Use este identificador para citar ou linkar para este item: https://locus.ufv.br//handle/123456789/7931
Tipo: Dissertação
Título: Equações de Navier-Stokes com viscosidade variável na forma não-estacionária
Navier-Stokes equations with variable viscosity in Form non-stationary
Autor(es): Silva, Samara Leandro Matos da
Abstract: O objetivo principal desde trabalho ́e estudar a equação de Navier-Stokes não-estacionária (1)-(3). Mostraremos a existência, para n ≤ 4, e unicidade, para n ≤ 3, quando ν = ν 0 + ν 1 ||u|| 2 , com ν 0 , ν 1 > 0 constantes positivas. Também provaremos a existência, para n ≤ 4, quando ν = M (a(u)), onde a(u) = ||u|| 2 e M ́e uma função contínua e diferenciável. Para tanto, utilizaremos o Método de Galerkin aclopado com argumentos de compacidade e ponto fixo.
The main objective of this work is to study the Navier-Stokes non-stationary (1) - (3). We will show the existence, for n ≤ 4 and uniqueness, for n ≤ 3 when ν = ν 0 + ν 1 ||u|| 2 with ν 0 , ν 1 > 0 are positive constants. Also prove the existence, for n ≤ 4 when ν = M (a(u)), where a(u) = ||u|| 2 and M is a continuous function and differentiable. To do so, we use the Galerkin method coupled with arguments for compactness and fixed point.
Palavras-chave: Equações diferenciais parciais
Galerkin, Método de
Operadores monótonos
Navier-Stokes, Equações de
CNPq: Matemática
Editor: Universidade Federal de Viçosa
Citação: SILVA, Samara Leandro Matos da. Equações de Navier-Stokes com viscosidade variável na forma não-estacionária . 2013. 81 f. Dissertação (Mestrado em Matemática) - Universidade Federal de Viçosa, Viçosa. 2013.
Tipo de Acesso: Acesso Aberto
URI: http://www.locus.ufv.br/handle/123456789/7931
Data do documento: 16-Jul-2013
Aparece nas coleções:Matemática

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
texto completo.pdftexto completo614,87 kBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.