Use este identificador para citar ou linkar para este item:
https://locus.ufv.br//handle/123456789/4902
Tipo: | Dissertação |
Título: | Códigos metacíclicos |
Título(s) alternativo(s): | Metacyclic Codes |
Autor(es): | Moreira, Poliana Luz |
Primeiro Orientador: | Guerreiro, Marinês |
Primeiro coorientador: | Vieira, Ana Cristina |
Segundo coorientador: | Fernandes, Sônia Maria |
Primeiro avaliador: | Veloso, Paula Murgel |
Segundo avaliador: | Chalom, Alegria Gladys |
Terceiro avaliador: | Ferraz, Raul Antonio |
Abstract: | Neste trabalho, estudamos os códigos corretores de erros que são ideais na álgebra de grupo FG(M;N;R) sobre um corpo F de característica 2, onde o grupo subjacente é metacíclico, não abeliano, de ordem ímpar e possui a seguinte apresentação: G(M;N;R) = ‹a, b : aM = bN = 1, ba = aRb›; onde mdc(M;R) = 1, RN = 1(mod M) e R ≠ 1. Utilizamos a teoria de representações dos grupos metacíclicos para encontrar os idempotentes geradores dos códigos centrais minimais de FG(M;N;R) e provamos que estes códigos são combinatorialmente equivalentes a certos códigos abelianos, cujas distâncias mínimas não são as melhores possíveis. No entanto, alguns destes códigos centrais minimais se decompõem em soma direta de ideais (códigos) minimais à esquerda, que possuem distâncias mínimas maiores que as dos códigos abelianos de comprimento e dimensão comparáveis. Desta maneira, o estudo de certos códigos metacíclicos minimais (à esquerda) se torna mais interessante. Uma descrição detalhada da teoria de representações dos grupos metacíclicos e alguns resultados sobre álgebras de grupo que auxiliam a determinação dos códigos metacíclicos são apresentados preliminarmente, bem como alguns resultados sobre códigos cíclicos. In this work, we study the eror-correction codes that are ideals in the group algebra FG(M;N;R) over a field F of characteristic 2, where the underlying group is a non-abelian metacyclic of odd order and has the following presentation: G(M;N;R) = ‹a, b : aM = bN = 1, ba = aRb›; onde mdc(M;R) = 1, RN = 1(mod M) e R ≠ 1. We use the theory of representations of the metacyclic groups to find the idempotent generators of the minimal central codes of FG(M;N;R) and prove that these codes are combinatorically equivalent to certain abelian codes whose minimum distances are not the best. However, some of these minimal central codes break down into direct sum of minimal left ideals (left codes), which have minimum distances greater than those abelian codes of comparable length and size. Thus, the study of certain metacyclic minimal (left) codes becomes more interesting. A detailed description of the theory of representations of metacyclic groups and some results on group algebras that support the determination of metacyclic codes are initially presented, as well as some results on cyclic codes. |
Palavras-chave: | Códigos Grupos metacíclicos Álgebras de grupo Codes Metacyclic groups Group algebra |
CNPq: | CNPQ::CIENCIAS EXATAS E DA TERRA::MATEMATICA::ALGEBRA |
Idioma: | por |
País: | BR |
Editor: | Universidade Federal de Viçosa |
Sigla da Instituição: | UFV |
Departamento: | Álgebra; Análise; Geometria e Topologia; Matemática Aplicada |
Citação: | MOREIRA, Poliana Luz. Metacyclic Codes. 2010. 104 f. Dissertação (Mestrado em Álgebra; Análise; Geometria e Topologia; Matemática Aplicada) - Universidade Federal de Viçosa, Viçosa, 2010. |
Tipo de Acesso: | Acesso Aberto |
URI: | http://locus.ufv.br/handle/123456789/4902 |
Data do documento: | 26-Fev-2010 |
Aparece nas coleções: | Matemática |
Arquivos associados a este item:
Arquivo | Descrição | Tamanho | Formato | |
---|---|---|---|---|
texto completo.pdf | 477,92 kB | Adobe PDF | ![]() Visualizar/Abrir |
Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.