Use este identificador para citar ou linkar para este item: https://locus.ufv.br//handle/123456789/27674
Tipo: Tese
Título: Photosynthesis improvement and the relationship between photosynthetic pigments and primary metabolism in tomato leaves
Melhorias na fotossíntese e a relação entre pigmentos fotossintéticos e metabolismo primário em folhas de tomateiro
Autor(es): Pereira, Auderlan de Macena
Abstract: Photosynthesis is responsible for the primary productivity and maintenance of life on the planet, boosting biological activity and contributing to the maintenance of the environment. Traditional crop improvement has been sufficient to keep up with the growing demand for food. However, advances in this area have not focused on photosynthesis, per se, but on fixed carbon partitioning. In the near future other approaches must be used to meet the increasing demand. Thus, several paths may be followed, from improving metabolic pathways related to CO2 fixation, inclusion of metabolic mechanisms from other species and improvements in energy uptake by plants. For the use of energy, it must be first absorbed by photosynthetic pigments, transferring it in the form of excitation energy to the reaction centers where it is converted into biochemical energy. The carbon products fixed in photosynthesis are further used as energy source and building blocks by several metabolic routes. Photosynthetic pigments are also produced from carbon skeletons provided by the primary metabolism, and therefore changes in carbon flow to pigment biosynthesis will likely lead to consequences in the parts of metabolism. In this context, the main goals of this work were: (i) to review and present recent advances related to the improvement of photosynthesis in plants, showing promising advances in the field of plant photosynthesis optimization, with well-established future directions; (ii) to investigate how high pigment mutations (hp1 and hp2) influence tomato metabolic machinery and how these plants adjust themselves to different light conditions; and (iii) to increase our understanding of how mutations that alter carotenoid biosynthesis [namely crimson (old gold-og), Delta carotene (Del) and tangerine (t)] affect the metabolic machinery of tomato plants. Regarding mutations associated with pigment biosynthesis, the data obtained clearly show that extensive metabolic reprogramming occurs allowing plants to withstand changes in the biosynthesis of photosynthetic pigments. Although the mutants were characterized by higher net photosynthesis (A), lower stomatal limitation, higher Vcmax and anatomical modifications that favor photosynthesis, we found that carbohydrate levels are not increased. Another conspicuous feature is that shading minimizes the above differences between mutants and WT, or even fully reversed this in the case of certain metabolites. We further observed that mutations og, Del and t did not greatly affect vegetative growth, leaf anatomy and gas exchange parameters. However, an exquisite metabolic reprogramming was recorded. Taken together, our results show that despite minor impacts on growth and gas exchange, carbon flux is extensively affected, leading to adjustments in tomato metabolism to support changes in carotenoid biosynthesis. It is important to mention that such metabolic alterations seems to have little impacts on growth parameters, although yield is strongly affected. Our results also open novel research avenues, indicating new possibilities for better understanding the relationship between photosynthetic pigments and plant metabolism, as well as the enhancement of photosynthesis.
A fotossíntese é responsável pela produtividade primária e manutenção da vida no planeta, impulsionando a atividade biológica e contribuindo para a manutenção do ambiente. O melhoramento tradicional das culturas tem sido suficiente para acompanhar a crescente demanda por alimentos; no entanto, avanços nessa área não tem focado na fotossíntese em si, mas no particionamento do carbono fixado. Porém, em um futuro próximo outras abordagens deverão ser utilizadas para alcançar a demanda cada vez mais crescente. Dentre tais abordagens, diversos caminhos podem ser seguidos, desde o aprimoramento de rotas metabólicas relacionadas à fixação do CO2 , à inclusão de mecanismos metabólicos de outras espécies e melhorias na capacidade de captação de energia pelas plantas. Para que a energia luminosa seja efetivamente utilizada pelas plantas, primeiro precisa ser absorvida pelos pigmentos fotossintéticos, que a transferem na forma de energia de excitação para os centros de reação, onde é convertida em energia bioquímica. Os pigmentos fotossintéticos são também produzidos a partir de esqueletos de carbono fornecidos pelo metabolismo primário e, desse modo, alterações no fluxo de carbono para a biossíntese de pigmentos possivelmente terá consequências em outras partes do metabolismo. Diante disso, nossos objetivos foram: (i) revisar e apresentar os recentes avanços relacionados ao melhoramento da fotossíntese em plantas, indicando avanços promissores no campo da otimização da fotossíntese em plantas, com direcionamentos futuros bem estabelecidos; (ii) investigar como as mutações high pigment (hp1 e hp2) influenciam a maquinaria metabólica do tomateiro e como essas plantas se ajustam a diferentes condições de luminosidade; e (iii) compreender como as mutações que alteram a biossíntese de carotenoides [nomeadamente crimson (old gold-og), Delta carotene (Del) and tangerine (t)] afetam a maquinaria metabólica de plantas de tomateiro. Com relação as mutações ligadas a biossíntese de pigmentos, os dados obtidos indicam que uma extensa reprogramação metabólica ocorre para que as plantas possam suportar significante alterações na biossíntese de pigmentos fotossintéticos. Embora os mutantes hp1 e hp2 tenham sido caracterizados por maiores taxas fotossintéticas, menores limitações estomáticas associadas a modificações anatômicas que favorecem a fotossíntese, não se observaram alterações nos níveis de carboidratos. Cabe mencionar também que o sombreamento minimiza as diferenças entre mutantes hp e o tipo selvagem. Foi também observado que as mutações og, Del e t tem pouco impacto no crescimento vegetativo, anatomia foliar e parâmetros de trocas gasosas. Não obstante, uma extensa reprogramação metabólica foi observada indicando que ajustes metabólicos ocorrem para suportar as alterações na biossíntese de carotenoides. É importante mencionar também que, aparentemente, tais alterações metabólicas interferem pouco ou nada em parâmetros associados ao crescimento, embora a produção seja afetada. Os resultados aqui apresentados abrem também diversas perspectivas para trabalhos futuros ao indicar novas possibilidades para se compreender melhor a relação entre pigmentos fotossintéticos e metabolismo em plantas, bem como o incremento da fotossíntese.
Palavras-chave: Luminosity
Carotenoids
Carbon deviation
Shading
Luminosidade
Carotenoides
Desvio de carbono
Sombreamento
CNPq: Fisiologia Vegetal
Ecofisiologia Vegetal
Editor: Universidade Federal de Viçosa
Titulação: Doutor em Fisiologia Vegetal
Citação: PEREIRA, Auderlan de Macena. Melhorias na fotossíntese e a relação entre pigmentos fotossintéticos e metabolismo primário em folhas de tomateiro. 2019. 130 f. Tese (Doutorado em Fisiologia Vegetal) - Universidade Federal de Viçosa, Viçosa. 2019.
Tipo de Acesso: Acesso Aberto
URI: https://locus.ufv.br//handle/123456789/27674
Data do documento: 21-Nov-2019
Aparece nas coleções:Fisiologia Vegetal

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
texto completo.pdftexto completo6,44 MBAdobe PDFVisualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.