Use este identificador para citar ou linkar para este item: https://locus.ufv.br//handle/123456789/1671
Tipo: Tese
Título: Geoprocessamento na discriminação de pastagens degradadas utilizando rede neural artificial em imagem Ikonos II
Título(s) alternativo(s): Geoprocessing in the discrimination of degraded pastures using artificial neural network in image Ikonos II
Autor(es): Silva, Edgley Pereira da
Primeiro Orientador: Cantarutti, Reinaldo Bertola
Primeiro coorientador: Fonseca, Dilermando Miranda da
Segundo coorientador: Fernandes Filho, Elpídio Inácio
Primeiro avaliador: Gleriani, José Marinaldo
Segundo avaliador: Demattê, José Alexandre Melo
Abstract: A pecuária brasileira atingiu a partir da década de 60, uma crescente expansão e consequentemente um aumento em áreas pastagem. Todavia, a perda gradual da capacidade produtiva destas pastagens após alguns anos, tem sido uma constante, principalmente em áreas de exploração extensivas. A recuperação de pastagens degradadas é de difícil implementação devido à falta de informações atualizadas e detalhadas a respeito da sua distribuição espacial. A utilização do sensoriamento remoto por ser uma tecnologia cujos dados podem ser obtidos a baixo custo, com repetitividade e numa escala compatível com a dimensão do problema, pode contribuir em muito para a solução deste problema. A área de estudo localiza-se no município de João Pinheiro, noroeste do estado de Minas Gerais, abrangendo uma área de 100 km2. Os objetivos deste estudo foram: a) diagnosticar e quantificar a área quanto aos sistemas de uso e quanto ao estágio de produtividade das pastagens e b) aplicar métodos de classificação automática em imagem de alta resolução utilizando Redes Neurais Artificiais. Foi utilizada imagem do satélite Ikonos II com resolução espacial de um m. A exatidão do mapeamento foi verificada utilizando-se o índice Kappa. A interpretação visual da imagem e trabalho de campo possibilitou a identificação de pastagens nas seguintes categorias de degradação: nula degradação, baixa degradação, média degradação e intensa degradação. As pastagens presentes na área eram predominantemente de Brachiaria brizantha (1.693 ha), Andropogon gayanus (192 ha) e Panicum maximum (231 ha). De acordo com o índice Kappa, a classificação visual de imagem Ikonos II tem alto potencial para diagnosticar a produtividade das pastagens. As técnicas de classificação em imagens Ikonos II, mostraram-se eficientes na discriminação dos níveis de degradação das pastagens. Os métodos de Máxima verossimilhança e RNA não diferiram estatisticamente e, portanto apresentam alto potencial para classificação de imagem de alta resolução espacial. A avaliação qualitativa dessas imagens mostrou um resultado satisfatório. O método ISODATA foi estatisticamente inferior para imagem de alta resolução espacial. Com os resultados alcançados, abrem-se novas perspectivas para trabalhos futuros, utilizando RNA e situações diferentes, contribuindo para o desenvolvimento do processamento digital de imagem.
The cattle in Brazil reached from 60s, an increasing expansion and consequently an increase in areas of pastures. However, the gradual loss of the productive capacity of these pastures after some years has been a constant, mainly in extensive areas of exploration. The recovery of degraded pastures is hard to implement due to lack of information brought up to date and detailed regarding its space distribution. The use of the remote sensing, a technology whose data can be gotten to the low cost, with repetitivity and in a compatible scale with the dimension of problem, can highly contribute for the solution of this problem. The area of study is located at the city of João Pinheiro, in the northwest of the state of Minas Gerais, enclosing an area of 100 km2. The aims of this study were: a) the diagnosis and the quantification of the area according to the systems of use and the stadium of productivity of pastures and b) the application of methods of automatic classification in high-resolution imagery using Artificial Neural Networks. Image of the satellite Ikonos II with space resolution of one meter was used. The exactness of the mapping was verified using the Kappa index. The visual interpretation of the image and field-work made possible the identification of pastures in the following categories of productivity: productive, low degradation, average degraded, and degraded. The present pastures in the area were predominantly of Brachiaria brizantha (1,693 ha), Andropogon gayanus (192 ha) and Panicum maximum (231 ha). In accordance with the Kappa index, the visual classification of image Ikonos II has high potential to diagnosis the productivity of the pastures. The techniques of classification in images Ikonos II had revealed efficient in the discrimination of the levels of degradation of the pastures. The methods of maximum likelihood and ANN had not differed statistically; therefore, they present high potential for classification of high-resolution imagery. The qualitative evaluation of these images showed a satisfactory result. The method ISODATA was statistically inferior to the high-resolution imagery. With the reached results, new perspectives for future works confide, using ANN and different situations, contributing to the development of the digital image processing.
Palavras-chave: Geoprocessamento
Pastagens
Degradação
Rede neural artificial
Sistemas de informação geográfica
Sensoriamento remoto
Geoprocessing
Pastures
Environmental degradation
Artificial neural network
Geographic information systems
Remote sensing
CNPq: CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::CIENCIA DO SOLO
Idioma: por
País: BR
Editor: Universidade Federal de Viçosa
Sigla da Instituição: UFV
Departamento: Fertilidade do solo e nutrição de plantas; Gênese, Morfologia e Classificação, Mineralogia, Química,
Programa: Doutorado em Solos e Nutrição de Plantas
Citação: SILVA, Edgley Pereira da. Geoprocessing in the discrimination of degraded pastures using artificial neural network in image Ikonos II. 2006. 91 f. Tese (Doutorado em Fertilidade do solo e nutrição de plantas; Gênese, Morfologia e Classificação, Mineralogia, Química,) - Universidade Federal de Viçosa, Viçosa, 2006.
Tipo de Acesso: Acesso Aberto
URI: http://locus.ufv.br/handle/123456789/1671
Data do documento: 25-Ago-2006
Aparece nas coleções:Solos e Nutrição de Plantas

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
texto completo.pdf3,93 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.