Use este identificador para citar ou linkar para este item: https://locus.ufv.br//handle/123456789/765
Tipo: Tese
Título: Avaliação de modelos para estimar a condutividade elétrica e a concentração de potássio na solução do solo usando Reflectometria no Domínio do Tempo (TDR)
Título(s) alternativo(s): Evaluation of models for estimating electrical conductivity and potassium concentration of the soil solution by using time domain reflectometry (TDR)
Autor(es): Santana, Gessionei da Silva
Primeiro Orientador: Ramos, Márcio Mota
Primeiro coorientador: Coelho, Eugênio Ferreira
Primeiro avaliador: Martinez, Mauro Aparecido
Segundo avaliador: Oliveira, Rubens Alves de
Terceiro avaliador: Siqueira, Dalmo Lopes de
Abstract: A Reflectometria no Domínio do Tempo (TDR) é uma técnica que vem se despontando nos últimos anos, como uma atrativa ferramenta no monitoramento do teor de água no solo (θ) e da condutividade elétrica aparente do solo (CEa), sendo isso feito, em tempo real, de forma automatizada, rápida e com o mínimo distúrbio da estrutura do solo. Aliado a isto, esta técnica viabiliza, de forma indireta, o conhecimento da condutividade elétrica da solução do solo (CEw) e da concentração de nutrientes nesta solução (Ci) (WRAITH & DAS, 1998; MMOLAWA & OR, 2000 e NOBORIO, 2001). Objetivou-se com este trabalho, avaliar, em condições de laboratório e de campo, seis modelos que relacionam θ, CEa e CEw (RHOADES et al., 1976; NADLER et al., 1984, modificado por RHOADES et al., 1989; RHOADES et al., 1989; MUALEN & FRIEDMAN, 1991; HEIMOVAARA et al., 1995; VOGELER et al., 1996), quanto à sua capacidade de estimar a CEw e a concentração de potássio na solução do solo (K), a partir de dados de θ e CEa, obtidos por meio da técnica da TDR, bem como, a viabilidade de uso dessa técnica no monitoramento da variação temporal e espacial de θ, CEa e CEw, em condições de campo. Para se estimar K, os modelos foram adaptados com relações entre CEw e K do tipo potência (MMOLAWA & OR, 2000) e linear (HEIMOVAARA et al., 1995; VOGELER et al., 1996). Na etapa de laboratório, um solo aluvial de classes texturais franca (CTf) e franco-arenosa (CTfa) foi acondicionado em vasos, de forma a se obter densidades semelhantes àquelas que ocorrem em condições de campo. Com o solo correspondente a cada classe textural, montou-se uma bancada de 25 vasos, nos quais se aplicou cinco soluções de cloreto de potássio, com condutividades elétricas iguais a 1,0; 2,5; 4,0; 5,5 e 7,0 dS m-1, de forma a se obter cinco teores de água no solo, correspondentes a 20; 40; 60; 80 e 100% da água disponível. Na etapa de campo, duas trincheiras foram feitas em um bananal fertirrigado por um sistema de irrigação do tipo microaspersão. As trincheiras foram abertas na direção diagonal, em relação às linhas de plantio, partindo-se da planta para o microaspersor e, após a instalação das sondas de TDR, estas foram fechadas e mantidas em repouso por um período de 60 dias. Em uma das duas trincheiras, nas quais se monitorou a CEa, θ e CEw, o bananal foi adubado com 432 kg ha-1 de K2O por ano e na outra trincheira, adubado com 1.008 kg ha-1 de K2O por ano. Para ambas as etapas (laboratório e campo), leituras de θ e CEa foram feitas por meio de um equipamento de TDR. A solução do solo foi extraída com o uso de extratores para, posteriormente, determinar CEw e K. A CEw foi determinada por meio de condutivímetro de mesa e K por meio de espectrofotômetro de chama. Na etapa de campo, o monitoramento de θ e CEa foi feito em 22 posições de perfis de solo; o equipamento de TDR foi acoplado a quatro caixas multiplexadoras (contendo cada uma oito canais), nas quais foram conectadas 22 sondas de TDR. Por sua vez, o monitoramento da CEw foi feito em seis das 22 posições. Na etapa de campo, em cada trincheira, efetuaram-se leituras de θ, CEa e CEw durante oito dias, cobrindo dois eventos de fertirrigação. As leituras de θ e CEa foram feitas a cada 15 minutos, sendo seus valores armazenados em um datalogger. A solução do solo foi coletada 45 minutos antes e 45 minutos após cada evento de fertirrigação e, a partir daí, em intervalos de 24 horas, até 24 horas após o segundo evento de fertirrigação. Para a etapa de campo, após o ajuste dos modelos aos dados de θ, CEa e CEw e, por conseguinte, obtidos os valores dos parâmetros desses modelos, procedeu-se, com o modelo que melhor se ajustou aos dados de θ, CEa e CEw, a uma estimativa da CEw para todo o perfil do solo monitorado com a TDR (22 posições). Em seguida, perfis de θ, CEa e CEw foram feitos com os valores de θ e CEa obtidos com a TDR e de CEw estimados. Tais perfis foram feitos para os seguintes momentos: três horas antes e três horas após cada evento de fertirrigação e, a partir daí, em intervalos de 24 horas, até 24 horas após o segundo evento de fertirrigação, para as duas doses de K2O. A avaliação dos modelos, quanto à sua capacidade de relacionar as variáveis θ, CEa e CEw e θ, CEa e K, foi realizada com base no coeficiente de concordância (D), proposto por WILLMONTT (1981), no coeficiente de determinação (R2) e no coeficiente angular da equação de uma reta do tipo Y = aX, após otimização de seus ajustes, por meio de planilha eletrônica. É possível estimar a CEw, a partir de dados de θ e CEa, para condição de laboratório, por meio dos modelos avaliados, assim como, K, a partir de dados de θ e CEa, para condição de laboratório, por meio dos modelos de RHOADES et al. (1976), VOGELER et al. (1996) e MUALEN & FRIEDMAN (1991), adaptados com uma relação entre CEw e K do tipo potência, nas faixas de 0 a 60 e 0 a 120 mg L-1, para solos de CTf e CTfa, respectivamente. Os modelos estimaram bem a CEw, a partir de θ e CEa, obtidos por meio da técnica da TDR, em condições de campo, sendo que, os modelos de RHOADES et al., (1976) e VOGELER et al., (1996) foram os melhores; é possível monitorar a variação espacial e temporal de θ, por meio da técnica da TDR, em condições de campo, mas, essa capacidade se reduz com o aumento da salinidade do solo, implicando em redução da qualidade dos dados por ela obtidos; e a técnica da TDR apresentou limitação no monitoramento da variação espacial e temporal de CEa e CEw, em condições de campo, principalmente no solo da trincheira, na qual, o bananal foi adubado com 1.008 kg ha-1 de K2O por ano.
Time domain reflectometry is a technique that has been outstanding in the last years as an attractive tool for soil water content (θ) and for bulk electrical conductivity (ECa) monitoring on real time, automatically, with the minimum soil disturbance. Besides, this technique allows the knowledge of electrical conductivity (ECw) and nutrient concentrations (Ci) of soil solution, indirectly (WRAITH & DAS, 1998; MMOLAWA & OR, 2000 e NOBORIO, 2001). This work had as objective to evaluate six models that relate θ, ECa and ECw (RHOADES et al., 1976; NADLER et al., 1984, modified by RHOADES et al., 1989; RHOADES et al., 1989; MUALEN & FRIEDMAN, 1991; HEIMOVAARA et al., 1995; VOGELER et al., 1996), concerning its capability of estimating the ECw and the potassium concentration in the soil solution from data of θ and ECa, obtained by means of TDR technique as well to evaluate the feasibility of using TDR technique for monitoring time and space variation of θ, ECa and ECw, under field conditions. In order to estimate K, the models were adapted with potential (MMOLAWA & OR, 2000) and linear (HEIMOVAARA et al., 1995; VOGELER et al., 1996) functions relating ECw and K. During the laboratory phase, alluvial soil classified as loam (CTf) and sand loam (CTfa) was packed in pots in order to get the same soil densities from field. Five potassium chloride solutions of electrical conductivities of 1,0; 2,5; 4,0; 5,5 and 7,0 dS m-1 were applied on 25 pots with each type of soil so that five soil water contents as 20; 40; 60; 80 and 100% of the available water could be obtained. During the field phase, two trenches were dug in a banana orchard that used to be fertirrigated by a microsprinkler irrigation system. The trenches were opened in the direction pseudo stem - emitter and TDR probes were installed in their walls. The trenches were filled and no readings were made for 60 days. The banana crop was fertilized with 432 kg ha-1 of K2O per year in one trench and in another it was fertilized with 1,008 kg ha-1 of K2O per year. For both phases (laboratory and field) readings of θ and ECa were done by means of TDR equipment. The soil solution was extracted with water samplers in order to determine ECw and K. The ECw was determined by using a desk conductivimeter and potassium was determined by a flame spectrophotometer. The monitoring of θ and ECa was done in 22 locations of the soil profiles during field phase. TDR equipment was connected to four multiplexers with eight channels each where 22 TDR probes were plugged. ECw was also monitored in these same locations. In each trench, θ, ECa and ECw were read during eight days for two fertirrigation events. The readings were performed in a 15-minute intervals and stored in a datalogger. Soil solution was collected 45 minutes before and after each fertirrigation event and in intervals of 24 hours until 24 hours after the second fertirrigation event. After have fitted the models to data of θ, ECa and ECw and have determined the model parameters, CEw was estimated for the best model in the whole profile monitored with the TDR (22 locations). Afterwards, profiles of θ, ECa and CEw were made for the following moments: three hours before three hours after each fertirrigation event and from that time they were made in 24-hours intervals until 24 hours after the second fertirrigation event. The evaluation of models concerning their capability of relate θ, ECa and ECw and θ, ECa and K was accomplished based upon the agreement coefficient (D) proposed by WILLMONTT (1981), the goodness of fit (R2) and based upon the angular coefficient of the linear equation Y = aX. It s possible to estimate K and CEw from θ and ECa data, under laboratory conditions by using models of RHOADES et al. (1976), VOGELER et al. (1996) e MUALEN & FRIEDMAN (1991), adapted with a potential relation between in the range of 0 to 60 and 0 to 120 mg L-1, for CTf and CTfa soils, respectively. The models estimated reasonably CEw from θ and ECa obtained by TDR technique under field conditions, but this capability reduces with the increase of soil salinity, reducing data quality, as a consequence. TDR technique showed limitation in the monitoring of spatial and temporal variation of ECa and ECw, under field conditions, mainly in case higher amount of K2O applied (1,008 kg ha-1).
Palavras-chave: Fertirrigação
Irrigação
Reflectometria no Domínio do Tempo
Fertirrigation
Irrigation
Time domain reflectometry
CNPq: CNPQ::ENGENHARIAS::ENGENHARIA SANITARIA::RECURSOS HIDRICOS
Idioma: por
País: BR
Editor: Universidade Federal de Viçosa
Sigla da Instituição: UFV
Departamento: Construções rurais e ambiência; Energia na agricultura; Mecanização agrícola; Processamento de produ
Programa: Doutorado em Engenharia Agrícola
Citação: SANTANA, Gessionei da Silva. Evaluation of models for estimating electrical conductivity and potassium concentration of the soil solution by using time domain reflectometry (TDR). 2006. 115 f. Tese (Doutorado em Construções rurais e ambiência; Energia na agricultura; Mecanização agrícola; Processamento de produ) - Universidade Federal de Viçosa, Viçosa, 2006.
Tipo de Acesso: Acesso Aberto
URI: http://locus.ufv.br/handle/123456789/765
Data do documento: 18-Ago-2006
Aparece nas coleções:Engenharia Agrícola

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
texto completo.pdf1,86 MBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.