Does Diet of Prey Affect Life Table Parameters of the Predator *Podisus nigrispinus* (Hemiptera: Pentatomidae)?

Author(s): Robson José Esteves Peluzio, Bárbara Monteiro de Castro e Castro, Bruno Pandelo Brügger, Angelica Plata-Rueda, Flávio Lemes Fernandes, Ricardo Henrique Silva Santos, Carlos Frederico Wilcken and José Cola Zanuncio


Published By: Florida Entomological Society

https://doi.org/10.1653/024.101.0108


BioOne (www.bioone.org) is a nonprofit, online aggregation of core research in the biological, ecological, and environmental sciences. BioOne provides a sustainable online platform for over 170 journals and books published by nonprofit societies, associations, museums, institutions, and presses.

Your use of this PDF, the BioOne Web site, and all posted and associated content indicates your acceptance of BioOne’s Terms of Use, available at www.bioone.org/page/terms_of_use.

Usage of BioOne content is strictly limited to personal, educational, and non-commercial use. Commercial inquiries or rights and permissions requests should be directed to the individual publisher as copyright holder.
Does diet of prey affect life table parameters of the predator *Podisus nigrispinus* (Hemiptera: Pentatomidae)?

Robson José Esteves Peluzio¹, Bárbara Monteiro de Castro e Castro¹*, Bruno Pandelo Brügger², Angelica Plata-Rueda³, Flávio Lemes Fernandes³, Ricardo Henrique Silva Santos¹, Carlos Frederico Wilcken⁴, José Cola Zanuncio²

**Abstract**

*Podisus nigrispinus* Dallas (Hemiptera: Pentatomidae) is reared in the laboratory and released for biological control programs. The objective of this study was to evaluate, using life tables, *P. nigrispinus* development when fed on *Anticarsia gemmatalis* Hübner (Lepidoptera: Erebidae) reared on different diets, or with the alternative prey *Tenebrio molitor* L. (Coleoptera: Tenebrionidae). *Podisus nigrispinus* was reared with soybean plants supplemented with *A. gemmatalis* caterpillars fed an artificial diet (T1), with soybean plants supplemented with caterpillars fed soybean leaves (T2), with soybean plants supplemented with *T. molitor* pupae (T3), or with soybean plants supplemented with *A. gemmatalis* pupae from caterpillars fed soybean leaves (T4). The duration of a generation (DG) and time to double the population (TD) of *P. nigrispinus* displayed higher values when fed with *T. molitor* pupae (T3). Life table parameters showed population growth for this predator in all treatments except when fed with *A. gemmatalis* pupae (T4). The net reproductive rate (*Ro*), the duration of a generation (DG), and time to double the population (TD) of *P. nigrispinus* displayed higher values when fed with caterpillars cultured on soybean (T2) and with *T. molitor* pupae (T3). The rates of increase (*λ* and *rm*) were positive in all treatments. *Anticarsia gemmatalis* pupae from caterpillars fed soybean leaves (T4) are inadequate prey for *P. nigrispinus*. *Anticarsia gemmatalis* caterpillars fed soybean leaves (T2) or *T. molitor* pupae (T3) are a more suitable food for rearing this predator than *A. gemmatalis* caterpillars fed an artificial diet (T1).

Key Words: Asopinae; biological control; *Glycine max*; Heteroptera

**Resumo**

*Podisus nigrispinus* Dallas (Heteroptera: Pentatomidae) é criado em laboratório e liberado em programas de controle biológico. O objetivo deste estudo foi avaliar, utilizando tabelas de vida, o desenvolvimento de *P. nigrispinus* quando alimentado com *Anticarsia gemmatalis* Hübner (Lepidoptera: Erebidae) criado em diferentes dietas ou com a presa alternativa *Tenebrio molitor* L. (Coleoptera: Tenebrionidae). *Podisus nigrispinus* foi criado sobre plantas de soja suplementadas com lagartas de *A. gemmatalis* alimentadas com uma dieta artificial (T1), sobre plantas de soja com lagartas alimentadas com folhas de soja (T2), sobre plantas de soja com pupas de *T. molitor* (T3), ou sobre plantas de soja com pupas de *A. gemmatalis* de lagartas alimentadas com folhas de soja (T4). A duração do V instar e do período ninfa total deste predador foram mais longos quando consumiram as lagartas alimentadas com soja (T2). A sobrevida de ninhias foi maior quando alimentadas com pupas de *T. molitor* (T3), com lagartas de *A. gemmatalis* alimentadas com folhas de soja (T2) e com lagartas de *A. gemmatalis* alimentadas com dieta artificial (T1), respectivamente. O peso de ninhas de V estádio e de machos e fêmeas de *P. nigrispinus* foi maior com pupas de *T. molitor* (T3). Os parâmetros da tabela de vida mostraram crescimento populacional para este predador em todos os tratamentos, exceto quando o predador foi alimentado com pupas de *A. gemmatalis* (T4). A taxa reprodutiva líquida (*Ro*), duração de uma geração (DG) e tempo para dobrar a população (TD) de *P. nigrispinus* apresentaram valores melhores quando alimentados com lagartas que consumiram folhas de soja (T2) e *T. molitor* (T3). As taxas de aumento (*λ* e *rm*) foram positivas em todos os tratamentos. Pupas de *A. gemmatalis* alimentadas com folhas de soja (T4) são presas inadequadas para *P. nigrispinus*. Lagartas de *Anticarsia gemmatalis* alimentadas com folhas de soja (T2) ou pupas de *T. molitor* (T3) são presas mais adequadas para a criação deste predador que aqueles indivíduos dessa presa criados com dieta artificial (T1).

Palavras Chave: Asopinae; controle biológico; *Glycine max*; Heteroptera

---

¹Universidade Federal de Viçosa, Departamento de Fitotecnia, Viçosa, 36571-900, Brazil, E-mail: robson.peluzio@gmail.com (R. J. E. P.);
barbaramcastro@hotmail.com (B. M. C. C.), rsantos@ufv.br (R. H. S. S.)
²Universidade Federal de Viçosa, Departamento de Entomologia/BIOAGRO, Viçosa, 36570-900, Brazil, E-mail: brunopb2002@yahoo.com.br (B. P. B),
barbaramcastro@hotmail.com (B. M. C. C.), rsantos@ufv.br (R. H. S. S.)
³Universidade Federal de Viçosa, Departamento de Biologia e Orçamento Rural (BIOAGRO), Viçosa, 36571-900, Brazil, E-mail: angelicaplata@yahoo.com.mx (A. P. R.);
flaviolemesfernandes@ufv.br (F. L. F.)
⁴Universidade Estadual Paulista (UNESP), Departamento de Proteção Vegetal, Faculdade de Ciências Agronômicas, Botucatu, São Paulo, 18610-307, Brazil,
E-mail: cwilcken@fca.unesp.br (C. F. W.)
*Corresponding author; E-mail: barbaramcastro@hotmail.com
Peluzio et al.: Diet of prey affects life table of predator

Podisus nigrispinus Dallas (Hemiptera: Pentatomidae), a generalist predator, has potential for use in integrated pest management programs (IPM) (Zanuncio et al. 2008) due to its high searching ability (Malaquias et al. 2015), feeding rates (Vacari et al. 2013), and low production costs (De Bortoli et al. 2011). This predator is reared in the laboratory and released for biological control programs (Zanuncio et al. 2014) so it is important to optimize its mass rearing techniques (Zanuncio et al. 2001). Podisus nigrispinus can survive periods of prey scarcity by feeding on alternative prey (Malaquias et al. 2010). Under laboratory conditions they accept Tenodera molitor L. (Coleoptera: Tenebrionidae) pupae, Musca domestica L. (Diptera: Muscidae), and Bombyx mori L. (Lepidoptera: Bombycidae) larvae (Neves et al. 2010), and in the field they take natural prey such Anticarsia gemmatalis Hübner (Lepidoptera: Erebidae) caterpillars (Ferreira et al. 2008).

Predatory pentatomids are considered to be obligate zoophytophagous because they have better development when fed both insect prey and plants (Azevedo et al. 2007). Zoophytophagous behavior enables predatory bugs to obtain moisture and possibly nutrients (Torres et al. 2010).

The functional response of predators is affected by many factors, such as their development stage (Hassanpour et al. 2011), prey type (Farhadi et al. 2010), plant species, and plant physiology (De Clercq et al. 2000), food availability (Molina-Rugama et al. 1997), and food quality (Lemos et al. 2003). Commercialization and use of biological control agents for integrated management programs depends on producing these insects at a low cost. Life tables permit the analysis and understanding of the effect of external factors, including host plants, the growth, survival, reproduction, and intrinsic rates of population growth (Chi & Su 2006).

The objective of this study was to evaluate, using life tables, the development of P. nigrispinus fed A. gemmatalis caterpillars reared on different diets.

Materials and Methods

PLANT AND INSECT CULTURE

The experiment was conducted in a greenhouse of the Plant Science Department at the Universidade Federal de Viçosa (UFV) in Viçosa, Minas Gerais, Brazil. Soybean seeds (cultivar UFV16) were planted in 3 L plastic pots every 15 d, from Jul 2006 to May 2007, irrigated, and thinned to 3 per pot. Fertilization was carried out according to recommendations (CFSEMG 1999). Chemical pest control products were not applied.

Anticarsia gemmatalis caterpillars were reared in the Insect Biological Control Laboratory (IBCL/BIOAGRO/UFV) on an artificial diet (Greene et al. 1976) or soybean leaves. Tenodera molitor pupae were obtained from a culture (LCBI/BIOAGRO/UFV) fed wheat bran and sugarcane.

Podisus nigrispinus egg masses were obtained from the LCBI/BIOAGRO/UFV, where this predator is fed on T. molitor pupae. Podisus nigrispinus eggs were placed in Petri dishes (9.0 × 1.2 cm) with a damp cotton ball to prevent drying out. Newly hatched P. nigrispinus nymphs were separated into groups of 60 per organza bag (30 × 60 cm) in pots encompassing a soybean plant at the V6 or V7 to R6 phenological stages.

The predator was reared for 2 generations (F2) with soybean plants supplemented with A. gemmatalis caterpillars fed an artificial diet (T1), with soybean plants supplemented with caterpillars fed soybean leaves (T2), with soybean plants supplemented with T. molitor pupae (T3), or with soybean plants supplemented with A. gemmatalis pupae from caterpillars fed soybean leaves (T4) before evaluation so it could adapt to dietary and experimental conditions. Water was supplied in anesthesia tubes sealed with a cotton ball and placed in the organza bags. Supplemental food was provided ad libitum.

EXPERIMENTAL STUDIES

For each treatment (T1–T4), 50 nymphs of third generation P. nigrispinus were separated into groups of 10 individuals per organza bag (10 × 20 cm), each representing 1 replication. These nymphs were reared to obtain adults, which were mated 3 d after emergence, with 12 pairs per treatment. The average temperature during the test was 25.8 ± 8.0 °C.

Duration and survival data for instars I, II, III, IV, and V of P. nigrispinus were determined. The survival curves of the nymph stage of this predator were obtained using the Kaplan-Meier model (SAS Institute 1991). The weights of instar V nymphs and of newly emerged males and females P. nigrispinus were obtained with a precision balance (Shimadzu model AY220, produced in The Philippines; resolution = 0.1 mg).

Population growth parameters and reproduction of P. nigrispinus were obtained using life table analysis. The net reproductive rate (Ro) (number of females added per female during her lifetime): Ro = Σlx; duration of a generation (DG) (time between the parent and offspring birth): DG = Σx. lx. Mx/Ro; intrinsic rate of population increase (Rm) (population growth rate per unit time): Rm = ln (Ro/DG); finite rate of population increase (λ) (number of females added to the population per female per unit time): λ = antilog (rm 0.4343); and time required for the predator to double its population in number of individuals (TD): TD = ln (2)/rm; were calculated (Maia et al. 2000) and analyzed using the SAS statistical software (SAS Institute 1991).

Results

The duration of instar I was similar among treatments. Instars II and III P. nigrispinus were longer when fed A. gemmatalis pupae (T4), and nymphs of this predator did not complete their life cycle, with 100% mortality during instar IV when fed this host. The duration of instar V and of the total nymph period of P. nigrispinus were longer when provided with caterpillars fed with soybean plants (T2) (Table 1).

The survival of the nymph stage of P. nigrispinus was higher when fed on soybean plants with T. molitor pupae (T3) (97.9%), with A. gemmatalis caterpillars reared with soybean leaves (T2) (93.8%), and with A. gemmatalis caterpillars fed an artificial diet (T1) (79.2%), relative to A. gemmatalis pupae from caterpillars fed soybean leaves (T4) (Fig. 1).

Instar V, and both male and female adults of P. nigrispinus, were heavier when fed T. molitor (T3) (Table 2).

Life table parameters for P. nigrispinus varied with the prey supplied. The net reproductive rate (Ro), duration of a generation (DG), and time to double the population (TD) of this predator had higher values when allowed to feed on A. gemmatalis caterpillars reared on soybean leaves (T2) and on T. molitor pupae (T3), indicating increased offspring production per generation (Table 3). The finite (λ) and intrinsic (rm) rates of population growth of P. nigrispinus were similar among treatments.

Discussion

The quality and quantity of food affect parameters such as survival, weight gain, stage duration, egg numbers, and predator viability and longevity (Zanuncio et al. 2002). The equivalent duration of first instar P. nigrispinus is due to the pentatomid predators having no predatory
Table 1. Duration (mean days ± standard error) for instars I–V, and of the total nymph stage, of Podisus nigrispinus (Hemiptera: Pentatomidae) reared with soybean plants supplemented with Anticarsia gemmatalis (Lepidoptera: Erebidae) caterpillars fed an artificial diet (T1), on soybean plants with caterpillars fed soybean leaves (T2), on soybean plants with Tenebrio molitor (Coleoptera: Tenebrionidae) pupae (T3), or on soybean plants with A. gemmatalis pupae from caterpillars fed soybean leaves (T4).

<table>
<thead>
<tr>
<th>Stages</th>
<th>Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>T1</td>
</tr>
<tr>
<td>I</td>
<td>3.00 ± 0.00</td>
</tr>
<tr>
<td>II</td>
<td>3.96 ± 0.09 B</td>
</tr>
<tr>
<td>III</td>
<td>3.49 ± 0.16 BC</td>
</tr>
<tr>
<td>IV</td>
<td>4.21 ± 0.09 AB</td>
</tr>
<tr>
<td>V</td>
<td>5.63 ± 0.10 B</td>
</tr>
<tr>
<td>Total</td>
<td>25.20 ± 0.21 B</td>
</tr>
</tbody>
</table>

Table 2. Weight (mean mg ± standard error) of instar V nymphs and of newly emerged Podisus nigrispinus (Hemiptera: Pentatomidae) adults reared with soybean plants supplemented with Anticarsia gemmatalis (Lepidoptera: Erebidae) caterpillars fed an artificial diet (T1), on soybean plants with caterpillars fed soybean leaves (T2), or on soybean plants with Tenebrio molitor (Coleoptera: Tenebrionidae) pupae (T3).

<table>
<thead>
<tr>
<th>Stages</th>
<th>Treatments</th>
</tr>
</thead>
<tbody>
<tr>
<td>V</td>
<td>T1</td>
</tr>
<tr>
<td>Female</td>
<td>60.34 ± 2.03 B</td>
</tr>
<tr>
<td>Male</td>
<td>42.20 ± 1.08 B</td>
</tr>
<tr>
<td>Male</td>
<td>25.38 ± 1.00 B</td>
</tr>
</tbody>
</table>

Means per rows followed by the same letter do not differ by Tukey’s test (P = 0.05).