PROCESSO DE DESMAGNETIZAÇÃO E HISTERESE DE UM GELO DE SPIN ARTIFICIAL EM UMA GEOMETRIA TRIANGULAR

Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Física Aplicada, para obtenção do título de Magister Scientiae.

VIÇOSA
MINAS GERAIS - BRASIL
2013
Rodrigues, João Henrique, 1987-
Processo de desmagnetização e histerese de um gelo de spin artificial em uma geometria triangular / João Henrique Rodrigues. – Viçosa, MG, 2013.
xiii, 69f. : il. (algumas color.) ; 29cm.

Orientador: Lucas Alvares de Silva Mól
Dissertação (mestrado) - Universidade Federal de Viçosa.
Referências bibliográficas: f. 67-69

CDD 22. ed. 538
JOÃO HENRIQUE RODRIGUES

PROCESSO DE DESMAGNETIZAÇÃO E HISTERESE DE UM GELO DE SPIN ARTIFICIAL EM UMA GEOMETRIA TRIANGULAR

Dissertação apresentada à Universidade Federal de Viçosa, como parte das exigências do Programa de Pós-Graduação em Física Aplicada, para obtenção do título de Magister Scientiae.

APROVADA: 19 de fevereiro de 2013.

Flávio Garcia

Afrânio Rodrigues Pereira (Coorientador)

Lucas Álvares da Silva Mol (Orientador)
Dedico esta dissertação de mestrado ao avanço da ciência e a qualquer pessoa que consiga frutos através dela.
“Há três métodos para ganhar sabedoria: primeiro, por reflexão, que é o mais nobre; segundo, por imitação, que é o mais fácil; e terceiro, por experiência, que é o mais amargo.”

Confúcio
AGRADECIMENTOS

Agradeço primeiramente a minha família: meu pai, João José Rodrigues, por sempre me ajudar em Viçosa, deixando indiretamente claro que as minhas únicas preocupações aqui eram os estudos; minha mãe, Ana Rosa da Silva, por sempre se preocupar comigo e cuidar bem de mim nas minhas idas a Divinópolis; minha irmã, Josiane Isabel da Silva Rodrigues, pela preocupação com a minha vida acadêmica e por planejar o que eu devo fazer nos meus próximos 4 anos de doutorado; meu irmão, Júlio César Rodrigues, pela paciência e consideração.

Agradeço aos meus tios - Estêlio, Nivalda, Homero, Angélica, António, Ariadney, Antônio, Leninha e Rosa - pela ótima recepção quando eu os visito. Aos meus primos - Daniel, Débora, Vinicius, Vitor, Maxmilliano, Jildeon, Janaína, Wellison, Daniela, Álisson - pela amizade mais forte que o nosso parentesco e principalmente a meu primo Paulo, por ser um grande amigo e um eterno rival de jogos.

Agradeço à Michelle pelos ótimos anos de convivência e pelas muitas alegrias que ela me trouxe nesse pequeno tempo em que nos conhecemos.

Aos meus amigos da Física: Rodrigo(Thor), Raniella(Rany Boy), Jardel(Dedel), Ismael(Rato), Robson(Didi), Alberto(Cara-de-dó), Elton(Junin), Mariana(Mr. Freeze), André(Mocotó), Bruno(Asteroide), Marco(Marcão), Leonardo(Bombado), Pedro(Dhalsim), Gustavo(Cabeça), Davidson, Fernanda(Rosa), Angelica(Gel), Tatiana (Tati), Simon (.), Diogo(Patrick), Lydiane e outros, pela ótima convivência, amizade e aprendizagem neste período.

Aos meus amigos de Viçosa: Leônicas(Emo), Guilherme(Taruira), Flávio (Ex-Jesus), Faiossander(Monstro Abelhinha), Lauro(Enrolado), Nathan(Sathan), Ray,
Milton, Barbara(Maligna), Emanuele(Manu), a Fernanda(Karklins), Naíara(Dan Dan), Raiane(Rintielle), Amanda(Amandinha), Eliza(Didizinha), Marcos(Gótico), Karine(Kariné), Mariana, Luiza (Tunica), Vinícius Daniel, Flávia(Frávia), Thiago e muitos outros, por me fazerem uma ótima companhia em Viçosa, nas vitórias e nas derrotas, até que alguém se irrite e vá embora.

Aos meus amigos de Divinópolis e região: Eduardo(Dudu), Leandro(Kill Guy), Juliana(Ju), Diego(Vermeio), Leandro(Lele), Fernando(Capeta), Diogo(Nits), Lazaro(Black Ninja), Danielly(Dany), Eduarda(Duda), Thiago(Toco), Lucas (Gutgut), Tamires(Tata), Sára(Sarinhá), André(Vovô), Raul, Thiago (Looser), Nilce(Tia Nilce), Thaís(Ruiva), Oberdan, Tainara e pelos ótimos e curtos momentos da minha estadia em Divinópolis.

Um agradecimento especial a meu orientador, Lucas Mól, pela ótima orientação, pela GRANDE paciência e pelas discussões construtivas que tivemos em meu mestrado.

Aos professores- em especial ao famoso Antônio Carlos, grande amigo e Vulgo Toninho, e Álvaro Teixeira, que me ensinou a ser um professor...cruel- e funcionários do DPF.

A UFV.

A FAPEMIG e ao CNPQ.

A todos fizeram parte da minha alegria e da minha tristeza, o meu sincero "muito obrigado".
SUMÁRIO

LISTA DE FIGURAS \hspace{1cm} x

RESUMO \hspace{1cm} xi

ABSTRACT \hspace{1cm} xiii

1 Introdução \hspace{1cm} 1
 1.1 Objetivo deste trabalho \hspace{1cm} 3
 1.2 Estrutura da dissertação \hspace{1cm} 3

2 Fundamentação teórica \hspace{1cm} 5
 2.1 Magnetismo \hspace{1cm} 5
 2.1.1 Um pouco da história do magnetismo \hspace{1cm} 5
 2.1.2 Interação dipolar magnética \hspace{1cm} 7
 2.1.3 Permeabilidade e suscetibilidade magnética \hspace{1cm} 8
 2.1.4 Anisotropia magnética \hspace{1cm} 10
 2.1.5 Domínio magnético e limite superparamagnético \hspace{1cm} 12
 2.2 Gelo de spins \hspace{1cm} 14
 2.2.1 Gelo de spins artificiais em simulações computacionais \hspace{1cm} 19
 2.2.2 Redes de gelo de spin em outras geometrias \hspace{1cm} 22
 2.3 Protocolos de desmagnetização de gelo de spins artificiais \hspace{1cm} 27
 2.3.1 Protocolos experimentais \hspace{1cm} 27
 2.3.2 Protocolos computacionais \hspace{1cm} 29
LISTA DE FIGURAS

2.1 Curva de histerese .. 10
2.2 Rede triangular de spins proposta por Wannier 14
2.3 Configuração do gelo da água .. 15
2.4 Monopolos magnéticos ... 17
2.5 Rede proposta por Wang ... 18
2.6 As 16 configuração de vértice da rede quadrada 18
2.7 Imagem real e ideal da rede produzida em laboratório 19
2.8 Curva de histerese de uma nanoilha 20
2.9 Interação entre os monopolos magnéticos no gelo de spin 21
2.10 Rede brickwork ... 22
2.11 Tipo de vértice da rede brickwork 23
2.12 Rede Honeycomb ... 23
2.13 Rede Kagomé .. 24
2.14 Rede Honeycomb e Kagomé .. 24
2.15 As 8 topologias presentes na rede triangular 25
2.16 Strings na rede triangular .. 27
2.17 Processos de desmagnetização propostos por Wang 28

3.1 Rede estudada neste trabalho 31

4.1 Histerese: \(Mag \) por \(B_{ext} \) para 3 desordens 40
4.2 Histerese: \(V \) por \(B_{ext} \) para desordem nula 41
4.3 Histerese: \(V \) por \(B_{ext} \) para desordem \(b'_i = \pm10\% \) 43
RESUMO

Neste trabalho estudamos alguns processos de desmagnetização de um gelo de spin artificial em geometria triangular através de dois processos utilizando campo magnético externo: O primeiro processo similar ao processo de histerese, campo magnético em uma única direção, e o segundo através de um campo magnético rotacional e decrescente. Para isto, utilizamos simulações computacionais Monte Carlo, considerando que os spins da rede eram tipo Ising e que estes seriam invertidos somente quando a condição $-\vec{s}_i \cdot \vec{B}_i \leq b_i$ fosse satisfeita. Como tentativa de aproximar nossas simulações dos experimentos feitos em laboratório, adaptamos os valores de nossas simulações para serem proporcionais aos valores obtidos em laboratório e consideramos uma desordem nos spins da rede, fazendo com que o valor do campo magnético mínimo para a inversão b_i siga uma distribuição gaussiana ($b_i \rightarrow b_c \pm b'_i$). Esta última consideração seria reflexo da dificuldade de construir os gelos de spins em laboratório, gerando várias ilhas diferentes em uma mesma rede. Além disto, consideramos uma outra desordem no processo similar ao de histerese: o desalinhamento do campo magnético externo com a rede devido suas pequenas dimensões. Os resultados de nosso trabalho foram obtidos através de rede quadradas com 30 espaçamentos de rede e as médias foram tomadas de 50 x 10 amostras (50 redes diferentes e 10 amostras de cada rede). Nestes resultados, percebemos que no processo similar ao de histerese, as redes foram desmagnetizadas e
conseguiram alcançar o estado fundamental, mesmo com grandes desordens. Enquanto no processo de campo magnético rotacional percebemos que as redes eram desmagnetizadas mas nenhuma alcançava o estado fundamental. No processo rotacional, o estado fundamental era somente alcançado no interior das redes sem desordem.
ABSTRACT

In this work we studied some demagnetization protocols for an artificial spin ice in a triangular lattice through two processes using external magnetic fields: The first process is similar to the process of hysteresis, using a magnetic field in one direction, and the second through a rotational and decreasing magnetic field. For this, we used Monte Carlo computer simulations, considering that the lattice spins are flipped only when the condition \(-\vec{s}_i \cdot \vec{B}_i \leq b_i\) is satisfied. In an attempt to relate our simulations to laboratory experiments, we adapted our simulations values to be proportional to the values obtained in laboratory and we have considered a disorder in the lattice’s spins, in such a way that the minimum reversing magnetic field, \(b_i\), follows a Gaussian distribution \((b_i \rightarrow b_c \pm b'_i)\). This last consideration would be a reflection of the difficulty of constructing the spin ices in the laboratory, generating several different islands in a lattice. Moreover, we considered another kind of disorder in the hysteresis-like process: the misalignment of the external magnetic field with the lattice due to its small dimensions. The results of our work were obtained through square lattices with 30 lattice spacings and averages were taken from 50 \(\times\) 10 samples (50 different lattices and 10 sample to each lattice). In these results, we realized that the process similar to
hysteresis, the lattice were demagnetized and managed to reach the ground state, even with major disorders. While in the process of rotational magnetic field we realized that the lattice were demagnetized but none reached the ground state. In this rotational process, only the ground state was achieved in a small region of the lattice without the disorder.
Capítulo 1

Introdução

O interesse do homem sobre o magnetismo e os materiais magnéticos tem origens muito antigas, desde a antiga Grécia e a antiga China. O magnetismo teve grande importância na história, como por exemplo auxiliando o homem a se guiar pelos mares na época das grandes navegações. Atualmente, o magnetismo é usado no funcionamento de aparelhos simples, como uma campainha, ou em aparelhos mais complexos, como gravação magnética de dados em disco rígido de computador. No desenvolver da história, vários pesquisadores descobriram as características dos materiais magnéticos e a influência que estes causam no meio em que se encontram. Uma característica importante dos materiais magnéticos é que estes são compostos por pequenos cristais com domínio magnético simples que se comportam, pelo menos como uma primeira aproximação, como dipolos magnéticos. A interação de longo alcance entre esses domínios pode gerar características interessantes para estes materiais. Por exemplo, alguns antiferromagnetos apresentam estados fundamentais degenerados devido a frustrações de origens geométrica.

Uma das características observadas em todos os materiais magnéticos é que estes sempre apresentam no mínimo dois polos magnéticos. Até hoje, não foi observada na natureza nenhuma partícula que se contivesse propriedade similar à de um monopolo. Mas recentemente, descobriu-se uma classe de materiais que poderiam auxiliar nos estudos dos monopolas magnéticos: os gelos de spins. Nestes materiais, foi observado que as excitações do seu estado fundamental são quase-partículas que comportam-se
1. Introdução

como monopólos magnético. Redes bidimensionais de gelos de spins artificiais foram montadas com o intuito de estudar melhor essas excitações, mas infelizmente não encontraram nenhum método eficiente que consiga obter os estados fundamentais destas redes.

Em nosso trabalho, vamos explorar dois processos de desmagnetização para tentar desmagnetizar e obter o estado fundamental de um tipo especial de gelo de spin artificial proposto recentemente.
1. Introdução

1.1 Objetivo deste trabalho

O objetivo deste trabalho é estudar o processo de desmagnetização, visando obter o estado fundamental de uma rede de gelo de spin artificial em uma geometria triangular através de um campo magnético externo. Para isto, será analisada a evolução da magnetização e dos possíveis tipos de vértices presentes no sistema através de dois diferentes processos de desmagnetização: o primeiro através de um campo magnético rotacional e o segundo através de um campo externo em uma única direção, como o processo de histerese.

1.2 Estrutura da dissertação

O segundo capítulo desta dissertação de mestrado, 2, apresenta uma pequena introdução sobre magnetismo, simulações computacionais e gelos de spin. Esta introdução contém as informações mínimas necessárias para que o leitor consiga acompanhar a ideia principal por trás deste trabalho. Além disto, neste capítulo encontram-se as motivações deste trabalho, os trabalhos mais importantes que nos ajudaram na realização deste. Os livros e artigos, dos quais a fundamentação teórica foi extraída, encontram-se no final desta dissertação em Referências Bibliográficas.

O terceiro capítulo, 3, mostra os procedimentos realizados na execução deste trabalho. Através deste, espera-se que o leitor consiga entender os procedimentos realizados e até, se for de interesse deste, consiga reproduzir os resultados encontrados. Além disto, nele explicamos o motivo de algumas considerações importantes que foram tomadas durante a realização deste trabalho.

O quarto capítulo, 4, apresenta os resultados obtidos e breves explicações para os seus entendimentos. Estes resultados são expressos em gráficos, ilustrações e tabelas. As explicações são dadas com intuito de esclarecer e mostrar as implicações físicas de cada resultado.

No quinto capítulo, 5, são apresentadas as conclusões de nosso trabalho. Neste capítulo será mostrado se o nosso objetivo foi alcançado, os pontos positivos e negativos
1. Introdução

de nossa metodologia e nossas perspectivas para trabalhos futuros.
Capítulo 2

Fundamentação teórica

2.1 Magnetismo

2.1.1 Um pouco da história do magnetismo

Os primeiros estudos de fenômenos magnéticos aconteceram a muito tempo na Grécia antiga [1]. No século VI A.C., Tales de Mileto observou em uma de suas viagens perto da Magnésia que pequenas pedras, conhecidas como magnetita, tinham a capacidade de atrair tanto objetos de ferro quanto a de se afastarem. Tales tentou explicar este fenômeno dizendo que essas pedras possuíam uma espécie de "alma" que teria poder de atração com a "vida" do ferro inerte. Mas Tales não foi a primeira a pessoa a observar este fenômeno. Inicialmente, eles haviam sido observados por um pastor de ovelhas, Magnes, que tinha reparado que pequenas pedras ficavam presas nas fivelas de ferro de sua sandália e na ponta de ferro de seu cajado. Há também indícios que a descoberta do magnetismo foi feita muito tempo antes na antiga China.

Esses fenômenos despertaram mais interesse no século VIII, quando começaram a surgir as primeiras observações e trabalhos mais elaborados sobre o magnetismo e a electricidade. Seculos depois, em 1269, Pierre Maricourt estudou profundamente os fenômenos magnéticos, através de vários experimentos, e observou vários fenômenos interessantes sobre o magnetismo. Através destes, Maricourt observou que: todos os magnetos sempre teriam dois diferentes polos, norte e sul; os opostos sempre se atraem e iguais sempre se repelem; e que quando um magneto é quebrado, ele sempre se divide.
2. Fundamentação teórica

em outros dois magnômetros menores e que no local da quebra se encontravam dois polos
opostos. Através destes e outros estudos, os cientistas daquela época concluíram que
os fenômenos elétricos e magnéticos seriam completamente distintos. Sabe-se que este
fato não é verdade pois em 1820, Hans Christian Orsted descobriu que os fenômenos
elétricos e magnéticos estão fortemente ligados. Este fato foi observado durante uma
de suas experiências em sala de aula. Orsted percebeu que a corrente elétrica conseguia
interferir na orientação de uma bússola próximo a ela, concluindo que a corrente elétrica
provocava efeitos magnéticos em suas vizinhanças.

Os passos seguintes no avanço da compreensão do magnetismo foram dados por
Michael Faraday, Joseph Henry, Ampère e Heinrich Lenz com a descoberta da indução
magnética. Faraday e Henry observaram que era possível gerar uma força eletromotriz
(FEM) através de um campo magnético variável e Lenz observou que FEM induzida
era gerada pela mudança de fluxo do campo magnético. Por fim, James Clerk Maxwell
conseguiu resumir todo o conhecimento sobre magnetismo e eletricidade em quatro
equações, conhecidas como equações de Maxwell:

\[\nabla \cdot \vec{E} = \frac{\rho}{\varepsilon_0}; \tag{2.1} \]
\[\nabla \cdot \vec{B} = 0; \tag{2.2} \]
\[\nabla \times \vec{E} = -\frac{\partial \vec{B}}{\partial t}; \tag{2.3} \]
\[\nabla \times \vec{B} = \mu_0 \varepsilon_0 \frac{\partial \vec{E}}{\partial t} + \mu_0 \vec{J}; \tag{2.4} \]

em que \(\vec{E} \) é o campo elétrico, \(\vec{B} \) é o campo magnético, \(\rho \) é a densidade volumétrica das
cargas elétricas, \(\vec{J} \) é a densidade superficial de corrente elétrica, \(\varepsilon_0 \) é permeabilidade
elétrica no vácuo e \(\mu_0 \) é a permeabilidade magnética no vácuo.

Além disto, estas equações estabelecem bases teóricas sólidas quanto à existência
das ondas eletromagnéticas, as quais suas velocidades são iguais ao valor experimental
da velocidade da luz.
2. Fundamentação teórica

2.1.2 Interação dipolar magnética

Na sessão anterior, [2.1.1] vimos que os magnetos sempre têm dois polos distintos (norte e sul). No caso mais simples, estes magnetos também podem ser interpretados como duas cargas pontuais magnéticas de mesma intensidade, de sinais opostos e separadas por uma distância \vec{d}. Ao analisarmos o campo magnético de um dipolo magnético \vec{m}_1 a grandes distâncias, \vec{r}, em relação a \vec{d}, vemos que o campo magnético gerado por este dipolo na origem do sistema de coordenadas é dado por [2]:

$$\vec{B}_1 = \frac{3 (\vec{m}_1 \cdot \vec{r}) \vec{r} - \vec{m}_1}{r^3},$$

em que \vec{m}_1 é o momento magnético do dipolo e \vec{r} é um vetor unitário radial.

Na presença de outro dipolo magnético \vec{m}_2, surge uma interação através de seus campos magnéticos. A expressão que descreve essa interação é dada pela energia de interação $E_{12} = -\vec{m}_1 \cdot \vec{B}_2$:

$$E_{12} = -\vec{m}_1 \cdot \vec{B}_2 = \frac{\mu_0}{4\pi} \left[\frac{\vec{m}_1 \cdot \vec{m}_2 - 3 (\vec{m}_1 \cdot \hat{r}_{12}) \cdot (\vec{m}_2 \cdot \hat{r}_{12})}{r_{12}^3} \right],$$

em que r_{12} é o vetor unitário da distância entre os dipolos \vec{m}_1 e \vec{m}_2.

Essa equação pode ser estendida para o caso de N dipolos magnéticos interagentes, de maneira que a energia total será escrita por:

$$E_{\text{dip}} = \sum_{i \neq j} -\vec{m}_i \cdot \vec{B}_j = \sum_{i \neq j} \frac{\mu_0}{4\pi} \left[\frac{\vec{m}_i \cdot \vec{m}_j - 3 (\vec{m}_i \cdot \hat{r}_{ij}) \cdot (\vec{m}_j \cdot \hat{r}_{ij})}{r_{ij}^3} \right].$$

Neste somatório, todos os dipolos magnéticos interagem com todos os outros dipolos magnéticos, com exceção deles mesmos ($i \neq j$). Veja que esta equação serve para o estudo de qualquer sistema físico que contenha dipolos magnéticos. Em um sistema composto por vários dipolos magnéticos idênticos \vec{m}, na qual a menor distância entre estes é dado por a, esta equação pode ser reescrita como:

$$E_{\text{dip}} = \sum_{i \neq j} \frac{\mu_0}{4\pi} \frac{a^3}{a^3} \left[\frac{\vec{m}_i \cdot \vec{m}_j - 3 (\vec{m}_i \cdot \hat{r}_{ij}) \cdot (\vec{m}_j \cdot \hat{r}_{ij})}{r_{ij}^3} \right].$$
2. Fundamentação teórica

\[E_{dp} = \sum_{i \neq j} \mu_0 \mu^2 \left[\frac{\hat{s}_i \cdot \hat{s}_j - 3(\hat{s}_i \cdot \hat{r}_{ij}) \cdot (\hat{s}_j \cdot \hat{r}_{ij})}{(r_{ij}/a)^3} \right] \]

\[E_{dp} = \sum_{i \neq j} D \left[\frac{\hat{s}_i \cdot \hat{s}_j - 3(\hat{s}_i \cdot \hat{r}_{ij}) \cdot (\hat{s}_j \cdot \hat{r}_{ij})}{R_{ij}^3} \right], \]

em que \(\vec{m} = \mu \cdot \vec{s} \), \(\mu \) é o modulo do momento magnético, \(\vec{s} \) é a direção e o sentido deste momento, \(D = \mu_0 \mu^2 / 4\pi a^3 \) e \(R_{ij} = r_{ij}/a \) é dado agora em unidades de espaçamento da rede. Neste novo somatório, pode-se observar que \(D \) contém todas as unidades do antigo somatório, deixando as outras variáveis, \(s_i \) e \(R_{ij} \), adimensionais. Além disto, o valor de \(D \) fornece a ordem de grandeza da energia de interação entre os dipolos.

Um fato curioso é que não foi observada experimentalmente a existência de uma partícula que contém as características de uma carga magnética isolada. Em contrapartida, em física da matéria condensada foi proposto que os monoplos magnéticos emergem em uma classe de material exótica conhecida como gelos de spins. Esta ideia irá ficar mais clara no decorrer das próximas sessões.

2.1.3 Permeabilidade e susceptibilidade magnética

Os materiais podem apresentar diferentes comportamentos quando são expostos a um campo magnético externo \(B \). Por exemplo, quando estes materiais são colocados perto de um dos polos de um imã, eles podem ser atraídos, repelidos ou não reagirem. Quando os materiais são fracamente repelidos, eles são classificados como diamagnéticos. Quando os materiais são fracamente atraídos, estes podem ser classificados como paramagnéticos e quando eles são fortemente atraídos como ferromagnéticos. A propriedade que caracteriza este comportamento é a permeabilidade magnética \(\mu(B/H) \).

Em alguns livros didáticos apresenta-se também outro tipo de permeabilidade, uma adimensional. Esta permeabilidade é conhecida como permeabilidade relativa e é dada pela razão da permeabilidade do material sobre a permeabilidade do vácuo, ou seja, \(\mu_r = \mu / \mu_0 \), em que \(\mu_0 \) é a permeabilidade do vácuo, \(\mu_0 = 4\pi \cdot 10^{-7} B/H \). Desta maneira, temos que as permeabilidades relativas dos diamagnetos são ligeiramente menores do que 1, dos paramagnetos são ligeiramente maiores do que 1, dos ferromagnetos são muito maiores do que 1.
2. Fundamentação teórica

Os materiais imersos em um campo magnético podem apresentar uma magnetização \(\vec{M} \). Essa magnetização é descrita matematicamente por:

\[
\vec{M} = (\mu_r - 1) \cdot \vec{B} = x_m \cdot \vec{B},
\]

em que \(x_m \) é a susceptibilidade magnética. Como pode-se perceber, a susceptibilidade magnética está intimamente ligada à permeabilidade magnética e esta oferece a intensidade com que um material pode ser magnetizado. Veja que alguns materiais, como os paramagnetos e ferromagnetos, produzem uma magnetização a favor do campo magnético, enquanto outros materiais produzem uma magnetização contrária ao campo magnético, como os diamagnéticos. A tabela 2.1 mostra a classificação dos materiais citados nesta sessão através de suas permeabilidades e suas susceptibilidades magnéticas.

<table>
<thead>
<tr>
<th>Materiais</th>
<th>Permeabilidade magnética</th>
<th>Susceptibilidade magnética</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diamagnéticos</td>
<td>> 1</td>
<td>> 0</td>
</tr>
<tr>
<td>Paramagnetos</td>
<td>< 1</td>
<td>< 0</td>
</tr>
<tr>
<td>Ferromagnetos</td>
<td><< 1</td>
<td><< 0</td>
</tr>
</tbody>
</table>

Histerese magnética

Um fato interessante sobre alguns materiais ferromagnéticos é que quando se aplica um campo magnético externo crescente nestes até que sua magnetização se saturar e, depois, diminui-se este campo até que este seja nulo, observa-se que a magnetização destes não diminui tão rapidamente quanto o campo magnético externo e, quando o campo externo for nulo, haverá ainda uma magnetização remanescente neste materiais. Para que a magnetização destes materiais seja nula, é necessário aplicar um campo magnético na direção contrária ao aplicado inicialmente. Este campo é conhecido como força/campo coerciva(o). Se continuar a aumentar o campo na direção oposta da magnetização, a magnetização deste material irá inverter completamente. Este processo pode ser novamente repetido até que a magnetização seja invertida novamente.
2. Fundamentação teórica

A figura 2.1 mostra a magnetização de um material ferromagnético no processo descrito acima.

![Figura 2.1: Curva de histerese de um material ferromagnético.](image)

Este fenômeno é conhecido como histerese magnética, e o ciclo que descreve a curva de magnetização, como mostrado na figura 2.1, é conhecido como curva de histerese.

2.1.4 Anisotropia magnética

Dizemos que um corpo é anisotrópico quando pelo menos uma de suas propriedades físicas tem uma tendência direcional. Por exemplo, quando mede-se a suscetibilidade magnética de um material e vê-se que uma direção deste é privilegiada, dizemos que este material tem uma anisotropia de suscetibilidade magnética. Veja que, o magnetismo nos materiais magnéticos depende de vários fatores, entre eles temos: i) da intensidade dos momentos magnéticos; ii) da distância entre estes momentos; iii) da simetria da rede; iv) e das interações presentes. Pode-se perceber que as propriedades destes materiais são fortemente dependentes do seu tamanho e da sua forma, o que pode gerar uma anisotropia magnética. Existem três tipos principais de anisotropias magnéticas: anisotropia magnetocrystalina, anisotropia magnetoestrictiva (também conhecida magnetoelástica) e anisotropia magnetostática (ou de forma).

A anisotropia magnetocrystalina ocorre principalmente devido ao acoplamento spin-órbita. Este acoplamento induz uma direção preferencial aos spins, que tenta
2. Fundamentação teórica

orientá-los em uma mesma direção. Devido à simetria da rede, a interação de troca entre os spins é afetada, fazendo com que existam eixos preferenciais de magnetização, tendo assim uma anisotropia magnetocristalina. Esta preferência de eixos está associada a uma energia de anisotropia, a qual é minimizada quando os momentos magnéticos se orientam em tais eixos, denominados eixos fáceis de magnetização.

A anisotropia magnetoelétrica ocorre devido à mudança das dimensões de um cristal quando este é exposto a um campo magnético externo. Sabe-se que a energia de interação entre os momentos magnéticos depende da distância entre estes e suas respectivas orientações. Quando aplica-se um campo magnético na rede, forçando os momentos magnéticos a adotarem uma nova orientação, a energia de interação aumenta e as distâncias entre os momentos magnéticos se modificam para que a energia total do sistema seja reduzida. Isto provoca tensões na rede que resultam em mudanças na forma deste. Este fenómeno é conhecido como anisotropia magnetoelétrica, sendo este positivo quando a rede se alonga na direção da magnetização ou negativa, quando esta diminui na direção da magnetização.

Um fator importante da anisotropia magnética são as dimensões dos materiais. Os grãos magnéticos com dimensões muito pequenas, menores que um μm, se magnetizam ao longos dos eixos fáceis de magnetização, sendo perturbados somente pela agitação térmica. Devido a isto, os momentos magnéticos dos átomos destes grãos se alinham em uma única direção e apresentam uma magnetização uniforme, podendo-se dizer que eles possuem monodomínios. Caso ocorra uma mudança na direção do momento magnético, todos os átomos que compõe está partícula girarão simultaneamente, pois estão rigidamente alinhados devido a uma interação de troca. Os grãos magnéticos com maiores dimensões apresentam dois ou mais domínios magnéticos. Dentro de cada domínio, os momentos magnéticos apontam em uma mesma direção, mas não necessariamente haveria um alinhamento entre o momento magnético de um domínio com o de outro, fazendo com que alguns grãos como todo estarem desmagnetizados em uma escala macroscópica. Este fato ocorre devido a interação dipolar, de longo alcance, entre os momentos magnéticos de cada domínio produzirem uma energia magnetoelétrica ou desmagnetizante que poderia superar as energia magnetocristalina e magnetoelétrica.
2. Fundamentação teórica

tiva. Desta maneira, a magnetização de um material magnético também dependerá do
arranjo dos grãos magnéticos e de sua própria forma. Este fenômeno é conhecido como
anisotropia magnetostática ou anisotropia de forma.

2.1.5 Domínio magnético e limite superparamagnético

Nas sessões anteriores, foi apresentado que a magnetização de uma
partícula depende de várias características, como a sua forma, o seu tamanho e as pro-
npriedades dos elementos químicos que o compõe. Por exemplo, os ferromagnetos podem
apresentar uma magnetização espontânea mesmo na ausência de campo magnético ex-
terno. Vimos que, dependendo das dimensões destes ferromagnetos, esta magnetização
pode ser dada por um único domínio magnético ou por vários domínios magnéticos.
Esta sessão explora a influência da dimensão de uma partícula na magnetização desta.

Incialmente, vamos considerar uma partícula na qual os momentos magnéticos
dos átomos que a compõe se movem coerentemente. Deste modo, o momento magnético
total da partícula será dado por \(\mu = \mu_{at} \cdot N \), em que \(\mu_{at} \) é o momento magnético atômico
e \(N \) é o número de átomos magnéticos desta partícula. No caso mais simples, o
momento magnético desta partícula é determinado pela anisotropia da partícula e pelo
campo magnético externo. Um fato interessante sobre as partículas magnéticas é que
estas podem mudar a sua magnetização intrinsecamente, ou seja, dado um tempo
de relaxação característico \(\tau \), o momento magnético destas partículas mudam de um
estado de equilíbrio para outro. O tempo de relaxação \(\tau \) dependente da frequência de
tentativas de mudanças, da ordem de \(\nu_0 = 10^{10} Hz \) e do fator de Boltzmann \(e^{\frac{\Delta E}{k_b T}} \), ou
seja:

\[
\tau = \tau_0 \cdot e^{\frac{\Delta E}{k_b T}},
\]

em que \(\tau_0 = 1/\nu_0 \), \(\Delta E \) é a barreira de energia que separa os dois estados de equilíbrio,
que é dado pelo volume da partículas \(V \) vezes a densidade de energia de anisotropia
\(k_a \) da partícula, \(T \) é a temperatura da partícula e \(k_b \) é constante de Boltzmann. A
frequência de saltos de um estado de equilíbrio a outro pode ser facilmente calculada.
através do inverso do tempo de relaxação τ:

$$
\nu = \nu_0 \cdot e^{-\frac{\Delta E}{k_B \tau}}.
$$

(2.13)

Através das equações 2.12 e 2.13, pode-se concluir que para baixas temperaturas ou grandes volumes, $k_BT \ll \Delta E$, o tempo de relaxação τ é muito grande, de maneira que a partícula mantém o seu momento magnético em um estado de equilíbrio, e, para altas temperaturas ou para pequenos volumes, $k_BT \gg \Delta E$, o tempo de relaxação τ tende ser muito pequeno e o momento magnético desta partícula muda rapidamente.

A mudança do momento magnético de uma partícula pode ser observado por diferentes instrumentos de medida e o tempo que cada aparelho leva para obter essa medida é conhecido como tempo característico (t_m). Quando o tempo característico de medição de um aparelho t_m é muito maior do que o tempo de relaxação τ, não é possível medir o momento magnético em um único estado de equilíbrio, esta partícula é classificada então como superparamagnética. Quando o tempo característico do aparelho t_m é muito menor do que o tempo de relaxação τ, aparentando que o momento magnético da partícula está preso em um único estado de equilíbrio, é dito que a partícula é bloqueada. É importante enfatizar que a característica de superparamagnetismo de uma partícula depende exclusivamente do aparelho de observação. Por exemplo, enquanto uma partícula pode ser superparamagnética em uma medida magnética convencional, que demora por volta de alguns segundos, ela pode ser bloqueada quando medidos por espectroscopia Mossbauer, que demora por volta de $t_m = 10^{-8}$ s.

Além do tempo de relaxação τ, a dimensão das partículas magnéticas determina o número de domínios magnéticos que esta pode ter. Vimos que partículas com grandes dimensões possuem vários domínios magnéticos (multidomínios), que não necessariamente apontariam em uma mesma direção, e as partículas pequenas dimensões possuem um único domínio (monodomínio), podendo este ser bloqueado ou superparamagnético. Além destes três diferentes estados magnéticos que depende principalmente de suas dimensões, a sua forma e dos átomos de sua composição- existe um outro estado magnético entre os estados monodomínio bloqueado e o multidomínio: o vórtice. Neste estado intermediário, os momentos magnéticos dos átomos se o de forma circular, for-
2. Fundamentação teórica

mando um vórtice magnético. O exemplo mais simples para este estado seria de um pequeno disco magnético. Neste disco magnético, a magnetização deste seria circular e estaria ao longo plano do disco. Em seu centro, os momentos magnéticos dos átomos apontam para fora do plano do disco. Este fato pode ser observado em um sistema de spins que interagem com uma interação de troca e que tem suas orientações livres, como observado por Silva et al [6].

2.2 Gelos de spins

Uma característica interessante de alguns sistemas com interações competitivas é que os seus estados fundamentais em geral são degenerados, apresentando uma frustração geométrica. Basicamente, um material é geometricamente frustrado quando ele possui Ω_0 estados fundamentais degenerados, gerando uma entropia residual do estado fundamental igual a $S = k_B \ln(\Omega_0)$. Isto ocorre pois o arranjo de spins em uma rede impede que todas as interações sejam satisfeitas ao mesmo tempo. O exemplo mais conhecido de frustração geométrica é de uma rede triangular de spins tipo Ising acoplados antiferromagneticamente, proposto por Wannier et al [7] em 1950 (Figura 1). Em sistemas antiferromagnéticos, a interação de menor energia é dada para os spins que alinham-se antiparalelamente. Mas ao estudar a rede proposta por Wannier et al, vemos que quando dois spins se alinham antiparalelamente, o terceiro spin não consegue se alinhar antiparalelamente com os outros dois simultaneamente. Devido a isto, este tipo de sistema vai gerar seis diferentes configurações de menor energia, o que gera uma entropia por sitio dada por $S \approx 0.366k_B$.

![Figura 2.2: Rede triangular de spins tipo Ising acoplados antiferromagneticamente. Veja que existem 6 configurações diferentes que possuem a menor energia do sistema.](image-url)
2. Fundamentação teórica

Um fato interessante é que este não foi o primeiro sistema estudado a apresentar frustração geométrica. Em 1935, William Giaunque et al. [8] observaram que o gelo da água apresenta uma entropia residual. Este resultado foi logo esclarecido por Linus Pauling et al. Pauling et al observaram que no gelo da água, cada ión de O^{2-} estava no centro de um tetraedro e estava cercado por outros quatro iões de O^{2-}, localizados nos vértices do tetraedro, e por quatro prótons H^+: dois próximos e dois afastados. Devido ao posicionamento dos prótons H^+, dois perto e dois afastados do átomo O^{2-} central, esta geometria pode ser relacionada com momentos de dipolos magnéticos tipo Ising. Assim, haveria dois momentos de dipolo apontando para dentro e dois apontando para fora de cada tetraedro. Esta configuração, encontrada no gelo de água simples, pode ser descrita pela regra do gelo que estabelece que haverá sempre dois momentos magnéticos apontando para dentro e dois apontando para fora. A figura 2.3 é um modelo ilustrativo da configuração do gelo da água e sua interpretação com momentos de dipolo.

![Figura 2.3: As grandes esferas brancas são os iões de O^{2-} e as pequenas esferas pretas são os prótons de H^+.

Recentemente, Harris et al. [11] descobriram uma classe de materiais magnéticos com estrutura cristalina semelhante ao gelo da água. Estes materiais, por exemplo $Ho_2Ti_2O_7$ e $Dy_2Ti_2O_7$, apresentam uma estrutura tipo pirocloro, uma rede tridimensional composta por tetraédros com vértices em comum. Nesta rede, os momentos magnéticos estão localizados nos vértices de tetraédros e em uma certa faixa de temperatura, os momentos magnéticos se alinham com o centro destes. Devido a este tipo de estrutura, estes materiais apresentam uma desordem de configuração de orientações dos momentos magnéticos similar aos encontrados no gelo da água. A regra do gelo, dois momentos magnéticos apontando para dentro e dois para fora de cada tetraedro,
2. Fundamentação teórica

se manifesta com uma minimização da interação de energia spin-spin. Devido a esta grande semelhança, estes materiais foram nomeados como gelos de spin. Muitos pesquisadores [12] [13] [14] [15] [16] [17] [18] [19] [20], tanto teóricos quanto experimentais, exploraram a física destes materiais em diversos trabalhos. Entre eles, dois tiveram grande repercussão.

O primeiro trabalho a ser citado foi feito por Castelhovo e colaboradores [21]. Estes autores interpretaram que as excitações do estado fundamental dos gelos de spins poderiam ser visto como quasipartículas emergentes que se comportam como monopólos magnéticos. Eles observaram que pares de monopólos magnéticos de cargas opostas apareceriam pela violação da regra do gelo. Em baixas temperaturas, a interação entre as cargas magnéticas não era determinada pelo custo energético da inversão dos spins mas sim pela interação Coulombiana magnética de um gás de monopólos interagentes, e em altas temperaturas, os gelos de spins se comportam como um paramagneto convencional e a descrição das excitações como monopólos não procede. Nos gelos de spins, os monopólos de cargas opostas são ligados por uma "string" sem tensão, composta pelos spins invertidos que ligam estes dois monopólos. Um fato interessante é que esses monopólos magnéticos não seriam aqueles previstos por Dirac [22] [23], pois na teoria de Dirac, a string que liga os dois monopólos é infinitesimalmente fina, um tubo solenoidal não-observável que leva a densidade de fluxo de campo magnético de uma carga a outra. Nos gelos de spins, a string é real e observável; pode mudar seu comprimento e sua forma sem nenhum custo de energia que não seja a interação columbiana magnética das cargas em suas extremidades. Devido a este fato, a carga magnética do gelo de spins não está relacionada com a carga elétrica dada pela equação \(q_D = h/\mu_0 e \), como previsto por Dirac (em que \(q_D \) é a carga magnética e \(e \) é a carga elétrica). A figura 2.4 ilustra as quasipartículas emergentes no sistema sendo ligadas pela string.
2. Fundamentação teórica

![Figura 2.4: Monoplos magnéticos, as esferas vermelha e azul, emergentes na rede de gelos de spin. Note que a linha clara que liga os dois monoplos é a string.][21]

O segundo trabalho a ser citado foi feito por Wang et al [24]. Através da fabricação litográfica, estes autores criaram em laboratório redes bidimensionais de nanomagneto com propriedades similares aos gelos de spin. Estas redes eram compostas por nanoilhas alongadas de permalloy (ligas de $Fe_{20}Ni_{80}$), no qual seus eixos mais longos alteravam suas orientações ao longo dos dois principais eixos da rede. O espaçamento entre as ilhas mais próximas, também conhecido como espaçamento de rede, variavam entre $320nm$ a $880nm$ e as dimensões destas ilhas eram fixas ($80nm \times 220nm \times 25nm$). Devido a estas dimensões, as configurações magnéticas das ilhas eram estáveis a uma temperatura de $300K$ e elas comportavam-se como dipolos tipo Ising, ou seja, as ilhas tinham um domínio magnético simples cujo o momento magnético poderia adotar dois valores distintos, de mesmo modulo, ao longo do maior eixo da ilha. Estes momentos magnéticos eram aproximadamente 3×10^7 magnetons de Bohr e o campo magnético gerado por eles no centro das ilhas mais próximas eram da ordem de $10Oe$, gerando uma energia de interação entre essas ilhas da ordem de $10^{-19}J$ (equivalente a 10^4K). A figura 2.5 mostra uma imagem ilustrativa da rede proposta por Wang e imagens AFM (Atomic Force Microscopy) e MFM (Magnetic Force Microscopy) da rede construída por ele.
2. Fundamentação teórica

Figura 2.5: A imagem a) mostra a rede frustrada proposta por Wang com as posições das ilhas e possíveis orientações dos momentos magnéticos destas. As imagens b) e c) são, respectivamente, as imagens AFM e MFM da rede frustrada criada por Wang. Na imagem c), as regiões pretas e brancas representam os polos norte e sul de cada ilha. [24]

Através destas redes, os autores estudaram em grande detalhe a frustração presente no sistema e separaram as configurações de vértices em 4 diferentes grupos topológicos (figura 2.6).

Figura 2.6: Esta figura mostra as dezesseis possíveis configurações de vértices presentes no sistema e a probabilidade de encontrar uma específica configuração em uma rede de configuração aleatória. Além disto, estas configurações estão ordenadas energeticamente. Os vértices TypeI são as configurações de menor energia e as configurações TypeIV são as de maior energia. [24]

Observe na figura 2.6, que somente os vértices TypeI e TypeII obedecem a regra do gelo (dois spins apontando para dentro e dois spins apontando para fora do vértice). Através desta figura, conclui-se que em uma rede cujos spins apontam em direções aleatórias, a probabilidade de encontrar vértices que obedeceriam a regra do gelo seria somente de 37.5%. Mas, Wang et al observaram em seus experimentos que a proporção de vértices que obedeciam a regra do gelo era aproximadamente 70%, mais de 30% do que o valor esperado. Observou ainda que este valor decrescia monotonicamente com o aumento do espaçamento de rede. Isto indica a presença de interações que favorecem o
2. Fundamentação teórica

aparecimento da regra do gelo, fazendo com que este sistema se assemelhe, de alguma forma, aos gelos de spins cristalinos.

Um fator interessante na produção de gelos de spins artificiais em laboratório é que as ilhas da rede são imperfeitas. Um estudo mais detalhado feito por Kohli et al. mostrou que as ilhas podem ter diversas imperfeições, como deformidade em suas estruturas, imprecisão em seus posicionamentos e em seus alinhamentos. A figura 2.7 mostra as expectativas e a realidade das redes de gelos de spins produzidas em laboratório.

\begin{figure}[h]
\centering
\includegraphics[width=0.5\textwidth]{figura27.png}
\caption{a) Imagem de uma rede real, produzida em laboratório, b) e uma rede ideal.}
\end{figure}

Devido a estas deformidades, as propriedades físicas de cada ilha são um pouco diferentesumas em relação as outras. Por exemplo, Pollard et al. observaram que a intensidade do campo magnético necessário para inverter o momento magnético dipolar dos sítios da rede não era igual para todas as ilhas. Os autores observaram experimentalmente que a intensidade média do campo magnético para conseguir inverter o momento magnético das ilhas é \(b = 320Oe \) com uma desordem gaussiana de \(\Delta b = \pm 600e \), causada pelas deformidades das ilhas.

2.2.1 Gelos de spins artificiais em simulações computacionais

Os gelos de spins artificiais atraiam a atenção de vários pesquisadores devido à existência de excitações coletivas que se comportam como quasi-partículas seme-lhantes a monopólos magnéticos. Em simulações computacionais, é relativamente fácil reproduzir uma rede artificial de gelos de spins em quaisquer configuração e condição desejada, facilitando assim os estudos destas redes.
2. Fundamentação teórica

Um estudo interessante feito por Wysin et al. [27] mostraram que a inversão do momento magnético de um nanomagneto elipsoidal através de um campo magnético depende fortemente da intensidade do campo e fracamente da direção e sentido deste campo. Os autores observaram que os valores da intensidade do campo magnético para inverter o momento magnético do nanomagneto eram muitos próximos e praticamente independentemente do ângulo no qual era aplicado, desde de que este fosse contrário a orientação do campo gerado pelo nanomagneto. A figura 2.8 mostra o gráfico de várias curvas de histerese desse nanomagneto. Perceba que as curvas de histerese para diferentes orientações do campo magnético externo se fecham, aproximadamente, para um mesmo valor do campo.

![Figura 2.8: A imagem a) mostra a curva de histerese para diferentes ângulos em relação ao eixo \(\hat{x} \) da nanoilha da figura b).](image)

Um outro estudo sobre os gelos de spins artificiais usando simulação computacional, analisou a energia de interação de excitações sobre o estado fundamental de um gelo de spin artificial na rede quadrada. Mól et al. [28] observaram que as excitações de mais baixa energia podem ser vistas como um par de monoplos magnéticos ligados por um string energético. Neste trabalho, os autores concluíram que a equação que governa essa interação seria dada por:

\[
V(R) = \frac{a}{R} + b \cdot X(R) + C. \tag{2.14}
\]

Nesta equação, o primeiro termo representa a interação coulombiana entre os monoplos magnéticos, o segundo termo está relacionado com a energia do string, que
2. Fundamentação teórica

depende da sua forma e do seu comprimento $X(R)$, e o último termo está relacionado à energia de criação das cargas. Os valores encontrados para cada constante foram $a = -4.00Da$, $b = 10.0D/a$ e $c = 23.4D$. Os monopólos presentes nesta rede se comportavam como os monopólos de Nambu [29], pois as strings que ligam essas são energéticas, e portante observáveis, e são orientadas, ou seja, tem um sentido de polarização intrínseco, como um ímã. Os autores observaram em uma primeira análise que a energia de interação $V(r)$, em que $r = R/a$, tinha um comportamento aparentemente linear, como mostrado no inset da figura 2.9. No entanto, ao fazerem uma regressão não linear com a função $f_q(R) = q/R + b'R + c$ (linha tracejada de azul) subtraída da regressão linear (linha continua vermelha), eles perceberam que as cargas magnéticas interagiam pelo potencial descrito pela equação 2.14.

![Figura 2.9: Neste gráfico, os pontos são os valores obtidos pelos autores, a linha vermelha é função considerando somente a contribuição linear e a azul está de acordo com a equação 2.14.](image)

Os dois trabalhos apresentados nesta subseção são ferramentas poderosas para estudar os gelos de spins caso sejam confirmadas experimentalmente, pois, através deles, seria possível fazer previsões sobre o comportamento dos gelos de spins artificiais, como comportamento das cargas em outras geometrias ou como se comportaria uma carga magnética na presença de um campo magnético.
2. Fundamentação teórica

2.2.2 Redes de gelo de spin em outras geometrias

A rede de gelo de spin mais estudada é a rede quadrada, mostrada na figura 2.4. Muitos estudos já foram feitos explorando e compreendendo os seus mistérios. Devido a isto, alguns pesquisadores começaram a explorar os gelos de spin em outras geometrias. Os exemplos mais conhecidos são as redes: Brickwork [30], Kagomé [31], Honeycomb [32] e a triangular [33]. Nas próximas subseções será mostrado um pouco de cada uma dessas geometrias e em específico, gostaria que o leitor lesse com mais atenção a parte relacionada à rede triangular, pois nosso trabalho foi realizado com base nesta rede.

Rede Brickwork

A rede Brickwork é uma rede semelhante a uma parede de tijolos. Uma das maneiras de obter esta rede seria através da retirada de alguns spins da rede quadrada. Estudos mais detalhados desta rede foram feitos por Ying Li e Tian-Xing Wang [30]. Estes autores estudaram esta rede em 3 diferentes configurações (figura 2.10), os seus estados fundamentais e seus estados quasi-gelos.

![Imagens](image.png)

Figura 2.10: As imagens a), b), c) mostram as três diferentes geometrias para rede brickwork.

Diferente da rede quadrada, esta rede apresenta vértices com dois e três spins, além dos tradicionais vértices com quatro spins. Estes diferentes vértices são apresentados na figura 2.11 e são separados em dois grupos e 5 diferentes topologias. Como na figura 2.6, os vértices de cada grupo estão ordenados por ordem de energia, do menor para o maior.
2. Fundamentação teórica

![Diagrama](image1.png)

Figura 2.11: As imagens a) e b) mostram, respectivamente, as diferentes topologias para rede brickwork para dois e três spins por vértices.

Redes Honeycomb e Kagomé

A rede Honeycomb é uma rede com geometria hexagonal e seu nome se origina devido a grande semelhança com a colmeia de abelha (do inglês honeycomb). Nesta rede os spins se localizam nas arestas da rede e seus momentos magnéticos apontam ao longos destas, gerando uma configuração de 3 spins por vértice. A figura 2.12 mostra a rede Honeycomb e os possíveis tipos de vértices presentes neste tipo de sistema.

![Diagrama](image2.png)

Figura 2.12: A imagem a) mostra uma configuração da rede Honeycomb, com spins posicionados e orientados nas arestas dos hexágonos e a imagem b) mostra os tipos de vértices possíveis de encontrar nesta rede.

Neste tipo de sistema, pode-se observar que os vértices Type I não produzem uma magnetização resultante enquanto os vértices Type II sempre produzem uma magnetização espontânea ao longo do plano dos spins.

A rede Kagomé é uma rede com uma geometria similar a uma estrela de Davi e o seu nome se origina devido a sua grande semelhança com uma tradicional cesta de bambu japonesa. A figura 2.13 mostra uma rede kagomé de gelos de spins e sua
2. Fundamentação teórica

semelhança com a cesta de bambu japonesa.

Figura 2.13: A imagem a) mostra uma configuração da rede Kagomé com os spins posicionados em seus vértices. A imagem b) mostra a grande semelhança da cesta japonesa com a estrela de Davi. Para melhor visualização foi desenhado de preto uma pequena estrela de Davi no centro desta cesta.

Ao analisar os tipos de vértices desta rede, pode-se observar que estes são exatamente os mesmos vértices presente na rede Honeycomb. Para ser mais exato, pode-se observar que as redes Honeycomb e Kagomé são na verdade a mesma rede. A figura 2.14 mostra como é possível obter uma rede Honeycomb através da rede Kagomé.

Figura 2.14: As imagens acima, mostram como é possível obter uma rede Honeycomb(a) através de uma rede Kagomé(b).
2. Fundamentação teórica

Rede Triangular estudada por Mól

Recentemente, Mól et al. [33] propuseram uma nova configuração para rede de gelo de spin com geometria triangular. Esta nova geometria é semelhante a rede proposta por Wannier et al mas ao invés dos spins ficarem nos vértices dos triângulos, estes ficam no centro das arestas e seus momentos de dipolo magnético apontam ao longo destas, havendo 6 spins por vértice. Os autores deste trabalho observou a existência de 64 tipos de vértices que podem aparecer no sistema e os classificou em 8 grupos topológicos.

![Diagrama de configurações de spins](image)

Figura 2.15: As 8 topologias presentes na rede de spin ice com geometria triangular. Estes grupos estão separados por tipos de configurações e energia por spin. [33]

Nesta rede, a "regra do gelo" é dada por 3 spins apontando para dentro e 3 spins apontando para fora do centro do vértice. Através da figura 2.15, pode-se observar que somente duas das três configurações de vértices que obedecem a regra do gelo são as de menores energias. Note que outras duas configurações, que violam a regra do gelo, tem energia menor que uma das configurações que obedecem a regra do gelo. Este agrupamento é diferente do que foi observado na rede quadrada, em que todas as configurações que obedecem a regra do gelo são as de menores energia. Além disto,
pode-se observar a existência de 3 tipos de cargas magnéticas: a simples, gerada por 4 spins apontando para dentro e 2 para fora (ou vice-versa); a dupla, gerada por 5 spins apontando para dentro do vértice e 1 para fora (ou vice-versa); e a carga triplo gerada por 6 spins apontando ou para dentro ou para fora do vértice.

Neste mesmo trabalho, os autores mostram que as excitações de mais baixas energias podem ser interpretadas como monopoles magnéticos de Nambu e estes eram ligados por uma string energética. Este processo ocorre devido à violação da regra do gelo de uma rede em seu estado fundamental, composta somente por vértices tipo V1. A violação da regra do gelo ocorre devido à inversão do momento magnético de um sitio da rede, gerando dois vértices tipo V4. Esses vértices podem ser interpretados como monopoles de cargas opostas e o spin invertido como a string. A criação destes dois monopoles somente ocorreu devido à violação da regra do gelo de dois vértices. A separação destas cargas pode ocorrer sem que haja mais nenhuma outra violação da regra do gelo nesta rede. Para isto, é necessário inverter um spin que esteja adjacente e alinhado com o primeiro invertido. Neste processo vemos que o comprimento da string é proporcional à distância entre as cargas e os vértices gerados neste processo são do tipo V5, os quais obedecem a regra do gelo. Pode-se chamar este tipo de separação de separação por string linear, pois a forma da string é simplesmente uma linha reta. Existe outra maneira de separar as cargas magnéticas sem que haja violação da regra do gelo. Neste segundo método, é necessário que haja duas inversões de spin para que as cargas sejam separadas em um espaçamento de rede. Desta maneira, a carga magnética é afastada fazendo movimento zigue-zague e gerando vértices tipo V2. Este tipo de inversão pode ser nomeado como separação por string dente-de-serra, pois a forma da string é similar as dentes de uma serra. Neste processo, a string tem o comprimento igual ao dobro da separação das cargas magnéticas. Estas duas strings podem ser melhor visualizadas através da figura 2.16.
2. Fundamentação teórica

Figura 2.16: Esta figura mostra os dois tipos de strings que separam as cargas magnéticas sem que haja violação da regra do gelo: a) separação por um string linear e b) separação por um string sawtooth. Nesta imagens, os spins cinzas são os spins invertidos e que formam as strings, os grandes pontos azuis e vermelhos são os monopolas magnéticos de cargas opostas e os pequenos pontos verdes e amarelos indicam, respectivamente, os vértices tipo II e tipo V. [33]

Um fato interessante, é que os autores sugeriram que seria possível desmagnetizar o estado magnetizado da rede, composto por vértices tipo V5, e obter o estado fundamental do sistema simplesmente com a inversão dos spins de uma única direção. Desta maneira, a dinâmica de vértices para alcançar o estado fundamental seria dada por V5 → V4 → V1.

2.3 Protocolos de desmagnetização de gelos de spins artificiais

2.3.1 Protocolos experimentais

Na sessão anterior, foi visto que monopolas magnéticos emergem através de excitações do estado fundamental dos gelos de spins. Então, um dos interesses dos pesquisadores destes materiais seria encontrar um processo que conseguisse desmagnetizar e levar o sistema ao seu estado fundamental, já que Wang et al. [34] observaram que essas redes não se encontravam em seus estados fundamentais após serem construídas. Estes mesmos autores, na tentativa de obter o estado fundamental dos gelos de spin, propuseram 3 protocolos de desmagnetização. Em todos os protocolos, os autores utili-
2. Fundamentação teórica

zaram um campo magnético externo que girava em torno da rede de gelos de spins com velocidade angular constante, mas o modo como este campo era aplicado variava de protocolo para protocolo. No primeiro protocolo, o campo magnético externo começa com uma intensidade inicial H_i e este era diminuído em S_H para cada passo de tempo T_s. Para cada mudança de valor no campo magnético, a polaridade deste campo também era invertida. No segundo protocolo, o campo começa com uma intensidade inicial H_i e diminuí linearmente a uma razão R_H até zero. O terceiro protocolo começa com um valor inicial H_i e diminui em valores discretos S_H para cada passo de tempo T_s, mas diferente do primeiro protocolo, mantendo sua polarização. A figura 2.17 mostra um gráfico de como a intensidade destes campos variavam em relação ao tempo.

![Gráfico](attachment:diagram.png)

Figura 2.17: Este gráfico é uma ilustração dos processos realizados por Wang. [34]

Em uma rede de gelos de spins magnetizada com espaçamento de rede de 320nm, Wang et al observaram que o primeiro protocolo conseguiu inverter 51.8% das 3568 ilhas que constituem a rede. Este valor é bem próximo ao ideal de 50%, indicando ser um bom protocolo de desmagnetização. Outro fato interessante é que magnetização média da rede de $m_{tot} = 0.056$ poderia ser aumentada até um valor de $m_{tot} = 0.152$ se o espaçamento de rede fosse para 720nm. Os outros dois protocolos não foram tão eficiente como o primeiro, pois a magnetização média da rede de ambos protocolos foi de $m_{tot} \sim 0.5$, metade da completa magnetização da rede $m_{tot} = 1.0$.
2. Fundamentação teórica

2.3.2 Protocolos computacionais

O interesse de obter o estado do gelo de spins é tão grande que muitos pesquisadores começaram a estudar a dinâmica destes em simulações computacionais. Um grupo de pesquisadores que tiveram um grande interesse na dinâmica dos processos de desmagnetização foi Budrikis et al \[35\] \[36\]. Budrikis et al propuseram que a inversão da magnetização de uma ilha, um spin tipo Ising, ocorreria quando a desigualdade

\[-s_i \cdot \vec{B}_i \leq h_c,\]

fosse satisfeita. Nesta desigualdade, temos que s_i é o momento magnético de uma ilha i, \vec{B}_i é o campo magnético atuando nesta ilha e h_c seria o módulo do campo magnético mínimo de troca para a inversão do momento magnético da ilha i. Em um de seus trabalhos \[35\], eles tentaram obter o estado fundamental dos gelos de spins através de um campo magnético rotacional, usando a sua condição de inversão de momento magnético. Eles concluíram que este protocolo de desmagnetização não era eficiente pois somente algumas de várias redes conseguiam alcançar o estado fundamental. Em outro trabalho \[36\], eles propuseram uma rede imperfeita, na qual as ilhas sofriam desordem na posição, na orientação de seus momentos magnéticos, no campo magnético de mínimo de troca e na interação de acoplamento entre os spins. Nestas redes, eles observaram que é impossível de obter o estado fundamental através do protocolo de desmagnetização através um campo magnético externo rotacional.
Capítulo 3

Motivações e metodologia

3.1 Motivações

Os estudos dos gelos de spin são recentes e estes podem oferecer benefícios tanto tecnológicos como de novas ciências. Por exemplo, através do gelo de spin poderíamos conseguir novas tecnologias de armazenamento de dados em formato binário, pois os spins da rede só podem adotar dois valores distintos. Do ponto de vista de ciência básica, o estudo de gelos de spins pode levar a um melhor entendimento acerca das propriedades de excitações coletivas e pseudo-partículas em sistemas de matéria condensada.

No capítulo anterior, vimos que quasipartículas emergentes nos gelos de spins se comportam como monopólos magnéticos ligados por uma string energética. Estas quasipartículas surgem devido à violação da regra do gelo, ou seja, são excitações sobre o estado fundamental. Muitos pesquisadores reproduziram os gelos de spins em redes artificiais com interesse de estudar as propriedades destes materiais, principalmente aquelas ligadas aos monopólos magnéticos. Tanto em redes reais como em simulações computacionais, vimos que não foi encontrado um método eficaz que consiga levar os gelos de spins artificiais para o seu estado fundamental. Este fato dificulta os estudos mais detalhados dos monopólos magnéticos, pois estes surgem como excitações sobre o estado fundamental.

Mól e colaboradores, em um de seus trabalhos [33], propuseram uma configuração triangular para os gelos de spins artificiais. Neste mesmo trabalho, ele comentou
3. Motivações e metodologia

que seria possível levar esta rede de um estado completamente magnetizado para o estado fundamental simplesmente invertendo uma cadeia linear de spins. Se isso realmente for possível, esta rede poderia nos oferecer melhor entendimento dos monoplos magnéticos e sua dinâmica, como por exemplo os estudos da magnetostática nos gelos de spins artificiais. Então, o objetivo de nosso trabalho seria verificar a hipótese destes autores através de um protocolo de desmagnetização através de um campo magnético externo. Os detalhes da metodologia usada em nosso trabalho será descrita com mais detalhes no próximo capítulo.

3.2 A Rede estudada

A rede estudada neste trabalho foi a rede proposta por Mól et al [33]: gelo de spin artificial na qual os spins da rede são tipo Ising, podendo adotar somente dois valores discretos (-1,+1), em uma geometria triangular. Estruturalmente estes spins estão confinados no plano da rede (xy) e estão localizados no centro das arestas de triângulos equiláteros, nos quais seus momentos magnéticos estão ao longos destas, gerando uma configuração de seis spins em cada vértice. A rede estuda é mostrada na Figura 3.1, diferenciando-se somente pela quantidade de spins. Note que suas bordas são suaves; as ilhas sempre conseguem fechar triângulos equiláteros; o formato da rede, como todo, é bem próximo a de um quadrado; e existe, no mínimo, 2 spins por vértice.

Como Mól et al, estudamos a rede através de simulações computacionais mas,
3. Motivações e metodologia

diferente de seu trabalho, tentamos aproximar o nosso modelo das redes reais, fabricadas em laboratório por litografia. Para isto, analisamos o trabalho realizado por Phatak e colaboradores e adaptamos os parâmetros deste trabalho com as nossas simulações. Neste artigo, os autores fabricaram uma rede de gelos de spins artificiais similar a construída por Wang et al mas com diferentes dimensões. Nele, as ilhas (os nanomagneto) também são constituídos de Permalloy mas têm dimensões de 290nm de comprimento, 130nm de largura e 20nm de espessura e os centros das ilhas mais próximas estão separados por uma distância de a = 500nm. Foi observado que estes gelos são suficientemente pequenas para que tenham um único monodominio magnético e são suficientemente grandes para que o tempo de relaxação destes seja muito maior do que o tempo das medidas experimentais, não interferindo nas análises desta rede. Através destes dados, concluímos que o momento magnético destas ilhas é μ = M₀V ~ 6.0 · 10⁻¹⁶Am², dado que o volume das ilhas é de V = 290nm · 130nm · 20nm = 7.5 · 10⁵(nm)³ = 7.5 · 10⁻²⁷m³ e a magnetização de saturação do Permalloy é de de M₀ = 7.958 · 10⁻⁴A/nm. Assim, percebemos que a magnitude do campo magnético no centro do nanomagneto vizinho mais próximo é de:

\[[\vec{B}] \equiv \frac{D}{\mu} \sim 0.5 \text{mT}, \quad (3.1) \]

em que:

\[D = \frac{\mu_0 \mu^2}{4\pi a^3} \sim 3.0 \cdot 10^{-19} J, \quad (3.2) \]

\[J = Am²T \text{ e } \mu_0 = 4\pi \cdot 10^{-7} N/A². \]

Neste mesmo trabalho, foi encontrado que o modulo do campo magnético b necessário para inverter o momento magnético de um nanomagneto é dado por \(h_c = (550 \pm 55) \text{Oe}. \) Escrevendo este campo em unidades internacionais tem-se que:

\[b = (500.0 \pm 50.0) \text{Oe} = (500.0 \pm 50.0) \cdot 10^{-4} T = (50.0 \pm 5.0) \text{mT}. \quad (3.3) \]
3. Motivações e metodologia

Ou seja, é necessário um campo magnético aproximadamente 100 vezes maior do que o campo magnético do nanomagnetó vizinho mais próximo.

Em nosso trabalho, as ilhas interagem entre si somente por interação dipolar. Assim, como vimos anteriormente, para descrever o nosso sistema utilizamos a hamiltoniana apresentada na equação 2.10,

\[E_{dip} = \sum_{i \neq j} D \left[\frac{\vec{s}_i \cdot \vec{s}_j - 3(\vec{s}_i \cdot \hat{r}_{ij})(\vec{s}_j \cdot \hat{r}_{ij})}{R_{ij}^3} \right]. \quad (3.4) \]

Nesta equação, ajustamos os valores de \(D \) e de \(D/\mu \) de modo que estes valores mantivessem sua proporção com os valores encontrados por Phatak. Em nossas simulações, encontramos que o modulo do campo magnético de uma ilha em seu vizinho mais próximo é de \(|\vec{B}| = 2.0D/\mu \). No trabalho de Phatak, vimos que o valor medido experimentalmente para este campo é de \(0.5mT \). Desta maneira, podemos concluir que

\[2.0D/\mu = 0.5mT \longrightarrow 4.00D/\mu = 1.0mT. \quad (3.5) \]

Através desta igualdade, temos uma conexão mais clara entre os valores experimentais e os valores usados em nossas simulações. Em nossas simulações escolhemos o valor de \(D/\mu = 0.5 u.r. \) (\(u.r. \equiv \) unidades reduzidas), pois assim teremos que \(2u.r. = 1mT \), dando que o modulo do campo magnético no vizinho mais próximo seria de \(|\vec{B}| = 1.0 u.r. \), um valor unitário. Através desta conversão, realajustamos os valores de nossas simulações, de maneira que estes correspondessem os valores obtidos experimentalmente. Por exemplo, o valor do modulo do campo magnético \(b \) para inverter o momento magnético das ilhas em nossas simulações seria dado por:

\[b = (50.0 \pm 5.0)mT \longrightarrow (100.0 \pm 10.0)u.r. \quad (3.6) \]

Na equação 3.6, vemos que \(b \) é dado por uma distribuição gaussiana centrada em 100 u.r. com um desvio de 10 u.r. Esta equação também pode ser reescrita como:

\[b = (100.0 \pm 10.0)u.r. = b_c + \Delta b, \quad (3.7) \]
3. Motivações e metodologia

em que \(b_c = 100u.r. \) e \(\Delta b = 10u.r. = 10\% b_c \). \(\Delta b \), como foi visto na sessão 2.2, estaria representando a desordem causada por imperfeições nas ilhas. Em nosso trabalho, para melhor entendimento desta rede, manipulamos os valores de \(\Delta b \) para observar qual seria o efeito dessa desordem no comportamento da rede. Para isto, modificamos o valor dessa desordem de 0\% de \(b_c \), uma rede com ilhas completamente homogêneas, até 20\% de \(b_c \), uma rede com ilhas com o dobro de desordem encontrada experimentalmente, que seriam causadas por grandes imperfeições nas ilhas.

Em qualquer simulação do nosso trabalho, as ilhas da rede têm suas posições fixas e mantêm suas características, como estrutura e direção do momento magnético, independente dos fatores impostos no programa. A única propriedade das ilhas que pode mudar é o sentido do momento magnético da ilha. A inversão dos momentos magnéticos das ilhas somente ocorrem através de campo magnético, mais nenhum outro fator. A condição para esta inversão que usamos foi a mesma proposta por Budrikis et al \[35, 36\]:

\[
- \vec{B}_{i}^{\text{tot}} \cdot \vec{s}_i \leq b_i, \tag{3.8}
\]

em que \(\vec{B}_{i}^{\text{tot}} \) é o campo magnético total dado pela soma do campo externo \(\vec{B}_{\text{ext}} \) mais o campo \(\vec{B}_i \) que é o campo gerado pelos outros spins da rede na ilha \(i \), \(\vec{s}_i \) é o momento dipolo magnético da ilha \(i \) e \(b_i \) é o módulo do campo magnético mínimo para inverter o momento dipolo desta ilha. Como tentativa de aproximar este modelo dos sistemas reais, em que as ilhas são raramente iguais as outras, os valores dos campos magnéticos necessários para a inversão do momento magnético de cada ilha serão gerados aleatoriamente, respeitando os valores estabelecidos pela equação 3.7. Desta, espera-se que os valores de \(b_i \) das ilhas não sejam correlacionados uns com os outros.

3.3 Processos de desmagnetização

Neste trabalho, foram usados dois diferentes processos de desmagnetização: o primeiro foi através de um campo magnético externo rotacional e o segundo foi através de um campo magnético externo em uma única direção, similar ao processo de histerese.
3. Motivações e metodologia

Antes de começar a aprofundar na descrição de cada processo, serão enumerados os aspectos comuns que são considerados em cada processo:

1º) A inversão do momento magnético das ilhas deve seguir exatamente as condições ditas na sessão anterior (3.2). Os momentos serão invertidos somente por campo magnético e não há fatores no programas que consigam deformar a estrutura da rede;

2º) O campo magnético externo sempre é paralelo à rede e este é uniforme em toda esta;

3º) Antes de começar qualquer simulação, é aplicado um campo magnético externo extremamente grande na direção inicial do campo magnético externo, de modo que todos os spins da rede se alinhem com este campo. Este processo gera uma rede composta somente por vértices tipo V5, mostrado na figura 2.15. Após isto, esse campo é diminuído até o valor desejado para o início da simulação.

4º) A mudança do valor do campo magnético externo nas ilhas da rede, tanto por intensidade quanto por variação de ângulo do campo em relação às ilhas, irá ocorrer somente depois que todos spins da rede sejam visitados e conferidos se estes satisfazem a condição da equação 3.8. Deve-se esclarecer que quando um spin é invertido, é verificado se todos os outros spins da rede também serão invertidos, mesmo que estes já tenham sido visitados anteriormente;

5º) As variações do campo magnético externo, tanto em intensidade quanto em direção e sentido, ocorreram lentamente, de maneira que o primeiro spin a mudar seu momento magnético será aquele que está mais apto a isto. Através disto, espera-se que o sistema como todo faça mudanças adiabáticas, não saltando possíveis estados de equilíbrio para minimizar a sua energia.

3.3.1 Campo magnético rotacional

Este processo é bem conhecido como um processo de desmagnetização de sistemas magnetizados. Neste, a rede estaria fixa enquanto um campo magnético externo
3. Motivações e metodologia

seria aplicado nesta e estaria girando lentamente em torno do eixo central da rede. Em nossas simulações, a rede estática mantém os valores das posições dos spins e os valores de seus momentos dipolares magnéticos constantes, e o campo magnético teria seu módulo constante mas suas componentes ao longo dos dois eixos principal da rede \((\hat{x} e \hat{y})\), sempre estariam mudando de valor.

O campo magnético inicial aponta na direção do eixo \(+\hat{x}\) e este gira lentamente no sentido anti-horário, de \(+\hat{x}\) para \(+\hat{y}\). O módulo inicial deste campo foi de \(|\vec{B}_{ext}| \sim b_c\), pois observamos que para campos muito menores do que o campo mínimo de inversão \(b_c\), nenhum momento magnético era invertido e para campos muito menores do que \(b_c\), o campo era muito intenso e os momentos magnéticos da rede sempre se alinhavam com o campo magnético externo. Além disto, a intensidade deste campo diminui muito lentamente, de modo que este diminuiu em \(1u.r.\) para cada três voltas completas na rede. A redução da intensidade do campo magnético externo foi adotada com a finalidade de obter um estado estacionário para rede, pois, caso esse não fosse reduzido, alguns momentos magnéticos de algumas ilhas da rede nunca iriam parar de ser invertidos, principalmente aqueles mais próximos da borda da rede e pequenos valores do campo intrínseco de inversão.

3.3.2 Campo magnético em uma única direção

O segundo processo, como foi dito anteriormente, é um processo semelhante ao de histerese. Inicialmente, considera-se que uma rede que está magnetizada devido a um campo magnético externo aplicado na direção \(+\hat{x}\) da rede. Após alcançar este estado, esse campo magnético vai sendo lentamente invertido até que a magnetização da rede seja totalmente invertida. E por fim, o campo magnético é novamente invertido até que a rede volte a ter a magnetização do seu estado inicial.

Este processo foi escolhido devido a uma sugestão dada por Mól et al \([33]\), o mesmo no qual os autores sugerem a nova rede. Neste artigo, os autores comentam que o estado magnetizado composto somente por vértices tipo \(V5\) pode facilmente ser levado ao estado fundamental através de poucas inversões de momentos magnéticos, de maneira que os vértices \(V5 \rightarrow V4\) e seguinte \(V4 \rightarrow V1\). Devido a estrutura da rede,
supomos que um processo similar ao de histerese conseguiria alcançar este objetivo.

Ainda neste mesmo processo pode-se explorar ainda mais os problemas experimentais que podem ocorrer nas medidas em laboratório. Um destes é o alinhamento do campo magnético externo com a rede de spin. Normalmente, a rede de gelos de spins tem dimensões de nanômetros, dificultando o exato alinhamento campo-rede. Então, devido a este fato, iremos também supor em nossas simulações um desalinhamento da rede com o campo. Desta maneira, o campo que tinha uma única componente, agora poderá ter duas componentes: uma que continuará muito intensa na direção \(\hat{x} \) e outra menor na direção \(\hat{y} \), que terá intensidade suficiente para afetar as medidas dos experimentos. O angulo de desalinhamamento \(\theta \) vai variar de 0\(^\circ\), um perfeito alinhamento, a 10\(^\circ\), um desalinhamento muito maior do que pode-se esperar experimentalmente.

3.3.3 Considerações finais

Nesta sessão serão brevemente apresentadas algumas considerações finais sobre a maneira como foram obtidos os dados apresentados no capítulo Resultados. Inicialmente todos os dados apresentados neste trabalho foram extraídos de uma rede com dimensões de 30a x \(\sim 30a \), em que \(a \) é o espaçamento da rede. Desta maneira, a rede terá conjuntos de 30 ilhas perfeitamente alinhadas na direção \(\hat{x} \) e um outro conjunto de aproximadamente 34 ilhas alinhadas em zig-zag na direção \(\hat{y} \). Ambos processos citados na sessão anterior, foram analisados através de duas grandezas diferentes. A primeira foi a magnetização média da rede na direção \(\hat{x} \) (Mag) e a segunda foi a população dos diferentes tipos de vértices presentes no sistema (figura 2.15). Cada grandeza foi obtida através da média de 50 \(\times \) 10 amostras. Em que essas amostras foram obtidas de 50 redes diferentes e cada placa foi analisada 10 vezes. A análise de uma mesma placa foi necessária devido ao método usado para inverter os momentos magnéticos das ilhas.

Em nossas simulações, o nosso passo Monte Carlo foi feito por no mínimo 4 \(\times \) \(N_{\text{spins}} \) \((N_{\text{spins}} \equiv \text{número de spins da rede}) \) verificações, em que em cada verificação uma ilha da rede era sorteada aleatoriamente e verificava-se se essa poderia ter o seu momento magnético invertido.

As redes estudadas são definidas pelos processos de desmagnetização por que cada
3. Motivações e metodologia

uma passa e por algumas características consideradas em cada processo. As rede que
passaram pelo processo de desmagnetização através de um campo rotacional são clas-
sificadas somente pela desordem que suas ilhas sofrem. Mas as redes que passaram
pelo processo de desmagnetização através de um campo magnético em uma única di-
reção são classificadas pela desordem das ilhas e pelo angulo de desalinamento entre
o campo magnético externo e a rede.
Capítulo 4

Resultados e discussões

4.1 Processo de desmagnetização através de campo magnético externo em uma única direção

O primeiro processo estudado foi o de desmagnetização através de um campo magnético externo em uma única direção, similar ao processo de histerese. Neste processo, um campo magnético externo suficientemente forte é aplicado na direção $+\hat{x}$, magnetizando a rede nesta direção e fazendo com que apenas vértices tipo V5 estejam presente. Em seguida, este campo será lentamente invertido até que magnetização da rede seja completamente invertida. E por fim, o campo será novamente lentamente invertido até alcançar o estado inicial da rede.

4.1.1 Primeira análise: Somente desordem nos sítios da rede

Inicialmente, analisamos como seria o comportamento da magnetização média da rede de tamanho $L = 30$ para diferentes tipos de desordem. A figura 4.1 mostra o comportamento da magnetização em função do campo magnético externo para cinco valores diferentes de desordem.
Nesta figura percebe-se que todas as curvas são muito próximas. Em uma primeira análise, pode-se dizer que a desordem parece somente suavizar as curvas da magnetização, quanto maior a desordem, mais suave é a curva da magnetização. Observe que as redes com maiores desordem, são as primeiras a começarem a se desmagnetizarem, devido aos sítios mais susceptíveis a inversão de seus momentos magnéticos, e também são as últimas a terem a suas magnetizações completamente invertidas, devido aos sítios menos susceptíveis a inversão de seus momentos magnéticos. Em uma segunda análise, observamos que nesta figura existem um platô com $Mag = +1.0$, um platô com $Mag = -1.0$ e um platô com $Mag \approx 0.0$. Observe que os tamanhos destes platôs são inversamente proporcionais à desordem da rede; quanto maior a desordem, menor são os tamanhos dos platôs. Os platôs de magnetização $Mag = \pm 1.0$ são referentes às redes completamente magnetizadas, compostas somente por vértices tipo $V5$, e o platô de magnetização $Mag \approx 0.0$ é referente à rede completamente desmagnetizada, composta somente por vértices tipo $V1$. Este fato fica mais evidente ao analisarmos a fração de população de vértices em relação a intensidade do campo.
4. Resultados e discussões

magnético externo presente na figura 4.2.

Figura 4.2: Fração da população de vértices em função do campo magnético externo \vec{B}_{ext} para desordem nula. A imagem a) mostra o processo entre os valores de campos 0u.r. a 300u.r. A imagem b) mostra com mais definição as passagens de transições que são difíceis de visualizar na imagem a). As configurações dos vértices de cada platô é representado pela configuração de vértice abaixo destes. A pequena imagem inserida na imagem b) é uma ampliação mais detalhada da segunda transição, mostrando a existência de vértices V4 e V6 na segunda transição, sendo muito inferiores às demais presentes. Rede de tamanho $L = 30$.
4. Resultados e discussões

Devido à simetria do processo de desmagnetização, nesta figura analisaremos somente a parte $\vec{B}_{ext} \geq 0.0$. Inicialmente, deve-se enfatizar que os platós observados na figura 4.1 são realmente compostos somente por vértice tipo V1, o estado fundamental da rede, e V5, o estado completamente magnetizado. Esses platós são separados por duas transições: a primeira transição que leva a rede de estado completamente magnetizado para o estado fundamental, em $B_{ext} \sim 85.0$, e a segunda transição que leva a rede do estado fundamental para o estado completamente magnetizado, em $B_{ext} \sim 220.0$. Na primeira transição, os vértices tipo V5 são aniquilados para a criação de vértices tipo V4. Mas essa mudança é rapidamente acompanhada da aniquilação dos vértices tipo V4 e da criação de vértices tipo V1, fazendo assim a população de vértices tipo V4 ser muito pequena. Um fato interessante é que somente os spins alinhados com o eixo \hat{x} têm seus momentos magnéticos invertidos, ou seja, somente 2 spins de cada vértice foram invertidos. As passagens desta transição são descritas por $V5 \rightarrow V4 \rightarrow V1$.

A segunda transição é similar ao inverso da primeira mas com o aparecimento de mais dois tipos de vértices: tipo V2 e tipo V6. Nesta transição, vértices tipo V1 são aniquilados para criar vértices tipo V4. Estes são rapidamente aniquilados para criar vértices tipo V2. Note que os vértices tipo V2 são mais estáveis que os vértices tipo V4, pois a sua criação não é seguida rapidamente por sua aniquilação. Em seguida, estes vértices são destruídos para a criação de vértices tipo V6 e estes são rapidamente destruídos para a criação de vértices tipo V5. As passagens desta transição são descritas por $V1 \rightarrow V4 \rightarrow V2 \rightarrow V6 \rightarrow V5$. Nesta transição observamos que os spins que não foram invertidos na primeira transição, aqueles que não estão alinhados com o eixo \hat{x}, têm seus momentos magnéticos invertidos nesta transição. Ao final destas duas transições, vimos que a magnetização da rede foi completamente invertida, passando de um sistema composto somente por vértices $V5_{-x}$ (vértices V5 com magnetização na direção $-\hat{x}$) para um sistema composto somente por vértices $V5_{+x}$ (vértices V5 com magnetização na direção $+\hat{x}$).

Ao considerar a desordem, veremos que esta altera muito a dinâmica na rede, o que não pode ser notado na figura 4.1. A figura 4.3 mostra o gráfico da fração da população de vértices em relação ao campo magnético externo, com ilhas com desordem
4. Resultados e discussões

de \(b'_i = 10.0\% \).

Figura 4.3: Fração da população de vértices por campo magnético externo \(B_{\text{ext}} \) para desordem de \(b'_i = 10.0\% \). Rede de tamanho \(L = 30 \).

Na figura 4.3 percebe-se que o comportamento da população de vértices é similar ao da figura 4.2, uma rede sem desordem, mas nesta apresenta um grande crescimento de populações de vértices tipo \(V4 \) e \(V6 \). O crescimento destes vértices está diretamente ligado com a magnitude da desordem dos sítios, de maneira que quanto maior for a desordem, maior será a criação destes tipos de vértices. A razão disto está ligada à desordem nos sítios, os quais podem ter seus momentos magnéticos mais susceptíveis \((b'_i < 0.0) \) ou menos susceptíveis \((b'_i > 0.0) \) ao alinhamento com o campo magnético externo. Na primeira transição, vários sítios com \(b'_i < 0.0 \) terão seus momentos magnéticos invertidos para intensidades de campo magnético externo menores do que as redes sem desordem, gerando uma população de vértices tipo \(V4 \) pela transição \(V5 \rightarrow V4 \). Alguns destes vértices serão mais estáveis, mesmo com o aumento da intensidade do campo magnético externo, devido a presença de sítios com \(b'_i > 0.0 \). Assim, a população de vértice \(V4 \) será crescente até um valor limite de campo, no qual os sítios com
4. Resultados e discussões

$b'_i > 0.0$ também terão os seus momentos magnéticos invertidos, sempre diminuindo a população de vértice $V4$ para intensidades maiores do que a limite. Um processo similar ocorre na segunda transição, aumentando a população de vértices $V4$ e $V6$ e reduzindo a população de vértice $V2$. Devido ao crescimento destes vértices, o tamanho do platô do vértice $V1$ é reduzido, gerando uma dificuldade em se obter o estado fundamental do sistema.

Outro vértice que aparece nesta transição, com frequência muito menor em relação aos demais observados, é o vértice tipo $V7$. Diferente dos outros vértices, o vértice tipo $V7$ aparece ao acaso, podendo aparecer ou não durante o processo de desmagnetização de uma rede. Acredita-se que o seu aparecimento aconteça devido a vértices que tenham dois sítios $b'_i < 0.0$ e dois sítios $b'_i > 0.0$, além dos outros dois sítios que já tiveram a sua magnetização invertida na primeira transição. Na figura 4.4 mostramos uma pequena ilustração desta configuração e como aconteceria a criação destes vértices.

![Figura 4.4](image.png)

Figura 4.4: A figura acima mostra a passagem de um vértice na configuração do estado fundamental $V1$ (a) para o estado magnetizado $V5$ (c). Nesta passagem, o vértice intermediário entre esses dois é o $V7$ (b). Os spins de preto são spins neutros, cuja a desordem não é importante, os spins azuis tem $b'_i < 0.0$ e os spins vermelhos tem $b'_i > 0.0$.

No processo descrito por esta figura, vemos que os spins azuis ($b'_i < 0.0$) são os primeiros a terem os momentos invertidos, saindo da configuração $V1$ para a configuração $V7$. E logo em seguida, com o aumento da intensidade do campo magnético externo, os spins vermelhos ($b'_i > 0.0$), terão os seus momentos magnéticos invertidos, gerando a configuração de vértice $V5$. Estatisticamente, pode-se perceber que a pro-
babilidade da configuração da figura 4.4 aparecer na rede não seria tão pequena (1/16 caso considerássemos que os spins vermelhos e azuis têm iguais probabilidades de 1/2 em adotarem valores \(b'_i \neq 0.0 \)). Mas ao analisar a energia de configuração da figura 2.15, vemos que a energia de configuração do vértice \(V7 \) \((27D) \) é e é mais do que o dobro do que o vértice \(V6 \) \((13D) \). Devido a isto, espera-se que a passagem da figura 4.4 somente aconteça caso todos os valores de \(b'_i \) adotassem valores grandes, que seria estatisticamente mais difícil de ocorrer. Esta conclusão está de acordo com os dados obtidos da figura 4.3, mas talvez não seja a única explicação.

Para finalizar esta seção, vamos analisar melhor quais os efeitos da desordem na dinâmica de vértices durante este processo de desmagnetização. A figura 4.5 mostra o gráfico da dinâmica da população de vértices em relação ao campo magnético externo, com ilhas com desordem de \(b'_i = 20.0\% \).

![Figura 4.5](image)

Figura 4.5: Fração da população de vértices por campo magnético externo \(B\text{_{ext}} \) para desordem de \(b'_i = 20.0\% \). Rede de tamanho \(L = 30 \).

Nesta figura, podemos notar que para desordens muito grandes o platô de vértice \(V1 \) é reduzido em comparação com os resultados apresentados anteriormente, tanto
4. Resultados e discussões

Em sua altura quanto em sua largura. Mesmo assim, vemos que este processo oferece bons resultados, pois a população de vértices V1 chega a ser superior a 95%. A diminuição do plató de vértice V1 ocorre devido aos sítios com $b'_i \gg 0.0$ que têm seus momentos magnéticos somente na direção \hat{x} e aos sítios com $b'_i \ll 0.0$ que têm os seus momentos magnéticos ao longo de ambos os eixos do plano. Durante o processo de desmagnetização, os sítios com $b'_i \gg 0.0$ terão os seus momentos magnéticos invertidos somente para grandes intensidades de campo magnético, dificultando a formação do plató V1, e os sítios com $b'_i \ll 0.0$, terão os seus momentos magnéticos invertidos para pequenas intensidades de campo, podendo ser invertidos até mesmo antes dos sítios com magnetização somente em \hat{x}, principalmente aqueles com $b'_i \gg 0.0$. Neste mesmo gráfico, podemos observar que os vértices tipo V4 são os mais presentes durante todo o processo, mesmo que em pequenas quantidades.

Nesta subseção, vimos que o processo similar ao de histerese é um bom processo de desmagnetização dos gelos de spins triangulares artificiais sem desordem. Vimos que as redes com pequenas desordens conseguiram alcançar os seus estados fundamentais e as redes com grandes desordem conseguiram obter uma população de vértice V1 superior a 95%, os mesmos que compõem o estado fundamental.

4.1.2 Segunda análise: Desalinhamento rede-campo magnético externo e desordem nos sítios da rede

Um dos problemas que poderia aparecer na execução deste procedimento de desmagnetização, seria a imprecisão de alinhar o campo magnético externo com a rede de gelos de spins, devido às pequenas dimensões da rede. Neste processo foi observado que o desalinhamento do campo com o eixo \hat{x} da rede de gelos de spins provoca mudanças nos resultados obtidos anteriormente. Essas mudanças serão apresentadas em três partes: na primeira parte dessa análise será feita para o estudo do desalinhamento nas redes sem desordem, na segunda será feito o estudo do desalinhamento em redes com desordem; e na última, será feito o estudo dos efeitos da desordem em uma rede que não está alinhada com o campo magnético externo. Devido à simetria do sistema, os resultados desta subseção serão apresentados para ângulos de desalinhamentos
4. Resultados e discussões

\[\theta \geq 0.0^\circ. \]

Estudos do desalinamento do campo em rede com sítios sem desordem

A figura 4.6 mostra como os diferentes ângulos de imprecisão com o eixo +\(\hat{x}\) podem afetar a magnetização média nas redes sem desordem.

![Diagrama](image)

Figura 4.6: Magnetização média do sistema \(\text{Mag}\) em relação ao campo magnético externo \(B_{\text{ext}}\). As diferentes curvas representam diferentes ângulos de uma rede de tamanho 30 sem desordem.

Nesta figura pode-se observar que os desalinamentos do campo com a placa não alteram o comportamento da magnetização média durante o processo de desmagnetização. Por outro lado, estes diminuem o tamanho do platô de \(\text{Mag} \approx 0.0\), composto somente por vértices \(V_1\), e geram também um novo platô. Este novo platô representa um novo estado magnetizado \(\text{Mag}_{xy}\), na qual a magnetização está ao longo dos eixos \(\hat{x}\) e \(\hat{y}\). A diminuição do platô \(\text{Mag} \approx 0.0\), o aparecimento e o tamanho do novo platô estão intimamente ligados com a componente do campo magnético externo na direção \(-\hat{y}\). Para melhor entendimento deste processo serão apresentadas as ilustrações das configurações de vértices dos quatro platôs da figura 4.10 quando varia-se o campo.
magnético externo de $B_{ext} = +200.0$ até $B_{ext} = -200.0$.

Figura 4.7: Ilustração da dinâmica de um vértice da rede. As imagens a), b), c) e d) são, respectivamente, as configurações do primeiro, do segundo, do terceiro e do quarto platôs presentes na figura 4.6. A imagem e) serve para nomear cada grupo de spins da rede. Explicações adicionais encontram-se no texto.

Na figura 4.7, a passagem 4.7.a) → 4.7.b) representa a desmagnetização da placa do estado completamente magnetizado para o estado fundamental. A dinâmica deste processo, como foi observado na figura 4.6, não foi afetada pelo desalinamento do campo com a placa e, por esse motivo, somente os Sítios 1 tiveram seus momentos magnéticos invertidos (veja a figura 4.7.e)). Mas ao tentar magnetizar a rede, sair do estado fundamental 4.7.b) e ir para o estado magnetizado 4.7.d), vemos que existe uma nova configuração intermediária, uma com magnetização nas direções $-\hat{x}$ e $-\hat{y}$.
4. Resultados e discussões

Esta nova configuração é gerada graças à componente do campo magnético externo na direção $-\hat{y}$. De acordo com a equação 3.8, a componente do campo magnético externo na direção $-\hat{y}$ privilegia a inversão dos momentos magnéticos dos Sítios 2. Observe que o processo 4.7.b) \rightarrow 4.7.c) é exatamente o processo inverso do de desmagnetização 4.7.a) \rightarrow 4.7.b), mas com a magnetização da rede nas direções \hat{x} e \hat{y}. Na figura 4.6 vimos que a diminuição do platô $Mag \approx 0.0$ e o aparecimento do novo platô estão relacionados com o ângulo de desalinamento e, por consequência, com a intensidade do campo na direção $-\hat{y}$. Sabe-se que a intensidade do campo magnético na direção $-\hat{y}$ (\vec{B}_y) é diretamente proporcional a $|\vec{B}_{ext}| \cdot \sin \theta$, de maneira que quanto maior o valor de θ maior será o valor de \vec{B}_y. Então, pode-se concluir que para grandes valores de θ, o campo magnético na direção $-\hat{y}$ é grande o suficiente para inverter rapidamente todos Sítios 2, diminuindo o platô $Mag \approx 0.0$ e criando um novo platô $V_{5_{xy}}$ (composto por vértices V_5 mas com a magnetização nos eixos \hat{x} e \hat{y}). Veja que este mesmo campo, tenta manter os momentos magnéticos dos Sítios 3 apontando na direção $-\hat{y}$ por mais tempo, mesmo na presença da outra componente do campo na direção $-\hat{x}$ tentando inverter estes momentos em outra direção. Devido a isto, percebemos que o tamanho do platô $V_{5_{xy}}$ é proporcional a θ (\vec{B}_y). E por fim, observamos mesmo para o maior valor de θ, o campo magnético na direção $-\hat{x}$ adquire valores grandes o suficiente para conseguir inverter os momentos magnéticos dos Sítios 3. Este fato está ilustrado pela passagem de 4.7.c) \rightarrow 4.7.d), em que os vértices $V_{5_{xy}}$ passam para vértices $V_{5_{x}}$ (vértices com momento magnético somente no eixo \hat{x}) e a rede finalmente tem a sua magnetização média completamente invertida.

A dinâmica descrita acima pode ser melhor compreendida com auxílio da figura 4.8. Esta figura mostra a dinâmica de população de vértices em relação ao campo magnético externo para ângulo de 10.0°.
4. Resultados e discussões

\begin{figure}[h]
\centering
\includegraphics[width=\textwidth]{figure.png}
\caption{Fração da população de vértices por campo magnético externo B_{ext} em um ângulo de 10.0° com sitos de desordem nula. A imagem a) mostra o processo entre os valores de campos 0u.r. a 360u.r.. A imagem b) mostra com mais definição as passagens de transições que são difíceis de visualizar na imagem a). As configurações dos vértices de cada platô é representado pela configuração de vértice abaixo destes. Rede de tamanho $L = 30$.}
\end{figure}

Ao analisar as figuras 4.2 e 4.8, pode-se notar que existem três diferenças significativas. A primeira está na grande diminuição, quase extinção, dos vértices tipo V2 na
4. Resultados e discussões

segunda transição de população de vértices. A segunda diferença é o aparecimento de uma terceira transição, feita pela mudanças de vértices $V_{5_{xy}} \rightarrow V_6 \rightarrow V_{5_x}$. Veja que o vértice tipo V6 é um vértice de transição, um fato já observado antes na figura 4.2. E última diferença, é a mudança da posição da segunda transição. No caso do campo perfeitamente alinhado, figura 4.2, a segunda transição ocorre em aproximadamente $|\vec{B}_{ext}| = 220D/\mu$ e para o caso com desalinamento de $\theta = 10.0^\circ$, figura 4.7, a segunda transição ocorre em aproximadamente em $|\vec{B}_{ext}| = 180D/\mu$. A dinâmica de população de vértices das redes desalinadas com o campo magnético externo pode ser descritas por $V_{5_x} \rightarrow V_4 \rightarrow V_1 \rightarrow V_4 \rightarrow V_{5_{xy}} \rightarrow V_6 \rightarrow V_{5_x}$.

Nesta subsecção, observamos que o desalinamento do campo magnético externo com a placa dificulta a obtenção do estado fundamental da rede. Diferente dos casos com desordem, o estado fundamental da rede está mais bem definido, como pode-se comparar nas figuras 4.2 e 4.8. Assim, pode-se concluir que o processo similar ao de histerese é um bom processo para desmagnetizar e obter o estado fundamental da rede de gelos de spins triangulares artificiais, mesmo se esta rede está desalinizada com o campo magnético externo.

Estudos do desalinamento do campo em rede com sítios com desordem

Nesta subsecção analisaremos como o desalinamento do campo magnético externo afeta o comportamento de uma rede com desordem. Inicialmente mostraremos como este afeta as redes com $b'_i = 10.0\%$ de desordem e em seguida as redes com $b'_i = 20.0\%$ de desordem. A figura 4.9 mostra o comportamento da magnetização média de uma rede com desordem de $b/i = 10.0\%$ em relação ao campo magnético externo para diferentes ângulos de desalinamento.
4. Resultados e discussões

![Diagrama](image)

Figura 4.9: Magnetização média da rede Mag por campo magnético externo \tilde{B}_{ext} em diferentes ângulos de desalinamento. Nesta figura, os sítios têm desordem de $b'i = 10.0\%$. Rede de tamanho $L = 30$.

Como nas subseções anteriores, vemos que a desordem suaviza as curvas da magnetização. Vemos também que a desordem diminui mais o platô $Mag \approx 0.0$, dificultando a obtenção de um estado desmagnetizado, e ainda dificulta a formação do platô $V5_{xy}$. A dificuldade de obter o estado desmagnetizado é consequência dos mesmos problemas discutidos nas duas subseções anteriores: as redes com somente desordem e as redes somente desalinhasadas. A figura 4.10 mostra a dinâmica da população de vértices em relação a intensidade do campo magnético externo de uma rede com desordem $b'i = 10.0\%$ e com um desalinhamento $\theta = 10.0^\circ$, que ajudará a entender melhor este processo.
4. Resultados e discussões

![Diagrama](image)

Figura 4.10: Fração da população de vértices por campo magnético externo, \tilde{B}_{ext}, em um ângulo de 10.0°. Nesta figura, os sítios têm desordem de $b' = 10.0\%$. Rede de tamanho $L = 30$.

Através desta figura, observa-se que o platô $V1$ é formado e tem seu tamanho um pouco reduzido, como pode ser observado nos gráficos mostrados anteriormente (figuras 4.3 e 4.8). Além disto, vemos que o platô $V_{5,xy}$ tem o seu tamanho bastante reduzido, parecendo mais um estado de transição entre os estados fundamental e o completamente magnetizado. Veja que os vértices tipo $V4$ e $V6$ são os únicos vértices com um crescimento apreciável. Este é um fato interessante, pois ao comparar com a rede com desordem somente, figura 4.3, vemos que os tipos de vértices $V2$ e $V7$ são completamente eliminados devido ao desalinhamento do campo com a rede.

Agora, ao considerarmos as rede com o dobro de desordem, $b'' = 20\%$, veremos que este valor elevado de desordem dificulta a obtenção do estado fundamental da rede, como foi visto na figura 4.5. A figura 4.11 mostra o comportamento da magnetização média de uma rede com desordem de $b' = 20.0\%$ em relação ao campo magnético externo para diferentes ângulos de desalinhamento.
4. Resultados e discussões

Figura 4.11: Magnetização média da rede Mag por campo magnético externo \vec{B}_{ext} em diferentes ângulos de desalinamento. Nesta figura, os sítios têm desordem de $b'i = 20.0\%$. Rede de tamanho $L = 30$.

Nesta figura pode-se observar que o platô $Mag \approx 0.0$ não está bem definido para grandes ângulos. Assim, espera-se que o estado fundamental não seja alcançado. Observe que para grandes ângulos de desalinamento, a magnetização da rede sofre algumas oscilações durante a inversão da magnetização. Essas oscilações surgem próximas aos pontos onde os platôs eram formados nas redes sem desordem. Para compreendermos melhor este comportamento, vamos analisar as frações de vértices para as redes com desordem $b'i = 20.0\%$ e com desalinamento de $\theta = 10^\circ$.

54
4. Resultados e discussões

Figura 4.12: Fração da população de vértices por campo magnético externo \vec{B}_{ext} em um ângulo de 10.0°. Nesta figura, os sítios têm desordem de $b' = 20.0\%$. Rede de tamanho $L = 30$.

Ao comparar as figuras 4.10 e 4.12, nota-se que o aumento da desordem na rede não aumenta significativamente os valores máximos da população dos vértices V4 e V6. Mas por outro lado, vemos que esta população cresce elevadamente no intervalo de $\vec{B}_{ext} = 100 u.r.$ a $\vec{B}_{ext} = 200 u.r.$ Este aumento é acompanhado da diminuição da população dos vértices tipo V1 neste mesmo intervalo. Além disso, pode-se observar que os platôs dos vértices V1 e V5$_{xy}$ são substituídos por máximos locais.

Nesta subseção, vimos os resultados para as redes com desordem nos sítios e com desalinhado entre o campo e a placa. Mesmo para os maiores valores deste, o processo similar ao de histerese consegue obter em média uma população de vértices tipo V1 superior a 85%, aproximando muito do estado fundamental total da rede. Devido a este fato, pode-se concluir que o processo de desmagnetização similar ao processo de histerese é um bom método para desmagnetizar e obter o estado fundamental dos gelos de spins triangulares artificiais.
4. Resultados e discussões

Estudos da desordem para redes desalinhada

Nesta seção, veremos como a intensidade da desordem influencia na magnetização da rede previamente desalinhada. A figura 4.13 mostra a magnetização média da rede em função da intensidade do campo magnético para uma rede desalinhada em \(\theta = 10.0^\circ \) em relação ao campo magnético externo para diferentes intensidades de desordem.

![Diagrama mostrando a magnetização média em função da intensidade do campo magnético externo para diferentes intensidades de desordem.](image)

Figura 4.13: Fração da população de vértices por campo magnético externo \(\vec{B}_{ext} \) em um ângulo de \(10.0^\circ \) para diferentes valores de desordem. Rede de tamanho \(L = 30 \).

Através desta figura, concluímos que os efeitos da desordem são iguais em redes alinhadas e desalinhadas. Percebe-se que as redes com maiores desordens são as primeiras a entrarem no processo de desmagnetização e também são as últimas a terem as suas magnetizações completamente invertidas. O platô composto por vértices tipo \(V5_{xy} \) é drasticamente afetado pela desordem, pois o aumento da desordem sempre diminui o tamanho deste platô. As dinâmicas de população para as rede desalinhadas para diferentes intensidades de desordem já foram apresentadas anteriormente. Através delas, concluímos que a desordem dificulta a obtenção do estado fundamental das
4. Resultados e discussões

redes desalinhas e para as redes com grandes intensidades de desordem, vimos que o plató formado pelos vértices \(V_{5_{xy}} \) é substituído por um máximo.

4.2 Processo de desmagnetização através de campo magnético externo rotacional

O segundo processo estudado foi o de desmagnetização através de um campo magnético externo rotacional. Neste protocolo, o campo magnético é reduzido em 1 unidade a cada volta completa que ele dá em torno da placa. Inicialmente tentamos desmagnetizar a placa através do processo padrão deste protocolo: Aplicar um campo magnético externo muito grande e diminuí-lo lentamente. Neste processo padrão vimos que, em média, a placa foi completamente desmagnetizada mas infelizmente sua população de vértice tipo \(V1 \) foi muito pequena, não conseguindo alcançar o estado fundamental da rede. Devido a este motivo, descartamos o processo padrão e escolhemos uma intensidade de campo magnético menor para desmagnetizar a placa. A nossa escolha de campo magnético inicial foi \(|\vec{B}_{ext}| = b_c \), a mesma intensidade do campo magnético mínimo de inversão dos momentos magnéticos dos sítios da rede. Inicialmente, tentamos desmagnetizar uma placa composta somente por vértice \(V5 \), magnetizada ao longo da direção \(+\hat{x} \).

Inicialmente, vamos analisar a magnetização média da rede em função do ângulo para 5 diferentes desordens.
4. Resultados e discussões

![Diagrama de resultados](image)

Figura 4.14: Magnetização média M_{ag} por ângulo θ para 5 valores de desordem com o campo inicial de $|\vec{B}_{ext}| = b_c$. Rede de tamanho $L = 30$.

Através da figura 4.14, podemos notar que a desordem é um fator de grande influência para este processo de desmagnetização. Percebe-se que esta está diretamente ligada com o “tempo” de desmagnetização da placa, pois quanto maior a desordem maior o tempo para desmagnetizar a placa.

Um fato interessante é que as redes com desordem conseguem gerar configurações de vértices que não seriam acessíveis as rede sem desordem, devido aos sítios com $b'_i < 0.0$ e com $b'_i > 0.0$. Este fato fica mais evidente ao analisar os gráficos de fração da população de vértices por ângulo para desordem nula, figura 4.15, para desordem $b'_i = 10.0{\%}$, figura 4.16, e para desordem $b'_i = 20.0{\%}$, figura 4.18.
4. Resultados e discussões

Figura 4.15: Fração da população de vértices por ângulo θ para desordem nula. Rede de tamanho $L = 30$.

Na figura 4.15 pode-se notar que em um determinado intervalo, a fração de vértices tipo V_5 diminui rapidamente e a fração de vértices tipo V_1 cresce quase na mesma proporção, mas um pouco menos. Vemos que neste intervalo, as frações de vértices tipo V_4, V_6 e V_7 crescem muito pouco mas logo em seguida voltam a não existir na rede. O vértice tipo V_2 também cresce pouco neste intervalo, mas diferente dos outros três, ele continua a crescer lentamente até alcançar um valor estacionário. Nesta figura, vemos que no final do processo de desmagnetização de uma rede sem desordem, existem, significadamente, somente dois tipos de vértices: O tipo V_1 que compõe aproximadamente 95% dos vértices da rede; e o vértice tipo V_2, que compõe os outros 5%. Estes vértices são exatamente os dois vértices de menor energia e ambos respeitam a regra do gelo (três spins apontando para dentro e três spins apontando para fora do vértice).
4. Resultados e discussões

Na figura 4.16 pode-se perceber que o tempo de desmagnetização da rede com desordem de $b'_i = 10.0\%$ foi aproximadamente 32 vezes maior que o da rede sem desordem. Nesta figura, percebe-se que todos os possíveis vértices que podem aparecer no sistema, com exceção do tipo V8, têm valores significativos no final do processo de desmagnetização: $\approx 45\%$ são V1; $\approx 33\%$ são V2; $\approx 10\%$ são V3; $\approx 10\%$ são V4; menos de 2% são V5, V6 e V7; e 0% são V8. Esse resultado é bem diferente do resultado encontrado em uma rede sem desordem, em que os únicos vértices que apareciam no final da desmagnetização eram os vértices tipo V1 e V2. Observe que a quantidade de vértices presentes nas redes depende da energia da configuração deste vértice, pois os vértice menos energéticos, como V1 e V2, tem as maiores populações, enquanto que os vértices mais energéticos, como V7 e V8, têm as menores populações. Para melhor visualizar este resultado, será mostrado na figura 4.17 a população de vértices no final do processo de desmagnetização, representado na figura 4.16, por energia de configuração de vértice. Nesta figura, o valor da energia foi aumentado em 51u.r., para que não haja valores negativos de energia, e a população de vértices V8 foi excluída do gráfico.
4. Resultados e discussões

pois a sua presença não apresentava nenhuma informação relevante (população nula) para a compreensão deste gráfico.

![Gráfico](image)

Figura 4.17: Fração da população de vértices por energia para desordem de 10.0%. Rede de tamanho $L = 30$.
4. Resultados e discussões

Figura 4.18: Fração da população de vértices por ângulo θ para desordem 20.0%. Rede de tamanho $L = 30$.

Na figura 4.18 apresentamos os resultados para as redes com desordem $b'_i = 20\%$. Aqui vemos que o tempo de desmagnetização é maior, quase 55 vezes em relação as redes sem desordem e quase 2 vezes em relação às redes com $b'_i = 10\%$, e as amplitudes das oscilações das frações de vértices são ainda maiores em relação as rede com $b'_i = 10\%$. Nesta figura, percebemos que as frações de vértices no final do processo de desmagnetização não estão mais ordenadas pelas energias de configurações de vértices. Apesar disto, os 4 vértices de menores energias continuam sendo mais numerosos do que os outros vértices mais energéticos. Pelos resultados dessa figura, pode-se concluir que em redes de grandes desordens, este método de desmagnetização não é eficiente para desmagnetizar e nem obter uma grande população de vértices $V1$.

Ao analisar as quatro últimas figuras, conclui-se que seria impossível alcançar o estado fundamental da rede através deste processo. Esta conclusão está parcialmente correta. Ao analisarmos as redes sem desordem, vemos que realmente é impossível alcançar o estado fundamental para toda a rede, mas felizmente observamos um domínio de vértices do estado fundamental na região central da rede. Este resultado ocorre
porque os sítios da borda da rede interagem fracamente com os demais sítios. Por outro lado, os sítios centrais estão rodeados por vários outros sítios, preservando a identidade do conjunto. Devido a este fato, os sítios da borda não conseguem alcançar o estado fundamental juntamente com a parte central, pois estes tendem a se alinhar mais facilmente com campo magnético externo. A desordem do sistema aumenta o número de sítios da rede que perdem a sua identidade, impedindo a obtenção de uma região bem definida composta somente pelo estado fundamental. Na figura 4.19, pode-se notar que existem grandes regiões compostas somente por vértices no estado fundamental, mas estes não tem um padrão bem definido, aparecendo aleatoriamente no sistema.

\[
|B_{\text{ext}}| = b_c \]

Figura 4.19: Imagens dos vértices da rede para dois tipos de desordem. Os círculos pretos, vermelhos, verdes e azuis são, respectivamente, os vértices tipo V1, V2, V3, e V4. a) Uma rede finita sem desordem. Observe que a região central é composta somente por vértices tipo V1. b) uma rede finita com desordem \(b'_i = 10.0\% \). Veja a existência de várias regiões compostas por vértices tipo V1, mas estas estão espalhadas aleatoriamente na rede.

Nesta seção, vimos que a desmagnetização de uma rede composta por vértices V5 através do processo com campo magnético rotacional de intensidade inicial \(|B_{\text{ext}}| = b_c\) oferece resultados interessantes: Nas redes sem desordem, vimos que estas são compostas somente por vértices que obedecem a regra do gelo e o estado fundamental é alcançado no interior da rede; Nas redes com \(b'_i = 10\% \) de desordem, vimos que as populações de vértices são ordenadas pelas energias de configuração dos vértices,
4. Resultados e discussões

sendo que os vértices de menores energias são aqueles com maiores populações; e nas redes com \(b'_i = 20\% \), vimos que a desordem é muito grande, fazendo com as redes não fossem e nem tivessem grande populações de vértice \(V1 \)
Capítulo 5

Conclusões e perspectivas

5.1 Conclusões e perspectivas

Neste trabalho estudamos dois processos de desmagnetização para um gelo de spin artificial numa rede triangular: o primeiro similar ao processo de histerese e o outro através de um campo magnético rotacional.

No processo similar ao de histerese, observamos que é possível desmagnetizar e obter o estado fundamental das redes com desordens menores ou iguais a $b'_i = 10\%$. Nestas redes, a dinâmica de população é descrita por $V_5 \rightarrow V_4 \rightarrow V_1$. O desalinhamiento do campo magnético com estas redes, não interfere a obtenção do estado fundamental, mas por outro lado, ele cria um estado intermediário, composto por vértices $V_{5_{xy}}$, entre o estado fundamental e o estado com magnetização oposta à magnetização inicial da rede. Para as redes com desordens superiores a $b'_i > 10\%$, observamos que, independentemente do desalinhamiento do campo com a rede, estas são desmagnetizadas e suas populações de vértices $V1$ são superiores a 85%, aproximando-se bastante do nosso objetivo.

No processo de desmagnetização através de um campo magnético externo rotacional vimos que o protocolo padrão, de começar a desmagnetizar com campo de grande intensidade, não foi um método eficiente, pois as redes eram desmagnetizadas mas não conseguiam ter grandes populações de vértice $V1$. Para tentar contornar este problema, sugerimos que a intensidade inicial do campo fosse b_c e a configuração inicial da rede seria composta somente por vértices tipo $V5$. Neste processo, observamos que
5. Conclusões e perspectivas

a dinâmica dos vértices está fortemente ligada com a desordem nos sítios. Para as redes sem desordem, observamos que os estados desmagnetizados eram compostos somente por vértices $V1$ e $V2$, os dois vértices de menores energias e que obedecem a regra do gelo. Para as redes com $b'_i = 10\%$, vimos que os vértices com menores energias foram aqueles que obtiveram as maiores populações. Para as redes com $b'_i = 20\%$, vimos que a desordem no sistema é muito intensa e não conseguimos desmagnetizar e nem obter uma grande população de vértice $V1$.

Por fim, podemos concluir que o protocolo de desmagnetização similar ao de histerese é o mais indicado para desmagnetizar e obter o estado fundamental dos gelos de spin triangulares artificiais, pois mesmo para grandes desordens e com desalinhamiento entre o campo magnético e a rede, conseguimos obter uma população de vértices $V1$ superior a 85%.

Como trabalho futuro, pretendemos estudar o comportamento das cargas magnéticas que aparecem na rede de gelos de spins artificiais triangulares no processo de desmagnetização similar ao de histerese. Com o auxilio de alguns resultados obtidos neste trabalho, pretendemos estudar o aparecimento e a dinâmica destas cargas na presença do campo magnético externo através da dinâmica de população dos tipos de vértice $V1$, $V5$ (os vértice sem carga magnética) e $V4$ (o vértice com carga magnética simples). Estudos em andamento do processo similar a este em uma rede sem desordem indicam que as cargas simples criadas são ligadas por uma string de tensão negativa, devido ao campo magnético externo aplicado no sistema. Nas redes não desalinhasdadas, a string é do tipo linear durante a desmagnetização e é do tipo dente-de-serra durante a magnetização da rede. Nas redes com desalinhamiento, a string é sempre linear.
Referências Bibliográficas

[1] Helbert W. Meyer; A History of Electricity and Magnetism; Publisher: Burndy Library.

[4] Peter Weinberger; Magnetic Anisotropies in Nanostructured Matter

REFERÊNCIAS BIBLIOGRÁFICAS

REFERÊNCIAS BIBLIOGRÁFICAS

