Use este identificador para citar ou linkar para este item: https://locus.ufv.br//handle/123456789/4064
Registro completo de metadados
Campo DCValorIdioma
dc.contributor.authorRodrigues, Dirceu Zeferino
dc.date.accessioned2015-03-26T13:32:18Z-
dc.date.available2013-06-25
dc.date.available2015-03-26T13:32:18Z-
dc.date.issued2013-03-21
dc.identifier.citationRODRIGUES, Dirceu Zeferino. Neural networks, model identity and onions response to nitrogen fertilization. 2013. 90 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2013.por
dc.identifier.urihttp://locus.ufv.br/handle/123456789/4064-
dc.description.abstractO estudo das curvas de produtividade comparadas com a quantidade de nitrogênio absorvido pela cultura da cebola é de fundamental importância para a formulação de um plano de adubação que seja mais eficiente tanto em termos técnicos quanto econômicos. Diversas técnicas estatísticas têm sido propostas, testadas e aprimoradas com o intuito de contribuir para alavancar pesquisas nesta direção. A justificativa para este trabalho de pesquisa está na necessidade de avaliar e aprimorar novas técnicas estatísticas que ajudem na obtenção de informações precisas com a finalidade de auxiliar na tomada de decisão visando melhorar a produtividade. Para isso, este estudo teve como objetivo empregar e avaliar duas metodologias de auxílio à estatística, mas com objetivos específicos distintos com respeito à avaliação da aplicação de nitrogênio na produção dos cultivares da cebola. Na primeira avaliação, objetivou-se utilizar técnicas estatísticas baseadas em modelos de regressão e ajustar curvas para alguns níveis de doses de nitrogênio, relacionadas à produtividade, para uma pesquisa realizada com quatro cultivares em locais distintos de cebola e, em seguida, avaliar a possibilidade de agrupamento desses modelos estatísticos obtidos, utilizando o teste de identidade de modelos. Nesta etapa, procurou-se estimar uma curva que representasse, em conjunto, o padrão de resposta à adubação em todos os quatro locais avaliados. No segundo estudo, a meta era verificar a eficiência de técnicas baseadas em redes neurais. Assim, a proposta foi constatar se já é possível utilizar, com segurança, esse novo conceito baseado em redes neurais artificiais em pesquisas relacionadas à resposta de cultivares de cebola à adubação nitrogenada. De uma maneira geral, o trabalho descreve o êxito da utilização de novas técnicas estatísticas com ênfase em redes neurais que ajudem melhorar a produtividade da cebola para, a partir daí, permitir aplicar e difundir técnicas baseadas em inteligência computacional para fins de estudos de predição e modelagem.pt_BR
dc.description.abstractThe study of the productivity curves compared with the amount of nitrogen absorbed by the onion crop is fundamentally important for the elaboration of a more efficient fertilization plan in technical terms as well as in economic terms. Many statistical techniques have been proposed, tested, and improved in order to help boost research in this direction. The justification for this research is the need to assess and improve new statistical techniques that help in obtaining accurate information in order to assist in decision making for improving productivity. For this case, this study aimed to use and evaluate two statistical methods with different specific objectives with respect to the evaluation of nitrogen application in the production of onion cultivars. In the first evaluation, statistical techniques based on regression models were used for adjusting curves for some nitrogen levels related to productivity, performing a survey with four onion cultivars in different locations, and then to carry out the evaluation of the grouping possibility of these statistical models using the models identity test. In this step, it was tried to estimate a curve that could represent together the fertilization response pattern in all four evaluated sites. In the second study, the goal was to verify the techniques efficiency based on neural networks. So, the proposal was to see the possibility of using safely this new concept based on artificial neural networks in research related to the onion cultivars response to nitrogen fertilization. In general, this study describes the successful use of new statistical techniques with emphasis on neural networks that help improve the onion productivity and thereafter to implement and disseminate techniques based on computational intelligence for purposes of study prediction and modeling.eng
dc.description.sponsorship
dc.formatapplication/pdfpor
dc.languageporpor
dc.publisherUniversidade Federal de Viçosapor
dc.rightsAcesso Abertopor
dc.subjectCebolapor
dc.subjectAdubação nitrogenadapor
dc.subjectRedes neuraispor
dc.subjectIdentidade de modelospor
dc.subjectOnioneng
dc.subjectNitrogen fertilizationeng
dc.subjectNeural networkseng
dc.subjectModel identityeng
dc.titleRedes neurais, identidade de modelos e resposta da cebola à adubação nitrogenadapor
dc.title.alternativeNeural networks, model identity and onions response to nitrogen fertilizationeng
dc.typeDissertaçãopor
dc.contributor.authorLatteshttp://lattes.cnpq.br/4541310431856092por
dc.contributor.advisor-co1Nascimento, Moysés
dc.contributor.advisor-co1Latteshttp://lattes.cnpq.br/6544887498494945por
dc.contributor.advisor-co2Cecon, Paulo Roberto
dc.contributor.advisor-co2Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788114T5por
dc.publisher.countryBRpor
dc.publisher.departmentEstatística Aplicada e Biometriapor
dc.publisher.programMestrado em Estatística Aplicada e Biometriapor
dc.publisher.initialsUFVpor
dc.subject.cnpqCNPQ::CIENCIAS AGRARIASpor
dc.contributor.advisor1Cruz, Cosme Damião
dc.contributor.advisor1Latteshttp://buscatextual.cnpq.br/buscatextual/visualizacv.do?id=K4788274A6por
dc.contributor.referee1Vidigal, Sanzio Mollica
dc.contributor.referee1Latteshttp://lattes.cnpq.br/5365238542399439por
Aparece nas coleções:Estatística Aplicada e Biometria

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
texto completo.pdf893,63 kBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.