Use este identificador para citar ou linkar para este item: https://locus.ufv.br//handle/123456789/6862
Tipo: Tese
Título: Predição da área abaixo da curva de progresso da requeima em tomateiro utilizando inteligência artificial
Prediction of area under the curve of progress of late blight in tomato plants using artificial intelligence
Autor(es): Alves, Daniel Pedrosa
Abstract: Redes neurais artificiais (RNA) são modelos computacionais inspirados no sistema nervoso de seres vivos, capazes de aprender a partir de exemplos e empregá-lo na solução de problemas tais como predição não linear, reconhecimento de padrões e diversas outras aplicações. Neste trabalho utilizamos uma RNA para predizer o valor da área abaixo da curva de progresso da doença (AACPD) para o patossistema tomate x requeima. A AACPD é uma medida de ampla utilização na epidemiologia de doenças policíclicas, especialmente em estudos que inferem a respeito da resistência quantitativa dos genótipos. Contudo, para a obtenção do valor final desta área são necessárias, neste patossistema, uma série de seis avaliações ao longo do tempo. O objetivo deste trabalho é propor a utilização das RNAs para a obtenção da AACPD no patossistema tomate x requeima, utilizando um número reduzido de avaliações de severidade. Para tanto, foram considerados quatro experimentos independentes, totalizando 1836 plantas infectadas com o patógeno Phytophthora infestans e avaliadas a cada três dias em um total de seis oportunidades, sendo procedido o cálculo da AACPD por método convencional. A RNA criada permitiu predizer AACPD com correlação de 0,97 e 0,84 quando comparado com os métodos convencionais, utilizando-se de um número 50% e 67% menor de avaliações por genótipo respectivamente. Ao se utilizar a RNA gerada por um experimento para predizer a AACPD para os demais experimentos ocorreu correlação média de 0,94, com duas avaliações, e 0,96, com três avaliações, entre os valores preditos pela RNA e os observados com seis avaliações. Apresentamos neste trabalho um novo paradigma para a utilização da informação da AACPD em experimentos de tomateiro confrontado com P. infestans. Este novo paradigma proposto pode ser adaptado para diferentes patossistemas.
Artificial neural networks (ANN) are computational models, inspired in the nervous system of living organisms, that is able to learn from examples and uses it to solve problems such as non-linear prediction, pattern recognition, and many other applications. In this work we use an ANN to predict the value of the area under the disease progress curve (AUDPC) for pathosystem tomato x late blight. The AUDPC is a widely used measure in the epidemiology of polycyclic diseases, especially in studies about quantitative resistance of genotypes. However, to obtain the final value of this area is required, in this pathossystem, a series of six evaluations along time. The objective of this paper is to propose a new use of ANN, based on the principles of learning, for to obtain the AUDPC in pathosystem tomato x late blight, using a reduced number of disease severity evaluations. We considered four independent experiments, a total of 1836 infected plants with the pathogen Phytophthora infestans and assessed every three days for six times, and proceeded to calculate the AUDPC by conventional methods. The ANN created possible to predict the AUDPC with a correlation coefficient of 0.97 and 0.84 compared with conventional methods, using a number 50% and 67% less ratings for genotypes respectively. Using ANN generated by an experiment to predict the AUDPC for the other experiments there was an average correlation of 0.94, with two ratings, and 0.96, with three evaluations, between the value predicted from ANN and value observed with six evaluations. We present in this work a new paradigm for obtaining AUDPC in tomato experiments inoculated with P. infestans. This proposed new paradigm can be adapted to different pathosystems.
Palavras-chave: Redes neurais artificiais
Inteligência artificial
Tomate
Phytophthora infestans
CNPq: Melhoramento Vegetal
Editor: Universidade Federal de Viçosa
Citação: ALVES, Daniel Pedrosa. Predição da área abaixo da curva de progresso da requeima em tomateiro utilizando inteligência artificial. 2014. 49f. Tese (Doutorado em Genética e Melhoramento) - Universidade Federal de Viçosa, Viçosa. 2014.
Tipo de Acesso: Acesso Aberto
URI: http://www.locus.ufv.br/handle/123456789/6862
Data do documento: 27-Mar-2014
Aparece nas coleções:Genética e Melhoramento

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
texto completo.pdftexto completo848,91 kBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.