Use este identificador para citar ou linkar para este item: https://locus.ufv.br//handle/123456789/4064
Tipo: Dissertação
Título: Redes neurais, identidade de modelos e resposta da cebola à adubação nitrogenada
Título(s) alternativo(s): Neural networks, model identity and onions response to nitrogen fertilization
Autor(es): Rodrigues, Dirceu Zeferino
Primeiro Orientador: Cruz, Cosme Damião
Primeiro coorientador: Nascimento, Moysés
Segundo coorientador: Cecon, Paulo Roberto
Primeiro avaliador: Vidigal, Sanzio Mollica
Abstract: O estudo das curvas de produtividade comparadas com a quantidade de nitrogênio absorvido pela cultura da cebola é de fundamental importância para a formulação de um plano de adubação que seja mais eficiente tanto em termos técnicos quanto econômicos. Diversas técnicas estatísticas têm sido propostas, testadas e aprimoradas com o intuito de contribuir para alavancar pesquisas nesta direção. A justificativa para este trabalho de pesquisa está na necessidade de avaliar e aprimorar novas técnicas estatísticas que ajudem na obtenção de informações precisas com a finalidade de auxiliar na tomada de decisão visando melhorar a produtividade. Para isso, este estudo teve como objetivo empregar e avaliar duas metodologias de auxílio à estatística, mas com objetivos específicos distintos com respeito à avaliação da aplicação de nitrogênio na produção dos cultivares da cebola. Na primeira avaliação, objetivou-se utilizar técnicas estatísticas baseadas em modelos de regressão e ajustar curvas para alguns níveis de doses de nitrogênio, relacionadas à produtividade, para uma pesquisa realizada com quatro cultivares em locais distintos de cebola e, em seguida, avaliar a possibilidade de agrupamento desses modelos estatísticos obtidos, utilizando o teste de identidade de modelos. Nesta etapa, procurou-se estimar uma curva que representasse, em conjunto, o padrão de resposta à adubação em todos os quatro locais avaliados. No segundo estudo, a meta era verificar a eficiência de técnicas baseadas em redes neurais. Assim, a proposta foi constatar se já é possível utilizar, com segurança, esse novo conceito baseado em redes neurais artificiais em pesquisas relacionadas à resposta de cultivares de cebola à adubação nitrogenada. De uma maneira geral, o trabalho descreve o êxito da utilização de novas técnicas estatísticas com ênfase em redes neurais que ajudem melhorar a produtividade da cebola para, a partir daí, permitir aplicar e difundir técnicas baseadas em inteligência computacional para fins de estudos de predição e modelagem.
The study of the productivity curves compared with the amount of nitrogen absorbed by the onion crop is fundamentally important for the elaboration of a more efficient fertilization plan in technical terms as well as in economic terms. Many statistical techniques have been proposed, tested, and improved in order to help boost research in this direction. The justification for this research is the need to assess and improve new statistical techniques that help in obtaining accurate information in order to assist in decision making for improving productivity. For this case, this study aimed to use and evaluate two statistical methods with different specific objectives with respect to the evaluation of nitrogen application in the production of onion cultivars. In the first evaluation, statistical techniques based on regression models were used for adjusting curves for some nitrogen levels related to productivity, performing a survey with four onion cultivars in different locations, and then to carry out the evaluation of the grouping possibility of these statistical models using the models identity test. In this step, it was tried to estimate a curve that could represent together the fertilization response pattern in all four evaluated sites. In the second study, the goal was to verify the techniques efficiency based on neural networks. So, the proposal was to see the possibility of using safely this new concept based on artificial neural networks in research related to the onion cultivars response to nitrogen fertilization. In general, this study describes the successful use of new statistical techniques with emphasis on neural networks that help improve the onion productivity and thereafter to implement and disseminate techniques based on computational intelligence for purposes of study prediction and modeling.
Palavras-chave: Cebola
Adubação nitrogenada
Redes neurais
Identidade de modelos
Onion
Nitrogen fertilization
Neural networks
Model identity
CNPq: CNPQ::CIENCIAS AGRARIAS
Idioma: por
País: BR
Editor: Universidade Federal de Viçosa
Sigla da Instituição: UFV
Departamento: Estatística Aplicada e Biometria
Programa: Mestrado em Estatística Aplicada e Biometria
Citação: RODRIGUES, Dirceu Zeferino. Neural networks, model identity and onions response to nitrogen fertilization. 2013. 90 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2013.
Tipo de Acesso: Acesso Aberto
URI: http://locus.ufv.br/handle/123456789/4064
Data do documento: 21-Mar-2013
Aparece nas coleções:Estatística Aplicada e Biometria

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
texto completo.pdf893,63 kBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.