimento entre os estudados. Por outro lado, os cultivares Ouro Negro 1992, Vermelho 2157 e CNF 5547, os mais produtivos, foram classificados como os mais instáveis. O cultivar mais bem classificado, com produção acima da média geral (1.390 kg/ha) foi o '2172', na sexta posição. Nota-se, portanto, a associação entre baixos rendimentos e alta estabilidade, o que parece apoiar as afirmativas de CRUZ e REGAZZI (3) de que os melhoristas não tem usado o método tradicional porque seu conceito de estabilidade está frequentemente associado aos cultivares pouco produtivos, em ambientes em que outros apresentam bons rendimentos.

As estimativas do parâmetro de estabilidade, segundo o método de PLAISTED e PETERSON (12), encontram-se no Quadro 1. O cultivar Milionário 1732, considerado como produtivo na Zona da Mata de Minas
QUADRO 1 - Produção Média dos Cultivares e Estimativas dos parâmetros de estabilidade fenotípica obtidos pelo método tradicional (σ^2_{xi}) e os de PLAISTED e PETERSON (\theta_j)

<table>
<thead>
<tr>
<th>Cultivares</th>
<th>Produção média (kg/ha)</th>
<th>σ^2_{xi}</th>
<th>\theta_j (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manteigão Fosco 11</td>
<td>1.236 e</td>
<td>1.299 (7)*</td>
<td>14,58 (11)</td>
</tr>
<tr>
<td>Negro 897</td>
<td>1.365 d</td>
<td>1.086 (5)</td>
<td>5.06 (3)</td>
</tr>
<tr>
<td>Carioca</td>
<td>1.014 g</td>
<td>0.596 (1)</td>
<td>5.24 (4)</td>
</tr>
<tr>
<td>Milionário 1732</td>
<td>1.366 d</td>
<td>1.084 (4)</td>
<td>4.43 (1)</td>
</tr>
<tr>
<td>Rico 1735</td>
<td>1.486 c</td>
<td>1.314 (8)</td>
<td>6.57 (7)</td>
</tr>
<tr>
<td>Ouro</td>
<td>1.522 bc</td>
<td>1.658 (9)</td>
<td>8.60 (8)</td>
</tr>
<tr>
<td>Ouro Negro 1992</td>
<td>1.711 a</td>
<td>1.716 (10)</td>
<td>6.23 (6)</td>
</tr>
<tr>
<td>Vermelho 2157</td>
<td>1.759 a</td>
<td>1.901 (12)</td>
<td>12.24 (10)</td>
</tr>
<tr>
<td>CNF 5547</td>
<td>1.592 b</td>
<td>1.725 (11)</td>
<td>11.03 (9)</td>
</tr>
<tr>
<td>2172</td>
<td>1.487 c</td>
<td>1.153 (6)</td>
<td>5.33 (5)</td>
</tr>
<tr>
<td>2177</td>
<td>1.077 fg</td>
<td>0.797 (2)</td>
<td>4.98 (2)</td>
</tr>
<tr>
<td>WAF-7</td>
<td>1.133 f</td>
<td>1.022 (3)</td>
<td>15.70 (12)</td>
</tr>
</tbody>
</table>

As médias seguidas da mesma letra não diferem significativamente entre si, a 5%, pelo teste de Duncan.
*Classificação de valores.

Gerais, foi o que apresentou mais estável. Esse cultivar apresentou a produção de grãos um pouco abaixo da média geral dos ensaios, por ser um cultivar mais antigo do que os outros recém lançados (Ouro Negro 1992), no entanto, demonstra que é possível obter cultivares produtivos e estáveis. De um modo geral, observa-se que a classificação quanto a estabilidade não está altamente relacionada com as piores produções como no método anterior, alternando-se cultivares com boas produções e estabilidade (Negro 897, 2172, Ouro Negro 1992) com cultivares de produção baixa e boa estabilidade (2177 e Carioca). Por outro lado, também foi possível por essa metodologia identificar cultivares com baixa produção e estabilidade.

O Quadro 2 fornece os valores das estimativas do parâmetro de estabilidade denominado ecovalência (W_i) em percentagem. Pode-se notar a grande variação entre as estimativas de um cultivar para outro. A amplitude variou de 2,05, no Milionário 1732, até 20,20, no WAF-7. Verifica-se que o Vermelho 2157 e CNF 5547, com produções altas, estão entre os que apresentaram as menores estabilidades. EASTON e CLEMENTS (5) afirmam que o método possui a desvantagem de considerar instável o cultivar que responde acentuadamente à melhoria do
QUADRO 2 - Estimativas dos parâmetros de estabilidade obtidos pelos métodos de WRICKE (W) e de HUEHN (SI e Sii)

<table>
<thead>
<tr>
<th>Cultivares</th>
<th>W1 (%)</th>
<th>S1</th>
<th>Sii</th>
</tr>
</thead>
<tbody>
<tr>
<td>Manteigão Fosco 11</td>
<td>18,41 (11)*</td>
<td>5,14 (12)</td>
<td>21,94 (12)</td>
</tr>
<tr>
<td>Negro 897</td>
<td>3,06 (3)</td>
<td>3,26 (4)</td>
<td>7,82 (4)</td>
</tr>
<tr>
<td>Carioca</td>
<td>3,35 (4)</td>
<td>3,04 (2)</td>
<td>6,90 (2)</td>
</tr>
<tr>
<td>Milionário 1732</td>
<td>2,05 (1)</td>
<td>2,77 (1)</td>
<td>6,14 (1)</td>
</tr>
<tr>
<td>Rico 1735</td>
<td>5,50 (7)</td>
<td>3,78 (6)</td>
<td>10,43 (6)</td>
</tr>
<tr>
<td>Ouro</td>
<td>8,76 (8)</td>
<td>4,22 (8)</td>
<td>13,52 (8)</td>
</tr>
<tr>
<td>Ouro Negro 1992</td>
<td>4,94 (6)</td>
<td>3,98 (7)</td>
<td>11,71 (7)</td>
</tr>
<tr>
<td>Vermelho 2157</td>
<td>14,63 (10)</td>
<td>4,72 (10)</td>
<td>16,79 (10)</td>
</tr>
<tr>
<td>CNF 5547</td>
<td>12,68 (9)</td>
<td>4,64 (9)</td>
<td>15,88 (9)</td>
</tr>
<tr>
<td>2172</td>
<td>3,49 (5)</td>
<td>3,35 (5)</td>
<td>8,37 (5)</td>
</tr>
<tr>
<td>2177</td>
<td>2,93 (2)</td>
<td>3,21 (3)</td>
<td>7,67 (3)</td>
</tr>
<tr>
<td>WAF-7</td>
<td>20,20 (12)</td>
<td>4,75 (11)</td>
<td>18,17 (11)</td>
</tr>
</tbody>
</table>

*Classificação de valores.

ambiente. MIRANDA (9) estudando a estabilidade fenotípica desse mesmo grupo de cultivares, com outras metodologias, concluiu que Vermelho 2157 e CNF 5547 respondiam a melhoria de ambiente, o que explica os resultados encontrados. Carioca e 2177, com produção bem abaixo da média, apresentaram alta estabilidade. No entanto, Negro 897 e Milionário 1732, com produções intermediárias, apresentaram também alta estabilidade. O Manteigão Fosco 11 apresentou baixa produção e estabilidade. Por sua vez, o cultivar Ouro Negro 1992, entre os mais produtivos, apresentou valor intermediário de estabilidade aproximando-se, conseqüentemente, do cultivar ideal com alta produção e estabilidade fenotípica. Os cultivares Rico 1735, Linhagem 2172 e Ouro apresentaram produções semelhantes e abaixo da média geral, com estabilidade intermediária. Portanto, conclui-se que a metodologia, de forma semelhante à de PLAISTED e PETERSON, identificou cultivares estáveis e produtivos de outros somente produtivos ou estáveis. DUARTE e ZIMMERMANN (4), utilizando este método na avaliação de cultivares de feijão, tiraram conclusões semelhantes, ou seja, o cultivar mais produtivo apresentou a menor estabilidade.

As estimativas dos parâmetros da metodologia desenvolvida por HUEHN (6, 7) encontram-se no Quadro 2. Os resultados, de modo geral, foram semelhantes aos dos métodos anteriores, ocorrendo apenas pequenas alterações na ordem de classificação de alguns cultivares.
No presente trabalho, σ^2_{xi} apresentou correlações intermediárias não significativas de 0,49 (Quadro 3) com θ_i do método de PLAISTED e PETERSON (12) e com W_i do método de WRICKE (15). Resultados semelhantes foram encontrados por BECKER (3), que trabalhando com as culturas de milho, cevada, aveia, trigo de inverno e centeio de inverno, durante três anos, obteve correlações entre σ^2_{xi} e W_i variando de -0,05 a 0,67, sendo que as correlações significativamente diferentes de zero foram detectadas somente em dois anos, nas culturas de cevada e trigo de inverno. O autor, no entanto, considerou essas correlações de pequenas a moderadas e não consistentes para as várias culturas. Esses valores intermediários das correlações acontecem, pois σ^2_{xi} estima algo mais além da "ecovalência", como demonstraram BECKER e LÉON (2).

Nota-se também, nos Quadros 1 e 2, que os cultivares mais produtivos estão melhor classificados nos métodos de PLAISTED e PETERSON (12) e de WRICKE (15), em relação ao método tradicional.

O parâmetro de estabilidade de PLAISTED e PETERSON (12) e a ecovalência de WRICKE (15) mostraram-se altamente correlacionados (Quadro 3), concordando com os resultados de OLIVEIRA (11), que encontrou o coeficiente de correlação de 0,98 entre eles. EASTON e CLEMENTS (5) demonstraram a proporcionalidade dos dois métodos e que a diferença básica entre eles deve-se ao fato de a variância residual dos experimentos, dividida pelas repetições, ser apenas incluída no estimador apresentado por PLAISTED e PETERSON (12).

A correlação positiva e significativa entre σ^2_{xi} e a produção média indica que os cultivares mais produtivos apresentam as menores estabilidades, confirmando as afirmativas de CRUZ e REGAZZI (3) (Quadro 3).

Nota-se, pelo Quadro 3, que a média de produção dos cultivares

<table>
<thead>
<tr>
<th>QUADRO 3 - Coeficientes de correlação linear entre as estimativas dos parâmetros dos diversos métodos de estabilidade</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ^2_{xi}</td>
</tr>
<tr>
<td>-----------------</td>
</tr>
<tr>
<td>θ_i</td>
</tr>
<tr>
<td>W_i</td>
</tr>
<tr>
<td>S_{1i}</td>
</tr>
<tr>
<td>S_{2i}</td>
</tr>
<tr>
<td>Produção</td>
</tr>
</tbody>
</table>

Significativo a 1%, pelo teste de t.
apresentou baixos valores de correlação (0,29) com \(\theta_j \) e \(W_j \). Isso indica a ausência de correlação linear entre os parâmetros, ou seja, é possível obter cultivares produtivos e com alta estabilidade.

Nas correlações entre os parâmetros de estabilidade obtidos de análises não-paramétricas (Método de HUEHN), verifica-se que \(S_{2j} \) mostrou-se altamente correlacionado com \(S_{1j} \) (Quadro 3), indicando que apenas um desses parâmetros seria suficiente na seleção de cultivares estáveis.

A média de produção dos cultivares apresentou baixa correlação (0,36) com os parâmetros \(S_{1j} \) e \(S_{2j} \), podendo esses serem utilizados como critério na seleção de cultivares.

As correlações significativas entre os parâmetros \(S_{1j} \) e \(S_{2j} \) com \(\theta_j \) e \(W_j \) demonstram que o método não-paramétrico pode ser utilizado em substituição ao de PLAISTED E PETERSON (12) e WRICKE (15), pela redução da tendenciosidade causada por pontos incompletamente fora da equação de regressão ajustada; desnecessidade de assumir qualquer hipótese sobre a distribuição dos valores fenotípicos; fácil uso e interpretação; as adições ou retiradas de poucos cultivares não causam grandes variações nas estimativas; e as classificações dos cultivares para seleções no melhoramento são informações essenciais.

Portanto, os métodos estudados, com exceção do tradicional, apresentaram resultados semelhantes quanto ao comportamento dos cultivares, e foram eficientes em identificar cultivares mais estáveis. Por outro lado, a maior estabilidade fenotípica não esteve associada aos cultivares mais produtivos, provavelmente porque eles foram selecionados sem considerar essa importante característica.

4. RESUMO E CONCLUSÕES

Neste trabalho, compararam-se quatro métodos de avaliação da estabilidade fenotípica de cultivares de feijão (Phaseolus vulgaris L.). Para tanto, utilizaram-se as produções obtidas em 20 ensaios de competição entre 12 cultivares e linhagens de feijão realizados em quatro municípios da Zona da Mata de Minas Gerais, com controle de doenças, nos anos de 1991 e 1992. Os métodos utilizados foram o tradicional, o de Plaisted e Peterson, o de Wricke e o de Huehn. As estimativas dos coeficientes de estabilidade obtidos pelo método tradicional correlacionaram-se significativamente com as médias de produção e os cultivares com os rendimentos mais baixos foram os que apresentaram maior estabilidade (Carioca e Linhagem 2177). As estimativas dos parâmetros dos outros métodos mostraram-se correlacionados entre si,

5. SUMMARY

(A COMPARISON OF FOUR METHODS FOR THE EVALUATION OF COMMON BEAN CULTIVARS' PHENOTYPIC STABILITY)

Yields of common bean (Phaseolus vulgaris L.) cultivars obtained from 20 trials were utilized to compare four methods of evaluation of cultivar phenotypic stability. These trials were carried out at four municipalities of the Zona da Mata area, state of Minas Gerais, during two years, under disease control. The methods used were: traditional, Plaisted and Peterson's method, Wricke's and Huehn's methods. First method's estimations presented a significant correlation with the mean yields, and the cultivars with the lowest yields were identified as the ones with the highest stability (Carioca and Line 2177). The stability estimation from others methods were correlated with one another, but not with the average yields. Huehn's nonparametric method stood out as the easier to interpret. All the methods, except the traditional, permitted the same conclusions in relation to the cultivars’ performance. In general, higher phenotypic stability was not associated with the most productive cultivars. Milionário 1732, Negrito 897, Line 2177, Carioca and Line 2172 presented the highest phenotypic stability, while CNF 5547, Vermelho 2157, WAF 7 and Manteigão Fosco 11 presented the lowest. Rico 1735, Ouro and Ouro Negro 1992 remained at an intermediate position.

6. LITERATURA CITADA