Use este identificador para citar ou linkar para este item: https://locus.ufv.br//handle/123456789/1139
Tipo: Tese
Título: Métodos estatísticos aplicados à seleção de clones de laranjeira 'Pêra'
Título(s) alternativo(s): Statistical methods applied to selection of clones of 'Pêra' sweet orange.
Autor(es): Souza, Emanuel Fernando Maia de
Primeiro Orientador: Siqueira, Dalmo Lopes de
Primeiro coorientador: Peternelli, Luiz Alexandre
Segundo coorientador: Salomão, Luiz Carlos Chamhum
Primeiro avaliador: Bruckner, Claudio Horst
Segundo avaliador: Silva, Fabyano Fonseca e
Abstract: A citricultura recebe destaque no cenário econômico e social brasileiro devido à geração de emprego e renda. Inúmeras pesquisas têm sido desenvolvidas para identificar genótipos de citros superiores, possibilitar aumento na diversidade genética dos cultivos e reduzir prejuízos devido a pragas e doenças. Apesar destes avanços, para a laranjeira 'Pêra', a cultivar com maior área plantada no Brasil, existem poucos trabalhos com o objetivo de selecionar clones mais produtivos e adaptados as regiões de cultivo. Além disso, nos ensaios de competição de cultivares de citros, seja para a obtenção de porta-enxertos ou de copas, as determinações dos melhores genótipos utilizam de grande número de tratamentos, ocupando por longo período grandes áreas experimentais, normalmente superiores a oito safras, o que torna estes experimentos morosos e onerosos. Portanto, a busca de métodos de análise que possam corroborar para aumentar a eficiência e a confiabilidade na avaliação dos dados destes experimentos é de suma importância para o progresso do melhoramento genético de citros. O presente trabalho teve por objetivo, identificar o número mínimo de avaliações a serem realizadas em ensaios de competição de clones de laranjeira 'Pêra' e propor o uso de métodos estatísticos para suportar a dependência temporal ou a dependência espacial. No primeiro momento, foi determinado o coeficiente de repetibilidade e o período de estabilização fenotípica para a indicação do número mínimo de colheitas anuais para se determinar os clones superiores. Posteriormente foram analisados modelos de análise de medidas repetidas para avaliar a dependência temporal e modelos com análise de dependência espacial. Os resultados apontam que seriam necessárias 25 avaliações para seleção com 95% de confiabilidade. Entretanto, quando se considera o período de estabilização fenotípica, ou seja, o período no qual há maior manifestação das características genéticas que governam a produção e menor variabilidade entre safras sucessivas, a seleção poderia ser realizada utilizando a produção das cinco primeiras colheitas anuais, visto que nestas safras foi verificada em média maior associação com a quantidade total de frutos produzidos. Para a seleção utilizando dados das cinco primeiras safras, poder-se-ia empregar o modelo de medidas repetidas com a matriz de covariâncias auto-regressiva heterogênea de primeira ordem; visto que este modelo apresenta qualidade de ajuste e eficiência de seleção no mínimo igual ou maior que o método usualmente empregado, ou seja, a análise de variância com as médias ou totais da produção por planta ao longo das safras de interesse. Para o controle da dependência espacial, os resultados apontam que o uso de modelos auto-regressivos separáveis de primeira ordem para experimentos de seleção de clones de laranjeira 'Pêra', trouxeram ganhos pequenos, porém significativos. Este fato pode ser devido aos baixos valores associados à variância de blocos e a homogeneidade das áreas experimentais utilizadas. Deste modo, a análise desconsiderando o fator blocos, mas com o ajuste espacial auto-regressivo separável de primeira ordem apresentou melhor qualidade de ajuste entre os modelos avaliados.
Citrus industry has received prominence in the current economic and social scene for generating employment and income. Numerous studies have been developed in order to identify genotypes of superior citrus, enable an increase in genetic diversity of crops and reduce losses due to pests and diseases. Despite these advances, as for the orange trees, which are grown within the biggest planted area in Brazil, there are only a few works with the aim of selecting more productive and adapted clones to growing regions. Moreover, in competition assays of citrus growers, intended to obtain rootstocks or crowns, the determinations of the best genotypes use a large number of treatments, occupying large experimental areas for long periods, usually longer than eight annual crops, which makes these experiments lengthy and pricy. Therefore, the search for methods of analysis that can help increase efficiency and reliability in the data evaluation from these experiments is of supreme importance for the progress in the genetic improvement of citrus. This paper is aimed at identifying the minimum number of evaluations to be performed in competition assays of 'Pera' orange tree clones and propose the use of statistical methods to support the temporal or spatial dependence. At first, we determined the coefficient of repeatability and the phenotypic stabilization period to indicate the minimum number of annual crops with the intention of determining the superior clones. Then, models were analyzed in repeated measure analysis in order to assess temporal dependence as well as spatial dependence. The results show that 25 evaluations would be required for selection with 95% reliability. However, when considering the phenotypic stabilization period, i.e., the period in which there is greater expression of genetic characters that govern the production and less variability between successive crops, the selection could be accomplished by using the output of the first five harvests per year, seeing that in these crops there was more association with the total quantity of fruit production. By using statistics of the first five seasons, it would be possible to employ the repeated measurement model with the matrix of autoregressive heterogeneous covariance of first order, as this model features fit quality and selection efficiency at least equivalent or better than the method usually employed, i.e., the variance analysis with the average or total harvest per plant over the crops of interest. In view of spatial dependence control, the results indicate that the use of autoregressive separable first-order models, which were designed for selection experiments of orange tree clones, brought small, but significant gains. This fact may be due to the low values associated with the block variance and homogeneity of the experimental areas that were used. Therefore, the analysis, disregarding the block factor but with spatial autoregressive separable first-order adjustment, showed better fit quality among the models evaluated.
Palavras-chave: Citrus sinensis
Laranjeira "Pêra"
Seleção
Repetibilidade
Medidas repetidas
Análise espacial
Citrus sinensis
Selection
Repeatability
Repeated measures
Spatial analysis
CNPq: CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::FITOTECNIA::MELHORAMENTO VEGETAL
Idioma: por
País: BR
Editor: Universidade Federal de Viçosa
Sigla da Instituição: UFV
Departamento: Plantas daninhas, Alelopatia, Herbicidas e Resíduos; Fisiologia de culturas; Manejo pós-colheita de
Programa: Doutorado em Fitotecnia
Citação: SOUZA, Emanuel Fernando Maia de. Statistical methods applied to selection of clones of 'Pêra' sweet orange.. 2010. 80 f. Tese (Doutorado em Plantas daninhas, Alelopatia, Herbicidas e Resíduos; Fisiologia de culturas; Manejo pós-colheita de) - Universidade Federal de Viçosa, Viçosa, 2010.
Tipo de Acesso: Acesso Aberto
URI: http://locus.ufv.br/handle/123456789/1139
Data do documento: 9-Ago-2010
Aparece nas coleções:Fitotecnia

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
texto completo.pdf620,06 kBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.