INTERAÇÕES BIOQUÍMICAS DE *Mahanarva spectabilis* (HEMIPTERA: CERCOPIDAE) E GRAMÍNEAS FORRAGEIRAS

Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Entomologia, para obtenção do título de Magister Scientiae.

VIÇOSA
MINAS GERAIS - BRASIL
2018
Ficha catalográfica preparada pela Biblioteca Central da Universidade Federal de Viçosa - Câmpus Viçosa

Barros, Rafael de Almeida, 1994-

Interações bioquímicas de *Mahanarva spectabilis* (Hemiptera: Cercopidae) e gramíneas forrageiras / Rafael de Almeida Barros. – Viçosa, MG, 2018.

vi, 33 f. : il. (algumas color.) ; 29 cm.

Orientador: Maria Goreti de Almeida Oliveira.

Dissertação (mestrado) - Universidade Federal de Viçosa.

Referências bibliográficas: f. 23-33.

CDD 22. ed. 632.754
INTERAÇÕES BIOQUÍMICAS DE *Mahanarva spectabilis* (HEMIPTERA: CERCOPIDAE) E GRAMÍNEAS FORRAGEIRAS

Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Entomologia, para obtenção do título de *Magister Scientiae*.

APROVADA: 31 de julho de 2018.

Alexander Machado Auad
(Coorientador)

Jorge Fernando Pereira
(Coorientador)

Eugênio Eduardo de Oliveira

Camilo Elber Vital

Maria Goreti de Almeida Oliveira
(Orientadora)
AGRADECIMENTOS

À Universidade Federal de Viçosa, pela instituição exemplo de pesquisa e ensino, e pela oportunidade de realizar esse grande projeto profissional.

Ao CNPq pela bolsa de estudos.

À Embrapa Gado de Leite pela idéia do projeto e pelo fornecimento do material biológico.

À toda equipe do Núcleo de Análises de Biomoléculas, pela paciência e grandiosa ajuda nas análises e softwares, meus sinceros agradecimentos.

Aos Departamentos de Entomologia e Bioquímica Aplicada, professores, funcionários e amigos pelo aprendizado e pelo conhecimento adquirido.

Aos membros da banca examinadora pela disponibilidade e aceitação do convite.

À minha família, principalmente aos meus pais pelo carinho e confiança depositado em mim e por serem exemplo de honestidade e sempre me apoiarem. Além da minha irmã Gabi e meu cunhado Leomar, e meus sobrinhos, que sempre me trouxeram alegria.

Aos meus familiares, tios, tias e primos por sempre me apoiarem e entenderem minha ausência em momentos importantes.

A professora Maria G. A. Oliveira pela orientação, apoio e confiança no meu trabalho. Além de ser um grande exemplo pra mim e guiar meus passos acadêmicos desde o início da graduação com muita competência.

Ao professor Humberto J. O. Ramos, pelos ensinamentos e ter me encorajado a fazer as análises no núcleo de biomoléculas, que com certeza acrescentaram muito no meu trabalho.

Ao pesquisador Alexander Machado Auad pela dedicação, contribuição científica, ajuda na elaboração do experimento. Além disso, quero agradecer ao pesquisador Jorge Fernando Pereira pela enorme disposição em me ajudar, me dando muitos conselhos científicos e pessoais, que com certeza contribuirão muito com a minha carreira.

Ao Dr. Manuel Antonio Solís Vargas, com quem eu pude aprender muito no meu dia a dia no laboratório e acabou se tornando um amigo.

Aos meus queridos amigos, principalmente à Roberta, que virou minha namorada. Obrigado pela paciência de todos.
SUMÁRIO

RESUMO .. iv
ABSTRACT .. vi
1. INTRODUÇÃO .. 1
2. REVISÃO BIBLIOGRÁFICA ... 3
 2.1. Forrageiras .. 3
 2.2. Interação M. spectabilis e forrageiras ... 3
 2.3. Insetos sugadores de Xilema .. 4
 2.4. Mahanarva spectabilis ... 5
 2.5. Indução de resistência na interação planta-inseto .. 5
 2.6. Proteases digestivas de insetos ... 6
3. OBJETIVO GERAL .. 8
4. MATERIAL E MÉTODOS ... 9
 4.1. Insetos... 9
 4.2. Material Vegetal ... 9
 4.3. Ataque às plantas por M. spectabilis .. 10
 4.4. Obtenção do extrato foliar e análise dos Fitohormônios 10
 4.5. Obtenção do extrato da planta para as análises enzimáticas 11
 4.6. Atividade de LOX .. 11
 4.7. Teste de Inibição de Proteases .. 11
 4.8. Obtenção do extrato enzimático de M. spectabilis .. 11
 4.9. Determinação da concentração de Proteína Total ... 12
 4.10. Determinação da atividade Tripsina-like ... 12
 4.11. Determinação de Proteases Totais .. 13
 4.12. Análises Estatísticas .. 13
5. RESULTADOS ... 14
 5.1. Atividade de LOX em folhas de forrageiras infestadas ou não por M. spectabilis. ... 14
 5.2. Niveis dos fitohormônios ABA (Ácido Abscísico), JA (Ácido Jasmônico) e SA (Ácido Salicílico) em folhas de forrageiras infestadas ou não por M. spectabilis. 14
 5.3. Inibidores de proteases ... 16
 5.4. Atividade de Proteases da região do intestino-médio de M. spectabilis 17
6. DISCUSSÃO .. 19
7. REFERÊNCIAS .. 23
RESUMO

As cigarrinhas-das-pastagens, *Mahanarva spectabilis* causam danos severos em pastagens tropicais, comprometendo a produção bovina. O controle-químico de cigarrinha-das-pastagens é economicamente inviável. Sendo assim, a seleção de cultivares forrageiras gramíneas resistentes é uma alternativa de controle muito importante. Estudos relatando a bioquímica da interação entre *M. spectabilis* e diferentes forrageiras gramíneas são raros. O objetivo foi avaliar o impacto do ataque de *M. spectabilis* na resposta defensiva de plantas de capim-elefante (*Pennisetum purpureum*), cv. Roxo Botucatu (RX) e cv. Pioneiro (PI), *Brachiaria brizantha* cv. Marandú (MA) e *Brachiaria decumbens* cv. Basilisk (DE). O impacto da alimentação em diferentes cultivares de forrageiras nas proteases digestivas do inseto também foi avaliado. O experimento foi realizado com os quatro genótipos distintos, infestados ou não por *M. spectabilis*. A atividade de lipoxigenases (LOX), inibidores de proteases e as concentrações de fitohormônios foram avaliadas nas folhas das forrageiras. A atividade de proteases totais e tripsina-like foram avaliadas na região do intestino de *M. spectabilis*. Os genótipos RX, MA e DE tiveram aumento na atividade de LOX após injúrias por *M. spectabilis*. A ativação da via da LOX está relacionada com o aumento nos níveis do hormônio jasmonato. O aumento na concentração de ácido abscísico aconteceu nos quatro cultivares. O ácido abscísico pode atuar sinergicamente com o jasmonato na transcrição de genes de defesa. Os cultivares MA e DE tiveram maiores níveis basais de ácido salicílico, mas apenas o cultivares DE foi capaz de aumentar os níveis do hormônio em resposta à herbivoria. A atividade de proteases totais foi maior em *M. spectabilis* que se alimentaram de DE, indicando secreção de enzimas. Há variabilidade na indução de LOX dentro da espécie *Pennisetum* purpureum. Todos os cultivares analisados apresentaram aumento nas concentrações de ABA e JA, quando atacados por *M. spectabilis*, indicando ações de defesa em comum. A indução nas concentrações de SA apenas em DE, pode indicar aumento nos níveis de radicais livres, que causam danos aos herbívoros. O aumento na atividade de proteases totais de *M. spectabilis* alimentadas com DE indica...
mecanismos de secreção de proteases para compensar àquelas inibidas, que não estão relacionado com enzimas tripsina-like.
ABSTRACT

Mahanarva spectabilis are spittlebugs that cause several damages in tropical pastures, compromising cattle production. The chemical control of spittlebugs is economically unfeasible. Therefore, the selection of resistant forage grasses cultivars is an important control alternative. Studies reporting the biochemistry of the interaction between *M. spectabilis* and different forage grasses are rare. Thus, the goal was to assess the impact of *M. spectabilis* injury on the defensive response of elephant grass (*Pennisetum purpureum*), cv. Roxo Botucatu (RX) and cv. Pioneiro (PI), *Brachiaria brizantha* cv. Marandú (MA) and *Brachiaria decumbens* (DE). The impact of feeding on different cultivars of forages in the digestive proteases of the insect was also assessed. The experiment was carried out with four distinct cultivars, infested or not by *M. spectabilis*. The lipoxygenases activity, protease inhibitors and concentrations of phytohormones were evaluated in leaves of forage grasses. Total proteases and trypsin-like activities were evaluated in the gut region of *M. spectabilis*. RX, MA and DE genotypes showed increased LOX activity after injury by *M. spectabilis*. The LOX pathway activation is related to the increase in levels of the hormone jasmonate. The increase in abscisic acid concentration after injury occurred in the four genotypes. Abscisic acid acts synergistically with jasmonate in the transcription of defense genes. MA and DE cultivars had higher basal salicylic acid levels, but only DE was able to increase concentration in response to herbivory. There is variability in the induction of LOX within the species *Pennisetum purpureum*. All cultivares showed increased concentrations of ABA and JA when attacked by *M. spectabilis*, indicating common defense actions. Total proteases activity was higher in *M. spectabilis* fed with DE. The induction of SA concentration only in DE, may indicate an increase in free radical levels, which cause damage to herbivores. The increased activity of total proteases of *M. spectabilis* fed with DE indicates protease secretion mechanisms to compensate for those inhibited, which are not related to trypsin-like proteases.
1. INTRODUÇÃO

A produção de pastagem é a principal fonte de alimentação para o gado no Brasil (Euclides et al., 2010). Embora o país seja um grande exportador e produtor de carne e leite, a produtividade das pastagens brasileiras é considerada baixa (Dias-Filho., 2011). A ocorrência de herbívoros é um importante fator na diminuição da capacidade produtiva das pastagens (Dumont et al., 1997). As grandes extensões de terra, cultivadas apenas com um tipo de pastagem, favoreceram o desenvolvimento de altas população de diversos gêneros e espécies de cigarrinha-das-pastagens em regiões tropicais (Valério et al., 2001; Argel et al., 2007). Cigarrinhas-das-pastagens da espécie *Mahanarva spectabilis* (Hemiptera: Cercopidae) se alimentam de gramíneas forrageiras comumente cultivadas para alimentar o gado (Resende et al., 2012). *M. spectabilis* sugam seiva das plantas, causando danos em diversas espécies forrageiras (Silva et al., 2017). O dano mais severo é causado por esse herbívoro na fase adulta, causando a diminuição da capacidade fotossintética da planta, reduzindo massa seca e qualidade das forragens (Souza et al., 2008; Aguiar et al., 2014).

O crescente aumento no uso de pesticidas químicos pode causar sérios danos ambientais e problemas de saúde. Além disso, o controle-químico de cigarrinha-das-pastagens é economicamente inviável (Leite et al., 2013). Sendo assim, a indução de resistência em cultivares de forrageiras é considerada uma promissora alternativa de controle. A resistência induzida pode ser ativada por diversas vias metabólicas, que alteram metabólitos secundários e proteínas de defesa (Vendramin & França 2006). Produtos de defesa das plantas, como os inibidores de enzimas digestivas, podem ser utilizados no controle de herbívoros (Kant et al., 2007; Jaber et al., 2010; Paixão et al., 2013). Danos por herbívoros ativam vias de defesas de plantas, sendo a das Lipoxigenases (LOX) uma das principais (Paixão et al., 2013; Cabrera et al., 2018). Enzimas lipoxigenases catalisam a dioxygenação do ácido linoleico, produzindo intermediários que são utilizados por outras enzimas da via octadecanoíde na produção do ácido jasmônico (JA) (Farmer & Ryan, 1992). O JA ativa genes que expressam inibidores de proteases (IPs) (Shivaji et al., 2010). A ingestão de IPs pelos herbívoros afeta a degradação de proteínas, diminuindo a disponibilidade de aminoácidos necessários ao desenvolvimento, crescimento e reprodução (Oliveira et al., 2005). Os inibidores enzimáticos, como os IPs, também podem afetar indiretamente o desenvolvimento do herbívoro, aumentando a produção de enzimas digestivas na tentativa de compensar aquelas inibidas (Oliveira et
al., 2013; Paixão et al., 2016). Além do JA, o ácido salicílico também está relacionado com a indução de compostos de defesa em resposta à herbívoria (Hoysted et al., 2017). O ácido salicílico atua na regulação de genes que expressão proteínas do tipo quitinases, proteínas relacionadas à patogenese, entre outras (Smith et al., 2007; Donovan et al., 2013; Hoysted et al., 2017). O ácido salicílico por si só, é uma defesa química significativa contra alguns herbívoros, pois estão relacionados a aumentos nos níveis de espécies reativas de oxigênio (ROS) em plantas (O’Brien et al., 2012; Donovan et al., 2013).

Estudos relatando a bioquímica da interação entre cigarrinha-das-pastagens e forrageiras são raros. Este trabalho avaliou a atividade de lipoxigenases, níveis de fitohormônios e inibidores de proteases em diferentes espécies de forrageiras tropicais após infestação por *M. spectabilis*. Além disso, foi avaliada a atividade de proteases totais e tripsina-like na região do intestino de *M. spectabilis*. A compreensão do complexo químico da interação herbívoro-planta é importante para a otimização de cultivares e ganho em produtividade (War et al., 2012). Sendo assim, o impacto do dano por *Mahanarva spectabilis* (Hemiptera: Cercopidae) no mecanismo de defesa de diferentes forrageiras, susceptíveis e resistentes, foi estudado.
2. REVISÃO BIBLIOGRÁFICA

2.1. Forrageiras

As pastagens no Brasil constituem uma opção barata e abundante para a produção bovina (Hoffmann et al., 2014). Entre as principais gramíneas cultivadas no Brasil estão: *Brachiaria brizantha*, *Brachiaria decumbens* e o capim-elefante (*Pennisetum purpureum*) (Martins et al., 1993). A *Brachiaria brizantha* possui como uma de suas principais características a resistência contra cigarrinhas-das-pastagens (Hemiptera: Cercopidae), principalmente *Notozulia Fennah*, *Deois Fennah* e *Aeneolamia Fennah* (Valério, 2006). Embora essa espécie tenha sido considerada como resistente a diversas espécies de cigarrinhas-das-pastagens, sempre existiu a possibilidade de enfrentar ataques de cigarrinhas que são exceção, explicando os frequentes ataques ocasionados por cigarrinhas do gênero *Maharnava* (Valério, 2006). A *Brachiaria decumbens* tem sido a espécie mais plantada e apresenta características similares à da *Brachiaria brizantha*, no entanto, é considerada mais susceptível à diversas espécies de cigarrinhas-das-pastagens (Valério, 2006; Silva et al., 2017). O capim-elefante (*Pennisetum purpureum*) apresenta alto potencial de produção e se adapta muito bem às condições de clima e solo do Brasil todo (Shimoya et al., 2002). No entanto, a sua produção é altamente dependente das estações, tendo baixas produtividades em períodos secos, de baixa luminosidade e temperatura (Deresz, 2001). No entanto, o capim-elefante é a gramínea tropical que apresenta o maior potencial de produção de matéria seca, desde que seja bem manejado em locais com condições edafoclimáticas favoráveis (Faria, 1994).

2.2. Interação *M. spectabilis* e forrageiras

A performance e a preferência de um herbívoro é determinada principalmente pela concentração de nutrientes, metabólitos secundários e barreiras mecânicas, como tricomas (Schoohoven, 2005; Tremmel & Muller, 2013). Insetos selecionam os hospedeiros que possibilitem sua melhor performance. Diferentes compostos de defesas evoluíram nas diferentes espécies de plantas em resposta à herbivoria (Schoohoven, 2005). Estes compostos podem estar sempre presentes, ou serem induzidos após o ataque dos insetos (Karban & Baldwin, 1997). O cultivo de diferentes espécies e biótipos de forragens com resistência à cigarrinha-das-pastagens é uma alternativa de controle promissora (Auad et al., 2007). Cigarrinha-das-pastagens são insetos que injetam toxinas durante a alimentação e diminuem a capacidade fotossintética de forragens (Byers &
Wells, 1966). No Brasil, há ocorrência de diversas espécies de cigarrinha-das-pastagens e entre elas a *Mahanarva spectabilis* é uma das grandes causas de prejuízos nas indústrias de carne e leite (Auad et al., 2007). Capim-elefante (*Pennisetum purpureum*) e Braquiaria, são forragens amplamente cultivadas no Brasil e apresentam diferentes níveis de resistência à adultos e ninhas de *M. spectabilis*. Entre os cultivares de capim-elefante, o Roxo de Botucatu é considerado mais susceptível que o cultivar Pioneiro (Silva et al., 2017). Entre as espécies de brachiaria, a *M. spectabilis* apresenta maior preferência por *Bracharia decumbens*, quando comparada à *Brachiaria brizantha*, apesar dessa apresentar menores efeitos negativos em parâmetros importantes no ciclo do adulto, como longevidade e taxa de reprodução (Silva et al., 2017). Auad et al., 2007, reportou menor sobrevivência de ninhas no cultivar Pioneiro em relação ao Roxo Botucatu. A longevidade de adultos de *M. spectabilis* é maior no cultivar Pioneiro e na *B. brizantha*, quando comparadas com o Roxo Botucatu e *B. decumbens* (Silva et al., 2017). Níveis maiores de compostos relacionados à antibioticidade são esperados na *B. brizantha* e no capim-elefante cultivar Pioneiro. Há indícios que os tipos de resistência nas diferentes forrageiras é do tipo antibioticidade, porém não há trabalhos caracterizando a interação em nível molecular.

2.3. Insetos sugadores de Xilema

Insetos sugadores de xilema, geralmente pertencentes à subordem Auchenorryncha da ordem Hemiptera, inserem seu estilete no xilema para obter seiva (Raven, 1983). Insetos das famílias Cercopidae, Cicadidae e Cicadellidae (Hemiptera: Auchenorryncha), alimentam-se predominantemente da seiva do xilema, adultos e ninhas (Horsfield, 1977; Karban, 1980). A penetração do xilema se dá principalmente pela pressão exercida pelo estilete, auxiliado por secreções salivares (Waloff, 1980). Insetos sugadores de xilema precisam superar as altas pressões negativas e a baixa concentração de nutrientes no xilema. Altas pressões negativas no xilema tornam o processo de sucção custoso, em termos energéticos, para os herbívoros (Zimmermann et al., 1994). As baixas concentrações de nutrientes (amino acids 3-10mM; sugars 1mM) faz com que as taxas de absorção de seiva sejam altas (Brodbeck et al., 1993; Terra., 1990). O xilema é um canal responsável pelo transporte de água e sais inorgânicos da raiz para as partes aéreas das plantas (Kehr et al., 2005). No entanto, o xilema também é capaz de transportar nutrientes orgânicos, como os açúcares, aminoácidos e ácidos orgânicos (Schurr et al., 1998; Schur et al., 1995). Fitohormônios são exemplos de nutrientes orgânicos que são transportados via xilema (Oda et al., 2003; Ratzinger et al., 2009). Entre os fitohormônio, o ácido
salicílico (SA) além de induzir a expressão de genes de defesa, é por si só, um defensivo químico eficiente contra pestes e patógenos (Donovan et al., 2013). Vários estudos identificaram proteínas presentes no xilema, entre elas estão peroxidases e quitinases, proteínas relacionadas a patogênese (PR), lecitinas e proteínas ricas em cisteína (Hoysted et al., 2017; Buhtz et al., 2004; Masuda et al., 2001; Masuda et al., 1999). Proteínas encontradas no xilema, como as quitinases, que degradam quitina, atuam como agentes anti-herbivoria (Patel & Goyal., 2017). Sendo assim, insetos sugadores de xilema precisam enfrentar não só as baixas concentrações de nutrientes, mas também fitohormonios e metabólitos relacionados à defesa de plantas.

2.4. *Mahanarva spectabilis*

A cigarrinha-das-pastagens *Mahanarva spectabilis* (Distant, 1909) (Hemiptera: Cercopidae) é considerada praga-chave em forrageiras, causando prejuízos à produtores de carne e leite (Auad et al., 2010). Adultas e ninfas injetam toxinas nos hospedeiros e sugam seiva de vasos condutores, causando amarelecimento e murcha das folhas (Aguiar et al., 2014). Adultos de *M. spectabilis* causam os maiores danos, diminuindo a capacidade fotossintética e a qualidade da forrageira (Souza et al., 2008). Além da *M. spectabilis*, outras espécies de cigarrinhas-das-pastagens podem coexistir no mesmo campo de produção (Peck, 2001). No entanto, algumas espécies se destacam e são mais problemáticas em algumas espécies de plantas do que outras (Auad et al., 2009). As infestações mais severas por cigarrinhas-das-pastagens ocorrem com o início das chuvas e diminuem nos períodos de seca (Valerio 2009). No entanto, nos períodos secos, *M. spectabilis* se mantém no campo através da produção de ovos diapausicos, depositados no solo e restos culturais pelos adultos (Koštál et al., 2017). O aumento da umidade dá origem a ninfas que se alimentam nas raízes e ficam protegidas por uma espuma branca, que confere proteção e evita grandes variações de temperatura (Tonelli et al., 2018). Ninfas de cigarrinhas-das-pastagens pertencentes ao gênero Mahanarva ficam aproximadamente 40 dias sugando seiva da raiz, variando de acordo com as condições climáticas (Garcia et al., 2006). A longevidade dos adultos varia de 10 a 18 dias (Silva et al., 2017).

2.5. Indução de resistência na interação planta-inseto

Durante um longo período de coexistência, plantas e herbívoros evoluíram de modo a obter diversas ferramentas para “lutas” uns com os outros (Schoonhoven, 2005).
Plantas possuem uma variedade de compostos químicos e físicos que são utilizados contra o ataque de herbívoros. Os compostos de defesa das plantas podem ser constitutivos (sempre presentes) ou induzidos (Scalschi et al., 2013). As plantas percebem a herbivoria pelo reconhecimento de elicitores específicos, inerentes ao herbívoro (Huffaker et al., 2013). O reconhecimento de elicitores dispara nas plantas uma série de eventos bioquímicos que resultam na expressão de genes relacionados a defesa, mecanismo conhecido como indução de resistência (Sarmento et al., 2011; Scalschi et al., 2013). Por exemplo, a via das lipoxigenases produz o hormônio Jasmonato, que sinaliza a expressão gênica de metabólitos secundários, como inibidores de proteases (Shivaji et al., 2010; Silva et al., 2017b). Inibidores de proteases e outros compostos, como flavonoides, taninos e fenólicos, podem afetar a capacidade dos herbívoros de digerirem proteínas (Patarroyo-Vargas et al., 2017). A diminuição da digestão de proteínas, reduz a disponibilidade de aminoácidos livres, afetando o desenvolvimento, reprodução e crescimento de herbívoros (Scott et al., 2010).

2.6. Proteases digestivas de insetos

A digestão enzimática de proteínas desempenha importante papel em diversos processos fisiológicos dos herbívoros (Amiri et al., 2016). O intestino médio e a glândula salivar são os principais órgãos produtores de enzimas em insetos, sintetizando proteases que degradam proteínas em peptídeos menores e aminoácidos (Sato et al., 2008). Insetos herbívoros utilizam diversos tipos de proteases na digestão (Amiri et al., 2016). Proteases são agrupadas de acordo com a estrutura do sítio ativo em quatro diferentes classes, incluindo serino, cisteíno, metalo e aspartato proteases (Sternlicht & Werb, 2001). As proteases digestivas atuam em processos como a metamorfose, cicatrização de feridas, apoptose, digestão de alimento, além de auxiliar na defesa dos insetos contra uma variedade de toxinas e compostos antinutricionais encontrados nas plantas hospedeiras (Lee et al., 2010; Karlsson et al., 2004; Saadati & Bandani, 2011; Zhang & Li., 2012; Spit et al., 2014). Cisteíno proteases são as principais proteases digestivas das ordens Coleoptera, Diptera e Hemiptera (Ben-Mahmoud et al., 2015). No entanto, atividade de tripsina foi relatada em hemiptera, variando atividade de acordo com a fonte de alimentação, o que mostra um importante papel dessas enzimas nessa ordem (Li et al., 2016; Amiri et al., 2016). Enzimas do tipo tripsina-like são membros da família serino-proteases, tendo importante papel na digestão, desenvolvimento reprodução e resposta imune de insetos (Zou et al., 2006). Sendo assim, devido à elevada importância para processos vitais dos
herbívoros, proteases digestivas podem ser alvos de medidas de controle e devem ser bem estudadas.
3. OBJETIVOS

Avaliar mecanismos de defesa bioquímicos de diferentes cultivares de forrageiras injuriados por *M. spectabilis*. Além disso, avaliar proteases digestivas de *M. spectabilis* alimentadas com os diferentes cultivares de forrageiras.
4. MATERIAL E MÉTODOS

4.1. Insetos

Mil ninfás de *M. spectabilis*, de quarto e quinto instares, foram coletadas em pastagens localizadas na estação de pesquisa da Embrapa Gado de Leite, em Coronel Pacheco, Minas Gerais e levadas para o Laboratório de Insetos do Departamento de Bioquímica e Biologia Molecular da Universidade Federal de Viçosa (UFV). As ninfás foram mantidas na cultivar susceptível *Brachiaria ruzizienses*, envolvidas com organza para evitar a fuga dos insetos, a 25º C de temperatura e 70% de umidade relativa, até o surgimento dos adultos.

4.2. Material Vegetal

Mudas de *Brachiaria decumbens* cv. Basilisk (DE) e *Brachiaria brizantha* cv. *Marandu* (MA) foram obtidas em bandejas para mudas com 200 células. As mudas foram transplantadas para vasos de 1 L contendo mistura de solo e o substrato comercial Plantmax® na proporção (1:1; v/v). Estacas de *Pennisetum purpureum* cv. Pioneiro (PI) e *Pennisetum purpureum* cv. Roxo de Botucatu (RX) foram obtidas de pastagens localizadas na estação de pesquisa da Embrapa Gado de Leite, em Coronel Pacheco, Minas Gerais e levadas para a UFV, onde foram transplantadas para vasos contendo mistura de solo e o substrato comercial Plantmax® na proporção (1:1; v/v). O solo foi adubado com 50mL de solução de uréia 8g/L, 25 dias após o transplantio. Plantas com aproximadamente 40 dias após o transplantio foram selecionadas para os experimentos.

Figura 1. Material vegetal obtido em vaso de 1 L, em casa de vegetação na Universidade Federal de Viçosa.
4.3. Ataque às plantas por *M. spectabilis*

O experimento foi montado com quatro repetições biológicas em esquema fatorial 2x4, sendo dois níveis do fator infestação (controle e infestado) e quatro níveis do fator cultivar. Quinze adultos de *Mahanarva spectabilis* foram colocados por planta, 40 dias após o transplanto, nos diferentes cultivares de gramíneas forrageiras: *Brachiaria decumbens*, *Brachiaria brizantha cv. Marandu*, *Pennisetum purpureum cv. Pioneiro* e *Pennisetum purpureum cv. Roxo de Botucatu*. As plantas foram envolvidas com saco de orgânza para evitar a fuga dos insetos. Depois de 48 h, os insetos e quatro folhas foram coletados por planta, pulverizados com nitrogênio líquido e armazenados à -80°C para análises posteriores.

Figura 2. Adultos de *M. spectabilis* e plantas envolvidas por saco de orgânza para evitar a fuga.

4.4. Obtenção do extrato foliar e análise dos Fitohormônios

As folhas foram trituradas em nitrogênio líquido e 400 μL de solução extratora contendo metanol, isopropanol e ácido acético, nas proporções 20:79:1 foram adicionados a 110mg de material vegetal. As amostras foram agitadas por vortex quatro vezes, durante 20 s, sonicadas em ultrassom por 5 min e centrifugadas a 14000 x g por 30 min a 4°C. O sobrenadante foi submetido a um novo ciclo de extração, para aumentar a eficiência da extração. As amostras extraídas foram armazenadas à -80°C para análises futuras. A quantificação dos fitohormônios ácido salicílico (SA), ácido jasmônico (JA) e ácido abscísico (ABA) foi feita por cromatografia líquida de ultraperformance acoplada à espectrometria de massas do tipo quadrupolo (UHPLC-MS QqQ). Os dados obtidos foram convertidos em ng/mg de hormônio com o auxílio dos softwares *Skyline* e *Excel*.
4.5. Obtenção do extrato da planta para as análises enzimáticas

As folhas foram pesadas, pulverizados com nitrogênio líquido e macerados com auxílio de almofariz. O pó vegetal obtido foi homogenizado com tampão fosfato de sódio 50 mM, pH 6,5, para as análises de LOX. Já o tampão Tris-HCl 0,1 M; pH 8,2 contendo CaCl$_2$ 20 mM, foi adicionado ao pó vegetal para o teste de inibição de proteases, na proporção de 1 g de folha: 3 mL de tampão. O extrato foi centrífugado à 17,200 g por 30 min a 4º C. A atividade de lipoxigenases e inibidores de proteases foi avaliada no sobrenadante.

4.6. Atividade de LOX

A atividade de LOX foi determinada nas folhas das diferentes forrageiras atacadas ou não por *M. spectabilis*, usando ácido linoleico como substrato, através do aumento da absorbância a 234nm, durante 2,0 min de reação. A mistura de reação foi constituída de 1000 μL de tampão fosfato de sódio 50 mM, pH 6,5, 8 μL do extrato vegetal e 16 μL de linoleato de sódio 10 mM. A velocidade da reação foi determinada utilizando-se o coeficiente de extinção molar de 25.000 M$^{-1}$ cm$^{-1}$ para o produto formado (Axelrod et al. 1981).

4.7. Teste de Inibição de Proteases

O teste de inibição de proteases nas folhas das diferentes forrageiras atacadas ou não por *M. spectabilis* foi feito a partir da concentração de tripsina purificada inibida usando L-BApNA como substrato. A absorvância das soluções foi determinada a 410 nm durante 2,0 min de reação. As análises foram realizadas em triplicata para cada repetição do tratamento. Os resultados foram convertidos em mg de tripsina inibida por grama de proteína, de acordo com a equação: mg de tripsina inibida g$^{-1}$ de proteína= A x B/(C x 1000 x P) em que: A= absorvância a 410 nm do controle; B= diluição da amostra; P= concentração de proteína dos extratos vegetais (g mL$^{-1}$); C= fator de tripsina, ou seja, o produto da atuação de 1 μg de tripsina ativa sobre o substrato L-BApNA dará a leitura de absorvância de 0,019 a 410 nm (Kakade et al., 1974).

4.8. Obtenção do extrato enzimático de *M. spectabilis*

Machos e fêmeas foram separados e a região do abdómen cortada com bisturi. O *pool* do extrato enzimático foi composto por oito abdomen, sendo quatro de fêmeas e
quatro de machos. Os abdomens foram macerados com auxílio de nitrogênio líquido e almofariz e homogenizados em 800 μL de HCl 10^{-3} M (4 ºC). As frações foram centrifugadas à 10,000 g por 60 min a 4º C. O sobrenadante foi armazenado à -80º C para análises de tripsina-like e proteases totais.

Figura 3. Região do abdômen de *M. spectabilis* adulto.

4.9. Determinação da concentração de Proteína Total

A concentração de proteínas das folhas e dos insetos foram determinadas utilizando albumina soro bovina (BSA) como padrão (Bradford, 1976). As análises foram realizadas no comprimento de onda de 595 nm. As concentrações dos extratos das folhas e dos insetos foram calculadas comparando-se as medidas do espectrofotômetro com as absorbâncias da solução de BSA 0.2%, de concentração já conhecida.

4.10. Determinação da atividade Tripsina-like

A atividade das tripsina-like foi determinada na região do intestino de *M. spectabilis* utilizando L-BApNA como substrato. A partir do substrato L-BApNA foi preparado uma solução estoque 60 mM, sendo pesado 0,026g de L-BApNA diluído em 1 mL de DMSO (Dimetilsulfóxido) e posteriormente armazenado a -20°C. Em seguida 200 μL do estoque foi retirado e utilizado para preparar a solução de uso 1,2 mM, diluído em 10 mL de solução tampão Tris-HCl 0,1 M, pH 8,2 com CaCl₂ 20 mM a 25°C. A mistura de reação foi composta por 300 μL de substrato, 300 μL de tampão e 100 μL do extrato enzimático de *M. spectabilis*. As velocidades iniciais foram determinadas pela formação do produto *p*-nitroanilida no comprimento de onda de 410 nm em função do tempo (2,0
min. Os cálculos foram realizados com o coeficiente de extinção molar de 8.800 \((M^{-1} \times cm^{-1})\) para o produto formado (Erlanger et al., 1961).

4.11. Determinação de Proteases Totais

As atividades proteásicas foram determinadas na região do intestino de *M. spectabilis* utilizando azocaseína 2% (p/v) como substrato, em tampão Tris-HCl 0,1 M, pH 8,2 contendo CaCl\(_2\) 20 mM, a 37 °C. A mistura reacional foi constituída de 70 µL de substrato e 80 µL de extrato enzimático. A reação foi interrompida pela adição de 240 µL de ácido tricloroacético 10% (p/v). Após a parada de reação, as amostras foram homogeneizadas em vortex e mantidas em repouso no gelo, por 15 min. Em seguida, foram centrifugadas a 10.000 g por cinco min a 25 °C para remoção da proteína precipitada. Uma alíquota de 240 µL do sobrenadante foi transferida para microtubos de centrifuga contendo 280 µL de NaOH 1 M e, a seguir, a absorvância foi obtida no comprimento de onda 440 nm. A atividade específica foi determinada pela divisão dos valores da absorvância pelo da concentração de proteínas totais (Tomarelli et al., 1949).

4.12. Análises Estatísticas

O teste de Mann-Whitney foi utilizado para analisar diferenças nos tratamentos para a atividade de LOX e as concentrações de SA, JA e ABA após ataque por *M. spectabilis*. Os dados de inibidores de proteases (IPs), proteases totais e atividade de tripsina foram submetidos à análise de variância e teste de Tukey, 5% significância. O *software* utilizado foi o SIGMAPLOT 12.0.
5. RESULTADOS

5.1. Atividade de LOX em folhas de forrageiras infestadas ou não por *M. spectabilis*.

Nos experimentos de infestação por *M. spectabilis*, as atividades de LOX foram maiores nas folhas de capim-elefante cv. Roxo-Botucatu (RX), *Brachiaria brizantha* cv. Marandú (MA) e *Brachiaria decubens* (DE), quando comparadas ao controle (F=31.278; *P* < 0.01) (Figura 4). Na cultivar Pioneiro (PI) as folhas infestadas e não infestadas apresentaram atividade similar de LOX.

![LOX ACTIVITY](image)

Figura 4. Atividade de lipoxigenases (LOX) em folhas de capim-elefante (*Pennisetum purpureum*), cv. Roxo Botucatu (RX) e cv. Pioneiro (PI), *Brachiaria brizantha* cv. Marandú (MA) e *Brachiaria decumbens* cv. Basilisk (DE), infestadas ou não por *M. spectabilis*. Barras representam a média ± desvio padrão das repetições biológicas. O indicador estatístico * mostra a diferença entre controle e plantas infestadas [Mann-whitney, *P*<0.05 e n.s. *P*>0.05, *n*=4].

5.2. Níveis dos fitohormônios ABA (Ácido Abscísico), JA (Ácido Jasmônico) e SA (Ácido Salicílico) em folhas de forrageiras infestadas ou não por *M. spectabilis*.

Quando comparadas ao controle, as concentrações de JA (F= 37.733; *P* < 0.01) e ABA (F= 54.957; *P* < 0.01) aumentaram em todas forrageiras após 48h de dano por *M. spectabilis*, (Figura 5A e 5B). As concentrações de SA em relação ao controle nas
forrageiras foram semelhantes em RX, PI e MA e maiores em DE (F= 4.401; P= 0.047) (Figura 2C). No entanto, as concentrações basais de SA foram maiores em *Brachiaria brizantha* cv. Marandú (MA) e *Brachiaria decumbens* (DE) do que nos dois cultivares de capim-elefante (RX e PE) (F= 28.221; P< 0.01).

![Figura 5. Quantificação dos fitormônios (A) ABA (Ácido Abscisico), (B) JA (Ácido Jasmônico) e (C) SA (Ácido Salicílico) em folhas de capim-elefante (*Pennisetum*)](image-url)
purpureum), cv. Roxo Botucatu (RX) e cv. Pioneiro (PI), Brachiaria brizantha cv. Marandú (MA) e Brachiaria decumbens cv. Basilisk (DE). As análises dos fitohormônios foram feitas em folhas de plantas não infestadas (controle; pontos preenchidos) e após 48 h de infestação (pontos não preenchidos). Os pontos (preenchidos ou não) representam a média ± desvio padrão das repetições biológicas. O indicador de estatística * representa diferença nos níveis de fitormônios entre controle e plantas infestadas [Mann-whitney, *P < 0.05, n = 4].

5.3. Inibidores de proteases

As atividades de inibidores de proteases (IPs) em folhas de plantas infestadas por *M. spectabilis* foram semelhantes em todas as forrageiras, quando comparadas com aquelas não-infestadas (F=1.447; *P* = 0.241). No entanto, as concentrações basais de IPs foram maiores em MA e DE (F= 19.122; *P*< 0.01) (Figura 6).

![Inibidores de proteases](image)

Figura 6. Inibidores de proteases em folhas de capim-elfeante (*Pennisetum purpureum*), cv. Roxo Botucatu (RX) e cv. Pioneiro (PI), *Brachiaria brizantha* cv. Marandú (MA) e *Brachiaria decumbens* cv. Basilisk (DE), infestadas ou não por *M. spectabilis*. Barras representam a média ± desvio padrão das repetições biológicas. Médias seguidas por letras maiúsculas iguais não apresentam diferença entre controle e infestado e aquelas seguidas por letras minúsculas iguais não apresentam diferença nos níveis de IPs entre cultivares pelo teste de Tukey a 5% (n= 4).
5.4. Atividade de Proteases da região do intestino-médio de *M. spectabilis*

A atividade de proteases totais e atividade de tripsina-like foi analisada na região do intestino de adultos de *M. spectabilis* que se alimentaram das diferentes forrageiras. Nesta análise, os insetos que se alimentaram de RX, PI e MA apresentaram atividades similares, enquanto a atividade de proteases totais foi maior (F= 9.744; \(P=0.002 \)) em indivíduos que se alimentaram de DE (Figura 7). No entanto, a atividade de tripsina-like foi semelhante para todos tratamentos (F= 0.953; \(P=0.446 \)) (Figura 8).

Figura 7. Atividade proteolítica da região do intestino de *M. spectabilis* alimentadas com plantas de capim-elefante (*Pennisetum purpureum*), cv. Roxo Botucatu (RX) e cv. Pioneiro (PI), *Brachiaria brizantha* cv. Marandú (MA) e *Brachiaria decumbens* cv. Basilisk (DE). Barras representam a média ± desvio padrão das repetições biológicas. Médias seguidas pela mesma letra não diferem entre si pelo teste de Tukey, 5% significância (n= 4).
6. DISCUSSÃO

De forma geral, as plantas desenvolveram sofisticados mecanismos de defesa em resposta à herbivoria ao longo do processo evolutivo (Schohooven, 2005). A ativação destes mecanismos é dependente de elicitores (padrões moleculares associados à herbivoria) que são liberados pelos herbívoros durante a alimentação (Huffaker et al., 2013). Os elicitores podem estar presentes na saliva, secreções de oviposição, fezes e outros (Reymond et al., 2013; Felton et al., 2014; Ray et al., 2015). Mecanismos de defesa contra herbívoros podem resultar na acumulação de hormônios, como ácido abscísico (ABA), ácido jasmônico (JA) e ácido salicílico (SA) (Dihn et al., 2013; Hoysted et al., 2017). A indução de mecanismos de defesa por esses hormônios pode produzir compostos com atividade inseticida que prejudicam o desenvolvimento de insetos, como inibidores de proteases (IPs) (Paixão et al., 2013). Em contrapartida, os insetos podem aumentar a atividade de proteases no seu sistema digestivo, contrapondo o efeito dos inibidores (Oliveira et al., 2013).

Em três genótipos (capim-elefante cv. Roxo-Botucatu, RX; Brachiaria brizantha cv. Marandú, MA; e Brachiaria decumbens, DE), houve aumento da atividade de lipoxigenases (LOX) após 48 h de infestação por M. spectabilis, indicando ativação da via da LOX em resposta à herbivoria nos três genótipos. Aumento da atividade de LOX é frequentemente relatado para outras espécies, como em soja e café-arábica, após ataque de adultos do percevejo-marrom da soja, Euchistos heros (Hemiptera: Pentatomidae) e larvas de Leucoptera coffeella (Lepidoptera: Lyonetiidae) (Timbó et al., 2014; Cabrera et al., 2018). Este aumento na atividade da enzima lipoxigenase está relacionado à defesa de plantas contra herbívoros (Paixão et al., 2013; Paixão et al., 2016). A ausência de maior atividade de LOX em capim-elefante cv. Pioneiro (PI), identificada neste estudo, indica que há variabilidade na indução de LOX dentro da espécie Pennisetum purpureum.

Hormônios e suas interações desempenham importante papel nos mecanismos de resposta à herbivoria (Pieterse et al., 2012). Padrões de resposta hormonal variam de acordo com o herbívoros e a planta atacada (Chung et al., 2013; Diezel et al., 2009). As injúrias causadas por M. spectabilis induziu aumento na concentração de JA em todos os genótipos, indicando envolvimento deste hormônio na resposta bioquímica das forragens a este herbívoros. O aumento nas concentrações de JA em RX, MA e DE podem estar relacionados com a ativação da via das Lipoxigenases após herbivoria. O JA é derivado da oxidação do ácido linoneico, que é catalisada pela LOX (Roach et al., 2015). O ácido
linoleico é liberado em resposta a injúrias causadas pelos insetos por plantas que reconhecem elicitores dos herbívoros (Paixão et al., 2013; Paixão et al., 2016; Cabrera et al., 2018). Em plantas de tomate estressadas, foi relatado que o aumento da transcrição de genes LOX está relacionado com a acumulação de JA (Yan et al., 2013). No entanto, o aumento nas concentrações de JA mesmo quando a LOX não foi induzida em PI, possivelmente se deve à atividade de outras enzimas, que também catalisam a produção do hormônio (Wasternack & Hause, 2013). Embora JA seja um dos derivados da atividade da LOX, há outros precursores do hormônio que podem ter sido abastecidos por meio de outras vias (Wasternack et al., 2017).

O JA é considerado por muitos pesquisadores o principal indutor de resistência à herbivoria, porém há outros hormônios, como o ABA e SA, que também auxiliam na produção de compostos de defesa (Nguyen et al., 2016; Donovan et al., 2013; Vos et al., 2013). Além do aumento nos níveis de JA em todas forrageiras injuriadas por *M. spectabilis*, os níveis de ácido absíceico (ABA) também foram induzidos. O aumento nos níveis de ABA se deve à necessidade deste para ativar defesas contra o ataque de *M. spectabilis*. Os hormônios ABA e JA atuam sinergicamente na expressão de MYCs, que são fatores de transcrição que atuam na regulação da expressão de compostos anti-herbivoria (Lorenzo et al., 2004; Dombrecht et al., 2007; Schweizer et al., 2013). Sendo assim, além de atuar no desenvolvimento de plantas, os níveis de ABA também estão ligados com o processo de sinalização da expressão de genes considerados dependentes de JA (Vos et al., 2013).

Os maiores níveis basais de SA encontrados em MA e DE podem estar relacionados à defesa contra fitófagos, através da expressão de compostos de defesa, como quitinases e proteínas ligadas a patogênese (PR-proteins) (Smith et al., 2007; Hoysted et al., 2017). Além da expressão de compostos de defesa, o SA por si só pode causar danos aos herbívoros. Afídeos alimentados com dieta artificial enriquecida com SA sobreviveram menos tempo que aqueles mantidos na dieta controle (Donovan et al., 2013). Além disso, larvas de *Helicoverpa armigera* (Hubner), um inseto mastigador, tiveram o crescimento reduzido com aumento na concentração de SA em dieta artificial, devido a oxidação de enzimas do complexo respiratório presentes na mitocôndria (Akbar et al., 2012). Apenas DE teve indução nos níveis de SA em relação ao controle. Plantas de arroz injuriadas por *Sogatella furcifera* Horváth (Hemiptera: Delphacidae) também tiveram aumento na concentração de SA nas folhas (Kanno et al., 2012). A indução das
concentrações de SA pode ser um dos motivos que adultos de *M. spectabilis* apresentam menor longevidade e produzem menos ovos em *Brachiaria decumbens* (DE) (Silva et al., 2017). O incremento nos níveis de SA é precedido por aumento nos níveis de espécies reativas de oxigênio (ROS) em plantas, como superóxidos (O$_2^-$) e peróxido de hidrogênio (H$_2$O$_2$) (O’Brien et al., 2012). Espécies reativas de oxigênio (ROS) podem causar efeitos negativos no intestino médio de artrópodes (Smith et al., 2007). No entanto, o aumento nas concentrações de espécies reativas de oxigênio, precedidos pela indução de SA em DE, deve ser melhor estudado quanto a sua efetividade como agente inseticida contra *M. spectabilis*, pois o SA também está relacionado com a diminuição de metabólitos secundários em forrageiras, como de compostos fenólicos (Auad et al., 2018). Sendo assim, as concentrações de SA podem ou não estar relacionadas com níveis de antibiose nas forrageiras estudadas. Embora a relação entre SA e JA seja frequentemente descrita como antagônica, como em plantas de batata injuriadas por afídeos (Hoysted et al., 2017), o ataque de *M. spectabilis* a plantas de DE induziu ambos hormônios. Em plantas de *Sorghum bicolor* e *Arabidopsis taliana*, a aplicação exógena de ambos hormônios gerou resposta sinérgica na sinalização da expressão de genes relacionados (Salzman et al., 2005; Proietti et al., 2013).

Plantas de RX, PI, MA e DE não foram capazes de induzir aumento nos níveis de inibidores de proteases de tripsina-like (IPs) quando atacadas por *M. spectabilis*, sugerindo que o aumento na produção de IPs não é um mecanismo de resposta induzida nesta interação. No entanto, MA e DE apresentaram maiores níveis basais de IPs. Os IPs podem prejudicar a performance de herbívoros causando deficiência de aminoácidos livres, diminuindo severamente a atividade proteolítica, ou aumentando a secreção de proteases para compensar àquelas inibidas (Paixão et al., 2013; Oliveira et al., 2013; Paixão et al., 2016).

A maior atividade de proteases totais de *M. spectabilis* alimentadas com DE indica a secreção de proteases digestivas, provavelmente para compensar àquelas que tiveram a atividade inibida. Contrapor o efeito da inibição da atividade proteolítica aumentando a secreção de enzimas é um mecanismo comum em herbívoros, como o aumento da transcrição dos genes de proteases *SfTry5* e *SfTry7* em larvas de *Spodoptera frugiperda* alimentadas com dieta contendo o inibidor *Entada acaciifolia* trypsin inhibitor (EATI) (Oliveira et al., 2013; Paixão et al., 2013). A atividade similar de tripsina-like em *M. spectabilis* alimentadas com diferentes forrageiras indica que a mudança na atividade de
proteases totais em DE não está relacionada com esta classe de enzimas. O nível basal de IPs em DE não foi suficiente para causar mudanças na atividade de tripsina-like de *M. spectabilis*. Sendo assim, a maior atividade de proteases totais em *M. spectabilis* alimentadas com DE pode indicar a atuação de outros metabólitos de defesa que também afetam proteases digestivas, ou até mesmo de inibidores de proteases de outras classes de enzimas (Fiorentino et al., 2007; War et al 2013). Por exemplo, outros compostos do metabolismo secundário das plantas, como o ácido cafeico, afetou negativamente a atividade proteolítica do intestino de *Helicoverpa armígera* Hubner (Noctuidae: Lepidoptera) (Joshi et al., 2014).

Neste estudo foi detectado variação na indução da enzima LOX em resposta às injúrias causadas por *M. spectabilis*, dentro da espécie *Pennisetum purpureum*. A indução dos hormônios ABA e JA indicam a ação de vias de defesa comum a todos genótipos, em resposta a este herbívoro. O aumento de SA apenas em DE pode estar relacionado com a indução na concentração de espécies reativas de oxigênio e danos à herbívoros. No entanto, a ação do ácido salicílico deve ser melhor estudada nas forrageiras, pois existem trabalhos associando o SA com a diminuição de metabólitos secundários com atividade inseticida, como os compostos fenólicos. O aumento na atividade de proteases totais em DE, indica secreção enzimática como um mecanismo para contrapor defesas das plantas. No entanto, em *Brachiaria decumbens* cv. Basilisk, as vias de defesa investigadas, podem não ser eficientes na defesa desta forrageira, pois este cultivar é considerado mais susceptível do que outros que não apresentaram resposta quando atacados pela cigarrinhas-pastagens.
7. BIBLIOGRAFIA

