3.3 ARTIGO 3:

Fine Structure of the Male Accessory Glands of *Triatoma rubrofasciata* (De Geer, 1773) (Hemiptera, Triatominae)

SIMONE PATRÍCIA CARNEIRO FREITAS, TERESA CRISTINA MONTE GONÇALVES, JOSÉ EDUARDO SERRÃO, and JACENIR REIS SANTOS-MALLET

1Departamento de Biologia Animal, Universidade Federal de Viçosa, Minas Gerais, Brazil
2Núcleo de Morfologia e Ultraestrutura de Artrópodes, Departamento de Entomologia, FIOCRUZ, Rio de Janeiro, Brazil

KEY WORDS: insect; vector; morphology; reproductive tract

ABSTRACT Male of *Triatoma rubrofasciata* has four elongated sac-like reproductive mesodermal accessory glands, lined by an inner single layer of secretory cells, with basal plasma membrane infolds and short apical microvilli, and externally enveloped by a thin visceral muscle layer. The secretory cells have a well-developed rough endoplasmic reticulum, Golgi complex, mitochondria, and secretory granules. In one day old adult the gland cells are poorly developed, presenting small, electron-transparent secretory granules scattered among the rough endoplasmic reticulum, whereas in three days old adult these cells have the cisternae of the rough endoplasmic reticulum varying in size degree, filled with granular electron-dense content. In five days old males the secretory granules increase in diameter, being released to the gland lumen. Therefore, there is an increase of the secretory activity according to male maturation. *Microsc. Res. Tech.* 70:355–360, 2007. © 2007 WILEY-LISS, INC.

INTRODUCTION

The morphology of the insect male reproductive tract has been described in some species, contributing for comprehension of their physiology, evolution, and behavior (Bahadur, 1975; Ferrreira et al., 2004; Forbes and Do-Van-Quy, 1965; Hodapp and Jones, 1961; Lemos et al., 2005; Louis and Kumar, 1973; Raabe, 1986; Wheeler and Krutzsch, 1992).

The male accessory glands of the reproductive tract play an important reproductive role among the species, providing the success of protection and transferring of the spermatozoa to the female reproductive apparatus (Leopold, 1976). The male accessory glands contents are transferred to female during mating; these substances inhibit her receptivity for another mating, stimulating egg laying, besides to serve as a source of energy for ejaculated spermatozoa (Adams, 2001; Bum et al., 1982; Friedel and Gillot, 1977; Gillot, 2003; Marchini et al., 2003; Mikhailiev, 2004; Paemen et al., 1990).

Triatomines are vectors of *Trypanosoma cruzi*, the etiologic agent of Chagas disease. Although all the species may be potential vectors of Chagas disease, species living in human homes participate actively of the transmission.

In Triatominae there are four male accessory glands classified in anterior, external, internal, and dorsal according to insect body plan (Barth, 1958). The four glands opens together forming a hilus from which arise a common gland duct that opens into the ejaculatory duct (Barth, 1958).

In *Rhodnius prolincus* Stal, 1859, the spermophore is produced from contents of three glands with transparent, viscous content, whereas the fourth gland has an opaque, granular aspect, being its secretion responsible for the movements of the spermatozoa inside the female (Davey, 1958). Adult males of *Panstrongylus megistus* (Burmeister, 1855) start to accumulate the accessory gland secretion from two days old, there being not difference of the secretion types between the dorsal and internal glands, whereas those from anterior and external glands present different proteins patterns (Regis et al., 1985, 1987).

*Triatoma rubrofasciata* (De Geer, 1773) is an endemic species confined to seacoast regions, being frequently found in cities of the Brazilian coast (Macario-Boleto et al., 1999). It is commonly the vector of *Trypanosoma conorhini*, which infects *Rattus rattus*, and this insect is in close association with the rat. Natural infection of *T. rubrofasciata* with *T. cruzi* has been reported in Brazil (Dias and Neves, 1943; Lucena, 1940) although, the biting and defecation habits of this bug make it a relatively inefficient vector (Braga and Lima, 1990).

We describe the ultrastructure of the male accessory glands of *T. rubrofasciata* during the process of sexual maturation, contributing for the knowledge of reproductive aspects of this species.

MATERIALS AND METHODS

Colonies of *T. rubrofasciata* from urban area of São Luís, State of Maranhão, Brazil, were maintained in the Department of Entomology, Oswaldo Cruz Institute, FIOCRUZ. Fifth instar male nymphs sexed according to Lent and Jurberg (1969), were maintained in a dark glass flask (30 × 15 cm) closed with nylon screen at 29 ± 1°C and 80 ± 5% rh with 12 h photoperiod. Inside the flask, a

© 2007 WILEY-LISS, INC.
folded filter paper was placed to increase the contact surface and refuge. The insects were fed weekly with blood of Swiss mouse (Protocol CEUA-FIOCRUZ P0100-01).

Starved adults of *T. rubrofasciata* with one, three, and five days old were dissected in saline solution for insect (0.1 M NaCl, 0.1 M KCl). The male accessory glands were isolated and fixed in 2.5% glutaraldehyde in sodium cacodylate buffer 0.1 M, pH 7.2 for 1 h and postfixed in 1% osmium tetroxide in the same buffer for 1 h. The samples were dehydrated in an acetone series (50 to 100%) and embedded in resin Epon-Araldite.

Thin sections were stained with toluidine blue and analyzed in a light microscope Axiolab Zeiss. Ultrathin sections were contrasted with 5% uranyl acetate and 1% lead citrate and analyzed in a transmission electron microscope Zeiss EM 109.

*Microscopy Research and Technique DOI 10.1002/jemt*
Figs. 8–13. Male accessory glands of *Triatoma rubropunctata*. Fig. 8: Zonula adherens (ZA) in apical portion of the cell. Microvilli (Mv) (bar = 0.5 μm). Fig. 9: Septate junction (SJ) with narrow intercellular space (bar = 0.5 μm). Figs. 10–11: Middle region. Rough endoplasmic reticulum (RER); Golgi complex (G); Secretory granule (SG); Mitochondria (M); free polyribosome (arrowhead) (bar = 0.5 μm). Fig. 12: Nucleus (N) with nuclear envelope presenting folds (arrowhead) (bar = 0.5 μm). Fig. 13: Nucleus under low resolution. Notice deep folds in the nuclear membrane (bar = 2 μm).
RESULTS

The four accessory glands of the male reproductive tract of *Triatoma rubrofasciata* are elongated sac-like. This anatomical aspect changes according to the aging. In the first day of adult life the glands are wither, without secretion storage. At the three days old, the glands have a shining aspect, with enlarged volume. The glands volume increases at the five days old males because of intracellular secretion storage.

The four accessory glands have the same structure. The gland lumen is lined by a single layer of secretory cells with basal plasma membrane infolds (Fig. 1) that have granular, homogeneous aspect. In the region of the basal infolds of the plasma membrane focal contact in association with the basal lamina can be seen, (Fig. 2). All glands are surrounded by thin visceral muscle layer and trachea, whose tracheolae are in closely association with the gland epithelium (Fig. 3).

The basal portion of gland cells has polyribosomes, rough endoplasmic reticulum, and mitochondria closely related to the deep folds of the plasma membrane (Figs. 4, 5). The cell apex presents microvilli supported by microfilaments ending in the apical cytoplasm (Figs. 6, 7) where rough endoplasmic reticulum and polyribosomes are found. The contact between the cells is maintained by zonula adherens (Fig. 8) and septate junctions with narrow intercellular space (Fig. 9).

The middle portion of the cell has Golgi complex, rough endoplasmic reticulum with dilated cisterns (Fig. 10), polyribosomes, and numerous mitochondria in the whole cytoplasm, many of them large and polymorphic (Figs. 4, 5, 11). The nuclear envelope is sinuous (Figs. 12, 13). The nucleus has predominance of descondensed chromatin and one or two nucleoli (Fig. 14).

Some ultrastructural features of the male accessory glands change according to the aging. The glands in one
accessory glands of the Triatoma rubrofasciata

359
day old adult are poorly developed with gland cells likely described above, with small secretory granules (0.22–
0.40 μm) filled with electron-transparent content, scat-
tered among the rough endoplasmic reticulum (Fig. 15).
In three days old adult, male accessory glands are
well-developed, showing the rough endoplasmic retic-
ulum with dilated cisternae varying size (Fig. 16) con-
taining granular secretion of low electron-density inside
(Fig. 17). Secretory granules with membranous content
are placed both in the basal and apical regions (Fig. 2),
which are released to the gland lumen (Fig. 18). At the
evolve, the secretory granules increase in
diameter (1.12–1.50 μm) and are released to the lumen
(Fig. 19). Besides the secretory granules, the cytoplasm
of the gland cells present myelin figures (Fig. 20).

Discussion
The four accessory glands of T. rubrofasciata male
are mesodermic origin since they have not formed
lining the gland lumen (Chapman, 1998; Leopold, 1976)
as in Triatoma infestans (Barth, 1958; Klug, 1834).
The gland cells of the accessory glands of the male
reproductive tract of T. rubrofasciata have a single nu-
cleus, differently of the data of Barth (1958) that
related two nuclei in accessory glands of T. infestans.
The budding of two nuclei in the cells of male acces-
sory glands might be an artifact, because we find that
the nuclear envelope has many folds, which under low
resolution may be interpreted as two nuclei.
In the fly Drosophila funebris the secretory activity
in the male accessory glands occurs in the first week
of the adult life, when the reproductive activity of the
maces is higher (Federer and Chen, 1982). In triatoma,
the first mating in T. infestans males occurs often
after the second blood meal, whereas in P. megis-
tus, secretion storage in male accessory glands may be
found in two days old males, independent of blood meal
(Regis et al., 1985). The T. rubrofasciata specimens
herein analyzed remained starved during adult stage
and we find secretory granules in cell apical region and
released to gland lumen in three days old male, sug-
gest that reproductive activity in T. rubrofasciata starts from the third day of adult life, independent of
the nutritional state of the insect.
The secretory release in some case can be membranous,
although the presence of membranes inside the gland
lumen suggest apocrine secretion. The occurrence of
both apocrine and microsecretion mechanisms for release
of secretory products were found in accessory glands
of males of Leptinotarsa decemlinata (De Loof and
Lagasse, 1972), Periplaneta americana (Adiyodi and
Adiyodi, 1974), and Tenodera molitor (Gadzama et al.,
1977). Moreover, the great number of mitochondria and
the depth basal plasma membrane infolds in the basal
portion of the cells of male accessory glands of
T. rubrofasciata suggest an absorptive activity of sub-
stances from hemolymph, likely found in P. megistas
(Rodriguez, 1987).
Cells with higher secretory activity have many secre-
tory granules, rough endoplasmic reticulum, Golgi
complex, and mitochondria. However, because of the
presence of secretory granules with different sizes,
shape, and electron density in the gland cells of acces-
sory glands and mainly because of the different
mechanisms of cell secretion releasing of T. rubrofas-
ciata males, cytochemical analyses are necessary to
make, in order to determine with more accuracy the
secretion nature of these glands.

Acknowledgments
We thank Prof. Elias Seixas Loroza and the Brazilian
National Health Foundation (FUNASA) for their tech-
nical support given during field collections and two
anonymous referees for criticism of the manuscript.

References
Adams TS. 2001. Morphology of the internal reproductive system of
the male and female two-spotted stink bug, Perillus bioculatus (F.)
(Heteroptera, Pentatomidae) and the transfer of products during
Adiyodi RG, Adiyodi KG. 1974. Ultrastructure of the utriculi majors in
the mushroom-shaped male accessory gland of Periplaneta Americana
Bahadur J. 1975. Histology of the male reproductive organs of a bug,
Barth R. 1958. Estudos anatômicos e histológicos sobre a subfamília
Triatominae (Hemiptera, Reduviidae). IX. Vas deferente e esexclú-
Blum MS, Gloskwa Z, Taber S. 1962. Chemistry of the drone honey
bee reproductive system. II. Carbohydrates in the reproductive
organs and semen of the stingless bee, Trigona holikalmia. J Endocr
Am 56:155–156.
Braga MV, Lima MM. 1999. Feeding and defecation patterns of
nymphs of Triatoma rubrofasciata, and its potential role as a vector
Chapman EM. 1998. The insects,4th ed. Cambridge: Cambridge Uni-
versity Press. p. 270.
Davey RG. 1958. The migration of spermatophores in the female of Rhodnius
De Loof A, Lagasse A. 1972. Ultrastructure of the male accessory repro-
ductive glands of the Colorado beetle, Z. Zoolorsch 130:545–552.
Dias E, Neves O. 1943. Determinação da infecção natural por Schizo-
trepunumem in Triatoma rubrofasciata no Estado de Pernambuco.
Federer H, Chen FS. 1982. Ultrastructure and nature of secretory pro-
tiens in the male accessory gland of Drosophila funebris. J Insect
Ferreira A, Abdalla PC, Kerr WE, Cruz-Landim C. 2004. Comparative
anatomy of male reproductive internal organs of 51 species of bees.
Nestor Entomol 33:569–576.
Forbes J, De-Van-Quy D. 1965. The anatomy and histology of the male
reproductive system of the leguminous ant Neivamyrmex harrii
(Haldeman) (Hymenoptera, Formicidae). Ann N Y Entomol Soc 73:
95–111.
Friedel T, Gillet C. 1977. Contribution of male-produced proteins to vitel-
Gadzama NM, Hopp CM, Hopp GM. 1977. Cytofiltration in the
Hodapp JC, Jones JC. 1961. The anatomy of the adult male reproduc-
tive system of Aedes aegypti (Linnæus) (Diptera, Culicidae). Ann
Klug F. 1831. In Reise um die Erde, in denen Jahren 1830, 1831 und
Effect of diet on male reproductive tract of Pedius nigripennis
Lent H, Jarberg J. 1869. O género Rhodnius Stal, 1859, com um
estudo sobre a genália das espécies (Hemiptera: Reduviidae,
Leopold RA. 1976. The role of male accessory glands in insect repro-
Louis D, Kumar R. 1973. Morphology of the alimentary and reproduc-
tive organs in Reduviidae (Hemiptera, Heteroptera) with comments
on interrelationships within the family. Ann Entomol Soc Am 66:
635–638.
Lucena D. 1940. Infecção natural de Triatoma rubrofasciata (De Geer,

Microscopy Research and Technique DOI 10.1002/jemt


