Use este identificador para citar ou linkar para este item: https://locus.ufv.br//handle/123456789/21609
Tipo: Artigo
Título: Thermoelectric properties of IV–VI-based heterostructures and superlattices
Autor(es): Borges, P. D.
Petersen, J. E.
Scolfaro, L.
Leite Alves, H. W.
Myers, T. H.
Abstract: Doping in a manner that introduces anisotropy in order to reduce thermal conductivity is a significant focus in thermoelectric research today. By solving the semiclassical Boltzmann transport equations in the constant scattering time (τ) approximation, in conjunction with ab initio electronic structure calculations, within Density Functional Theory, we compare the Seebeck coefficient (S) and figure of merit (ZT) of bulk PbTe to PbTe/SnTe/PbTe heterostructures and PbTe doping superlattices (SLs) with periodically doped planes. Bismuth and Thallium were used as the n- and p-type impurities, respectively. The effects of carrier concentration are considered via chemical potential variation in a rigid band approximation. The impurity bands near the Fermi level in the electronic structure of PbTe SLs are of Tl s- and Bi p-character, and this feature is independent of the doping concentration or the distance between impurity planes. We observe the impurity bands to have a metallic nature in the directions perpendicular to the doping planes, yet no improvement on the values of ZT is found when compared to bulk PbTe. For the PbTe/SnTe/PbTe heterostructures, the calculated S presents good agreement with recent experimental data, and an anisotropic behavior is observed for low carrier concentrations (n<1018 cm−3). A large value of ZT|| (parallel to the growth direction) of 3.0 is predicted for n=4.7×1018 cm−3 and T=700 K, whereas ZTp (perpendicular to the growth direction) is found to peak at 1.5 for n=1.7×1017 cm−3. Both electrical conductivity enhancement and thermal conductivity reduction are analyzed.
Palavras-chave: Thermoelectric materials
IV–VI-Based superlattices
Ab initio calculations
Boltzmann transport
Editor: Journal of Solid State Chemistry
Tipo de Acesso: Elsevier Inc.
URI: https://doi.org/10.1016/j.jssc.2015.03.027
http://www.locus.ufv.br/handle/123456789/21609
Data do documento: Jul-2015
Aparece nas coleções:Artigos

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
artigo.pdf
  Until 2100-12-31
Texto completo3,11 MBAdobe PDFVisualizar/Abrir ACESSO RESTRITO


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.