Use este identificador para citar ou linkar para este item: https://locus.ufv.br//handle/123456789/4078
Tipo: Dissertação
Título: Técnica de agrupamento na seleção de modelos de regressão não lineares para descrição do acúmulo de matéria seca em plantas de alho
Título(s) alternativo(s): Clustering technique for selection of nonlinear regression models for the description of dry matter accumulation of garlic plants
Autor(es): Puiatti, Guilherme Alves
Primeiro Orientador: Cecon, Paulo Roberto
Primeiro coorientador: Nascimento, Moysés
Segundo coorientador: Silva, Fabyano Fonseca e
Primeiro avaliador: Ferreira, Adésio
Abstract: Estudos de divergência genética entre indivíduos ou populações de plantas e sua trajetória de crescimento são de grande importância em programas de melhoramento, sendo essenciais para a obtenção de informações relevantes para um manejo adequado das plantas. Das técnicas empregadas para tal, a análise de agrupamento e modelos de regressão são amplamente utilizados. Assim, o objetivo deste estudo foi identificar e agrupar modelos de regressão não linear que melhor se ajustam na descrição do acúmulo de matéria seca total da planta do alho ao longo do tempo (60, 90, 120 e 150 dias após plantio). Foram utilizados 15 acessos de alho pertencentes ao Banco de Germoplasma de Hortaliças da Universidade Federal de Viçosa (BGH/UFV). Os modelos de regressão não linear ajustados para cada um dos acessos foram: Brody, Gompertz, Logístico, Mitscherlich e von Bertalanffy. A qualidade de ajuste dos modelos foi determinada pelo coeficiente de determinação ( R 2 ); quadrado médio do resíduo ( QMR ); desvio médio absoluto dos resíduos ( DMA ); critério de informação de Akaike ( AIC ); e critério de informação Bayesiano ( BIC ). Então, para cada acesso, os modelos foram submetidos a análise de agrupamento, com os avaliadores de qualidade de ajuste considerados como variáveis, utilizando o algoritmo UPGMA, a distância generalizada de Mahalanobis como medida de dissimilaridade, e número de grupos determinado pelo método de Mojena. Depois, os modelos ajustados para cada acesso foram novamente agrupados seguindo o mesmo critério, mas utilizando os parâmetros com interpretação biológica como variáveis, e os resultados dos diferentes agrupamentos foram então confrontados. Comparando os resultados dos agrupamentos, observou-se que os modelos Gompertz, Logístico, e von Bertalanffy apresentaram melhores resultados quanto aos avaliadores de qualidade de ajuste, e tiveram resultados próximos quanto a estes e quanto as estimativas dos parâmetros. Estes três modelos se mostraram eficientes para descrição de matéria seca total da planta em acessos de alho, especialmente o modelo Logístico.
Studies of genetic divergence between individuals or populations of plants and its growth path are of great importance in improvement programs, being essential for an appropriate handling through relevant information. Cluster analysis and regression models are techniques largely employed for such. The objective of this study was to identify and to group nonlinear regression models that best describe the dry matter accumulation of garlic plants over time (60, 90, 120 and 150 days after planting). 15 garlic accessions belonging to the Vegetable Germplasm Bank of Universidade Federal de Viçosa (BGH/UFV) were selected. The following nonlinear regression models were adjusted for each one of the accesses: Brody, Gompertz, Logistic, Mitscherlich and von Bertalanffy. The fit quality of the models was measured by the determination coefficient ( R 2 ); mean squared error ( MSE ); mean absolute deviation of the error ( DMA ); Akaike information criterion ( AIC ); and Bayesian information criterion ( BIC ).Then, for each access, the models were submitted the grouping analysis, with the appraisers of fit quality used as variables, using the UPGMA algorithm, the Mahalanobis distance as dissimilarity measure, and Mojena's method to obtain the number of groups. The adjusted models for each access were again grouped following the same criterion, but using the parameters with biological interpretation as variables, and the results of the different clustering analysis were then confronted. Comparing the results, it was observed that the Gompertz, Logistic and von Bertalanffy models presented better results, and they had close results in fit quality and estimates of the parameters. These three models, especially the Logistic, were efficient for the description of dry matter accumulation of garlic plants.
Palavras-chave: Análise de agrupamento
Alho
Análise de regressão
Allium sativum
Cluster analysis
Garlic
Regression analysis
Allium sativum
CNPq: CNPQ::CIENCIAS AGRARIAS
Idioma: por
País: BR
Editor: Universidade Federal de Viçosa
Sigla da Instituição: UFV
Departamento: Estatística Aplicada e Biometria
Programa: Mestrado em Estatística Aplicada e Biometria
Citação: PUIATTI, Guilherme Alves. Clustering technique for selection of nonlinear regression models for the description of dry matter accumulation of garlic plants. 2014. 71 f. Dissertação (Mestrado em Estatística Aplicada e Biometria) - Universidade Federal de Viçosa, Viçosa, 2014.
Tipo de Acesso: Acesso Aberto
URI: http://locus.ufv.br/handle/123456789/4078
Data do documento: 19-Fev-2014
Aparece nas coleções:Estatística Aplicada e Biometria

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
texto completo.pdf403,4 kBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.