Locus  

Bayesian inference for the fitting of dry matter accumulation curves in garlic plants

Show simple item record

dc.contributor.author Macedo, Leandro Roberto de
dc.contributor.author Cecon, Paulo Roberto
dc.contributor.author Silva, Fabyano Fonseca e
dc.contributor.author Nascimento, Moysés
dc.contributor.author Puiatti, Guilherme Alves
dc.contributor.author Oliveira, Ana Carolina Ribeiro de
dc.contributor.author Puiatti, Mario
dc.date.accessioned 2017-10-18T15:19:00Z
dc.date.available 2017-10-18T15:19:00Z
dc.date.issued 2016-12-01
dc.identifier.issn 1678-3921
dc.identifier.uri http://dx.doi.org/10.1590/s0100-204x2017000800002
dc.identifier.uri http://www.locus.ufv.br/handle/123456789/12139
dc.description.abstract The objective of this work was to identify nonlinear regression models that best describe dry matter accumulation curves over time, in garlic (Allium sativum) accessions, using Bayesian and frequentist approaches. Multivariate cluster analyses were made to group similar accessions according to the estimates of the parameters with biological interpretation (β1 and β3). In order to verify if the obtained groups were equal, statistical tests were applied to assess the parameter equality of the representative curves of each group. Thirty garlic accessions were used, which are kept by the vegetable germplasm bank of Universidade Federal de Viçosa, Brazil. The logistic model was the one that fit best to data in both approaches. Parameter estimates of this model were subjected to the cluster analysis using Ward’s algorithm, and the generalized Mahalanobis distance was used as a measure of dissimilarity. The optimal number of groups, according to the Mojena method, was three and four, for the frequentist and Bayesian approaches, respectively. Hypothesis tests for the parameter equality from estimated curves, for each identified group, indicated that both approaches highlight the differences between the accessions identified in the cluster analysis. Therefore, both approaches are recommended for this kind of study. en
dc.description.abstract O objetivo deste trabalho foi identificar modelos de regressão não linear que melhor descrevam curvas de acúmulo de matéria seca em acessos de alho (Allium sativum), ao longo do tempo, com uso das abordagens bayesiana e frequentista. Análises de agrupamento multivariadas foram empregadas para agrupar acessos similares quanto às estimativas dos parâmetros das curvas com interpretação biológica (β1 e β3). Para verificar se os grupos formados eram iguais, aplicaram-se testes estatísticos para testar a igualdade de parâmetros das curvas representativas de cada grupo. Foram utilizados 30 acessos de alho, mantidos pelo Banco de Germoplasma de Hortaliças da Universidade Federal de Viçosa. O modelo logístico foi o que melhor se ajustou aos dados em ambas as abordagens. As estimativas dos parâmetros deste modelo foram submetidas à análise de agrupamento com o algoritmo de Ward, e a distância generalizada de Mahalanobis foi utilizada como medida de dissimilaridade. O número ótimo de grupos, de acordo com o método de Mojena, foi de três e quatro para as abordagens frequentista e bayesiana, respectivamente. Testes de hipótese quanto à igualdade de parâmetros das curvas estimadas, para cada grupo de acesso, indicaram que ambas as metodologias evidenciam as diferenças identificadas pela análise de agrupamento. Portanto, ambas as abordagens são indicadas para estudos desta natureza. pt-BR
dc.format pdf pt-BR
dc.language.iso eng pt-BR
dc.publisher Pesquisa Agropecuária Brasileira pt-BR
dc.relation.ispartofseries v.52, n.8, p.572-581, Aug. 2017 pt-BR
dc.rights Open Access pt-BR
dc.subject Allium sativum pt-BR
dc.subject Cluster analysis pt-BR
dc.subject Multivariate clustering curves pt-BR
dc.subject Nonlinear models pt-BR
dc.title Bayesian inference for the fitting of dry matter accumulation curves in garlic plants en
dc.type Artigo pt-BR


Files in this item

This item appears in the following Collection(s)

  • Artigos [94]
    Artigos Técnico-científicos na área de Estatística

Show simple item record

Search DSpace


Browse

My Account