Use este identificador para citar ou linkar para este item: https://locus.ufv.br//handle/123456789/5455
Tipo: Dissertação
Título: Identificação do uso da terra sob manejo agroecológico utilizando imagem de alta resolução e conhecimento local
Título(s) alternativo(s): Identification of land use in agro-ecological management using high-resolution image and local knowledge
Autor(es): Portes, Raquel de Castro
Primeiro Orientador: Jucksch, Ivo
Primeiro coorientador: Fernandes Filho, Elpídio Inácio
Segundo coorientador: Gleriani, José Marinaldo
Primeiro avaliador: Cardoso, Irene Maria
Segundo avaliador: Vieira, Carlos Antonio Oliveira
Abstract: Este trabalho objetivou avaliar o potencial de classificadores automáticos e da metodologia empregada na classificação da comunidade residente na bacia para mapeamento do uso e cobertura do solo sob manejo agroecológico. A área de estudo é a Bacia do Rio São Joaquim, no município de Araponga, Zona da Mata mineira. Na metodologia, no primeiro momento, foi realizada a ida a campo onde foram coletados os Pontos de Controle Terrestre para georreferenciar imagem IKONOS II e as amostras de treinamento e validação das classes de uso e cobertura do solo através de GPS. Em laboratório, foram realizadas classificações supervisionadas automáticas pelos algoritmos da Máxima Verossimilhança, Redes Neurais Artificiais e Bhattacharya. Para cada algoritmo, foram feitas duas classificações, 17 e 14 classes. Uma classificação do uso e cobertura do solo foirealizada pelos moradores da bacia onde foram identificadas as classes de uso e cobertura do solo. As imagens classificadas foram levadas ao laboratório e transformadas em formato digital. Os resultados demonstram que dentre os classificadores automáticos, o Bhattachaya apresentou melhor resultado, Kappa 0,76, resultado muito bom para classificação da área em questão. Já o Kappa da imagem classificada pela comunidade foi de 0,55, resultado considerado bom de acordo com a literatura. Estes resultados demonstram que o algoritimo Bhatacharya é o mais eficiente para o mapeamento e que é possível que a comunidade local interprete o meio em que vive e possa realizar com autonomia mapeamentos para traçar estratégias futuras. Sendo assim, os resultados encontrados nesta pesquisa além de serem úteis para futuros planejamentos de pesquisa-ação na bacia hidrográfica em estudo, servirão como conhecimento universal para classificação do uso do solo em outras áreas com manejo agroecólogico.
This study evaluated the potential of automatic classifiers, and methodology of the classification of the resident community in the basin to use mapping and land cover under agroecological management. The study area is the São Joaquim River Basin in the municipality of Araponga, Zona da Mata mineira. In the method, at first, was held to a field trip where they were collected ground control points to georeference image IKONOS II and the training samples and validation of the use classes and soil covered by GPS. In the laboratory, supervised classifications were performed by automatic algorithms Maximum Likelihood, Neural Networks and Bhattacharya.For each algorithm, two ratings were made 17 and 14 classes. A use classification and land cover was done by the residents of the basin where the classes were identified for use and land cover. The classified images were taken to the laboratory and turned into digital format. The results show that among the automatic classifiers, the Bhattachaya shows better result, Kappa 0.76, very good result for classification of the area. Already Kappa image classified by the community was 0.55, considered good result according to the literature. These results demonstrate that the algorithm Batacharya is the most efficient for the mapping and it is possible that the local community to interpret the environment in which to live and perform with autonomy mappings to map future strategies. Therefore, thefindings of this study in addition to being useful for future planning of action research in the basin under study, will serve as universal knowledge for classification of land use in other areas of agroecological management.
Palavras-chave: Ikonos
Classificação de imagens
Maxver
RNAS
Bhattacharya
Agroecologia
Ikonos
Image classification
Maxver
RNAS
Bhattacharya
Agroecology
CNPq: CNPQ::CIENCIAS AGRARIAS::AGRONOMIA::CIENCIA DO SOLO
Idioma: por
País: BR
Editor: Universidade Federal de Viçosa
Sigla da Instituição: UFV
Departamento: Fertilidade do solo e nutrição de plantas; Gênese, Morfologia e Classificação, Mineralogia, Química,
Programa: Mestrado em Solos e Nutrição de Plantas
Citação: PORTES, Raquel de Castro. Identification of land use in agro-ecological management using high-resolution image and local knowledge. 2010. 85 f. Dissertação (Mestrado em Fertilidade do solo e nutrição de plantas; Gênese, Morfologia e Classificação, Mineralogia, Química,) - Universidade Federal de Viçosa, Viçosa, 2010.
Tipo de Acesso: Acesso Aberto
URI: http://locus.ufv.br/handle/123456789/5455
Data do documento: 23-Fev-2010
Aparece nas coleções:Solos e Nutrição de Plantas

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
texto completo.pdf2,03 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.