Use este identificador para citar ou linkar para este item: https://locus.ufv.br//handle/123456789/2479
Tipo: Dissertação
Título: Estresse osmótico e do retículo endoplasmático induzem morte celular programada de maneira dependente das proteínas NRPs
Título(s) alternativo(s): Osmotic- and ER-stress induce NRPs-dependent programed cell death
Autor(es): Costa, Maximiller Dal-bianco Lamas
Primeiro Orientador: Fontes, Elizabeth Pacheco Batista
Primeiro coorientador: Fietto, Luciano Gomes
Segundo coorientador: Loureiro, Marcelo Ehlers
Primeiro avaliador: Fietto, Juliana Lopes Rangel
Segundo avaliador: Carvalho, Claudine Márcia
Abstract: A identificação de vias de sinalização de resposta em células afetadas por diferentes estresses, bem como das interações entres estas vias, constitui um dos interesses majoritários de pesquisas na área de interações das células vegetais com o meio ambiente. Recentemente, uma nova via de integração entre os estresses do retículo e osmótico foi descrita pelo nosso grupo, sendo que dois dos genes que exibiram as mais fortes induções sinergísticas pela combinação dos estresses, N-rich1 e N-rich2, codificam proteínas similares à proteína NRP, aqui designada NRP-A, que está especificamente associada ao evento de morte celular programada. Nesta investigação, foi demonstrado que as ESTs de N-rich1 e N-rich2 correspondiam a um mesmo gene homólogo a NRP-A, sendo denominados NRP-B. Utilizando plantas transgênicas defeituosas na ativação da via de resposta a proteínas mal dobrados no RE (via UPR), foi demonstrado que a ativação dos genes alvos NAM, NRP-A e NRP-B é sinalizada por estresses no RE por meio de uma via distinta da UPR. Assim também, a expressão dos três genes não é alterada pelo hormônio ABA, indicando que a indução destes pelo estresse osmótico é independente de ABA. Consistente com o envolvimento em morte celular, os três genes são induzidos por indutores de morte celular e reprimidos por inibidores de senescência. Além disso, a expressão transiente de NRP-A e NRP-B promoveu ativação de caspase-3-like em protoplastos de soja e acelerou o processo de senescência em folhas de tabaco, evidenciando a participação dessas proteínas em processos de morte celular. Foi demonstrado que a proteína NRP-B localiza-se possivelmente na membrana plasmática e sua expressão é capaz de promover ativação transcricional de NAM e NRP-A, estando possivelmente ancorada a complexos sistemas de sinalização. Coletivamente estes resultados descrevem um novo ramo de sinalização do estresse no retículo endoplasmático que integra com o sinal osmótico através de uma resposta apoptótica dependente das proteínas NRPs. Como estratégia para tolerância engenheirada a estresses em plantas, foi demonstrado que a superexpressão do chaperone molecular BiP confere resistência a estresses abióticos em plântulas de soja, além de prevenir morte celular. Expressão ectópica de BiP em plantas transgênicas de soja diminuiu as lesões foliares necróticas induzidas por tunicamicina, e manteve o turgor foliar em condições de desidratação induzida por PEG, apresentando, nestas condições, um teor relativo de células mortas inferior às plantas não transformadas. O envolvimento de BiP na prevenção de morte celular foi adicionalmente demonstrado por agroinoculação de NRP-A e NRP-B em folhas de tabaco transformadas com o gene soyBiPD nas orientações senso e anti-senso, onde foi observado uma atenuação na senescência na planta senso e o efeito inverso na planta anti-senso. Experimentos adicionais deverão ser conduzidos para evidenciar os mecanismos pelos quais BIP atua em processos de morte celular.
The identification of cell signaling pathways in response to different stresses and the interactions among these pathways have become major focus for understanding the molecular bases of plant cell-environment interactions. Recently, a novel integrative pathway between ER- and osmotic-stress has been described by our group. Among the target genes of the integrative pathway, N-rich1 and N-rich2 genes, which exhibit the strongest synergistic induction by the combination of both stresses, are homolog of NRP, here designated NRP-A, that has been shown to be specifically associated with programmed cell death. In this investigation, we demonstrated that the N-rich1 and N-rich2 ESTs correspond to the same NRP-A homolog gene, and hence designated NRP-B. Using transgenic plants defective for the unfolded protein response (UPR) activation, we demonstrated that activation of the integrative target genes, NAM, NRP-A and NRP-B, occurs via an ER-stress signaling pathway distinct from the UPR. Likewise, the expression of the three genes is not altered by ABA treatment, indicating that their osmotic induction is ABAindependent. Consistent with an involvement in cell death programs, all three genes are up-regulated by cell death inducers and repressed by senescence inhibitors. Furthermore, the transient expression of NRP-A and NRP-B promoted caspase-3-like activation in soybean protoplasts and accelerated senescence in tobacco leaves. These results revealed the involvement of these proteins in cell death programs. We also demonstrated that NRP-B is located to the plasma membrane, most likely associated to signaling systems, and is capable to promote NAM and NRP-A up-regulation when expressed in soybean protoplasts. Collectively, these results describe a novel branch of the ER stress signaling that integrates with the osmotic signal through a NRP-dependent apoptotic response. As a strategy for engineering stress tolerance in plants, we demonstrated that enhanced accumulation of the molecular chaperone BiP confers abiotic stress tolerance in soybean seedlings in addition to preventing cell death. Ectopic expression of BiP in transgenic soybean plants decreased tunicamycin-induced leaf necrosis and kept leaf turgor under PEG-induced dehydration conditions, resulting in dead cell content lower than that in untransformed plants. The BiP involvement in preventing cell death was further demonstrated by transient expression of NRP-A and NRP-B in sense and antisense BiP- overexpressing tobacco leaves. While in sense leaves senescence was clearly delayed, in antisense leaves the NRP-induced senescence was accelerated as compared to wilt-type leaves. Further experiments are necessary to elucidate the mechanisms by which BiP prevents cell death in plants.
Palavras-chave: Estresse osmótico
Estresse no retículo
UPR
NRP
PCD
Osmotic stress
ER-stress
UPR
NRP
PCD
CNPq: CNPQ::CIENCIAS BIOLOGICAS::BIOQUIMICA::BIOLOGIA MOLECULAR
Idioma: por
País: BR
Editor: Universidade Federal de Viçosa
Sigla da Instituição: UFV
Departamento: Bioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animal
Citação: COSTA, Maximiller Dal-bianco Lamas. Osmotic- and ER-stress induce NRPs-dependent programed cell death. 2007. 105 f. Dissertação (Mestrado em Bioquímica e Biologia molecular de plantas; Bioquímica e Biologia molecular animal) - Universidade Federal de Viçosa, Viçosa, 2007.
Tipo de Acesso: Acesso Aberto
URI: http://locus.ufv.br/handle/123456789/2479
Data do documento: 31-Jul-2007
Aparece nas coleções:Bioquímica Agrícola

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
texto completo.pdf1,64 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.