Use este identificador para citar ou linkar para este item: https://locus.ufv.br//handle/123456789/522
Tipo: Tese
Título: Uso de redes neurais artificiais na avaliação funcional de estradas florestais
Título(s) alternativo(s): Use of neural artificial nets in the functional evaluation of forests roads
Autor(es): Oliveira, Robson José de
Primeiro Orientador: Machado, Carlos Cardoso
Primeiro coorientador: Carvalho, Carlos Alexandre Braz de
Segundo coorientador: Gleriani, José Marinaldo
Primeiro avaliador: Sant'anna, Cléverson de Mello
Segundo avaliador: Leite, Hélio Garcia
Terceiro avaliador: Pereira, Reginaldo Sérgio
Abstract: Esse trabalho apresenta resultados de classificação de estradas não pavimentadas obtidos através de mensurações de defeitos em estradas florestais de duas empresas brasileiras, com a utilização do método do Índice de Condição de Rodovia Não Pavimentada (ICRNP), comparando-se estes com outros dados obtidos com o emprego de um procedimento subjetivo denominado Manual de Avaliação e Classificação da Superfície de Pavimento de Cascalho (MACSPC). Os resultados obtidos serviram para a geração de um banco de dados, que foi empregado como base de entrada em um sistema de redes neurais artificiais, com o objetivo de testar a eficiência deste sistema para tornar mais rápida a recuperação das estradas florestais, minimizando custos de transporte e paralisação de tráfego. Realizou-se uma análise de processo hierárquico, concluindo-se que os parâmetros de estradas florestais mais significativos são seção transversal imprópria e drenagem lateral inadequada, que juntos representam 64% dos problemas detectados. A utilização das redes neurais artificiais apresentou resultados superiores aos outros dois métodos empregados, haja vista que 32,50% das unidades amostrais foram classificadas como excelentes pelo método subjetivo (MACSPC), 6,25% pelo método objetivo (ICRNP) e 0% com o uso das redes neurais artificiais.
This work presents classification data of non-paved roads gotten through measurements of defects in forest roads from two Brazilian companies, with the use of the method named Unsufaced Road Condition Índex (URCI), comparing these with other data gotten using a subjective procedure, called Gravel Paver Manual (GPM). These field data were used in an artificial neural nets system, in order to test its efficiency in speeding forest roads management and recovery, minimizing transport costs and traffic stoppage. An analysis of hierarchic process was applied to the analysis, concluding that the more significant parameters of forest roads were improper transversal section and inadequate lateral draining which together represented 64% of their detected defects. The use of neural artificial nets presented results superior to the others two methods, considering that 32.50% of the units was classified as excellent by the subjective method (GPM), 6.25% by the objective method (URCI) and 0% with the use of neural artificial nets.
Palavras-chave: Estrada florestal
Redes neurais artificiais
Avaliação funcional
Forest roads
Neural artificial nets
Functional evaluation
CNPq: CNPQ::CIENCIAS AGRARIAS::RECURSOS FLORESTAIS E ENGENHARIA FLORESTAL::MANEJO FLORESTAL
Idioma: por
País: BR
Editor: Universidade Federal de Viçosa
Sigla da Instituição: UFV
Departamento: Manejo Florestal; Meio Ambiente e Conservação da Natureza; Silvicultura; Tecnologia e Utilização de
Programa: Doutorado em Ciência Florestal
Citação: OLIVEIRA, Robson José de. Use of neural artificial nets in the functional evaluation of forests roads. 2008. 108 f. Tese (Doutorado em Manejo Florestal; Meio Ambiente e Conservação da Natureza; Silvicultura; Tecnologia e Utilização de) - Universidade Federal de Viçosa, Viçosa, 2008.
Tipo de Acesso: Acesso Aberto
URI: http://locus.ufv.br/handle/123456789/522
Data do documento: 31-Jul-2008
Aparece nas coleções:Ciência Florestal

Arquivos associados a este item:
Arquivo Descrição TamanhoFormato 
texto completo.pdf838,62 kBAdobe PDFThumbnail
Visualizar/Abrir


Os itens no repositório estão protegidos por copyright, com todos os direitos reservados, salvo quando é indicado o contrário.